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ABSTRACT. A complex Hadamard matrix is a square matrix H € My (C) whose entries
are on the unit circle, |H;;| = 1, and whose rows and pairwise orthogonal. The main
example is the Fourier matrix, Fy = (w%) with w = ¢*™/N. We discuss here the basic
theory of such matrices, with emphasis on geometric and analytic aspects.



Preface

Linear algebra is full of mysteries, with sometimes even single matrices hiding interest-
ing mathematics, worth a lengthy contemplation. This book is about a class of matrices
which are particularly beautiful, whose study is pleasant, bringing us into lots of inter-
esting mathematics, coming from algebra, geometry, analysis and probability, and which
of course are useful for something. These are the complex Hadamard matrices.

A complex Hadamard matrix is a square matrix H € My(C) whose entries are on
the unit circle in the complex plane, |H;;| = 1, and whose rows are pairwise orthogonal,
with respect to the usual scalar product on CV. The central example is the Fourier
matrix, Fiy = (w¥) with w = €™ with the name coming from the fact that this is the
matrix of the Fourier transform over the cyclic group G = Zy. In general, a complex
Hadamard matrix can be thought of as being a kind of “generalized Fourier matrix”, and
the applications of the complex Hadamard matrices come from this.

There has been a lot of work on the Hadamard matrices, starting with Sylvester and
Hadamard, long time ago, who looked at such matrices in the real case, H € My(R).
Here the Hadamard matrix condition states that we must have H € My(+£1), and that
when comparing any two rows, the number of matchings must equal the number of mis-
matchings. The whole subject belongs to combinatorics, design theory and group theory,
although there are some interesting analytic and probabilistic aspects as well, and with
the main applications being to coding theory and its ramifications.

Later on, it was realized that the general complex case, H € My (C), is worth attention
too, with motivation coming from discrete Fourier analysis, in a large sense. The subject
here belongs to linear algebra, real algebraic geometry, combinatorics of course again, with
plenty of constructions involving all sorts of tricky roots of unity, and with interesting
analytic and probabilistic aspects as well. As for the potential applications, these belong to
quantum physics, ranging from gentle things like operator algebras and quantum groups,
up to fairly advanced and scary physicists’ technology, such as teleportation.

All in all; many things to be explained, and this book is an introduction to all this,
with the aim of keeping things simple, but reasonably complete.
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4 PREFACE

The first half of the book, Parts I and II, which lies at the undergraduate level,
deals with the real Hadamard matrices, whose basic theory is quite elementary, and
then with the basic theory in the complex case, using elementary algebraic and geometric
techniques. Everything here is accessible with a minimal knowledge of basic linear algebra,
and standard calculus in several variables. The first half of the book itself can serve as a
textbook for a 1-semester upper division undergraduate course.

The second half of the book, Parts III and IV, contains more advanced material, erring
on the graduate side. We will discuss here advanced analytic techniques for dealing with
the complex Hadamard matrices, and then we will have a look into potential applications
to theoretical physics, at the level of quantum groups and operator algebras. The second
half of the book itself, or rather the whole middle of the book, with a quick look into the
beginning and end, can serve as a basis for a 1-semester graduate course.

Although many things will be discussed in this book, this remains an introduction to
the subject. There has been a huge amount of work in the real case, and we will discuss
here only the very basic ideas behind this work. The same goes for the construction and
classification work in the complex case, with once again a lot of literature waiting to be
consulted, by the interested reader. As in what regards the applications, both in the real
and the complex case, our discussion here will be something modest too, with the main
aim being that of explaining the relation between the quantum groups and the Hadamard
matrices, which is where the applications to quantum physics should come from.

This book is partly based on a number of research papers that I wrote, and I am
particularly grateful to Ion Nechita and Jean-Marc Schlenker, for substantial joint work
on the subject. Many thanks go as well to my cats, for advice with hunting techniques,
martial arts, and more. When doing linear algebra, all this knowledge is very useful.
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Part 1

Hadamard matrices



And only say that you’ll be mine
In no others’ arms entwine
Down beside where the waters flow
Down by the banks of the Ohio



CHAPTER 1

Hadamard matrices

la. Hadamard matrices

We will be mainly interested in this book in the complex Hadamard matrices, but let us
start with some beautiful pure mathematics, regarding the real case. The definition that
we need, going back to 19th century work of Sylvester [84], on topics such as tessellated
pavements and ornamental tile-work, is as follows:

DEFINITION 1.1. An Hadamard matriz is a square binary matriz,
H e My(£1)
whose Tows are pairwise orthogonal, with respect to the scalar product on RY.

There are many examples of such matrices, and we will discuss this, in what follows.
To start with, here is an example, which is a particularly beautiful one:

-1 1 1 1
1 -1 1 1
Ky = 1 1 -1 1
1 1 1 -1

Observe that this matrix has indeed many interesting extra features, such as being
symmetric, bistochastic, and circulant. Here is another example, also at N = 4, which is
interesting too, because it reminds the combinatorics of the Klein group Zs X Zs:

1 1 1 1
1 -1 1 -1
Wa=11 1 1
1 -1 -1 1

Summarizing, we have examples of Hadamard matrices, generally coming from certain
algebraic and combinatorial properties of RV, which are waiting to be explored. In general
now, as a first theoretical observation, we do not really need real numbers in order to talk
about the Hadamard matrices, because we have:

11



12 1. HADAMARD MATRICES

PROPOSITION 1.2. A binary matric H € My(£1) is Hadamard when its rows have
the property that, when comparing any two of them

€1 ... €En

fi oo In

the number of matchings (e; = fi) equals the number of mismatchings (e; # f;).

PRrROOF. This is clear from definitions. Indeed, the scalar product on R” is given by:

Thus, when computing the scalar product between two rows, the matchings contribute
with 1 factors, and the mismatchings with —1 factors, and this gives the result. U

Thus, we can replace if we want the 1, —1 entries of our matrix by any two symbols,
of our choice. Here is an example of an Hadamard matrix, and to be more precise, the
above matrix Wy, written with this convention:

(VERVERVERY
O & 0O &
OO0 & &
O & & O

However, it is probably better to run away from this, and use real numbers instead,
as in Definition 1.1, with the idea in mind of connecting the Hadamard matrices to the
foundations of modern mathematics, namely Calculus 1 and Calculus 2. So, getting back
now to the real numbers, here is our first result:

THEOREM 1.3. For a square matrix H € My(+£1), the following are equivalent:

(1) The rows of H are pairwise orthogonal, and so H is Hadamard.
(2) The columns of H are pairwise orthogonal, and so H' is Hadamard.
(3) The rescaled matriz U = H/v/N is orthogonal, U € Oy.

PROOF. The idea here is that the equivalence between (1) and (2) is not exactly
obvious, but both these conditions can be shown to be equivalent to (3), as follows:

(1) < (3) Since the rows of U = H/v/N have norm 1, this matrix is orthogonal
precisely when its rows are pairwise orthogonal. But this latter condition is equivalent to
the fact that the rows of H =/ NU are pairwise orthogonal, as desired.

(2) <= (3) The same argument as above shows that H' is Hadamard precisely when
its rescaling U* = H'/+/N is orthogonal. But since a matrix U € My(R) is orthogonal
precisely when its transpose U' € My (R) is orthogonal, this gives the result. O

As an abstract consequence of the above result, let us record:



1A. HADAMARD MATRICES 13
THEOREM 1.4. The set of the N x N Hadamard matrices is
Yy = My(£1) NV NOy
where Oy is the orthogonal group, the intersection being taken inside My (R).

PRrOOF. This follows from the equivalence (1) <= (3) in Theorem 1.3, which tells
us that an arbitrary H € My(=1) belongs to Yy if and only if it belongs to vV NOy. O

As a conclusion here, the set Yy that we are interested in appears as a kind of set
of “special rational points” of the real algebraic manifold v/ NOy. Thus, we are doing
some kind of algebraic geometry here, of precise type to be determined. In the simplest
case, N = 2, the Hadamard matrices are elementary to compute, and the set Y5 consists
precisely of the rational points of v/20,, as follows:

THEOREM 1.5. The binary matrices H € My(£1) are split 50-50 between Hadamard
and non-Hadamard, the Hadamard ones being as follows,
-1 1
1 1

Y I ) I )
G G ) (B

and the non-Hadamard ones being the remaining ones. Also, we have Yo = My(Q)N+/20s,
with the intersection being taken inside My(R).

PROOF. There are two assertions to be proved, which are both elementary:

(1) In what regards the classification, this is best done by using the Hadamard matrix
criterion from Proposition 1.2, which at N = 2 simply tells us that, once the first row
is chosen, the choices for the second row, as for our matrix to be Hadamard, are exactly
50%. The solutions are those in the statement, listed according to the lexicographic order,
with respect to the standard way of reading, left to right, and top to bottom.

(2) In order to prove the second assertion, we use the fact that Oy consists of 2 types
of matrices, namely rotations R; and symmetries S;. To be more precise, we first have
the rotation of angle ¢ € R, which is given by the following formula:

cost —sint
i = (sint cost )
We also have the symmetry with respect to the Oz axis rotated by t/2 € R:

g — cost sint
£t \sint —cost



14 1. HADAMARD MATRICES

Now by multiplying everything by /2, we are led to the following formula:

e {(c2) e

In order to find now the matrices from /20, having rational entries, we must solve
the following equation, over the integers:

22 4P = 222

But this is equivalent to y? — 22 = 22 — 22, which is impossible for obvious reasons,

unless we have 22 = y? = 22. Thus, the rational points come from ¢?> = s? = 1, and so we
have a total of 2 x 2 x 2 = 8 rational points, which can only be the points of Y5. U

At higher values of NV, we cannot expect Yy to consist of the rational points of vV NOy.
As a basic counterexample, we have the following matrix, which is not Hadamard:

2 000
0 0 0
002 0 €20

000 2
Summarizing, it is quite unclear what Yy is, geometrically speaking. We can, however,

solve this question by using complex numbers, in the following way:

N

THEOREM 1.6. The Hadamard matrices appear as the real points,
Yy = My(R)N Xy
of the complex Hadamard matriz manifold, which is given by:
Xy = My(T) NV NUy
Thus, Yy is the real part of an intersection of smooth real algebraic manifolds.
Proor. This is a version of Theorem 1.4, which can be established in two ways:

(1) We can either define a complex Hadamard matrix to be a matrix H € My(T)
whose rows are pairwise orthogonal, with respect to the scalar product of CV, then work
out a straightforward complex analogue of Theorem 1.3, which gives the formula of X in
the statement, and then observe that the real points of Xy are the Hadamard matrices.

(2) Or, we can directly use Theorem 1.4, which formally gives the result, as follows:
Yy = My(£1)NnVNOy
= [My(R) N My(T)] N [My(R) N VNU]
= My(R) N [My(T) N VNUy]
= MyR)NXy
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We will be back to this, and more precisely with full details regarding (1), starting
from chapter 5 below, when studying the complex Hadamard matrices. Il

Summarizing, the Hadamard matrices do belong to real algebraic geometry, but in a
quite subtle way. We will be back to all this, gradually, in what follows.

1b. Walsh matrices

Let us discuss now the examples of Hadamard matrices, with a systematic study at
N =4,6,8,10 and so on, continuing the study from Theorem 1.5.

In order to cut a bit from complexity, we can use the following notion:

DEFINITION 1.7. Two Hadamard matrices are called equivalent, and we write H ~ K,
when it s possible to pass from H to K wvia the following operations:

(1) Permuting the rows, or the columns.
(2) Multiplying the rows or columns by —1.

Observe that we do not include the transposition operation H — H' in our list of
allowed operations. This is because Theorem 1.3 above, while looking quite elementary,
rests however on a deep linear algebra fact, namely that the transpose of an orthogonal
matrix is orthogonal as well, and this can produce complications later on.

As another comment, there is of course a certain group G acting there, made of two
copies of Sy, one for the rows and one for the columns, and of two copies of Z)', once
again one for the rows, and one for the columns. The equivalence classes of the Hadamard
matrices are then the orbits of the action G ~ Yy. It is possible to be a bit more explicit
here, with a formula for G and so on, but we will not need this.

Given an Hadamard matrix H € My(£1), we can use the above two operations in
order to put H in a “nice” form. Although there is no clear definition for what “nice”
should mean, for the Hadamard matrices, with this being actually a quite subtle problem,
that we will discuss later on, here are two things that we can look for:

DEFINITION 1.8. An Hadamard matriz is called dephased when it is of the form
1 ... 1
H=1{: «
1

that is, when the first row and the first column consist of 1 entries only.

Here the terminology comes from physics, or rather from the complex Hadamard
matrices. Indeed, when regarding H € My(£1) as a complex matrix, H € My(T), the
—1 entries have “phases”, equal to 7, and assuming that H is dephased means to assume
that we have no phases, on the first row and the first column.
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Observe that, up to the equivalence relation, any Hadamard matrix H € My (+1) can
be put in dephased form. Moreover, the dephasing operation is unique, if we use only the
operations (2) in Definition 1.7, namely row and column multiplications by —1.

With the above notions in hand, we can formulate a nice classification result:

THEOREM 1.9. There is only one Hadamard matrix at N = 2, namely

11
=i )

up to the above equivalence relation for such matrices.

PROOF. The matrix in the statement W5, called Walsh matrix, is clearly Hadamard.
Conversely, given H € My(+£1) Hadamard, we can dephase it, as follows:

a b 1 1 1 1
cd_>acbd_>labcd

Now since the dephasing operation preserves the class of the Hadamard matrices, we
must have abcd = —1, and so we obtain by dephasing the matrix Ws. U

At N = 3 we cannot have examples, due to the orthogonality condition between the
rows, which forces N to be even, for obvious reasons. At N = 4 now, we have several
examples. In order to discuss them, let us start with:

PROPOSITION 1.10. If H € My;(£1) and K € My(£1) are Hadamard matrices, then
so is their tensor product, constructed in double index notation as follows:

H® K € Myy(£1)
(H® K)iaj = HijKu
In particular the Walsh matrices, Wy = W™ with N = 2", are all Hadamard.

