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Abstract

Motivation: Modern experimental technologies enable monitoring of gene expression dynamics in

individual cells and quantification of its variability in isogenic microbial populations. Among the

sources of this variability is the randomness that affects inheritance of gene expression factors at

cell division. Known parental relationships among individually observed cells provide invaluable

information for the characterization of this extrinsic source of gene expression noise. Despite this

fact, most existing methods to infer stochastic gene expression models from single-cell data dedi-

cate little attention to the reconstruction of mother–daughter inheritance dynamics.

Results: Starting from a transcription and translation model of gene expression, we propose a sto-

chastic model for the evolution of gene expression dynamics in a population of dividing cells.

Based on this model, we develop a method for the direct quantification of inheritance and variabil-

ity of kinetic gene expression parameters from single-cell gene expression and lineage data. We

demonstrate that our approach provides unbiased estimates of mother–daughter inheritance

parameters, whereas indirect approaches using lineage information only in the post-processing of

individual-cell parameters underestimate inheritance. Finally, we show on yeast osmotic shock re-

sponse data that daughter cell parameters are largely determined by the mother, thus confirming

the relevance of our method for the correct assessment of the onset of gene expression variability

and the study of the transmission of regulatory factors.

Availability and implementation: Software code is available at https://github.com/almarguet/

IdentificationWithARME. Lineage tree data is available upon request.

Contact: eugenio.cinquemani@inria.fr

Supplementary information: Supplementary material is available at Bioinformatics online.

1 Introduction

Gene expression variability in isogenic cell populations is known to

play a fundamental role in population-level strategies such as bet-

hedging, and to explain the existence of certain cellular regulatory

patterns (Raj and van Oudenaarden, 2008). Modern experimental

technologies allow for the dynamical monitoring of gene expression

response in individual microbial cells. Whether in the form of

population-snapshot data (Hasenauer et al., 2011) or single-cell

gene expression time profiles (Llamosi et al., 2016), this data pro-

vides a wealth of information for the quantitative mathematical

study of intrinsic and extrinsic gene expression noise.

Among the important sources of variability is gene expression re-

sponse variability originated at cell division. It is well known that

random partitioning of the material among mother and daughter

cells contributes significantly to intercellular diversity (Huh and

Paulsson, 2011a, b). Several studies have addressed the analysis of

how gene expression variability arises along generations based on

detailed models of the evolution of cellular constituents over divid-

ing cells (Garcı́a et al., 2018; Johnston and Jones, 2015; Swain et al.,

2002; Thomas, 2017). On the other hand, the inverse problem of

reconstructing models of inheritance and variability from single-cell

gene expression profiles is extremely challenging and requires an

adapted modeling approach.

In particular, lineage information, i.e. known parental relation-

ships among the observed cells, provides invaluable information

about inheritance and variability of phenotypic traits at cell division

(Ferraro et al., 2016; Hormoz et al., 2016; Taheri-Araghi et al.,

2015). Despite this, most mathematical approaches for the

VC The Author(s) 2019. Published by Oxford University Press. i586

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com

Bioinformatics, 35, 2019, i586–i595

doi: 10.1093/bioinformatics/btz378

ISMB/ECCB 2019

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/14/i586/5529241 by guest on 15 O
ctober 2019

https://github.com/almarguet/IdentificationWithARME
https://github.com/almarguet/IdentificationWithARME
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz378#supplementary-data
Deleted Text: l
Deleted Text: that is
Deleted Text: ,
https://academic.oup.com/


reconstruction of gene expression noise models from single-cell gene

expression data treat cells as independent individuals (Hasenauer

et al., 2011; Komorowski et al., 2009; Munsky et al., 2009; Neuert

et al., 2013; Suter et al., 2011; Waldherr, 2018; Zechner et al.,

2012, 2014). Exceptions are few (Feigelman et al., 2016;

Kuzmanovska et al., 2017) and are discussed below. Although in-

heritance and variability at division can still be quantified by post-

processing of individual-cell parameter estimates (Llamosi et al.,

2016), neglecting parental relationships at a modeling stage is bound

to negatively affect reconstruction performance.

In this article, we develop a stochastic model for the evolution of

gene expression dynamics along the generations of a cell population,

and a method for the direct quantification of variability and inherit-

ance at cell division. Our starting point is mixed-effects (ME) mod-

eling of gene expression. In the ME approach, response variability

over different individuals is captured by the variability of the param-

eters of a structurally identical response model. A population model

describes these parameters as random outcomes of a common prob-

ability distribution estimated from the data (Dharmarajan et al.,

2019; Fröhlich et al., 2018; Llamosi et al., 2016). Crucially, individ-

uals are assumed to be statistically independent. Here, we extend the

ME framework by introducing a model that explicitly relates mother

and daughter parameters in terms of an autoregressive (AR) process

(Ljung, 1999), and formulate estimation of inheritance and variabil-

ity at division as the identification of the AR process parameters.

Then, we develop a direct identification method by extending the

SAEM algorithm (Lavielle, 2015) in order to take lineage informa-

tion and the AR model into the core of the inference procedure. By

the nature of our framework, which we call autoregressive ME

(ARME), the population distribution of the single-cell parameters

also follows naturally.

Next, we apply our method to both in silico and in vivo experi-

ments. Working in silico, we demonstrate the performance of

ARME. We benchmark our direct method with the method in

Llamosi et al. (2016), a state-of-the-art approach among the indirect

approaches based on post-processing of individual-cell parameters

(Ferraro et al., 2016; Taheri-Araghi et al., 2015). Most importantly,

we show that ARME provides unbiased estimates of parameter in-

heritance from mother to daughter cells, whereas indirect methods

systematically underestimate such inheritance. Then, we apply our

approach to the in vivo measurements of osmotic shock response of

Llamosi et al. (2016). We show that gene expression response

parameters of daughter cells are inherited from mothers to an extent

of about 60%, whereas only about 40% of their variability can be

attributed to randomness at division. This significant degree of in-

heritance favors stability of protein concentration levels along a lin-

eage and thus transcriptional memory, a topic of current interest

(Ferraro et al., 2016). In addition, the degree of inheritance is found

to be roughly the same for all kinetic rates, supporting the conclu-

sion that variability at division uniformly affects the different gene

expression regulatory factors.