PROOF. The matrix in the statement H ® K has indeed =+1 entries, and its rows R;,
are pairwise orthogonal, as shown by the following computation:

< Rig Rie> = Y HyKay HiyKo

7b

= Y HyHy Y KuKg
J b

= Mdzk : Naac

= MNdia,kc

As for the second assertion, this follows from this, W5 being Hadamard. O
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Before going further, we should clarify a bit our tensor product notations. In order to
write H € My(+£1) the indices of H must belong to {1,..., N}, or at least to an ordered
set {I1,...,Iy}. But with double indices we are indeed in this latter situation, because
we can use the lexicographic order on these indices. To be more precise, by using the
lexicographic order on the double indices, we have the following result:

PROPOSITION 1.11. Given H € My (£1) and K € My(£1), we have

HhK ... HiyK
H® K = : :
HynK ... HyuK

with respect to the lexicographic order on the double indices.

PrOOF. We recall that the tensor product is given by (H ® K);q jp = H;jKu. Now
by using the lexicographic order on the double indices, we obtain:

(HoK)un HOK)112 ... (HRK)iun
(H®K)ion (HRK)i212 ... (HRK)ioun

Ho K =

(HK)un1n (HRK)uniz .. (HRK)unun

HllKll H11K12 HlMKMN
HHKZI HHKZQ HIMK2N

HynKny HynKne .. HumKny
Thus, by making blocks, we are led to the formula in the statement. O

As a basic example for the tensor product construction, the matrix Wy, obtained by
tensoring the matrix Wy with itself, is given by:

_ (W2 Wh )
W4_(W2 —Wz)_

Getting back now to our classification work, here is the result at N = 4:

1 1 1
-1 1 -1
1 -1 -1
-1 -1 1

[ W S —

THEOREM 1.12. There is only one Hadamard matrix at N = 4, namely
Wy =W, ® W,

up to the standard equivalence relation for such matrices.
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PrOOF. Consider an Hadamard matrix H € My(£1), assumed to be dephased:

— == =
Q@ Qe
>0 O =
S S 0

By orthogonality of the first 2 rows, we must have {a,b,c} = {—1,—1,1}. Thus by
permuting the last 3 columns, we can assume that our matrix is as follows:

1 1 1 1
- 1 -1 1 -1

1 m n

1 p q r

Now by orthogonality of the first 2 columns, we must have {m,p} = {—1,1}. Thus
by permuting the last 2 rows, we can further that our matrix is as follows:

1 1 1 1
1 -1 1 -1
H = 1 1 z vy
1 -1 z
But this gives the result, because the orthogonality of the rows gives z = y = —1.

Indeed, with these values of x,y plugged in, our matrix becomes:

1 1 1 1

1 -1 1 -1

H=11 1 -1 4

1 -1 =z t
Now from the orthogonality of the columns we obtain z = —1,¢t = 1. Thus, up to
equivalence we have H = W, as claimed. Il

The case N = 5 is excluded, because the orthogonality condition between the rows
forces N € 2N. The point now is that N = 6 is excluded as well, because we have:

THEOREM 1.13. The size of an Hadamard matric H € My(£1) must satisfy
N e {2} U4AN

with this coming from the orthogonality condition between the first 3 rows.
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PrROOF. By permuting the rows and columns or by multiplying them by —1, as to
rearrange the first 3 rows, we can always assume that our matrix looks as follows:

..., 1 1...... 1 1...... 1 1...... 1
1...... 1 1...... 1 -1...—-1 —-1...-1
H=|1...... 1 -1...—-1 1...... 1 —-1...-1

Now if we denote by z,y, z,t the sizes of the 4 block columns, as indicated, the
orthogonality conditions between the first 3 rows give the following system of equations:

(1L2) : z4+y=z+t
(1L3) : z4+z=y+t
2L3) : z4t=y+2

The numbers z, ¥y, z,t being such that the average of any two equals the average of the
other two, and so equals the global average, the solution of our system is:

rT=y=z=1t

We therefore conclude that the size of our Hadamard matrix, which is the number
N =z +y+ z+t, must be a multiple of 4, as claimed. O

The above result is something very interesting, and we should mention that a similar
analysis with 4 rows or more does not give any further restriction on the possible values of
the size N € N. In fact, the celebrated Hadamard Conjecture (HC), that we will discuss
a bit later, states that there should be an Hadamard matrix at any N € 4N.

Now back to our small N study, the case N = 6 being excluded, we have to discuss
now the case N = 8. Here we have as basic example the Walsh matrix Wy, and we will
prove that, up to equivalence, this is the only Hadamard matrix at N = 8. In order to
prove this, we will use the 3 x N matrix analysis from the proof of Theorem 1.13. To be
more precise, we will first improve this into a 4 x N matrix result, and then, by assuming
N = 8, we will discuss the case where we have 5 rows or more. Let us start by giving a
name to the rectangular matrices that we are interested in:

DEFINITION 1.14. A partial Hadamard matriz (PHM) is a rectangular matrix
H € My«n(£1)
whose rows are pairwise orthogonal, with respect to the scalar product of RY.

We refer to [54], [58], [82], [93] for a number of results regarding the PHM. In what
follows we will just develop some basic theory, useful in connection with our N = 8
questions, but we will be back to the PHM, on several occasions. We first have:
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DEFINITION 1.15. Two PHM are called equivalent when we can pass from one to the
other by permuting the rows or columns, or multiplying the rows or columns by —1. Also:

(1) We say that a PHM is in dephased form when its first row and its first column
consist of 1 entries.

(2) We say that a PHM is in standard form when it is dephased, with the 1 entries
moved to the left as much as possible, by proceeding from top to bottom.

With these notions in hand, let us go back now to the proof of Theorem 1.13. The
study there concerns the 3 x N case, and we can improve this, as follows:

THEOREM 1.16. The standard form of the dephased PHM at M = 2,3,4 is as follows,
with £ standing respectively for various horizontal vectors filled with +1,

+ o+
H=|_+ -
—~ ~~
N/2  N/2
+ + o+ o+
o
H=14 - 4+ -
~ ~— ~— =~
N/4 N/4 NJ/4  N/4
+ + + o+ 4+ 4+ o+ o+
+ + + + - - - =
H=|+ + - - + + - -
+ =+ =t =t -
et e e

and with a,b € N being subject to the condition a +b = N/4.

PRrROOF. Here the 2 x N assertion is clear, and the 3 X /N assertion is something that
we already know. Let us pick now an arbitrary partial Hadamard matrix H € My (1),
assumed to be in standard form, as in Definition 1.15 (2). According to the 3 x N result,
applied to the upper 3 x N part of our matrix, our matrix must look as follows:

T et
oo+ - = = =
o+ - -+ = =
T T T
To be more precise, our matrix must be indeed of the above form, with z,y, 2, ¢ and
',y 2, t' being certain integers, subject to the following relations:

N
x+x’:y—i—y’:z+z’:t+t'zz



1B. WALSH MATRICES 21

In terms of these parameters, the missing orthogonality conditions are:

(1L4) : z4+y+d4+t=2"4y+2+7¢
2L4) @ 4y 42+t =2a"4y+2+t
(B3L4) : z+y+d+t=2"+y +z2+¢

Now observe that these orthogonality conditions can be written as follows:
(x—2)—(y—y) - (-2 +({t-1)=0
(=)= (=y)+(z-2)-@-t)=0
(@—2)+y—y)-(z-2)-@-t)=0
But this latter system can be solved by using the basic averaging argument from the
proof of Theorem 1.13 above, the solution being as follows:

r—a =y—y=z—-2"=t-+

Now by putting everything together, the conditions to be satisfied by the block lengths
are as follows, with a,b € N being subject to the condition a + b = N/4:

rT=y=z=1=a
=y =2=t=0
Thus, we are led to the conclusion in the statement. U

In the case N = 8, that we are interested in here, in view of our classification program
from the square matrix case, we have the following more precise result:

PROPOSITION 1.17. There are exactly two 4 X 8 partial Hadamard matrices, namely
I = (W, Wy)
J - (W4 K4)
us to the standard equivalence relation for such matrices.

PROOF. We use the last assertion in Theorem 1.16, regarding the 4 x N partial Ha-
damard matrices, at N = 8. In the case a = 2,b = 0, the solution is:

+ + + + + + + +
p_ + + + + - = = =
+ + - - 4+ + - =
+ + - - - - + +
In the case a = 1,b = 1, the solution is:
+ + + + + + + +
0= + + + + - - = =
+ + - - + + = -
+ -+ - o+ -+ -
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Finally, in the case a = 0,0 = 2, the solution is:

L+t
|+ ++

+
+

+

+ 1+ +

+

+
+

++ 1+

+

+

Now observe that, by permuting the columns of P, we can obtain the following matrix,
which is precisely the matrix I = (W, W) from the statement:

+ o+
+
_|_
_l’_

I+ |

+
_I_

+

+

+
+
+
+

+

+

+
+

+

+

Also, by permuting the columns of (), we can obtain the following matrix, which is

equivalent to the matrix J = (W, Kj) from the statement:

+ +
_l’_
_l’_
+

J =

I+

+
+

_|_

+

+

_|_

_|_
+

+
+

_|_

4+ +

Finally, regarding the last solution, R, by switching the sign on the last row we obtain
R ~ P, and so we have R ~ P ~ I, which finishes the proof. U

We can now go back to the classification problems for the usual, square Hadamard
matrices at N = 8, and we have here the following result:

THEOREM 1.18. The third Walsh matriz, namely

e

Wy
Wy

W,
—W,

)

15 the unique Hadamard matrix at N = 8, up to equivalence.

ProoF. We use Proposition 1.17, which splits the discussion into two cases:

Case 1. We must look here for completions of the following matrix I:

1 1
1 -1
I'=11 1

1 -1 -1

1
-1
-1

1

1
1
1
1

1

—1

1

—1

1
1
-1
—1

1
-1
-1

1
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Let us first try to complete this partial 4 x 8 Hadamard matrix into a partial 5 x 8
Hadamard matrix. The completion must look as follows:

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
I'=11 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
a b ¢ d a v Jd d

The system of equations for the orthogonality conditions is as follows:

(1L5) : a+btc+d+d+V++d=0
2L5) : a-btc—d+d-V+—-d=0
B3L5) : a+b—c—d+d+V - —-d=0
(4L5) : a—b—c+d+d—-b—-C+d=0

Now observe that this system of equations can be written as follows:
(a+ad)+b+V)+(c+d)+(d+d)=0
(a+ad)=(Ob+V)+(c+d)—(d+d)=0
(a+d)+O+V)—(c+)=(d+d)=0
(a+d)—(0b+V)—(c+)+(d+d)=0

Since the matrix of this latter system is the Walsh W,, which is Hadamard, and so
rescaled orthogonal, and in particular invertible, the solution is:

(', b, c,d) = —(a,b,c, d)
Thus, in order to complete I into a partial 5 x 8 Hadamard matrix, we can pick any

vector (a,b,c,d) € (£1)*, and then set (a',b',c,d") = —(a,b,c,d).

Now let us try to complete I into a full Hadamard matrix H € Mg(+£1). By using the
above observation, applied to each of the 4 lower rows of H, we conclude that H must be
of the following special form, with L € M;(+£1) being a certain matrix:

(W Wy
=5 %)
Now observe that, in order for H to be Hadamard, L must be Hadamard. Thus, the
solutions are those above, with L € M,(£1) being Hadamard.

As a third step now, let us recall from Theorem 1.12 that we must have L ~ Wij.
However, in relation with our problem, we cannot really use this in order to conclude
directly that we have H ~ Wjs. To be more precise, in order not to mess up the structure
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of I = (W, W), we are allowed now to use only operations on the rows. And the
conclusion here is that, up to equivalence, we have 2 solutions, as follows:

o W4 W4 o W4 W4
P(w ) o= )
We will see in moment that these two solutions are actually equivalent, but let us
pause now our study of Case 1, after all this work done, and discuss Case 2.

Case 2. Here we must look for completions of the following matrix J:

1 1 1 1 -1 1 1 1
1 -1 1 -1 1 -1 1 1
1 1 -1 -1 1 1 -1 1
1 -1 -1 1 1 1 1 -1

J:

Let us first try to complete this partial 4 x 8 Hadamard matrix into a partial 5 x 8
Hadamard matrix. The completion must look as follows:

11 1 1 -1 1 1 1
1 -1 1 -1 1 -1 1 1
J=11 1 -1 -1 1 1 -1 1
1 -1 -1 1 11 1 -1
a b ¢ d xr y z t
The system of equations for the orthogonality conditions is as follows:
(1L5) : a+b+c+d—ao+y+2+t=0
2L5) : a—-bt+c—d+r—y+2+t=0
BL5) : a+b—c—d+ar+y—z+t=0
(4L5)  a-b—ct+td+ax+y+z—-t=0

When regarded as a system in z,y, z,t, the matrix of the system is Ky, which is
invertible. Thus, the vector (z,y, z,t) is uniquely determined by the vector (a,b, ¢, d):
(a,b,c,d) = (z,y,2,1)

We have 16 vectors (a,b,c,d) € (£1)* to be tried, and the first case, covering 8 of
them, is that of the row vectors of +W,. Here we have an obvious solution, with (z,y, 2, t)
appearing at right of (a, b, ¢, d) inside the following matrices, which are Hadamard:

_(Ws Ky _( Wy Ky
we(un ) oo (e )
As for the second situation which can appear, this is that of the 8 binary vectors

(a,b,c,d) € (+1)* which are not row vectors of the matrix +WW,. But this is the same as
saying that, up to permutations, we have (a,b,c,d) = +(—1,1,1,1).
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In this latter case, and with + sign, the system of equations is:
—rtytztt=-2
rT—y+z+1t=2
r+y—z+t=2
rT+y+z—1t=2
By summing the first equation with the other ones we obtain:
y+tz=y+t=z+t=0
Thus y = z =t = 0, and this solution does not correspond to an Hadamard matrix.

Summarizing, we are done with the 5 x 8 completion problem in Case 2, the solutions
coming from the rows of the matrices R, S given above.

Now when using this, as for getting up to full 8 x 8 completions, the R,S cases
obviously cannot mix, and so we are left with the Hadamard matrices R, S above, as
being the only solutions.