An approach relevant to ARME is proposed by Kuzmanovska

et al. (2017), who develop a general Bayesian method for inference

of cellular processes from lineage tree data, and demonstrate it on

simulated models of different sort. We instead focus on modeling

and analysis of inheritance and variability of gene expression kinetic

parameters, and apply our methods on real data. Concerning the in-

ference method, we avoid certain approximations used to simplify

computation at the price of uncertain accuracy, and require no

Bayesian prior on the parameters sought. Despite the theoretical

possibility to cast our models into their framework, unfortunately,

no software implementation is provided to compare estimation

performance. A Bayesian, simulation-based approach is also pro-

posed by Feigelman et al. (2016), aimed at model selection among

different single-cell regulatory patterns. Different from our frame-

work, a stochastic model for intrinsic gene expression noise is con-

sidered along with inheritance of the cellular state at division,

whereas parameter variability across different cells is not part of

their modeling and estimation methods. In particular, kinetic gene

expression parameters are fixed over the entire lineage, which makes

their approach inapplicable to our case.

Our work provides effective tools to study the onset of gene ex-

pression variability as well as the degree of conservation of parame-

ters and expression levels along generations. Intrinsic noise and

parameter fluctuations within the lifespan of a cell are instead very

marginally considered here. Although important in general (Swain

et al., 2002), their detailed modeling is not crucial for the focus of

this work. Provided straightforward generalizations or adaptations,

our methods are well suited to the study of many cellular processes

for which inheritance and variability at cell division are of concern.

The article is organized as follows. In Section 2, we introduce

and discuss the ARME modeling framework. In Section 3, we state

the relevant identification problem from lineage tree data and de-

scribe our new inference algorithm. In Section 4, we demonstrate

the effectiveness of the approach in silico, also providing some hints

toward experimental design in presence of lineage information. In

Section 5, we apply our modeling and inference methods to in vivo

osmotic shock gene expression data from yeast. Discussion and con-

clusions are in Section 6.

2 Gene expression modeling over a lineage tree

In this section, we discuss modeling of gene expression dynamics for

individual cells that are subject to parental relationships. An illustra-

tion of this scenario is given in Figure 1. As a starting point, we rely

on the standard approach where the expression dynamics of a given

gene of interest are described by the couple of differential equations

_mðtÞ ¼ kmuðtÞ � gmmðtÞ;
_pðtÞ ¼ kpmðtÞ � gppðtÞ;

�
(1)

where t denotes time, while m(t) and p(t) denote, respectively, the

concentration at time t of messenger RNA and protein molecules of

the species encoded by the gene (de Jong, 2002; Llamosi et al.,

2016). The first equation describes mRNA transcription at rate

kmuðtÞ, with u(t) the strength of promoter activation at time t, and

degradation at rate gmmðtÞ. The second equation describes transla-

tion of protein molecules from the available mRNA molecules at

rate kpmðtÞ, and degradation at rate gppðtÞ. Because of cell growth,

gm and gp account for both biochemical degradation and growth di-

lution. We assume that u(t) is controlled by a known exogenous

stimulus, i.e. it is a known profile. For an individual cell, the above

is a viable model as long as intrinsic noise is not dominant for the

gene of interest. Stochastic versions of this model should be consid-

ered otherwise (Paulsson, 2005). In this work, we rather focus on

how individual-cell parameters vary or are conserved across cells.

Rate parameters km, gm, kp and gp depend on cell physiology

(abundance of ribosomes and polymerase molecules, transcription

factors, . . .) and may typically differ from cell to cell. In Llamosi

et al. (2016), a ME modeling approach was shown to be a viable de-

scription of this variability. Let wv ¼ ðkv
m; g

v
m; k

v
p; g

v
pÞ denote the vec-

tor of parameters for the individual cell v. In the ME approach, for

every cell v, wv is a random outcome from a common population

distribution. Crucially, the different individuals v, i.e. the different

random variables wv, are assumed to be mutually statistically
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independent. For an osmotic shock-responsive gene in yeast,

Llamosi et al. (2016) found that statistical independence does not

hold for cells in a parental relationship, notably for mother–daugh-

ter cell couples. The observed correlation is not surprising, since one

expects cell offspring to inherit the physiological state of the parents

at least in part. Toward in-depth investigation of this inheritance,

we introduce a dedicated statistical framework that is a generaliza-

tion of ME modeling, as described below and illustrated in Figure 1.

Let us consider uv ¼ logðwvÞ, the log-domain version of the posi-

tive rate parameters wv (the reason will be clarified below). Treating

uv 2 R
d as a column vector (d being the number of individual-cell

parameters), we introduce the (first-order) AR model (Ljung, 1999)

uv ¼ Auv� þ ðI �AÞbþ gv; (2)

where v� is the direct ancestor of v, A 2 R
d�d; b 2 R

d, I denotes the

(size-d) identity matrix and gv is a random variable from a distribu-

tion F independent of v, with mean zero and size-d covariance ma-

trix X. We additionally assume that the random variables gv are

independent across different individuals v and of uv� . Notice that

working with the log-domain parameters uv ensures by construction

the positivity of the wv. For different values of A, this model

expresses the extent to which the offspring parameters uv are deter-

mined by (inherited from) the parent parameters uv� , or are the re-

sult of the randomness brought about by gv, if not simply of a

baseline population value fixed by b. The inheritance of the different

entries of uv� , which are different in nature, is duly represented by a

diagonal matrix A, whereas a non-diagonal X is well suited to cap-

ture the onset of statistical dependencies across different entries of

uv, as e.g. due to global extrinsic regulatory effects. Of course, the

model is suited to represent cell division, since two daughters, say v

and v0, may well correspond to the same common parent v�, and yet

be different as a result of the two independent random quantities gv

and gv0.

Model (2) qualifies u ¼ ðuvÞv2V as a stochastic process over V.

To further specify the model, we assume that uv is in a (weakly) sta-

tionary regime. In particular, we assume that mean and covariance

of uv is the same for all individuals. This assumption is consistent as

long as A is Schur-stable (all eigenvalues within the unit circle)

(Ljung, 1999). From a biological viewpoint, it represents a form of

structural invariance of the system within the time span of interest.