In order to conclude now, observe that we have R = Q' and R ~ S. Also, it is
elementary to check that we have P ~ (), and this finishes the proof. O

The above proof was of course quite long. It is possible to improve a bit things, with
various algebraic tricks, but basically this is how the situation is, with each classification
result for the Hadamard matrices needing a lot of routine row-by-row study.

1c. Paley matrices

We have seen so far that the Hadamard matrices H € My (=£1) can be fully classified
up to order N = 8, with the Walsh matrices being the only matrices which appear, up to
equivalence. We discuss now the case N > 12, where new phenomena appear.

At N = 12 there is no Walsh matrix, but we can use a construction due to Paley
[74]. Let ¢ = p" be an odd prime power, consider the associated finite field F,, and then
consider the quadratic character x : F, — {—1,0, 1}, given by:

0 ifa=0
x(a)=491 ifa=0"b#0

—1 otherwise
We can construct then the following matrix, with indices in F:
Qab = X(b - CL)

With these conventions, the Paley construction of Hadamard matrices, which works
at N = 12 and at many other values of N € 4N, is as follows:
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THEOREM 1.19. Given an odd prime power q = p", construct Q. = x(b—a) as above.
We have then constructions of Hadamard matrices, as follows:

(1) Paley 1: if ¢ = 3(4) we have a matriz of size N = q+ 1, as follows:

0O 1 ... 1
Py=1+ !
N — .
: Q
—1
(2) Paley 2: if ¢ = 1(4) we have a matriz of size N = 2q + 2, as follows:
01 ... 1
1 1 -1 11
2 _ :
=l . 0—><_1 _1) , il—)i(l _1)

These matrices are skew-symmetric (H + H' = 2), respectively symmetric (H = H').

PROOF. In order to simplify the presentation, we will denote by 1 all the identity
matrices, of any size, and by I all the rectangular all-one matrices, of any size as well.
It is elementary to check that the matrix Qu, = x(a — b) has the following properties:

QQ' =ql -1
QI=1Q =0

In addition, we have the following formulae, which are elementary as well, coming
from the fact that —1 is a square in F, precisely when ¢ = 1(4):

¢=1(1) = Q=0
¢=3(4) = Q=-Q
With these observations in hand, the proof goes as follows:

(1) With our conventions for the symbols 1 and I, explained above, the matrix in the

statement is as follows:
(1 I
Py = <—]1 1+Q

With this formula in hand, the Hadamard matrix condition follows from:

e e ()
(N 0
N0 T+1—?

()
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(2) If we denote by G, F' the matrices in the statement, which replace respectively the
0,1 entries, then we have the following formula for our matrix:

I
Py = G[] Q)®F+1®G

With this formula in hand, the Hadamard matrix condition follows from:

(PY)? = ( £>2®F2+(é ?)@GM@ é)@(FGJrGF)
-

0 10 0 I
q)®2+<0 1)®2+(H Q)®0
N 0
0 N

Finally, the last assertion is clear, from the above formulae relating Q, Q*. O

= O

o Q

As an illustration for the above result, we have:
THEOREM 1.20. We have Paley 1 and 2 matrices at N = 12, which are equivalent:
P 112 ~ P 122
In fact, this matriz is the unique Hadamard one at N = 12, up to equivalence.
ProoOF. This is a mixture of elementary and difficult results, the idea being as follows:

(1) We have 12 = 11 + 1, with 11 = 3(4) being prime, so the Paley 1 construction
applies indeed, with the first row vector of () being:

¢=0+—+++———+-)
(2) Also, we have 12 = 2x5+2, with 5 = 1(4) being prime, so the Paley 2 construction
applies as well, with the first row vector of ) being:
g=0+—-—+4)

(3) Tt is routine to check that we have P\, ~ P2, by some computations in the spirit
of those from the end of the proof of Theorem 1.18 above.

(4) As for the last assertion, regarding the global uniqueness, this is something quite
technical, requiring some clever block decomposition techniques. Il

At N = 16 now, the situation becomes fairly complicated, as follows:

THEOREM 1.21. The Hadamard matrices at N = 16 are as follows:

(1) We have the Walsh matriz Wig.
(2) There are no Paley matrices.
(3) Besides Wig, we have 4 more matrices, up to equivalence.
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PROOF. Once again, this is a mixture of elementary and more advanced results:
(1) This is clear.

(2) This comes from the fact that we have 16 = 15 + 1, with 15 not being a prime
power, and from the fact that we have 16 =2 x 7+ 2, with 7 # 1(4).

(3) This is something very technical, basically requiring a computer. O

At N = 20 and bigger, the situation becomes quite complicated, and the study is
usually done with a mix of advanced algebraic methods, and computer techniques. The
overall conclusion is the number of Hadamard matrices of size N € 4N grows with /V, and
in a rather exponential fashion. In particular, we are led in this way into:

CONJECTURE 1.22 (Hadamard Conjecture (HC)). There is at least one Hadamard
matriz

H € My(£1)
for any integer N € 4N.
This conjecture, going back to the 19th century, is one of the most beautiful statements

in combinatorics, linear algebra, and mathematics in general. Quite remarkably, the
numeric verification so far goes up to the number of the beast:

N = 666

Our purpose now will be that of gathering some evidence for this conjecture. By using
the Walsh construction, we have examples at each N = 2. We can add various examples
coming from the Paley 1 and Paley 2 constructions, and we are led to:

THEOREM 1.23. The HC is verified at least up to N = 88, as follows:

(1) At N =4,8,16,32,64 we have Walsh matrices.

(2) At N = 12,20, 24,28, 44,48,60, 68,72, 80, 84,88 we have Paley 1 matrices.
(3) At N =36,52,76 we have Paley 2 matrices.

(4) At N = 40,56 we have Paley 1 matrices tensored with Ws.

However, at N = 92 these constructions (Walsh, Paley, tensoring) don’t work.

PROOF. First of all, the numbers in (1-4) are indeed all the multiples of 4, up to 88.
As for the various assertions, the proof here goes as follows:

(1) This is clear.

(2) Here the number N — 1 takes the following values:
q=11,19,23,27,43,47,59,67,71,79, 83, 87

These are all prime powers, so we can apply the Paley 1 construction.

(3) Since N = 4(8) here, and N/2 —1 takes the values ¢ = 17,25, 37, all prime powers,
we can indeed apply the Paley 2 construction, in these cases.
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(4) At N = 40 we have indeed P), ® W5, and at N = 56 we have Py ®@ Wh.

Finally, we have 92 — 1 = 7 x 13, so the Paley 1 construction does not work, and
92/2 = 46, so the Paley 2 construction, or tensoring with W5, does not work either. [

At N = 92 now, the situation is considerably more complicated, and we have:

THEOREM 1.24. Assuming that A, B,C, D € My (+1) are circulant, symmetric, pair-
wise commute and satisfy the condition

AP+ B*+C?+ D* = 4K
the following 4K X 4K matriz

A B C D
B A -D C
H=| o p 4 _B
D -C B A

is Hadamard, called of Williamson type. Moreover, such a matrix exists at K = 23.

PrROOF. We use the same method as for the Paley theorem, namely tensor calculus.
Consider the following matrices 1,1, j, k € M4(0, 1), called the quaternion units:

1000 0100
_loroo 1000
0010 ) 000 1
000 1 0010
0010 000 1
oo o1 L_ o0 1o
=11 00 0 ) “lo 100
0100 1000

These matrices describe the positions of the A, B, C, D entries in the matrix H from
the statement, and so this matrix can be written as follows:

H=A®14+BRi+C®j+D®k
Assuming now that A, B, C, D are symmetric, we have:
HH' = (A®1+B®i+C®j+D®k)
(AR1-BRi—-C®j—D®Ek)
= (A+B*+C*+D*)®1— (A B]-[C,D])®i
—([4,C]=[B,D))®j— ([A, D] - [B,C]) ®k
Now assume that our matrices A, B, C, D pairwise commute, and satisfy as well the

condition in the statement, namely A%+ B2+ C? 4+ D? = 4K. In this case, it follows from
the above formula that we have HH! = 4K, so we obtain indeed an Hadamard matrix.
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In general, finding such matrices is a difficult task, and this is where Williamson’s
extra assumption that A, B, C, D should be taken circulant comes from.

Regarding now the K = 23 construction, which produces an Hadamard matrix of
order N = 92, this comes via a computer search. We refer here to [26], [97]. O

Things get even worse at higher values of N, where more and more complicated
constructions are needed. The whole subject is quite technical, and, as already mentioned,
human knowledge here stops so far at 9t = 666. See [1], [42], [44], [56], [64], [82].

1d. Cocyclic matrices

We have seen so far that the combinatorial and algebraic theory of the Hadamard
matrices, while very nice at the elementary level, ultimately leads into some difficult
questions. There are at least two potential exits from this, namely:

(1) Do analysis. There are many things that can be done here, starting with the
Hadamard determinant bound [53], and we will discuss this in chapter 2, and afterwards.
Whether all this can help or not in relation with the Hadamard Conjecture remains to be
seen, but at least we’ll have some fun, and do some interesting mathematics.

(2) Do physics. When allowing the entries of H to be complex numbers, we reach to
geometric questions, and the Hadamard Conjecture problematics dissapears, because the
Fourier matrix, namely Fyy = (w¥) with w = €™V is an example of such matrix at any
N € N. We will discuss this later, starting from chapter 5 below.

Getting back now to algebra and combinatorics, as a conceptual finding on the subject,
however, we have the recent theory of the cocyclic Hadamard matrices, that we will briefly
explain now. This theory is based on the following notion:

DEFINITION 1.25. A cocycle on a finite group G is a matriz H € Mg(+1) satisfying:
HynHgp e = Hy piHpy,
If the rows of H are pairwise orthogonal, we say that H 1s a cocyclic Hadamard matriz.

Here the definition of the cocycles is the usual one, with the equations coming from
the fact that F' = Zy x G must be a group, with multiplication as follows:

<u7 g)(’l), h) = (th ’ UU,gh)

As a basic illustration for the above notion, the Walsh matrix H = Ws. is cocyclic,
coming from the group G' = Z%, with cocycle as follows:

Hgp = (—1)<oh=
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As explained in [43], and in other papers, many other known examples of Hadamard
matrices are cocyclic, and this leads to the following conjecture:

CONJECTURE 1.26 (Cocyclic Hadamard Conjecture). There is at least one cocyclic
Hadamard matric H € My(%1), for any N € 4N.

Having such a statement formulated is certainly a big advance with respect to the HC,
and this is probably the main achievement of modern Hadamard matrix theory. However,
in what regards a potential proof, there is no clear strategy here, at least so far.

We will be back to these questions in chapters 13-16 below, with the remark that
the construction Z7 — Wasn can be extended as to cover all the Hadamard matrices, by
replacing Zi with a suitable quantum permutation group. However, in what regards the
potential applications to the HC, there is no clear strategy here either.

Finally, as a last algebraic topic, let us discuss the Circulant Hadamard Conjecture.
Besides analysis in a large sense, another potential way of getting away from the above
difficult HC questions is that of looking at various special classes of Hadamard matrices.
However, in practice, this often leads to quite complicated mathematics too.

Mlustrating and famous here is the situation in the circulant case. Given a vector
v € (£1)", one can ask whether the matrix H € My(+1) defined by H;; = v, is
Hadamard or not. Here is a solution to the problem:

-1 1 1 1
1 -1 1 1
Ky = 1 1 -1 1
1 1 1 -1

More generally, any vector v € (#1)* satisfying >~ v; = %1 is a solution to the problem.
The following conjecture, going back to [82], states that there are no other solutions:

CONJECTURE 1.27 (Circulant Hadamard Conjecture (CHC)). There is no circulant
Hadamard matriz of size N x N, for any N # 4.

The fact that such a simple-looking problem is still open might seem quite surprising.
Indeed, if we denote by S C {1,..., N} the set of positions of the —1 entries of ~, the
Hadamard matrix condition is simply |[S N (S + k)| = |S| — N/4, for any k # 0, taken
modulo N. Thus, the above conjecture simply states that at NV # 4, such a set S cannot
exist. Let us record here this latter statement, originally due to Ryser [81]:

CONJECTURE 1.28 (Ryser Conjecture). Given an integer N > 4, there is no set
S C{l,...,N} satisfying the condition

|ISN(S+ k)| =|S|—N/4
for any k # 0, taken modulo N.
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There has been a lot of work on this conjecture, starting with [81]. However, as it was
the case with the HC, all this leads to complicated combinatorics, design theory, algebra
and number theory, and so on, and there is no clear idea here, at least so far.

le. Exercises

There has been a lot of linear algebra and combinatorics in this chapter, and doing
some more linear algebra and combinatorics will be our purpose here. First we have:

EXERCISE 1.29. Verify that we have indeed the formula
HR(K®L) =HK)®L

when using the lexicographic order on the triple indices.
Here is now an exercise on the Hadamard equivalence relation:
EXERCISE 1.30. Write down an explicit equivalence Ky ~ Wy.
Here is another equivalence check, this time regarding the Paley matrices:
EXERCISE 1.31. Write down the matriz P}, and prove that P} ~ Wj.
Here is an exercise of the same type, a bit more difficult:
EXERCISE 1.32. Write down the matriz P}, and prove that Py ~ Wy.
And here is a third exercise on the Paley matrices, more difficult:
EXERCISE 1.33. Prove that we have P}, ~ PZ,.

Finally, a more advanced question is that of looking at the various examples of Hada-
mard matrices constructed in this chapter, and see which of them are cocyclic.



CHAPTER 2

Analytic aspects

2a. Determinant bound

We have seen so far that the algebraic theory of the Hadamard matrices, while very
nice at the elementary level, ultimately leads into some difficult questions. So, let us
step now into analytic questions. The first result here, found in 1893 by Hadamard [53],
about 25 years after Sylvester’s 1867 founding paper [84], and which actually led to such
matrices being called Hadamard, is a determinant bound, as follows:

THEOREM 2.1. Given a matric H € My(%1), we have
|det H| < NN/2
with equality precisely when H is Hadamard.
ProoF. We use here the fact, which often tends to be forgotten, that the determinant

of a system of N vectors in RY is the signed volume of the associated parallelepiped:
det(Hy,...,Hy) = tvol < Hy,...,Hy >

This is actually the definition of the determinant, in case you have forgotten the basics,
with the need for the sign coming for having good additivity properties.