In this case, it is easily shown that mean l ¼ Euv and covariance

matrix R ¼ VarðuvÞ obey

l ¼ b; R ¼ ARAT þ X: (3)

Therefore, b in (2) fixes the mean of uv, whereas R depends on A

(inheritance matrix) and X (covariance matrix of the random com-

ponent gv). Moreover, the cross-covariance matrix N ¼
Covðuv;uv� Þ obeys

N ¼ AR: (4)

Thus, normalized by the variance R, A plays the role of the (ma-

trix) correlation coefficient between uv and uv� . For diagonal A, the

closer the diagonal entries to 0 (respectively, to 1), the smaller (resp.

the larger) the extent to which daughter cell are determined by

mother cell parameters. As a generalization of Equation (4), one

finds that the covariance between a given cell and its descendants ‘

generations ahead is given by A‘R. Thus the model reasonably pre-

dicts that two cells are correlated even if none is the daughter of the

other. Yet, because of the strict stability of A, correlation fades

away along generations. Note that, for the special case A¼0 (no in-

heritance from v� to v), a standard ME model uv ¼ bþ gv is recov-

ered, with a fixed term b and random terms gv, independent across

v, sampled from a common distribution F with mean zero and co-

variance matrix R ¼ X. Therefore, our model generalizes ME mod-

els by including a variety of possible mother–daughter dependencies

(A 6¼ 0).

In summary, the proposed model of gene expression over a

population of dividing cells is the combination of model (1) with

parameters evolving in accordance with model (2). In a compact

form, for any given cell v, we may rewrite (1) as

_xðtÞ ¼ FðuvÞxðtÞ þGðuvÞuðtÞ; xðtv
0Þ ¼ xv

0; (5)

where the state vector x comprises concentrations m and p, with ob-

vious definition of matrices F and G in terms of parameters uv.

Vector xv
0 is the initial state of cell v at its birth time tv

0. For any

t � tv
0, we denote the solution of (5) by xvðtÞ. Note that we express

all time variables relative to a universal time reference independent

of the individual cell. To complete the model, we assume that the

daughter cell state at birth is fixed by the mother state at the same

time, i.e. xv
0 ¼ xv� ðtv

0Þ. The resulting model (2), (5) is a description

of gene expression over a tree of dividing cells that is stochastic due

to the randomness affecting daughter cell parameters at cell division.

As such, it can also be interpreted as a model for extrinsic noise

(Swain et al., 2002), where kinetic gene expression parameters fluc-

tuate at the time scale of cell division. It naturally accommodates

Microfluidics
+

Videomicroscopy

Correlation
analysis

T

T

T

Single cell
estimates

(ME)

ARME

Fig. 1. ARME versus indirect approaches for the estimation of inheritance and

variability of gene expression parameters. Left: modeling of single-cell

parameters as well as their variability and inheritance across cell division;

Right: experimental measurement of gene expression profiles in the same

single cells. Orange circles represent cells, straight blue arrows represent the

known parental relationships among them (lineage data). The inference prob-

lem considered in this article is to reconstruct variability and inheritance dy-

namics (cyan double-arrow, left) of the single-cell parameters (uv� ; uv ; uv 0 ;

orange, left) from gene expression data (yv� , yv and yv 0 ; red dots, right) and

the known parental relationships. Data processing flow from right to left rep-

resents utilization of single-cell data (red arrows) and lineage information

(blue arrows) to produce estimates of individual-cell parameters and statistics

(orange arrows) as well as of their variability and inheritance dynamics at cell

division (cyan arrows). ARME (bottom) is a direct method that, based on ex-

plicit modeling of variability and inheritance dynamics, uses single-cell data

together with lineage information to estimate the variability and inheritance

parameters (A, b, and X) at once. Estimates of single-cell parameters and of

their statistics (l and R; orange, left) are also obtained as a byproduct.

Indirect (e.g. ME based) methods (top), instead, only use individual-cell data

to provide estimates of individual-cell parameters and their statistics in a first

step. Based on the individual-cell parameter estimates from the first step and

lineage information, estimates of inheritance dynamics are produced in a se-

cond step

i588 A.Marguet et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/35/14/i586/5529241 by guest on 15 O
ctober 2019

Deleted Text: -
Deleted Text: l
Deleted Text: individual 
Deleted Text: auto-regressive (
Deleted Text: )
Deleted Text: <sup>&hx2013;</sup>
Deleted Text: <sup>&hx2013;</sup>
Deleted Text: <sup>&hx2013;</sup>
Deleted Text: -
Deleted Text: that is
Deleted Text: ,


several population trees evolving in parallel, as e.g. experimentally

observed in microscopy experiments starting form several cells at ex-

perimental time 0. By straightforward modifications, the model can

be generalized to more complex gene expression dynamics [e.g. in-

clusion of a protein maturation step in (5)], random inheritance of

mRNA and protein concentrations, asymmetric division (e.g. for

budding, the mother cell v� keeps its parameters after generating

daughter cell v), and different known inputs affecting different cells

(uv in place of u). Some of these extensions will be used and com-

mented in our application to real data in Section 5. In view of the

fact that our approach includes ME modeling as a special case, in

the sequel, we will refer to it as ARME modeling of gene expression.

3 Identification from lineage tree data

On the basis of the ARME modeling developed in Section 2, we con-

sider the problem of estimating inheritance dynamics of gene expres-

sion over a growing population of cells. Our problem statement

stems from but is not limited to videomicroscopy of cells carrying

fluorescent reporters, where quantitative individual-cell expression

profiles as well as mother–daughter relationships can be established

by suitable image processing.

Over an experimental time period ½0;T�, we assume that gene ex-

pression measurements yv
j are available for individual cells v at cell-

dependent time instants tv
j , with j ¼ 1; . . . ;nv. For every cell, an ini-

tial time tv
0 is also available, such that tv

0 � tv
j for all j. Crucially, we

assume that parental relationships are available, i.e. a family of pairs

of the type ðv�; vÞ expressing the fact that v has been generated from

v� at time tv
0. We assume that, for every cell

yv
j ¼ Cxvðtv

j Þ þ hev
j ; j ¼ 1; . . . ;nv; (6)

where xvðtv
j Þ represents the state of cell v at time tv

j , matrix C selects

the components of xv that are experimentally measured (typically,

the protein concentration p(t) or an associated reporter fluores-

cence), and hev
j represents random measurement error with standard

deviation h >0, where the random variables ev
j are assumed of mean

zero and unitary variance, independent across j and v and independ-

ent of xvðtv
j Þ. For true parameters uv and initial conditions xv

0; xvðtv
j Þ

is the solution of (5).

Let us denote by V the set of observed cells v, by Yv ¼ fyv
j : j ¼

1; . . . ;nvg the measurements for cell v 2 V, and by Y ¼ fYv : v 2
Vg the set of all measurements from all cells. Finally, let us denote

by W ¼ fðv�; vÞg � V � V the set of known mother–daughter rela-

tionships. The ARME identification problem that we address is the

reconstruction of parameters h ¼ ðA; b;X; hÞ from Y and W.