In the case where our vectors take their entries in 1, we therefore have the following
inequality, with equality precisely when our vectors are pairwise orthogonal:

|det(Hy,..., Hy)| < ||Hi|| x ... x||Hpy||
- VA
Thus, we have obtained the result, straight from the definition of det. O

The above result is quite interesting, philosophically speaking. Let us recall indeed
from chapter 1 that the set formed by the N x N Hadamard matrices is:

Yy = My(£1) NV NOy

Thus, what we have in Theorem 2.1 above is an analytic method for locating this
Hadamard matrix set Yy inside the space of binary matrices My (%1).

The above result suggests doing several analytic things, as for instance looking at
the maximizers H € My(£1) of the quantity | det H|, at values N € N which are not
multiples of 4. As a basic result here, at N = 3 the situation is as follows:

33
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PROPOSITION 2.2. For a matriz H € Ms(+1) we have |det H| < 4, and this estimate
15 sharp, with the equality case being attained by the matrix

1 1 1
Q=11 1 -1
1 -1 1

and its conjugates, via the Hadamard equivalence relation.

PROOF. In order to get started, observe that Theorem 2.1 above provides us with the
following bound, which is of course not sharp, det H being an integer:

|det H| < 3v/3 = 5.1961..

Now observe that, det H being a sum of six 41 terms, it must be en even number.
Thus, we obtain the estimate in the statement, namely:

|det H| < 4

Our claim now is that the following happens, with the nonzero situation appearing
precisely for the matrix ()3 in the statement, and its conjugates:

det H € {—4,0,4}

Indeed, let us try to find the matrices H € Mj3(+1) having the property det H # 0.
Up to equivalence, we can assume that the first row is (1,1,1). Then, once again up to
equivalence, we can assume that the second row is (1,1, —1). And then, once again up to
equivalence, we can assume that the third row is (1, —1,1). Thus, we must have:

11 1
H=|1 1 -1
1 -1 1

The determinant of this matrix being —4, we have proved our claim, and the last
assertion in the statement too, as a consequence of our study. U

In general, all this suggests the following definition:
DEFINITION 2.3. A quasi-Hadamard matriz is a square binary matriz
H e My(£1)
which maximizes the quantity | det H|.

We know from Theorem 2.1 that at N € 4N such matrices are precisely the Hada-
mard matrices, provided that the Hadamard Conjecture holds at N. At values N ¢ 4N,
what we have are certain matrices which can be thought of as being “generalized Hada-
mard matrices”, the simplest examples being the matrix ()3 from Proposition 2.2, and its
Hadamard conjugates. For more on all this, we refer to [75].
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As a comment, however, Proposition 2.2 might look a bit dissapointing, because it
is hard to imagine that the matrix ()3 there, which is not a very interesting matrix, can
really play the role of a “generalized Hadamard matrix” at N = 3. We will come later
with more interesting solutions to this problem, a first solution being as follows:

Ki=—12 -1 2

To be more precise, this matrix is of course not binary, but it is definitely an interesting
matrix, that we will see to be sharing many properties with the Hadamard matrices. We
have as well another solution to the N = 3 problem, which uses complex numbers, and

more specifically the number w = ¢*™/3 which is as follows:
1 1 1
=1 w v
I w? w

Once again, this matrix is not binary, and not even real, but it is an interesting matrix,
that we will see to be sharing as well many properties with the Hadamard matrices.

As a conclusion to this study, looking at the maximizers H € My(%1) of the quantity
| det H| is not exactly an ideal method, when looking for analogues of the Hadamard
matrices at the forbidden size values N ¢ 4N, at least when N is small. The situation
changes, however, when looking at such questions at big values of N € N. The determinant
problematics for binary matrices becomes very interesting, but quite technical, and as a
generic statement here, which is a bit informal, we have:

THEOREM 2.4. We have estimates of type

max | det H| ~ NN/2
HeMpy (+1)

which are valid in the N — oo limit, modulo the Hadamard Conjectuere.

PRrROOF. As already mentioned, this is just an informal statement, which is there as
an introduction to the subject, in the lack of something more precise, and elementary.
There are basically two ways of dealing with such questions, namely:

(1) A first idea is that of using the existence of an Hadamard matrix Hy € My (£1),
at values N € 4N, modulo the Hadamard Conjecture of course, and then completing it
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into binary matrices Hy of size N + 1,2, 3, for instance in the following way:

1 .1
Hy

1 .1

Hyye= |1 1 —1 1

1 11 —1

The determinant estimates for such matrices are however quite technical, and we refer
here to the literature on the subject [75].

(2) A second method is by using probability theory. The set of binary matrices
Mpy(+1) is a probability space, when endowed with the counting measure rescaled by
1/2N °. and the determinant can be regarded as a random variable on this space:

det : MN(:I:l) — 7

The point now is that the distribution of this variable can be computed, in the N — oo
limit, and as a consequence, we can investigate the maximizers of | det H|. Once again,
all this is quite technical, and we refer here to the literature [90]. O

Summarizing, the Hadamard determinant bound provides us with an analytic method
of locating the set Yy = My(£1) N v/ NOy formed by the N x N Hadamard matrices
inside My (=%1), and this leads to an interesting N' — oo theory.

2b. Norm maximizers

From a “dual” point of view, the question of locating Yy inside v NOy, once again
via analytic methods, makes sense as well. The result here, from [14], is as follows:

THEOREM 2.5. Given a matriz U € Oy we have
IUIL < NVN
with equality precisely when H = v/NU is Hadamard.

Proor. We have indeed the following estimate, for any U € Oy, which uses the
Cauchy-Schwarz inequality, and the trivial fact that we have ||U]|; = V/N:

Ul = > _|Uyl
ij
1/2
N <Z|Uz‘j|2)

]

= NVN

VAN
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In addition, we know that the equality case holds when we have, for any i, j:

1
Uyl = ——
V] VN

But this amounts in saying that H = v/ NU must satisfy H € My(=£1). Thus, this
rescaled matrix H must be Hadamard, as claimed. U

We will need more general norms as well, so let record the following result:

PROPOSITION 2.6. If 1 : [0,00) — R is strictly concave/convez, the quantity

PU) = 3 w(U5)

over Uy is mazimized /minimized by the rescaled Hadamard matrices, U = H/v/N.

ProoOF. We recall that the Jensen inequality states that for ¢ convex we have:

w(a:1+...+xn> L @)+ )

n n

In our case, let us take n = N2, and our variables to be:
{21,... 20} = {Ufj i j= 1,...,N}
We obtain that for any convex function 1, the following holds:
1 F(U)
— )< 27
o(v)= %
Thus we have the following estimate:
1
F(U)> N*) [ —
W)= N ()

Now by assuming as in the statement that 1 is strictly convex, the equality case holds
precisely when the numbers Ufj are all equal, so when H = v NU is Hadamard.
The proof for concave functions is similar. O

Of particular interest for our considerations are the power functions ¢ (z) = /2,
which are concave at p € [1,2), and convex at p € (2,00). These functions lead to:

THEOREM 2.7. The rescaled versions U = H/\/N of the Hadamard matrices H €
My (£1) can be characterized as being:

(1) The mazimizers of the p-norm on Oy, at any p € [1,2).
(2) The minimizers of the p-norm on O, at any p € (2,00].
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ProoF. Consider indeed the p-norm on Oy, which at p € [1,00) is given by:

1/p
U], = (E |Uz'j|p>
i

By the above discussion, involving the functions ¢ (z) = 2P/?, Proposition 2.6 applies
and gives the results at p € [1,00), the precise estimates being as follows:

< NP2 if p <2
|U]],: ¢ = N/2 if p=2
> N2/p=1/2 if p> 2
As for the case p = oo, this follows with p — oo, or directly via Cauchy-Schwarz. [

As it was the case with the Hadamard determinant bound, all this suggests doing some
further geometry and analysis, this time on the Lie group Oy, with a notion of “almost
Hadamard matrix” at stake. Let us formulate indeed, in analogy with Definition 2.3:

DEFINITION 2.8. An optimal almost Hadamard matriz is a rescaled orthogonal matrix

HG\/NON

which mazimizes the 1-norm.

Here the adjective “optimal” comes from the fact that, in contrast with what happens
over My/(=1), in connection with the determinant bound, here over v NOy we have more
flexibility, and we can talk if we want about the local maximizers of the 1-norm. These
latter matrices are called “almost Hadamard”, and we will investigate them in the next
section. Also, we will talk there about more general p-norms as well.

We know from Theorem 2.6 that at N € 4N the absolute almost Hadamard matrices
are precisely the Hadamard matrices, provided that the Hadamard Conjecture holds at
N. At values N ¢ 4N, what we have are certain matrices which can be thought of as
being “generalized Hadamard matrices”, and are waiting to be investigated. Let us begin
with a preliminary study, at N = 3. The result here, from [14], is as follows:

THEOREM 2.9. For any matriz U € O3 we have the estimate

WUIh <5
and this is sharp, with the equality case being attained by the matrix
1 -1 2 2
U=-1|2 -1 2
S\l2 2 4

and its conjugates, via the Hadamard equivalence relation.
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PRrROOF. By dividing by det U, we can assume that we have U € SO3;. We use the
Euler-Rodrigues parametrization for the elements of SOs3, namely:

2yt =22 12 2(yz — wt) 2(xz + yt)
U= 2(xt + yz) e Tl A 2(zt — xy)
2(yt — x2) 2(zy + 2t) A

Here (z,v,2,t) € S3 come from the map SU, — SO3. Now in order to obtain the
estimate, we linearize. We must prove that for any numbers x,y, z,t € R we have:
|2? 4 9% — 22 — 2]+ |22 + 27—y — 1 4 |2 -y - 2
+2 (lyz — at| + |zz + yt| + ot + yz| + |2t — xy| + |yt — z2| + |zy + 2t])
<52 +yP 4 27+ 1)
The problem being symmetric in z,y, z,t, and invariant under sign changes, we may

assume that we have:
r>y>z>t>0

Now if we look at the 9 absolute values in the above formula, in 7 of them the sign is
known, and in the remaining 2 ones the sign is undetermined.
More precisely, the inequality to be proved is:

(24 y? — 22—t + (2 + 22—y — 1)) + 2 17—y — 2
+2 (lyz — at| + (xz + yt) + (at + y2) + (vy — 2t) + (vz — yt) + (xy + 21))
<5 +yt+ 22+ 17)
After simplification and rearrangement of the terms, this inequality reads:
2% + 1% — y* — 22| + 2|2t — y2|
< 32+ 5y + 522 + TP — dwy — daz — 2xt — 2z
In principle we have now 4 cases to discuss, depending on the possible signs appearing
at left. It is, however, easier to proceed simply by searching for the optimal case.
First, by writing y = a4+ ¢, 2 = a — ¢ and by making € vary over the real line, we see
that the optimal case is when € = 0, hence when y = z.

The case y = z = 0 or y = z = 0o being clear, and not sharp, we can assume that we
have y = z = 1. Thus we must prove that for x > 1 >t > 0 we have:

2% + % — 2| + 2|ot — 1| < 32 + 8 + Tt — 8z — 2ut
In the case 2t > 1 we have 22 + 2 > 2, and the inequality becomes:
2t + 4 < 22 + 32+ 6
In the case 2t < 1,22 4 2 < 2 we get:
2+ 142t > 2



40 2. ANALYTIC ASPECTS

In the remaining case ot < 1,22 +t> > 2 we get:
22 4+ 32 > da

But these inequalities are all true, and this finishes the proof of the estimate.

Now regarding the maximum, according to the above discussion this is attained at
(ryzt) = (1110) or at (xyzt) = (2110), plus permutations.

The corresponding matrix is, modulo permutations:

1 2 2
v=-|[2 1 =2
S -2 2 1
For this matrix we have indeed ||V||; = 5, and we are done. O

In terms of Definition 2.8, the conclusion is as follows:

THEOREM 2.10. The optimal almost Hadamard matrices at N = 3 are

-1 2 2

Kiy=—11|2 -1 2
Vile 2 1

and its conjugates, via the Hadamard equivalence relation.
Proor. This is indeed a reformulation of Theorem 2.9, using Definition 2.8. U

The above result and the matrix K3 appearing there are quite interesting, because
they remind the Hadamard matrix K, studied in chapter 1 above, given by:

-1 1 1 1
1 -1 1 1
Ky = 1 1 -1 1
1 1 1 -1

To be more precise, all this suggests looking at the following matrices Ky € vV NOuy,
having arbitrary size N € N:
2—N 2
K ! :
N = = ‘.
VN 2 2—N

These matrices are in general not optimal almost Hadamard, in the sense of Definition
2.8 above, for instance because at N = 2 or N = 8,12, 16, ... they are not Hadamard.
We will see in the next section that these matrices are however “almost Hadamard”, in
the sense that they locally maximize the 1-norm on v NOy.

To summarize, the computation of the maximizers of the 1-norm on Oy is a difficult
question, a bit like the computation of the maximizers of |det| on My(£1) was, and
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looking instead at the local maximizers of the 1-norm on Oy is the way to be followed,
with some interesting examples and combinatorics at stake. We will be back to this.

Let us discuss now, as a continuation of all this, an analytic reformulation of the
Hadamard Conjecture. Following [14], the starting statement here is:

PROPOSITION 2.11. We have the following estimate,

sup ||U|l, < NVN

UeOyn

with equality if and only if there exists an Hadamard matriz of order N.

PROOF. This follows indeed from the inequality ||U|]; < Nv/N, with equality in the
rescaled Hadamard matrix case, U = H/+v/N, from Theorem 2.5 above. U

We begin our study with the following observation:
ProrosiTiON 2.12. If the Hadamard conjecture holds, then

sup ||U|]; > (N — 4.5)VN

UeOn
for any N € N.