An indirect way to address the problem above is to fit

individual-cell parameter values to the data and then, in the light of

W, infer parameters h from the individual-cell parameter estimates

ûv (Llamosi et al., 2016). In particular, regardless of the inheritance

model (2), the (matrix) correlation coefficient A can be defined as

the normalized covariance Covðuv;uv� ÞVarðuvÞ�1. Thus, provided

a family of individual-cell estimates Û ¼ fûv : v 2 Vg and of moth-

er–daughter pairs W, an estimate of A can be computed as N̂R̂
�1

,

with

R̂ ¼ 1

jVj
X
v2V

ðêvÞðêvÞT ; N̂ ¼ 1

jWj
X

ðv� ;vÞ2W

ðêvÞðêv� ÞT ; (7)

where êv ¼ ûv � b̂ and b̂ is the empirical mean of the individual-cell

parameter estimates Û (e.g. Ljung, 1999; Papoulis, 1991).

Analogous empirical estimates can be constructed for the other

entries of h. In turn, individual-cell estimates can be drawn by direct

fit of the corresponding cell measurements, or with more advanced

methods such as ME identification (Llamosi et al., 2016), as

explained shortly. In so doing, however, the inheritance dynamics

described by Equation (2) is ignored and the lineage information W

is used only in a posteriori statistical analysis. The method we de-

velop below instead exploits W and model (2) in conjunction to pro-

vide direct estimates of h from all data Y. It is known from standard

ME scenarios that such holistic approaches lead to better estimation

performance (Lavielle, 2015). However, standard ME identification

assumes independence of individuals and estimates population sta-

tistics l and R along with single-cell parameters. From this, esti-

mates of h can only be computed by the indirect method above.

ARME identification instead computes estimates of h first. From

these, in view of Equation (3), estimates for the population parame-

ters l and R follow immediately. For W empty and A fixed to zero,

in particular, our method includes ME identification as a special

case. We refer to our method as ARME identification and develop it

in the next section. A comparison between ARME and indirect

(ME) approaches is shown in Figure 1.

3.1 ARME identification
Let u ¼ ðuvÞv2V denotes the collection of all individual-cell parame-

ters. Our approach relies on maximum likelihood (ML) estimation.

If pðYjW; hÞ denotes the probability density of observations Y for

putative parameters h in the light of dependencies W, we define our

estimator ĥ ¼ ðÂ; b̂; X̂; ĥÞ of h as

ĥðY;WÞ ¼ arg max
h2H

LðhjY;WÞ; LðhjY;WÞ ¼ log pðYjW; hÞ;

where H is a suitable parameter search space. To fully determine the

expression of the log-likelihood LðhjY;WÞ, the second-order (mean

and variance) description of the random variables gv and ev provided

so far does not suffice. To cope with this, from now on, we will fix

F (the distribution of the gv) to be the multivariate normal

Nð0;XÞ. Likewise, we take ev �Nð0;IÞ.
Evaluating and maximizing LðhjY;WÞ over h is challenging. To

achieve this, we rely on the fact that the ARME model of Section 2

is hierarchical. Individual-cell parameters play the special role of

hidden variables, i.e. variables whose knowledge would allow one

to evaluate the individual-cell likelihoods. A classical algorithm used

to seek ML parameter estimates for a model of this type is the

expectation-maximization (EM) algorithm. This is an iterative ap-

proach where estimates of h available at iteration k, say ĥk, are

updated by a two-step procedure. Formally, in our case, these two

steps are:

• E-step: compute Qðh; ĥkÞ :¼ EujY;W;ĥk
½logðpðY;ujW; hÞÞ�;

• M-step: update ĥkþ1 ¼ argmaxhQðh; ĥkÞ:

Notably, the E-step brings to surface and leverages the role of

hidden variables u. However, two main limitations affect this

method, possible convergence to local maxima and the typical lack

of an expression for the expectation. To address both concerns,

Delyon et al. (1999) developed a provably convergent randomized

version of this method for ME models called stochastic approxima-

tion EM (SAEM). Here, we develop a non-trivial extension of

SAEM in order to cope with cell-to-cell correlations introduced by

the inheritance dynamics model (2).

The rationale of SAEM is to replace the E-step above by the ran-

dom sampling of the parameters u in accordance with their current-

ly estimated distribution, which results in intertwining the E-step
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with the M-step along the iterations. The algorithm consists in three

steps:

• S-step: simulate ukþ1 according to pðujY;W; ĥkÞ;
• E-step: compute Qkþ1ðhÞ ¼ QkðhÞ þ ckðlogðpðY;ukþ1jW; hÞÞ�

QkðhÞÞ;
• M-step: update ĥkþ1 ¼ argmaxhQkþ1ðhÞ;

where ck is a tunable forgetting factor that trades speed of conver-

gence for exploration of the search space. Typically, the dependence

of ck on the iteration k is exploited to have a first phase of broad

search of the parameter space, followed by a phase that smoothens

out the search and stabilizes it around the region of the final opti-

mum. After stabilization of ĥk, for k large enough, estimate ĥ is set

equal to ĥk. (A discussion about choice of forgetting factor and ter-

mination criterion is reported in Supplementary Section S1.5.) The

new E-step is simple (Supplementary Section S1.1). A modified ver-

sion of it also allows for computation of confidence intervals

(Supplementary Section 1.4). The M-step can be performed e.g. by

numerical optimization (Supplementary Section S1.2). Step S is the

most critical. The conditional distribution pðujY;W; hÞ is itself un-

known. In addition, contrary to ME identification, it cannot be fac-

tored out into individual-cell distributions due to cell-to-cell

correlation in the model. Our implementation of the S-step, which is

of key importance in the ARME framework, is described next.

3.2 Metropolis-Hastings implementation of the S-step
Inspired by Kuhn and Lavielle (2004); Lavielle (2015), we imple-

ment the S-step by a Markov Chain Monte Carlo (MCMC) ap-

proach based on Metropolis-Hastings (MH) rejection sampling. In

what follows, we describe how to get ukþ1 for one execution k of

the step, and omit k from the notation for simplicity. A Markov

chain ðujÞj2N is formed by proposing a new candidate ~ujþ1 from the

current state uj of the chain by a random draw from a suitable pro-

posal distribution qðuj; ~u jþ1Þ. Candidate ~u jþ1 is accepted as the new

chain state with probability

min 1;
pð~u jþ1jY;W; hÞ
pðujjY;W; hÞ

qð~ujþ1;ujÞ
qðuj; ~ujþ1Þ

( )
:

If accepted, one sets ujþ1 ¼ ~ujþ1, otherwise one sets ujþ1 ¼ uj.