Proor. If N is a multiple of 4 we can use an Hadamard matrix, and we are done. In
general, we can write N = M + k with 4|M and 0 < k < 3, and use an Hadamard matrix
of order N, completed with an identity matrix of order k. This gives:

sup ||U|li > MVM +k

UeOn
> (N-3)VN-3+3
> (N —45)vVN +3
Here the last inequality, proved by taking squares, is valid for any N > 5. U

We would like to understand now which estimates on the quantity in Proposition 2.12
imply the Hadamard conjecture. We first have the following result:

PROPOSITION 2.13. For any norm one vector U € RY we have the formula
U— H|?
e ()

where H € RY is the vector given by:
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PRrROOF. We indeed have the following computation:

U —H|? = Z <U- — ng%]"))Z

2|U;
\/_ N
2/|U]]x
Ul - = +1
ol - =
, 21Ul
VN
But this gives the formula in the statement. U

Next, we have the following estimate, also from [14]:
PROPOSITION 2.14. Let N be even, and let U € Oy be a matriz such that

o=

VN

is not Hadamard, where S;; = sgn(U;;). We have then the following estimate:

1
Ul < NVN — ——

PROOF. Since H is not Hadamard, this matrix has two distinct rows Hy, Hy which
are not orthogonal. Since N is even, we must have:

2
’<H1,H2>’ZN

We obtain from this the following estimate:

||U1—H1||+||U2—H2|| > |<U1—H1,H2>|+|<U2—H2,U1>|
> ‘<U1—H1,H2>+<U2—H2,U1>|
‘<U2,U1>—<H1,H2>|
= |<H1,H2>|
2
>
- N
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Now by applying the estimate in Proposition 2.13 to Uy, Us, we obtain:

U, — H||? U, — H,l2
U] + ([ U]y = m(z_” 1 — Hyll ;ll : 2|r)

< V(o (It

By adding to this inequality the 1-norms of the remaining N — 2 rows, all bounded
from above by v/N, we obtain the result. U

We can now answer the question raised above, as follows:

THEOREM 2.15. If N is even and the following holds,

1
su Ully > NVN — ——
Swp Ul = NVN = o

then the Hadamard conjecture holds at N.

PRrROOF. Indeed, if the Hadamard conjecture does not hold at /N, then the assumption
of Proposition 2.14 is satisfied for any U € Oy, and this gives the result. O

As another result now, let us compute the average of the 1-norm on Oy. For this
purpose, we will use the following well-known result:

THEOREM 2.16. For any exponents kq,...,ky € N we have
Sk sk
/ xkl...ka‘dx 2\ (N = )R !
gvo1 | N T (N + Sk; — D!
with 3 = [odds/2] if N is odd and ¥ = [(odds + 1)/2] if N is even, where “odds” denotes
the number of odd numbers in the sequence ky, ..., ky, and where

mll=(m—1)(m—3)(m—2>5)...
with the product ending at 2 if m is odd, and ending at 1 if m is even.

Proor. We use the following well-known formula, which can be proved by partial
integration and a double recurrence, with e(p) = 1 for p even, and ¢(p) = 0 for p odd:

/2 e(p)e(a) Nl
/ cosP tsin?tdt = (Z) N
0 2 (p+q+ 1N
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Observe that this gives the result at N = 2, because here we have ¥(p, q) = 1—¢(p)e(q),
and so the formula in the statement takes the following form:

9 [7/2 9\ 1-ePe(9) !l
—/ cosP tsin?t dt = (—) —( P4
0

™ ™

In general now, the integral in the statement can be written in spherical coordinates,
as follows, where A is the area of the sphere, J is the Jacobian, and the 2V factor comes
from the restriction to the 1/2% part of the sphere where all coordinates are positive:

N w/2 w/2
I:—/ / Qflfl...l’lvaJdﬁ...dtN_l
A 0 0

The normalization constant in front of the integral is:

N [N/2]
2 (2)

™

As for the unnormalized integral, this is given by:

w/2 w/2
I/_/ / (costy)™
0 0

(sint cos tg)kQ
(sintysinty...sinty_gcosty_1)v-1
(sintysinty...sinty_psinty_1)*
SiIlN_2 tl sinN_3 tg e SiIl2 tN_g sin tN_Q
dty...dty_q

By rearranging the terms, we obtain:

w/2

coskt ty ginfe T thNEN=2¢ gp

I' =
w/2

cosk? ty sinf3 TN EN=3 ¢,

S— S—

w/2
cosFN=2 ¢ o sinfN-ItEN Ly dEy

/2
COSkN*1 tN—l Sil’lkN tN—l dtN_l
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Now by using the formula at N = 2, we obtain:

7 7 kMke+ ...+ ky+ N — 2 I (2)6(k1,k2+...+kN+N—2)
2 (ki+...+ky+N-DI \x
7 kWWks+ ...+ ky+ N =3I (2)5(k27k3+---+kN+N—3>
2 (k.. +kN+N—2H T
T ky_ol(kno1 + kv +1 S(kn—2,kn_1+kN+1)
2 (knoo+kn- 1+/<;N+2 I ( )
(0 kn_1kn!! 9\ Olhn—1.hN
2 (kn—1 4+ kn+ )N <;)

In order to compute this quantity, let us denote by F' the part involving the double
factorials, and by P the part involving the powers of 7/2, so that we have:

I'=F-P
Regarding F', there are many cancellations there, and we end up with:

R el
- (Cki+ N =)

As in what regards P, the ¢ exponents on the right sum up to the following number:
Ak, .. k) =Y 0(ki ki + ...+ ky + N —i—1)

In other words, with this notation, the above formula reads:

]l _ (7T>N1 kl"kQHkNH 2 A(k1,.kN)
o \2 (ki +...+ky+ N -1 \ 7

9\ Akrkn) =N+ kol !
(—) (ki+ ...+ ky+ N — 1)
9\ Z (k1 kn) —[N/2] kol k!

- (_) (ki +...+ky+N -1

™

™

Here the formula relating A to ¥ follows from a number of simple observations, the
first of which is the following one: due to obvious parity reasons, the sequence of § numbers
appearing in the definition of A cannot contain two consecutive zeroes.

Together with I = (2 /V)I’, this gives the formula in the statement. O
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As a first observation, the exponent Y appearing in the statement of Theorem 2.16
can be written as well in the following compact form:

N + odds + 1 B N+1
2 2

E(kl,...,kp):{

However, for concrete applications, the writing in Theorem 2.16 is more convenient.
Now by using this result, we obtain the following estimate, from [14]:

THEOREM 2.17. We have the following estimate,

2
/ U], dU =~ \/:N\/N
On m

PROOF. We use the well-known fact that the row slices of Oy are all isomorphic to
the sphere SV~!, with the restriction of the Haar measure of Oy corresponding in this
way to the uniform measure on SV~!. Together with a standard symmetry argument,
this shows that the average of the 1-norm on Oy is given by:

Ul dU = / Ui;| dU
/ONII I Z [ 1.

_ N?/ U | dU
On

= N2/ |21 | dx
gN-1

We denote by I the integral on the right. According to Theorem 2.16, we have:

;o (2 20 (N = 1)
~ A\ NI

valid in the N — oo limit.

(2 2.4.6...(N —2)

. N
JFasr ovon Weven
= 3.5.7... (N —2)

1- N odd

1 oas voy WVedd)

4 —1

M (on

- N =2M
B aM \ M ( )

oM

4M N =2M+1

M ( 1)

\
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Now by using the Stirling formula, we get:

(
4M N7 M
I 7;4 ( 2M)
I ~ oM 4
S (N =2M +1)
4. =
L VM
(1
N =2M
B T 7 ( )
N=2M+1
\ V7T M ( )
N 2
o TN
Thus, we are led to the conclusion in the statement. U

The above result gives in particular the following estimate, in the N — oo limit:
2
sup ||U||1 dU ~ \/j NV N
UeOn T

In order to find better estimates, the problem is to compute the higher moments of
the 1-norm, which are the following integrals, depending on a parameter k € N:

Ik:/ o)k dU
On

The computation of these integrals is however a difficult problem, and no concrete
applications to the Hadamard Conjecture have been found so far. See [14].
2c. Bistochastic matrices

Let us discuss now a third and final analytic topic, in connection with the bistochastic
Hadamard matrices. The motivation here comes from the fact that the bistochastic
matrices look better than their non-bistochastic counterparts.

As an illustration here, the Fourier matrix F, looks better in bistochastic form:

(b 4)~-G)

Also, the matrix W, looks better in its bistochastic form, which is the matrix Kjy:

1 1 1 1 -1 1 1 1
1 -1 1 -1 1 -1 1 1
1 1 -1 =1/~ 711 1 =1 1
1 -1 -1 1 1 1 1 -1
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We have the following algebraic result on the subject, which shows in particular that
we cannot put any Hadamard matrix in bistochastic form:

THEOREM 2.18. For an Hadamard matriz H € My(C), the following are equivalent:

(1) H 1is bistochastic, with sums X.
(2) H is row-stochastic, with sums X, and \* = N.

In particular, is such a matriz exists, then N € 4N must be a square.
PRrROOF. Both the implications are elementary, as follows:
(1) = (2) If we denote by Hi,..., Hy € (£1)" the rows of H, we have indeed:

N = Z<H1,H,->
= ) HyY Hj
7 7
J

= A
(2) = (1) Consider the all-one vector ¢ = (1); € RY. The fact that H is row-
stochastic with sums A reads:

O Hy=AVi = > Hy& =M\, Vi
J J

— H{= X

Also, the fact that H is column-stochastic with sums A reads:
D Hy =AY <= > Hy& =NV
i J

= H'¢=X

We must prove that the first condition implies the second one, provided that the row
sum \ satisfies A2 = N. But this follows from the following computation:
HE= )N = H'HE= \H'E

— NE&=\H%

= H'¢ =X
Thus, we have proved both the implications, and we are done. U

In practice now, the even Walsh matrices, having size N = 4", which is a square as
required above, can be put in bistochastic form, as follows:

Wi ~ K"
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As for the odd Walsh matrices, having size N = 2 x 4", these cannot be put in bis-
tochastic form. However, we can do this over the complex numbers, with the equivalence
being as follows at N = 2, and then by tensoring with K" in general:

(b 4)~G)

This is quite interesting, and in general now, it is known from [57] that any complex
Hadamard matrix can be put in bistochastic form, by a certain non-explicit method.
Thus, we have here some theory to be developed. We will be back to this.

There is as well an analytic approach to these questions, based on:

THEOREM 2.19. For an Hadamard matric H € My(%1), the excess,

E(H)=) H;

satisfies |E(H)| < NN, with equality if and only if H is bistochastic.

PROOF. In terms of the all-one vector £ = (1); € RY, we have:

E(H) = Y Hy;
= ZHijfjfi
= Y (HO

i

= < HEE>

Now by using the Cauchy-Schwarz inequality, along with the fact that U = H/ VN is
orthogonal, and hence of norm 1, we obtain, as claimed:

|EH)| < [|He] -]
< [|H]|- |l
- NVN

Regarding now the equality case, this requires the vectors H¢, & to be proportional,
and so our matrix H to be row-stochastic. But since U = H/+/ N is orthogonal, we have:

H{~§ = H'¢~E

Thus our matrix H must be bistochastic, as claimed. U
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2d. The glow

One interesting question, that we would like to discuss now, is that of computing the
law of the excess over the equivalence class of H.

Following [8], let us start with the following definition:

DEFINITION 2.20. The glow of H € My(£1) is the distribution of the excess,
E=) H;
]

over the Hadamard equivalence class of H.

Since the excess is invariant under permutations of rows and columns, we can restrict
the attention to the matrices H ~ H obtained by switching signs on rows and columns.
More precisely, let (a,b) € Z5 x ZY, and consider the following matrix:

Hz’j = aiijij
We can regard the sum of entries of H as a random variable, over the group ZY x Z%,

and we have the following equivalent description of the glow:

PROPOSITION 2.21. Given a matriv H € My (1), if we define ¢ : ZY x ZY — 7 as
the excess of the corresponding Hadamard equivalent of H,

p(a,b) =Y aib;Hi
ij
then the glow is the probability measure on Z given by pu({k}) = P(p = k).

PRrROOF. The function ¢ in the statement can indeed be regarded as a random variable
over the group ZY x Z | with this latter group being endowed with its uniform probability
measure P. The distribution p of this variable ¢ is then given by:

p((k) = # {(00) € ZY x 2}

Mm@zk}
By the above discussion, this distribution is exactly the glow. U

The terminology in Definition 2.20 comes from the following picture. Assume that we
have a square city, with N horizontal streets and NN vertical streets, and with street lights
at each crossroads. When evening comes the lights are switched on at the positions (i, )
where H;; = 1, and then, all night long, they are randomly switched on and off, with the
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help of 2N master switches, one at the end of each street:

= 0000
- & x O X
- & O o x X
- & x x O

S Y N

With this picture in mind, p describes indeed the glow of the city. At a more advanced
level now, all this is related to the Gale-Berlekamp game [50], [80], and this is where our
main motivation for studying the glow comes from.

In order to compute the glow, it is useful to have in mind the following picture:

by ... by

3 |
((ll) — Hy ... Hiy = 5
(CI,N) — Hyp ... Hyy = SN

Here the columns of H have been multiplied by the entries of the horizontal switching
vector b, the resulting sums on rows are denoted S, ..., Sy, and the vertical switching
vector a still has to act on these sums, and produce the glow component at b.

With this picture in mind, we first have the following result, from [8]:
PROPOSITION 2.22. The glow of a matriz H € My(%1) is given by
1
H=on Z Bi(cr) * ... x By(cn)

bezZl

where the measures on the right are convolution powers of Bernoulli laws,

fio - (25)

and where ¢, = #{r € |S1|,...,|Sn|}, with S = Hb.

PrROOF. We use the interpretation of the glow explained above. So, consider the
decomposition of the glow over b components:
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With the notation S = Hb, as in the statement, the numbers S5y, ..., Sy are the row
sums of H;; = H;;a;b;. Thus the glow components are given by:

wy = law (£S51 £ Sy ... £ Sy)
By permuting now the sums on the right, we have the following formula:

pp=law(£0...£0 £1...+£1...... +N...+N)
. A N e

v~ ~~
Co Cc1 CN

Now since the £ variables each follow a Bernoulli law, and these Bernoulli laws are
independent, we obtain a convolution product as in the statement. Il

We will need the following elementary fact:

PROPOSITION 2.23. Let H € Mn(%1) be an Hadamard matriz of order N > 4.

(1) The sums of entries on rows Sy, ..., Sy are even, and equal modulo 4.
(2) If the sums on the rows Sy, ..., Sy are all 0 modulo 4, then the number of rows
whose sum is 4 modulo 8 is odd for N = 4(8), and even for N = 0(8).

PRroOF. This is something elementary, the proof being as follows:

(1) Let us pick two rows of our matrix, and then permute the columns such that these
two rows look as follows:

1...... 1 1...... 1 -1...—1 —-1...—1
1...... 1 —1...—1 1...... 1 —-1...—1
—_— — Y ~——

a b c d

We have a + b+ ¢+ d = N, and by orthogonality we obtain a +d = b 4+ ¢. Thus
a+d=>b+c= N/2, and since N/2 is even we have b = ¢(2), which gives the result.

(2) In the case where H is “row-dephased”, in the sense that its first row consists of
1 entries only, the row sums are N,0,...,0, and so the result holds. In general now, by
permuting the columns we can assume that our matrix looks as follows:

1...... 1 —-1...—-1

~— ~~
x y
We have x +y = N = 0(4), and since the first row sum S; = x — y is by assumption 0
modulo 4, we conclude that z,y are even. In particular, since y is even, the passage from
H to its row-dephased version H can be done via y/2 double sign switches.
Now, in view of the above, it is enough to prove that the conclusion in the statement is
stable under a double sign switch. So, let H € My(£1) be Hadamard, and let us perform
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to it a double sign switch, say on the first two columns. Depending on the values of the
entries on these first two columns, the total sums on the rows change as follows:

(—i— + ... ) e
(—1— - ... ) :S—= 5
(— + ... ) )
(— - ... ) : S—>S5+4

We can see that the changes modulo 8 of the row sum S occur precisely in the first
and in the fourth case. But, since the first two columns of our matrix H € My(£1) are
orthogonal, the total number of these cases is even, and this finishes the proof. U

Observe that Proposition 2.22 and Proposition 2.23 (1) show that the glow of an
Hadamard matrix of order N > 4 is supported by 4Z. With this in hand, we have:

THEOREM 2.24. Let H € My(£1) be an Hadamard matriz of order N > 4, and
denote by pe", u°% the mass one-rescaled restrictions of u € P(47) to 87,87 + 4.
(1) At N =0(8) we have pp = 3p° + 1%,
(2) At N = 4(8) we have i = 3" + 3%,

PrROOF. We use the glow decomposition over b components, from Proposition 2.22:
1
H=5N§ Z Hb
bezZl

The idea is that the decomposition formula in the statement will occur over averages
of the following type, over truncated sign vectors ¢ € ZY '

1
He = 5(1e =)
Indeed, we know from Proposition 2.23 (1) that modulo 4, the sums on rows are either
0,...,00or 2,...,2. Now since these two cases are complementary when pairing switch
vectors (4c¢, —c), we can assume that we are in the case 0,...,0 modulo 4.

Now by looking at this sequence modulo 8, and letting x be the number of 4 compo-
nents, so that the number of 0 components is N — z, we have:

1( + )—1 law(+0...£0 +4... £4) + law(+2... +£2)
e M_C—Q aw(x0...+=0+4...£4 aw

2 3 o

N—z T N

Now by using Proposition 2.23 (2), the first summand splits 1—0 or 0—1 on 8Z, 8Z+4,
depending on the class of N modulo 8. As for the second summand, since N is even this
always splits % — % on 87,87 + 4. Thus, by making the average we obtain either a % — i
or a i — % splitting on 87, 8Z + 4, depending on the class of N modulo 8, as claimed. [J
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Various computer simulations suggest that the above measures p°¢", 1°% don’t have
further general algebraic properties. Analytically speaking now, we have:

THEOREM 2.25. The glow moments of H € My(£1) are given by:

/Zévng’ (%)2]0 = (2p)!'+ O(N™Y

In particular the normalized variable F = E/N becomes Gaussian with N — oo.

ProoF. Consider the variable in the statement, written as before, as a function of
two vectors a, b, belonging to the group ZY x Z':

E = Z aiijij
ij

Let P.yen(r) C P(r) be the set of partitions of {1,..., 7} having all blocks of even size.
The moments of E are then given by:

r E
/ E / Ajy .. airbxl .. bl“rHill“l Ce Hl’rﬁT
Zy <2y 2y <z o

= E Hi1331 ce H’irmT / Ajy .. Ay, / bxl c. bxr
X Zé\/ 7N
ix

2
= E E Hi. ...H,,
7,0€ Peyen (1) ker i=m ker z=0

Thus the moments decompose over partitions m € P.e,(r), with the contributions
being obtained by integrating the following quantities:

C(O') = Z ZH’iII1 "‘Hiritr cQq - QG

kerx=0 1

Now by Mébius inversion, we obtain a formula as follows:
/ E'= Y K(@N"I(r)
Zé\] XZ%V TEPeven (7')

To be more precise, here the coefficients on the right are as follows, where p is the
Mobius function of Piye,(r):

Km= Y pro)
0€Peven (7‘)

As for the contributions on the right, with the convention that Hi, ..., Hy € ZL are
the rows of our matrix H, these are as follows:

IWZZH%CFM§

i bem reb
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With this formula in hand, the first assertion follows, because the biggest elements of
the lattice P.ye,(2p) are the (2p)!! partitions consisting of p copies of a 2-block:

As for the second assertion, this follows from the moment formula, and from the fact
that the glow of H € My(+1) is real, and symmetric with respect to 0. See [8]. U

We will be back to glow computations in chapter 11 below, in the complex setting.

2e. Exercises
We have seen a lot of calculus in the above, and most of our exercises will be about

more calculus, precisely. To start with, however, we have:

EXERCISE 2.26. Briefly discuss how the theory of the determinant can be developed,
as a signed volume.

This is something that we used in the above, in the proof of the Hadamard determinant
bound. The problem now is that of reviewing your linear algebra basics and knowledge,
as for everything in relation with the determinant to be correct and fine.

Here is now an exercise in connection with the 1-norm:

EXERCISE 2.27. Prove that the following matriz belongs to v/ NOy,
2—N 2

1
Ky=——=

VN 2 2—N
and is a critical point of the 1-norm on vV NOy.
The first part is normally a standard linear algebra computation. As for the second
part, this can only be something which can be done with Lagrange multipliers.
Here is now a standard calculus exercise, which is a must-do:
EXERCISE 2.28. Establish the following formula,
/2 e(p)e(a) gl
/ cos? tsin?t dt = <Z) e
0 2 (p+q+ 1)
where €(p) = 1 for p even, and £(p) = 0 for p odd.

This is a key formula, that we already used in the above. Also, you have certainly met
particular cases of this formula, at small values of p,¢q. In general, the proof can only be
by partial integration, and a double recurrence on p, q. Enjoy.

Here is an exercise of the same type, but a bit more advanced:
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EXERCISE 2.29. FEstablish the following integration formula over the sphere

N = DIk k!
k1 kNd :( 1 N
/SN_lxl N T TN sk, — 1)

by using spherical coordinates and Fubini.

Observe that this formula holds indeed at N = 2, due to the formula in the previous
exercise. Also, this formula holds in the case where all the exponents k; are even, because
here the quantity to be integrated equals its absolute value, and we have seen in the above
how to integrate such absolute values. In general, the proof should be along the same
lines as the proof for the formula with absolute values.

Finally, here is an exercise in relation with the glow computations:

EXERCISE 2.30. Prove that the even moments of the centered normal law,
1

"=

e 2y

are the numbers (2k)!!.

As usual with such questions, there is probably a partial integration to be done here,
to start with, and then a recurrence on k.



CHAPTER 3

Norm maximizers

3a. Critical points

We have seen in the previous chapter that the set Yy = My (£1)N vV NOy formed by
the N x N Hadamard matrices can be located inside v NOy by using analytic techniques,
and more precisely variations of the following result:

THEOREM 3.1. Given a matrizc H € \/NON we have:
(1) ||H||x < N¥? for p € [1,2), with equality precisely when H is Hadamard.
(2) ||H||y > NP for p € (2,00], with equality precisely when H is Hadamard.

ProoOF. This is something that we know from chapter 2, in rescaled reformulation.
Consider indeed the p-norm on vV NOy, which at p € [1,00) is given by:

1/p
|H||, = <§ |Hz'j|p>
i

We have then ||H||s = N, and by using this, together with the Jensen inequality for
P(z) = 2P/?, or simply the Hélder inequality for the norms, we obtain the results.
As for the case p = oo, this follows with p — oo, or directly via Cauchy-Schwarz. [

Once again following the material in chapter 2, we have seen there that a nice result
can be obtained along these lines at N = 3. To be more precise, the maximizers of the
l-norm on v/30; are the following matrix, and its Hadamard conjugates:

-1 2 2
Ke=—12 -1 2

In general, however, computing the maximizers of the 1-norm on v NOy remains a
difficult question. So, based on the above, let us formulate the following definition:
DEFINITION 3.2. A matrizx H € v/ NOy is called:

(1) Almost Hadamard, if it locally mazimizes the 1-norm on v NOy.
(2) Optimal almost Hadamard, if it mazimizes the 1-norm on VNOy.

57
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More generally, we can talk about p-almost Hadamard matrices, at any p € [1,00] —
{2}, exactly in the same way, by using the results in Theorem 3.1. When a matrix
H € v/ NOy is almost Hadamard at any p, we call it “absolute almost Hadamard”.

We will see in what follows that, while the study of the optimal almost Hadamard
matrices remains something quite difficult, in the general almost Hadamard setting there
are many interesting things to be done, and some nice theory to be developed.

In order to get started, let us study the local mazimizers of the 1-norm on v NOy. It
is technically convenient here to rescale by 1v/ N, and work instead over the orthogonal
group Oy, by using the avaliable tools here. Following [14], we first have:

THEOREM 3.3. If U € Oy locally maximizes the 1-norm, then
Uij 7é 0
must hold for any 1, 7.

PROOF. Assume that U has a 0 entry. By permuting the rows we can assume that
this 0 entry is in the first row, having under it a nonzero entry in the second row.

We denote by Uy, ...,Uy the rows of U. By permuting the columns we can assume
that we have a block decomposition of the following type:

U\ _ (0 0 Y A B
U;J) \0 X 0 C D
Here X,Y, A, B, C, D are certain vectors with nonzero entries, with A, B, C, D chosen
such that each entry of A has the same sign as the corresponding entry of C, and each
entry of B has sign opposite to the sign of the corresponding entry of D.
Our above assumption states that X is not the null vector.

For ¢t > 0 small consider the matrix U* obtained by rotating by ¢ the first two rows of
U. In row notation, this matrix is given by:

cost sint U, cost-U; +sint - Us
—sint cost U, —sint - Uy + cost - Us

Ut — 1 U3 — U3

1 UN UN
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We make the convention that the lower-case letters denote the 1-norms of the corre-
sponding upper-case vectors. According to the above sign conventions, we have:

N
U = |lcost- Uy +sint-Uplly + || —sint - Uy + cost - Up|ly + Y u;
=3
N
= (cost—l—sint)(x—i—y—i—b—i—c)—l—(cost—sint)(a—i—d)—i—zui
=3

= ||U]||x + (cost +sint — 1)(x +y + b+ ¢) + (cost —sint — 1)(a + d)
By using sint =t + O(t?) and cost = 1 + O(t?) we obtain:
U = JU[h+tz+y+b+c)—tla+d) + O
= [[Ulh+tz+y+b+c—a—d)+O(t)

In order to conclude, we have to prove that U cannot be a local maximizer of the
I-norm. This will basically follow by comparing the norm of U to the norm of U*, with
t > 0 small or ¢ < 0 big. However, since in the above computation it was technically
convenient to assume ¢ > 0, we actually have three cases:

Case 1: b+ ¢ > a+ d. Here for t > 0 small enough the above formula shows that we
have ||U*||y > ||U]||1, and we are done.

Case 2: b+ ¢ = a+ d. Here we use the fact that X is not null, which gives x > 0.
Once again for ¢t > 0 small enough we have ||U*||; > ||U]||1, and we are done.

Case 3: b+ ¢ < a+ d. In this case we can interchange the first two rows of U and
restart the whole procedure: we fall in Case 1, and we are done again. U

Let us study now the critical points. It is convenient here to talk about more general
p-norms, or even more general functions of the quantities |U;;|, because this will lead to
some interesting combinatorics. Following [14], [18], we have the following result:

THEOREM 3.4. Consider a differentiable function ¢ : [0,00) — R. A matriz U € Oy
is then a critical point of the quantity

FU) = > (Us))

precisely when the matrizc WU' is symmetric, where:
Wij = sgn(Us)¢'(1Uy1)

In particular, for F(U) = ||U||; we need SU* to be symmetric, where S;; = sgn(U;;).
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Proor. We regard Oy as a real algebraic manifold, with coordinates U;;. This man-
ifold consists by definition of the zeroes of the following polynomials:

Aj = Z UinUj, — 04
k

Since Oy is smooth, and so is a differential manifold in the usual sense, it follows from
the general theory of Lagrange multipliers that a given matrix U € Oy is a critical point
of F' precisely when the following condition is satisfied:

dF € span(dA;j)
Regarding the space span(dA;;), this consists of the following quantities:
> MydAy = > Miy(UdUsi + UsedUs)
ij ijk

= Y (M'U)jdUs, + > (MU)dUs
ik

jk
= Y (M'U)ydUy; + Y (MU);;dUs;
ij ij
In order to compute dF', observe first that, with S;; = sgn(U;;), we have:

! ! Ui

= SZJdUU
Now let us set, as in the statement:
Wiy = sgn(Us;)¢' (|Uy])
In terms of these variables, we obtain:
dF = d(p(|Uy]) = D' (UsDdlUy| = Y WiydU,
ij ij ij
We conclude that U € Oy is a critical point of F'if and only if there exists a matrix
M € My (R) such that the following two conditions are satisfied:
W=MU , W=MU
Now observe that these two equations can be written as follows:
M =wU" |, M=WU"
Thus, the matrix WU? must be symmetric, as claimed. Il

In order to process the above result, we can use the following notion:
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DEFINITION 3.5. Given U € Oy, we consider its “color decomposition”
U=> rU,
r>0
with U, € Mn(—1,0,1) containing the sign components at r > 0, and we call U:
(1) Semi-balanced, if U, U" and U'U,, with r > 0, are all symmetric.
(2) Balanced, if U, Ut and ULU,, with r,s > 0, are all symmetric.