Convergence of this chain to the distribution sought (i.e.

pðujY;W; hÞ) can be formally proven and practically checked

(Lavielle, 2015). For both u ¼ ~u jþ1 and u ¼ uj, one may compute

factors pðujY;W; hÞ above in terms of the likelihood pðYju;W; hÞ.
In turn, the latter can be evaluated easily using (5)–(6) for the given

single-cell parameters uj. In view of the linearity of (5), this solution

can also be implemented explicitly.

The success of this approach depends on the choice of the pro-

posal distribution q for the update of the Markov chain. Ideally, q

should be similar to pðujY;W; hÞ. Importantly, this choice deter-

mines the acceptance rate of the sample candidates and thus the effi-

ciency of the procedure. In ARME, contrary to standard ME

identification (Kuhn and Lavielle, 2004), the MCMC procedure

above cannot be separated out into smaller problems due to cell-to-

cell correlation. Yet, due to the high dimension of the cell tree, using

a single proposal q for the joint distribution pðujY;W; hÞ leads to

overly small acceptance rate and thus poor performance.

To address this issue, we implement a hierarchical proposal sam-

pling method that combines a joint population-level proposal with

individual-level proposals. Specifically, we consider three proposal

distributions: A population-level proposal q1, a per-generation pro-

posal q2 and an individual proposal q3, with expressions

q1ðu; ~uÞ ¼ pð~ujhÞ / e�
1
2ð~u1�lÞTR�1ð~u1�lÞ�

e�
1
2

P
v2V

gð~uv ;~uv� ÞTX�1gð~uv ;~uv� Þ;

q
ðvÞ
2 ðuv; ~uvÞ ¼ pð~uvjuv� ; hÞ / e�

1
2gð~u

v ;uv� ÞTX�1gð~uv ;uv� Þ;

q
ðvÞ
3 ðuv; ~uvÞ / exp �ð~u

v � uvÞ2

2r2

� �
;

with gð~uv;uv� Þ ¼ ~uv � ðAuv� þ ðI � AÞbÞ, where l and R are fixed

by h via (3). Proposal q1 is for the joint distribution pðujY;W; hÞ
and has low acceptance rate. On top of that, iteratively along gener-

ations, q2 is used to make proposals about any individual v of a

given generation given the proposed parameters of its ancestor v�.

For the root of the population tree, q2 is modified into

q
ðvÞ
2 ðuv; ~uvÞ ¼ pð~uvjhÞ / e�

1
2ð~u

v�lÞTR�1ð~uv�lÞ. Finally, separately for

every cell v, q3 allows for local exploration of the cell parameter vec-

tor by a random walk in the parameter space which iteratively steps

from a current value uv to a new random value ~uv. The standard de-

viation r of the step size is chosen adaptively in order to ensure a sat-

isfactory acceptance rate around 0.3 throughout iterations (Lavielle,

2015, Section 9.3). The overall implementation of our MH algo-

rithm results from alternating the usage of these proposal distribu-

tions for the generation of the candidate chain samples ujþ1, and

propagating changes in the resampled individual parameters to the

descendants along the tree. Further technical details are given in

Supplementary Section S1.5.2. By the same MCMC approach,

single-cell parameter estimates ûv can also be obtained

(Supplementary Section S1.3).

4 Applications to in silico experiments

In this section, we apply our ARME inference method to simulated

gene expression data over a lineage tree. We first validate the

method in Section 4.1, showing convergence of estimates to the true

parameters h ¼ ðA;b;X;hÞ as well as the ability to recover

individual-cell dynamics. Then, in Section 4.2, we show that our

method outperforms existing approaches to estimate mother–daugh-

ter relationships. In this analysis, we will consider symmetric div-

ision, whereby mother cells generate and are replaced by two

newborn daughter cells, each with its own parameters inherited

from the mother with additional variability.

4.1 Illustration and validation of estimation approach
In order to test the validity of our ARME identification algorithm,

we consider a scenario where gene expression data are collected

from individual cells over seven generations subjected to a common

perturbation profile u that alternates periods of promoter induction

(u¼1) to periods of lack of induction (u¼0). In view of later appli-

cation of the method to the real data from Llamosi et al. (2016),

both this perturbation profile and the simulated parameters of the

model are mostly taken from the same work, where mean values for

single-cell parameters were fixed based on literature search and

refined based on the data [time units are minutes (min), while the

unit for parameters km, kp, gm and gp are (min)�1].

For identification purposes, in absence of information about the

unobserved variable m(t), parameters km and kp of model (1) are in-

distinguishable from single-cell data, i.e. only their product matters

(Llamosi et al., 2016). Accounting for these parameters as separate

entities may cause practical issues as well as erroneous interpretation

of the results. Without loss of generality, in agreement with existing

literature (Llamosi et al. (2016) and references therein), we,
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therefore, fix km to 10 (min)�1 in both simulation and identification,

focusing our analysis on the reduced parameter vector wv ¼
ðgv

m; k
v
p; g

v
pÞ and the corresponding size-three parameters A, b and X.

To simulate artificial datasets, starting from a single uninduced

cell at time 0 (Generation 1), we simulate division of every existing

cell into two daughter cells every 90 min over seven generations,

thus obtaining a full cell tree. Single-cell parameters are simulated

on the basis of model (2), with parameters A ¼
Diagð0:5;0:5;0:5Þ; b ¼ ½logð0:294Þ; logð0:947Þ; logð0:1Þ�T and

X ¼ Diagð0:1; 0:1; 0:1Þ. Gene expression dynamics of every cell are

simulated in accordance with model (1). Here, we assume that, be-

sides measurement noise, the reporter protein concentration p coin-

cides with the observed fluorescence intensity. For every cell, we

assume that measurements of p(t) are taken every minute.

Measurement noise is simulated by adding random Gaussian error

with strength h¼20, corresponding to a standard deviation in order

of 10% of the simulated protein concentrations (as observed in real

data). This simulation is repeated 20 times, each time with different

cell parameters sampled from model (2) and different outcomes of

measurement noise. Figure 2 reports an example of the simulated

data from one of the 20 datasets.

To assess identification performance, the ARME algorithm of

Section 3 is run on every dataset separately, yielding 20 iterative esti-

mation profiles for the unknowns h ¼ ðA; b;X; hÞ. In our non-

optimized implementation in Julia (Bezanson et al., 2017), one esti-

mation run takes about 5 h on an Intel Xeon 3 GHz workstation.

Statistics of the estimation process over the 20 datasets are shown in

Figure 3. Estimated single-cell dynamics from the model identified

on one dataset are shown in Figure 2.

From Figure 3, the first remark is the neat convergence of the it-

erative procedure around the true parameter values. Unreported

results show that the observed convergence is robust to both initial

parameter guesses and the randomness of the algorithm.

Importantly, the iterative estimation sequences converge on average

to the true values used in data generation, i.e. there is no estimation

bias (the discrepancy in the estimation of the mean of kp can be

explained by a small sensitivity of the model around its true value

and does not exceed the first and third quartiles, see further com-

ments below). The variability of the estimates over the 20 datasets

reflects variability in the data due to randomness in parameter inher-

itance and the realistically large measurement noise (Fig. 2). In gen-

eral, estimation variability also depends on the richness of the

dataset. To verify this, we repeated the same experiment with a

higher number of observed cell generations (11 generations,

Supplementary Fig. S2) and with a smaller measurement noise

strength (h¼10, Supplementary Fig. S1). Our algorithm converges

nicely in all these cases, and the estimation uncertainty is decreased

in both cases, as expected (the same Supplementary Figures also

show that the discrepancy in the estimation of the mean of kp

observed in Fig. 3 disappears for richer datasets). Additional simula-

tions show that convergence holds for different parameters, notably

for a non-diagonal matrix X (Supplementary Fig. S3). This case cor-

responds to a non-diagonal matrix R, i.e. a more complex correl-

ation structure among gm, kp and gp. A validation study also shows

that the identified model is not overfit and predicts well single-cell

parameters of a synthetic validation dataset (Supplementary Section

S5). Finally, application of our method to simulated data with vari-

ous degrees of intrinsic noise shows that inference is robust to small

intrinsic noise levels, while estimation uncertainty increases for

larger intrinsic noise levels, as expected (Supplementary Section S4).

For the identification of the inheritance matrix A, estimation per-

formance is expected to depend not only on the number of observed

cells (i.e. jVj, the cardinality of set V) but also on the structure of

dependencies W. In particular jWj, the number of mother–daughter

pairs for which gene expression data is available, plays an important

role (unrelated cells do not provide information about A). A prelim-

inary study of this question shows that indeed, for an equal number

of cells jVj, a larger set of dependencies jWj favors estimation of A.

Fig. 2. Single-cell fits of in silico gene expression data based on the ARME

identification. Results shown are for the seven cells along one branch of one

simulated tree spanning seven generations (at every cell division, only one of

the two daughter cells is displayed at subsequent times; all branches are stat-

istically similar). Vertical dashed lines indicate cell division times. Black line:

true simulated protein profiles; blue dots: noisy protein concentration meas-

urements; and red lines: 30 simulated single-cell trajectories corresponding

to single-cell parameters sampled from the posterior pðuv jY ;W ; ĥÞ, where ĥ

are the parameters of the ARME model identified from data Y. Black bars:

promoter activity u. For every cell, true parameter vectors wv ¼ ½gm ; kp ;gp �
that generated the data are displayed in square brackets Fig. 3. Iterative ARME identification of parameters A ¼ DiagðA1;1;A2;2;A3;3Þ, b

and R ¼ DiagðR1;1 ;R2;2;R3;3Þ from the application of the algorithm to 20 simu-

lated datasets Y for 80 search iterations plus 20 stabilizing iterations (100 iter-

ations total). Identification is based on data simulated over seven generations

with measurement noise level h¼20. Horizontal black lines: true parameter

values; blue lines: median of the iterative estimation profiles; and shaded

blue region and dashed lines: at every iteration, 25% and 75% quantiles of the

estimates over the 20 datasets, and extension of corresponding whiskers, as

computed for the final parameter estimates in later boxplots (Fig. 4)
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However, it may deteriorate estimation of b and R (see

Supplementary Section S3 for more details).

4.2 Performance gain over indirect approaches
A key question at the basis of this work is whether full account of

parameter inheritance at both modeling and inference level improves

reconstruction of statistical mother–daughter dependencies. In this

section, we demonstrate that this is the case by comparing ARME

identification with the state-of-the-art indirect method in Llamosi

et al. (2016), where estimates of the inheritance model parameters h
are built on top of ME identification. In a perfectly equivalent man-

ner, we obtain this by running our ARME identification algorithm

in the special case where A is fixed to 0, computing individual-cell

parameter estimates as described in Supplementary Section S1.3,

and then applying the correlation analysis as per Equation (7). To

distinguish estimates based on standard ME from estimates based

on our ARME approach, in what follows, we append superscript

‘ME’ to the estimates from the former.

We rely on the artificially generated datasets of the previous sec-

tion. ARME estimates of h are those of the previous section, whereas

indirect ME estimates are obtained for every dataset as explained

above. In Figure 4, we show boxplots of estimates Â
ME

, and analo-

gous boxplots for the ARME estimates Â. The difference is appar-

ent. Estimates Â are nicely centered around the true values and

show little dispersion. On the contrary, despite a rather rich dataset,

estimates Â
ME

are biased, a signature of poor estimation perform-

ance. Bias was also verified by non-parametric hypothesis testing. A

sign test applied to Â
ME

1;1 ; Â
ME

2;2 and Â
ME

3;3 rejected the hypothesis that

the estimate is centered around the true value 0.5 for all of them at

0.05 significance (with P-values < 10�5, 0.0026 and < 10�5, re-

spectively), confirming bias, whereas the same test applied to the

ARME estimates Â1;1; Â2;2 and Â3;3 did not reject this hypothesis

(P-values 0.50, 0.82 and 0.50). Bias of Â
ME

is also reconfirmed on

other simulated datasets (Supplementary Figs S4 and S5).

Importantly, this bias generally depends on the true values of the un-

known parameters under estimation as well as noise strength and

observed population size (same Supplementary Figures); therefore, it

cannot be easily compensated for. The bias is negative, i.e. tradition-

al approaches systematically underestimate the degree to which

parameters are inherited from mother to daughter cells. This is easy

to explain: Methods that do not have a dependency model at the

core of the inference approach assume a priori independence (no in-

heritance) of parameters of different cells. In sums, we showed that

ARME identification provides unbiased estimates of inheritance and

variability of gene expression parameters, whereas indirect methods

are affected by an estimation bias that is hard to compensate for.