These conditions are quite natural, because for an orthogonal matrix U € Oy, the
relations UU' = U'U = 1 translate as follows, in terms of the color decomposition:

Y U =) rU'U =1

r>0 r>0
E rsU UL = E rsUU, =1
r,s>0 r,s>0

Thus, our balancing conditions express the fact that the various components of the
above sums are all symmetric. Now back to our critical point questions, we have:

THEOREM 3.6. For a matriz U € Oy, the following are equivalent:
(1) U is a critical point of F(U) = 3_,;o(|Uyl), for any ¢ : [0,00) — R.
(2) U is a critical point of all the p-norms, with p € [1,00).
(3) U is semi-balanced, in the above sense.

PrRoOOF. We use the critical point criterion found in Theorem 3.4 above. In terms of
the color decomposition, the matrix constructed there is given by:

WUty = ngn )¢’ (Ui U;

= ng T) Z sgn (Ui ) Uj,

r>0 k| Uik |=r

= > dr Z Up)ieUsji
r>0

= > ¢ UUt
r>0

Thus we have the following formula:
= et
>0

Now when the function ¢ : [0,00) — R varies, either as an arbitrary differentiable
function, or as a power function p(z) = 2P with p € [1, 00), the individual components of
this sum must be all self-adjoint, and this leads to the conclusion in the statement.  [J
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In practice now, most of the known examples of semi-balanced matrices are actually
balanced, so we will investigate instead this latter class of matrices. Following [18], we
have the following collection of simple facts, regarding such matrices:

THEOREM 3.7. The class of balanced matrices is as follows:

(1) It contains the matrices U = H//N, with H € My (1) Hadamard.

(2) It is stable under transposition.

(3) It is stable under taking tensor products.

(4) It is stable under Hadamard equivalence.

(5) It contains the matriz Vy = +(2Iy — N1y), where Ly is the all-1 matriz.

PROOF. All these results are elementary, the proof being as follows:

(1) Here U € Oy follows from the Hadamard condition, and since there is only one
color component, namely U, IVN = H, the balancing condition is satisfied as well.

(2) Assuming that U = Y _ rU, is the color decomposition of a given matrix U € Oy,
the color decomposition of the transposed matrix U? is as follows:

Ut=> rU
r>0
It follows that if U is balanced, so is the transposed matrix U*.

(3) Assuming that U = > _ rU, and V = )" _ sV are the color decompositions of
two given orthogonal matrices U, V', we have:

UeV=> rsU,eV.=> pY U,V
r,s>0 p>0  p=rs
Thus the color components of W = U ® V are the following matrices:
W,=> U,V
p=rs
It follows that if U,V are both balanced, then sois W =U ® V.
(4) We recall that the Hadamard equivalence consists in permuting rows and columns,

and switching signs on rows and columns. Since all these operations correspond to certain
conjugations at the level of the matrices U, U!, UtU,, we obtain the result.

(5) The matrix in the statement, which goes back to [21], is as follows:

2— N 2 2
1 2 2—N ... 2
W=x~I ... ..

2 2 ... 2—N
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Observe that this matrix is indeed orthogonal, its rows being of norm one, and pairwise
orthogonal. The color components of this matrix being Vo/y_1 = 1x and Vo )y = Iy — 1,
it follows that this matrix is balanced as well, as claimed. Il

Let us look now more in detail at the matrix Vy from the above statement, and at
the matrices having similar properties. Following [21], let us start our study with:

DEFINITION 3.8. An (a,b,c) pattern is a matrizx M € My(0,1), with N = a+ 2b+ c,
such that any two rows look as follows,

0...0 0...0 1...1 1...1
0...0 1...1 0...0 1...1

up to a permutation of the columns.

As explained in [21], there are many interesting examples of (a, b, ¢) patterns, coming
from the balanced incomplete block designs (BIBD), and all these examples can produce
two-entry unitary matrices, by replacing the 0,1 entries with suitable numbers z, y.

Now back to the matrix Vy from Theorem 3.7 (5), observe that this matrix comes from
a (0,1, N — 2) pattern. And also, independently of this, this matrix has the remarkable
property of being at the same time circulant and self-adjoint.

We have in fact the following result:

THEOREM 3.9. The following matrices are balanced:

(1) The orthogonal matrices coming from (a, b, c) patterns.
(2) The orthogonal matrices which are circulant and symmetric.

PROOF. These observations basically go back to [21], the proofs being as follows:

(1) If we denote by P,Q € My(0,1) the matrices describing the positions of the 0,1
entries inside the pattern, then we have the following formulae:

PP'=P'P = aly +bly
QQ'=Q'Q = cly+bly
PQ'=P'Q=QP' =Q'P = bly—bln
Since all these matrices are symmetric, U is balanced, as claimed.

(2) Assume that U € Oy is circulant, U;; = v;_;, and in addition symmetric, which
means y; = v_,;. Consider the following sets, which must satisfy D, = —D,.

Dr:{k:”yr’ :k}
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In terms of these sets, we have the following formula:

(UUDi; = > (Un)iw(Us) ji
k
= Z 5\’7k4|ﬂ“ Sgn(’yk,i) ) 5|7k—j|,8 Sgn(’)/k—j)
k

_ > sgn(Yr—i) sgn(ve—;)

ke(Dr+i)N(Ds+yj)
With k =14+ j — m we obtain, by using D, = —D,., and then ~; = v_;:
(VU = > Sg0(Yjm) 581 (i)

meE(—Dy+4)N(—Ds+i)

= > Sg0(Vj—m) SGN(Vi—m)

me(Dr+i)N(Dr+7)
= > s8n(Yms) 580 (Ym—i)
mée(Dr+i)N(Dr+j)
Now by interchanging i <+ 7, and with m — k, this formula becomes:
(UUy)ji = > sgn(Vk—i) sgn(ve—;)
ke(Dr+i)N(Dr+j4)

By comparing with the previous formula, we deduce that the matrix U, U} is symmetric,
as claimed. The proof for UtU; is similar. U

As a conclusion to all this, the study of the critical points of the various p-norms on
Op has led us into the class of balanced matrices, which looks like an interesting class,
which is waiting to be further investigated. We will be back to this.

3b. Second derivatives

Let us get now into analytic questions. As in Theorem 3.4, it is convenient to do the
computations in a general framework, with a function as follows:

FU) =) v(U})
]
Consider the following function, depending on ¢ > 0 small:

) = FUe) = 3 u((Ue™)})

Here U € Oy is an arbitrary orthogonal matrix, and A € My(R) is assumed to be
antisymmetric, A' = —A, with this latter assumption needed for having e* € Oy. Let us
first compute the derivative of f. Following [18], we have the following result:
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ProproSITION 3.10. We have the following formula,
F1(t) =2 W (Ue™)])(UAe ™) (Ue)y
]
valid for any U € Oy, and any A € My(R) antisymmetric.
PROOF. The matrices U, e being both orthogonal, we have:
(Ue);, = (Ue)y((Ue));
(Ui (e U
= (Ue)i(e™ U5

We can now differentiate our function f, and by using once again the orthogonality of
the matrices U, e, along with the formula A = —A, we obtain:

ft) = Zl/f/((UetA)?j) [(UAe™);(e7 U — (Ue) (e AUY) ;1]
= Z¢/((U€tA)?j) [(UA) (e U )i — (Ue)ii (e AU
= ZW((U@M)?J') [(UAe);;(Ue )i + (Ue)i;(UAe )]

But this gives the formula in the statement, and we are done. U

Before computing the second derivative, let us evaluate f’(0). In terms of the color
decomposition U = > _rU, of our matrix, the result is:

PRoOPOSITION 3.11. We have the following formula,

=2 )/ (r*)Tr(UUA)

r>0

where the matrices U, € My(—1,0,1) are the color components of U.

Proor. We use the formula in Proposition 3.10 above. At t = 0, we obtain:

_221/1 YU A);Us;

Consider now the color decomposmon of U. We have the following formulae:

Uj=Y 1)y = UZ=> r|(U)yl

r>0 r>0

() =) v

r>0
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Now by getting back to the above formula of f’(0), we obtain:

(0)=2> ¢'(? Z UA)i;Uss|(Ur)s5]

r>0

Our claim now is that we have:

Ui |(Ur)iz| = r(Ur)ij

Indeed, in the case |U;;| # r this formula reads U;; - 0 = r - 0, which is true, and in the
case |U;;| = r this formula reads r.5;; - 1 = r - S;;, which is once again true. Thus:

0)=2) ) (r) Z(UA)z‘j(Ur)ij

r>0

But this gives the formula in the statement, and we are done. U
Let us compute now the second derivative. The result here is as follows:

PROPOSITION 3.12. We have the following formula,

// _ 4Z¢// UA w Z]]
+2 Z¢ o) [(UA%);U3]
i
+2) (U7
i

valid for any U € Oy, and any A € My(R) antisymmetric.

PrROOF. We use the formula in Proposition 3.10 above, namely:
F1(t) =2 W (Ue)])(UA) i (Ue)y
ij
Since the term on the right, or rather its double, appears as the derivative of the
quantity (Uet4)?, when differentiating a second time, we obtain:

) = 4 Z Y(Ue)) [(UA ) (Ue)5]

i)
2

P2 WU, [(UAS) (U )]

In order to compute now the missing derivative, observe that we have:

[(UAe);(Ue )] = (UA2);(Ueth);; + (U A,
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Summing up, we have obtained the following formula:

// _ 421//’ (UAetA>1]<UetA)lJl

2

+2Zw (Uet)2) [(UA2eH),(Uet),,]

+2 Z ¢/<<UetA)?j)(UAetA)?j
ij
But at ¢ = 0 this gives the formula in the statement, and we are done. O

For the function ¢(x) = /x, corresponding to the functional F(U) = ||U]||;, there are
some simplifications, that we will work out now in detail. First, we have:

PROPOSITION 3.13. For the function F(U) = ||U||; we have the formula
f7(0) = Tr(S'UA?)
valid for any antisymmetric matriz A, where S;; = sgn(Us;).

PROOF. We use the formula in Proposition 3.12 above, with the following data:

1 1
o / _ " _ _
We therefore obtain the following formula:
f”(O) —_ ] J J Y + J
Z lUZ]l3 Z |Uijl Z |Uijl

iJ i

UA)2
+Y (UAY;S;+ ) WA
= 1251

ij

= Z(UAzlijSij
]
But this gives the formula in the statement, and we are done. O

We are therefore led to the following result, from [18], regarding the 1-norm:

THEOREM 3.14. A matrix U € Oy locally maximizes the 1-norm on Oy precisely
when the following conditions are satisfied:
(1) The matriz U has nonzero entries, U € O%.
(2) The matriz X = S'U is symmetric, where S;; = sgn(U;;).
(3) We have Tr(X A?) <0, for any antisymmetric matriz A € My(R).

PRrROOF. This follows the results that we have, with (1,2,3) coming respectively from
Theorem 3.3, Theorem 3.4 and Proposition 3.13. U
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In order to further improve the above result, we will need:

PROPOSITION 3.15. For a symmetric matric X € My (R), the following are equivalent:
(1) Tr(XA?) <0, for any antisymmetric matriz A.
(2) The sum of the two smallest eigenvalues of X is positive.

Proor. Consider the following vector, which is antisymmetric:
a = Z Aijei X €;
j

In terms of this vector, we have the following formula:
Tr(XA?) = <X, A*>
= —<AX, A>
= —<a,(1®X)a>

Thus the condition (1) is equivalent to P(1 ® X )P being positive, with P being the
orthogonal projection on the antisymmetric subspace in RY @ RY.

For any two eigenvectors z; L z; of X, with eigenvalues A;, A;, we have:
Ai + A

= = (T @z — 1; ® 7;)

Thus, we obtain the conclusion in the statement. U

Following [18], we can now formulate a final result on the subject, which improves
some previous findings from [14], and from [21], as follows:

THEOREM 3.16. A matrix U € Oy locally maximizes the 1-norm on Oy precisely
when it has nonzero entries, and when the following matriz, with S;; = sgn(U,;),

X =5U
18 symmetric, and the sum of its two smallest eigenvalues is positive.

Proor. This follows indeed from our main result so far, Theorem 3.14 above, by
taking into account the positivity criterion from Proposition 3.15. U

In terms of the almost Hadamard matrices, as introduced in Definition 3.2 above, as
rescaled versions of the above matrices, the above result reformulates as follows:

THEOREM 3.17. The almost Hadamard matrices are the matrices H € vV NOy having
nonzero entries, and which are such that the following matriz, with S;; = sgn(H,;),

X=5H

is symmetric, and the sum of its two smallest eigenvalues is positive.
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PRroOF. This is a reformulation of Theorem 3.16, by rescaling everything by v NV, as
to reach to the objects axiomatized in Definition 3.2 above. U

We can now state and prove the following theoretical result, from [14], [21]:

THEOREM 3.18. The class of almost Hadamard matrices has the following properties:

1) It contains all the Hadamard matrices.
2) It is stable under transposition.

3) It is stable under taking tensor products.
4) It is stable under Hadamard equivalence.
5)

It contains the matriz Ky = —~(2Iy — N1ly).

(
(
(
(
( %

ProOF. All the assertions are clear from what we have, as follows:

(1) This follows either from Theorem 3.1, which shows that Hadamard implies almost
Hadamard, without any need for further computations, or from the fact that if H is
Hadamard then U = H/+v/N is orthogonal, and SU* = HU' = /N1y is positive.

(2) This follows either from definitions, because the transposition operation preserves
the local maximizers of the 1-norm, or from Theorem 3.17 above.