5 Inheritance of gene expression parameters in
yeast osmotic shock response

In this section, we apply our approach to the study of yeast osmotic

shock response gene expression data from Llamosi et al. (2016).

Our study is motivated by the fact that, in Llamosi et al. (2016),

statistical evidence of correlation between mother and daughter cells

was found a posteriori, despite the a priori modeling hypothesis of

independence across cells.

The experiment of Llamosi et al. (2016) consists of yeast cells

growing in a microfluidic device and subjected to repeated osmotic

shocks. A fluorescent reporter protein is expressed in these cells

under the control of the promoter of osmosensitive gene STL1, so

that new fluorescent reporter molecules are synthesized in response

to the shocks. Gene expression response is observed over the experi-

mental time period ½0; 594� (min) by videomicroscopy. Fluorescence

intensity gene expression measurements are collected for individual-

ly tracked cells about every 6 min. Single-cell gene expression data

from these recordings are available online (Llamosi et al., 2016).

Lineage information were provided to us by the authors for a set of

86 cells, corresponding to the cells observed in a single microfluidic

chamber. An illustration of the known parental relationships among

these cells is shown in Figure 5. Measurements are shown in

Figure 5 on a time axis that also illustrates the delivered osmotic

shocks. [In the whole section and figures, florescence measurements

Fig. 4. Statistics of identification of inheritance parameters A ¼
DiagðA1;1;A2;2;A3;3Þ over 20 simulated datasets. Identification is based on

data simulated over 7 generations with measurement noise level h¼20. For

each parameter, we compare results from ARME identification and from the

indirect method based on standard ME identification. Horizontal lines show

the parameter values used in simulation

Fig. 5. Illustration of the cell dependencies observed in the yeast experimental

data of Llamosi et al. (2016) (top) and corresponding single-cell data fits after

ARME identification of parameters h (bottom). In the dataset, 86 cells were

monitored, out of which four were discarded after data curation. Observed

cell dependencies W result in 15 pairs of one mother generating one daughter

cell (top left), 12 triplets of one mother generating two daughter cells (top cen-

ter) and four quadruples of one mother generating three daughter cells (top

right). For each of these three cases, bottom plots provide an example of sin-

gle-cell fits obtained as in Fig. 2 from ARME identification (30 profiles corre-

sponding to 30 random draws of the individual-cell parameters from the

relevant posterior distribution). Vertical lines: daughter cell division times;

dots: real fluorescence measurement data; lines: single-cell fits; and black

bars: osmotic shock profile uc. Color coding in bottom plots distinguishes

mother from daughter cells as in the top plots
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are in arbitrary units (A.U.), time units is minutes (min), concentra-

tions are in molar units (M) and rate parameters are in (min)�1].

The experiments we consider are on budding yeast

(Saccharomyces cerevisiae). In budding yeast, mother cells generate

one newborn daughter cell at a time. Newborn cells are initially

smaller than mother cells and do not replace them but rather coexist

with them. Because mothers keep most of their material at division,

we assume that mothers conserve their own kinetic parameters

throughout, while every daughter cell inherits its parameters from

the mother with possible variability. This is naturally captured by

the modeling framework of Section 2. In accordance with Llamosi

et al. (2016), an appropriate model to describe fluorescent reporter

gene expression response to osmotic shocks in individual cells is an

extension of model (1). In this extension, u is the result of a signaling

chain that senses exogenous shocks and transduces them into pro-

moter activation via formation and translocation into the nucleus of

a transcription factor. Following the characterization of Llamosi

et al. (2016), we, therefore, rely on the model

_uðtÞ ¼ khucðtÞ � ghuðtÞ;
_mðtÞ ¼ kmuðtÞ � gmmðtÞ;
_pðtÞ ¼ kpmðtÞ � gppðtÞ;

8<
: (8)

where m and p are respectively the mRNA and protein concentra-

tions of the reporter species and, up to a known delay, ucðtÞ is the

commanded (known) microfluidic chamber osmolarity. The first

equation models promoter response to shocks with the known

parameters kh ¼ 0:3968 and gh ¼ 0:9225. This model is still in the

form (5) (with uc playing the role of u). In addition, the synthesized

reporter molecules contribute to the observed fluorescence only after

a maturation time s ’ 30 (min). Thus, the quantity measured in the

experiment is f ðtÞ ¼ cðgpÞ 	 pðt � sÞ, where cðgpÞ > 0 accounts both

for the percentage of reporter molecules that mature before degrad-

ing (hence the dependence on gp) and for the conversion of concen-

tration p into corresponding fluorescence intensity. Provided a time

shift in the observed data of length s, this observation model agrees

with (6) (dependency of c on gp is accommodated by the ARME

identification algorithm without modifications).

Based on (8) and the inheritance model (2), we ran our ARME

identification method to get estimates of the inheritance model

parameters h pertaining the unknown individual-cell quantities gm,

kp and gp (in view of the identifiability considerations of Section 4.1,

in agreement with Llamosi et al. (2016), km is fixed to 10, while the

remaining parameters kh and gh in (8) are known and fixed as

above). Results from these estimates are reported in Figure 6. In

Figure 5, for various cells v, predicted single-cell dynamics corre-

sponding to 30 values for uv sampled from the identified model

pðuvjĥ;W;YÞ are compared with the individual-cell measurements.

Similar data fits for all cells of the dataset are reported in

Supplementary Figures S11–S13.

From Figure 5, it is apparent that the identified model provides

an excellent explanation of the data. The a posteriori individual-cell

simulations agree well with the observations. Variability of these

simulations in different cells follows from the estimated variability

of uv and matches the stochastic fluctuations in the corresponding

single-cell data. The remaining discrepancy between simulations and

data is in essential agreement with the estimated measurement noise

level ĥ ¼ 427 (which is similar to the estimate of Llamosi et al.

(2016) and corresponds to a standard deviation of about 10% of the

observed fluorescence levels). An additional validation study con-

firms that ARME inference does not overfit the data and yields a

predictive model (Supplementary Section S5).

ARME estimates of the parameters A, b and R drawn from the

real data are reported in Figure 6. For comparison, they are shown

alongside estimates from the indirect method based on standard ME

explained in Section 4.1 and used by Llamosi et al. (2016). ARME

estimates of inheritance factors DiagðAÞ are all around 0.6 (in a

scale from 0 to 1). That is, daughter cell parameters are determined

by the mother to an extent of about 60%, whereas the remaining

40% follows from the fate inherent in cell division. Because of the

unbiasedness of ARME estimates demonstrated in Section 4.2, we

interpret this result as a piece of evidence that daughter cell parame-

ters conserve the gene expression kinetics of the mother for the most

part.

In particular, our estimates show equal variability of mRNA and

protein kinetic parameters at cell division. This may be explained in

terms of an equal variability in the partitioning of transcription,

translation and degradation regulatory factors. Yet alternative

hypotheses, e.g. unmodeled fluctuations of the regulatory processes

in the course of a cell lifespan, could support this and deserve further

investigation.

Estimates Â
ME

based on standard ME, instead, quantify the per-

centage of inheritance between 20% and 40% depending on the spe-

cific parameter. In view of the analysis of Section 4.2, showing that

a negative bias affects these estimates, we conclude that correlation

analysis studies that do not model inheritance explicitly incur the

risk of largely underestimating transcriptional and translational

memory. For instance, since correlation between cells ‘ generations

apart scales with A‘, estimating A2;2 as 0.4 instead of 0.7 reduces

the estimated number of generations to achieve a correlation of

10% from 7 to 3.

Estimates of the mean parameter values are similar for ARME

and ME identification. This is not surprising since the mean of the

ARME model is structurally independent of the presence or absence

Fig. 6. Results from the identification of an ARME model of yeast osmotic

shock response (blue), and comparison with results from a standard ME ap-

proach (orange). Plotted are estimates (dots) and 95% confidence intervals

(bars). For expðbÞ and R, estimates are obtained directly from both ARME and

ME identification. For A, estimates are obtained directly for ARME and as

described in Section 4.2 for ME. For the computation of confidence intervals

see Supplementary Sections S1.4 (ARME) and S1.6 (ME)
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of factor A. Moreover, estimates are biologically reasonable and in

essential agreement with those found in Llamosi et al. (2016), i.e.

½0:06; 0:81;0:00645� (min)�1. On the other hand, the lack of the in-

heritance factor A in the model for ME identification is reflected

into some bias in the estimation of the components of R pertaining

to gm (first row and column). Yet, ARME and ME estimates of the

correlation structure among the different entries of uv (captured by

the signs of the off-diagonal elements of R) are in agreement. They

both predict non-trivial correlations (non-zero off-diagonal elements

of R), thus reconfirming the presence of mutual correlations

observed in Llamosi et al. (2016). Overall, it is fair to conclude that

ARME and ME estimates of the intercellular parameter variability R
are similar. Yet, in view of the different estimates of A, ME and

ARME provide a different assessment of how this variability is

built-up along generations.

6 Discussion and conclusions

In this article, we have addressed reconstruction of gene expression

dynamics for a growing population of cell, with focus on the inherit-

ance and variability of transcription and translation parameters at

cell division. We have developed an approach for the modeling of

parameter inheritance and variability, and a method to identify the

model from single-cell quantitative gene expression profiles and in-

formation on parental relationships among the observed cells. We

have shown that our modeling and identification method, ARME,

outperforms indirect methods in recovering inheritance and variabil-

ity at cell division. In particular, we showed that ARME returns un-

biased estimates of inheritance whereas indirect methods

systematically underestimate it. We have then applied the method to

experimental gene expression data in yeast, showing that daughter

cell parameters are determined by the mother to an extent as large

as 60%. In comparison, a state-of-the art indirect method assessed

this value at 20� 40%. We concluded that, in yeast as well as other

studies, utilization of indirect methods may significantly underesti-

mate population memory for gene expression kinetics. In addition,

variability at division was found to affect the different kinetic

parameters in a similar manner, hinting that variability is likely

associated with aspecific regulatory factors.

Methodologically, our contribution extends ME modeling to the

case of tree-structured dependencies among individuals, and provides

an original algorithm to reconstruct this type of models that is a sig-

nificant extension of SAEM (Lavielle, 2015). Developed for and dem-

onstrated on microbial gene expression, it lends itself to a number of

applications where from individual-cell data and lineage information

are available, for instance, the study of growth of cancerous cell popu-

lations. To broaden applicability, a number of extensions are well

within reach, notably arbitrary non-linear individual dynamic re-

sponse. The increased computational burden incurred in the solution

of non-linear dynamical modeling, as well as scalability to larger sys-

tems (more parameters and states) and larger populations shall then

require non-trivial programming efforts. Design and implementation

of a suitably general, user-friendly software to the profit of the com-

munity is among our work directions.

Our model of transmission of gene expression parameters from

mother to daughter cells can be thought of as a description of extrin-

sic noise at the time scale of cell division. Whereas important, this

source of variability does not exhaust all sources of gene expression

noise. Although our model was shown to agree well with yeast os-

motic shock response single-cell data, in more generality, the

proposed model is not sufficient to describe systems where intrinsic

noise is the dominant source or variability or the core object of

study. In fact, intrinsic noise can be easily included in our frame-

work in terms of stochastic gene expression dynamics. On the other

hand, inference of such a model from data becomes more involved,

and a non-trivial extension of our identification method is required.

Both the modeling and the inference approaches are statistically

well-characterized for the most part, yet non-trivial mathematical

questions of practical relevance stand. Whereas the AR model used

to describe inheritance dynamics is deeply understood, the proper-

ties of the hierarchical model resulting from the combination with

ordinary differential equation-type dynamics are much less clear.

Falling in the context of piecewise-deterministic systems

(Cinquemani et al., 2008), the additional complexity of the tree-like

model structure raises analysis and inference questions that do not

have a full answer yet. This poses challenges and at the same time

great research opportunities. Among the questions that we intend to

address analytically are the structural and practical identifiability of

the hidden inheritance parameters, and the asymptotics of the meas-

ured state dynamics. Along a related line, the study of convergence

rates of our ARME identification method as a function, for instance,

of population size jVj or number of dependencies jWj will provide

us with more guidance toward optimization of experiment design.

The results of the application of our method on experimental data

from yeast show that modeling inheritance at division is a fundamen-

tal concern to derive reliable estimates of gene expression memory

and to understand emergence of variability in a growing population

of cells. These results were established based on a simple model of

transcription and translation parameters and were demonstrated to be

superior to popular data analysis approaches. Of course, these param-

eters subsume complex biochemical processes. Although this abstrac-

tion layer enables reliable analysis of the data and effective

interpretation of the results, investigation of specific players and

mechanisms behind variability and inheritance requires dedicated bio-

logical experimentation. In combination with experiment designs

optimized in the light of simulated performance assessment, the pro-

posed approach promises to be an invaluable instrument for in-depth

study of memory in gene expression dynamics.
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