(3) For a tensor product of almost Hadamard matrices H = H' ® H” we have U =
U ®U" and S = 5" ® S”, so that U is unitary and SU" is symmetric, with the sum of
the two smallest eigenvalues being positive, as claimed.

(4) This follows either from definitions, because the Hadamard equivalence preserves
the local maximizers of the 1-norm, or from Theorem 3.17 above.

(5) We know from Theorem 3.7 that the matrix U = Ky /v/N is orthogonal. Also, we
have S = Iy — 21y, and so SU" is positive, because with Jy = I /N we have:

SUt - (NJN - 21N)(2JN - 1N>
(N —2)Jy +2(1y — Jy)

Thus, we are led to the conclusion in the statement. U

Observe the similarity between the above result and Theorem 3.7, which was about the
balanced matrices. However, these two statements, even when properly rescaled, either
both on Oy or both on v N Oy, do not exactly cover the same class of matrices. Based
on this analogy, however, we can look for explicit examples of almost Hadamard matrices
by taking some inspiration from the main examples of balanced matrices, from Theorem
3.9 above. We will discuss this in the remainder of this chapter.
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3c. Circulant matrices

We have two classes of matrices to be investigated, generalizing the matrix Ky from
Theorem 3.18, namely the circulant matrices, and the 2-entry matrices.

Let us start with the circulant matrices. We let F' € Uy be the normalized Fourier
matrix, given by Fy; = w” /v N, where w = e*™/N. Also, given a vector a € CV, we
associate to it the diagonal matrix o/ = diag(ao,...,an_1).

With these conventions, we have the following well-known result:

PROPOSITION 3.19. For a matrix H € My(C), the following are equivalent:

(1) H is circulant, i.e. H;; =;_;, for a certain vector v € CV.
(2) H is Fourier-diagonal, i.e. H = FDF*, with D € My(C) diagonal.

In addition, if so is the case, then with D = v/ No/ we have v = Fa.
PROOF. (1) = (2) The matrix D = F*HF is indeed diagonal, given by:

1 i .
= Jl—ik — §: Jr
DZ]_ N;w ’Ylk—ézjgw Yr

(2) = (1) The matrix H = FDF* is indeed circulant, given by:
— 1 .
Hy =Y FuDuFj =~ Y w "Dy
k %

Finally, the last assertion is clear from the above formula of H;;. U
Let us investigate now the circulant orthogonal matrices. We have:

PROPOSITION 3.20. For a matriz U € My(C), the following are equivalent:
(1) U is orthogonal and circulant.
(2) U= Fo'F* with a € TV satisfying a; = a_; for any i.

Proor. We will use many times the fact that given a vector a € CV, the vector
v = Fa is real if and only if the following happens, for any ¢:

5[1' =
This follows indeed from Fa = F@, with &; = a_;.
(1) = (2) Write H;; = v;_; with v € RY. By using Proposition 3.19 we obtain

H = FDF* with D = v/No/ and v = Fa. Now since U = Fo/F* is unitary, so is o/, so
we must have av € TV. Finally, since 7 is real we have &; = a_;, and we are done.
(2) = (1) We know from Proposition 3.19 that U is circulant. Also, from o € TV we

obtain that ' is unitary, and so must be U. Finally, since we have &; = a_;, the vector
v = Fa is real, and hence we have U € My(R), which finishes the proof. O
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Let us discuss now the almost Hadamard case. First, in the usual Hadamard case, the
known examples and the corresponding a-vectors are as follows:

ProPOSITION 3.21. The known circulant Hadamard matrices, namely

-11 11 1 -111
1 -111 1 1-11
i11—11 ’ i111—1
11 1 -1 -11 11
1 1-11 11 1 -1
11 1 -1 -11 1 1
j:—1111 ’ j:1—111
1 -111 1 1-11

come respectively from the following o vectors, via the above construction:

+(1,-1,-1,-1) ,  +(1,—4,1,)

+(1,1,-1,1) : +(1,i,1, —i)

PROOF. At N = 4 the conjugate of the Fourier matrix is given by:

1 1 1 1
D O [ R R
=511 -1 1 4
1 ¢ -1 —
Thus the vectors o = F* are indeed those in the statement. O

Following [21], we have the following generalization of the above matrices:
PROPOSITION 3.22. If ¢V =1 then the vector
o = j:(]-a —dq, _q27 SR _qN_l)

produces an almost Hadamard matriz, equivalent to Ky = \/LN(Q]IN — Nly).

ProOOF. Observe first that these matrices generalize those in Proposition 3.21. Indeed,
at N = 4 the choices for q are 1,4, —1, —i, and this gives the above a-vectors.
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Assume that the + sign in the statement is +. With ¢ = w", we have:

N-—1
\/N’}/i = Z wikak
k=0
N-1
- 1— Z w(i+T)k
k=1
N-1
- 9_ Z w(i+7’)k
k=0
- 2 - 51’,7«N

In terms of the standard long cycle (Cx);j = d;+1,j, we obtain:
1
H=—_2Iy - NCy
\/N( N N )
Thus H is equivalent to K, and by Theorem 3.18, it is almost Hadamard. U

In general, the construction of circulant almost Hadamard matrices is quite a tricky
problem. At the abstract level, we have the following result, from [21]:

PROPOSITION 3.23. A circulant matric H € My (R*), written H;; = v,_;, is almost
Hadamard provided that the following conditions are satisfied:
(1) The vector a = F*v satisfies a € T
(2) With e =sgn(y), pi = >, &Yitr and v = F*p, we have v > 0.
In addition, if so is the case, then &; = a_;, p; = p—; and v; = v_; for any i.
Proor. We know from Theorem 3.17 our matrix H is almost Hadamard if the matrix
U = H/VN is orthogonal and SU* > 0, where S;; = sgn(U;;). By Proposition 3.19
the orthogonality of U is equivalent to the condition (1). Regarding now the condition
SU' > 0, this is equivalent to S'U > 0. But, with k =i — r, we have:

(S'H)y = ) SuH
k

= Zfifk’ijk
k

- Zerfyj—i—i—r

= Pj—i
Thus S*'U is circulant, with p/ VN as first row. From Proposition 3.19 we get S'U =
FLF* with L =" and v = F*p, so S'U > 0 iff v > 0, which is the condition (2).
Finally, the assertions about «, v follow from the fact that Fo, F'v are real. As for the
assertion about p, this follows from the fact that S'U is symmetric. O
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Here are now the main examples of such matrices, once again following [21]:

THEOREM 3.24. For N odd the following matrix is almost Hadamard,

—_ e — T — N-1)m
1 —COSlﬁ cosl% ...... Cosl%
cog~ 1 Wb 1 —cos I & — cos ! W2Am
. ~ N e ~
Ly =—
vV IN
—cos 'L cosT'E —cosT'E L. 1
and comes from an a-vector having all entries equal to 1 or —1.
PrOOF. Write N = 2n + 1, and consider the following vector:
o — (—1)* fori=0,1,...,n
S (=) fori=n+1,...,2n
Let us first prove that (Ly)i; = 7,_i, where v = Fa. With w = >™/" we have:

2n
VN7, = Z wa
7=0

— Z(_1>n+jwij + Z(_l)nJr(ij)Jrlwi(ij)
=0 j=1
Now since N is odd, and since w" = 1, we obtain:
\/N% _ Z(_l)n-i-jwij + Z(_l)n—jw—ij
j=0 j=1
_ Z (_1)n+jwz’j
j=-n

By computing the sum on the right, with &€ = e™/" we get, as claimed:

2w~
VN = 1+ wi
9¢—2mi
9¢—Ni
it

- i
= (=1)'cos ! —
(=1)" cos N

ni

73
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In order to prove now that Ly is almost Hadamard, we use Proposition 3.23.

the sign vector is simply € = (—1)"«, the vector p; = > &,7i4r is given by:

VNp;, = Zar Z nﬂw(“”")

j=—n
n
= Z (—1) Z o'
j=—n r=0

Now since the last sum on the right is (v NFa); = v/Nv;, we obtain:

pio= Y (1Y w'y

1 - Jopd - n+k
= ﬁjz_n(—l)w kz_n( Hm*

Thus we have the following formula:

]+k (i+k)j

j—fnk—fn

Let us compute now the vector v = F*p. We have:

_ Z Z a+kwjk§:wi<j—z>
=0

j=—nk=—n

Since

The sum on the right is N¢;;, with both j,! taken modulo NV, so it is equal to NJ,z,

where L = [ for | <n,and L =1— N for [ > n. We obtain:

n

vy = (_1)n Z(_l)LJrkka

k=—n
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With &€ = e™/N as before, this gives the following formula:

2(— Ly—n
v = (_1)n+L ( w )
1+ wt
2 —nL
= (-1)F
1+ wh
In terms of the variable £ = e™/N_ we obtain the following formula:
25—2nL
—1\¢
Vl ( ) 1 + §2L
2 —NL
(1) —L L
& +¢
= cos™! Lm
- N
Now since L € [—n,n], all the entries of v are positive, and we are done. Il
At the level of examples now, at N = 3 we obtain the matrix L3 = —K3. At N =5
we obtain a matrix having as entries 1 and © = —cos™' I, y = cos™ &
1l 2y y x
11 ® 1 2z y vy
Ly=—1y = 1 z y
V5 y y z 1 x
zy y x 1

For further examples of matrices of this type, and for a discussion of their 1-norms,
which happen quite often to be optimal or almost, we refer to [21].

3d. Block designs

Let us study now the almost Hadamard matrices having only two entries, H €
My (z,y), with z,y € R. Following [18], [21], we have the following definition:

DEFINITION 3.25. An (a,b,c) pattern is a matric M € My(z,y), with N = a+2b+c,
such that, in any two rows, the number of x/y/x/y sitting below x/x/y/y is a/b/b/c.

In other words, given any two rows of our matrix, we are asking for the existence of a
permutation of the columns such that these two rows become:

T...T T...T Y...Y Y...Y
a b c
The Hadamard matrices do not come in general from such patterns. However, there
are many interesting examples of patterns coming from block designs [39], [83]:
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DEFINITION 3.26. A (v, k, \) symmetric balanced incomplete block design is a collec-
tion B of subsets of a set X, called blocks, with the following properties:
(1) 1X] = |B| = v.
(2) Each block contains exactly k points from X.
(3) Each pair of distinct points is contained in exactly A blocks of B.

The incidence matrix of a such block design is the v x v matrix defined by:
M, — 1 %f r€eb
0 ifzégbd
The connection between designs and patterns comes from:

PROPOSITION 3.27. If N = a + 2b + ¢ then the adjacency matriz of any (N,a + b, a)
symmetric balanced incomplete block design is an (a,b,c) pattern.

PROOF. Indeed, let us replace the 0 — 1 values in the adjacency matrix M by abstract
x —1y values. Then each row of M contains a+ b copies of x and b+ c copies of y, and since
every pair of distinct blocks intersect in exactly a points, cf. [83], we see that every pair of
rows has exactly a variables z in matching positions, so that M is an (a, b, ¢) pattern. O

As a first example, consider the Fano plane. The sets X, B of points and lines form a
(7,3,1) block design, corresponding to the following (1, 2,2) pattern:

y vy Y

e R B8R
LR KK
R 8 8«
R w R

5

|
Bee e 8RR
Be R Rew
B Reww R

y yy Y

Now remember that the Fano plane is the projective plane over Fo = {0, 1}. The same
method works with Iy replaced by an arbitrary finite field Fy, and we get:

PROPOSITION 3.28. Assume that ¢ = p* is a prime power. Then the point-line inci-
dence matriz of the projective plane over F, is a (1,q,¢* — q) pattern.

PROOF. The sets X, B of points and lines of the projective plane over F, are known
to form a (¢*> + ¢+ 1,¢ + 1,1) block design, and this gives the result. O

There are many other interesting examples of block designs giving rise to patterns,
via Proposition 3.27. For instance the Paley biplane is a (11,5, 2) block design, and hence
gives rise to a (2, 3,3) pattern. When assigning certain special values to the parameters
x,y we obtain a 11 x 11 almost Hadamard matrix, believed to be optimal. See [21].
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We consider now the problem of associating real values to the symbols z,y in an
(a, b, c¢) pattern such that the resulting matrix U(z,y) is orthogonal. We have:

PROPOSITION 3.29. Given a,b,c € N, there exists an orthogonal matriz having pattern
(a,b,c) iff b > ac. In this case the solutions are U(x,y) and —U(z,y), where

t 1
rT = ———— s = ————
Vob(t+1) Vob(t 4 1)
with t = (b4 Vb2 — ac)/a being one of the solutions of at® — 2bt + ¢ = 0.
PROOF. In order for U to be orthogonal, the following conditions must be satisfied:

az® + 2bzy + cy* =0

(a+b)z*+ (b+c)y* =1

The first condition, coming from the orthogonality of rows, tells us that ¢t = —z/y
must be the variable in the statement. As for the second condition, this becomes:
s 1
v (a+b)t2+ (b+c)

B 1

~ (at? +c) + (b2 +b)

B 1

26t + b2+ b

1

Cb(t+1)2

This gives the above formula of y, and hence the formula of x = —ty as well. O

Following [18], [21], we have the following result:

PROPOSITION 3.30. Let U = U(x,y) be orthogonal, corresponding to an (a,b,c) pat-
tern. Then H = \/NU is almost Hadamard if:

(N(a —b) 4 2b)|z| + (N(c — b) + 2b)|y| >0

PROOF. Let S;; = sgn(U;;). Since any row of U consists of a + b copies of z and b+ ¢
copies of y, we have:

(SUNs = sen(Un) Uik = (a+b)|z| + (b+ c)ly|
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Regarding now (SU");; with i # j, we can assume in the computation that the i-th
and j-th row of U are exactly those pictured after Definition 3.25 above. Thus:

(SUt)ij = Z sgn(Uik)Ujk
k

= asgn(z)z + bsgn(z)y + bsgn(y)r + csgn(y)y
= alz| = bly| — blz| + cly|
= (a—=b)z[+ (c=b)lyl
We obtain the following formula for the matrix SU* itself, with Jy = Iy/N:
SU" = 2b(|z| + |y 1y + ((a = b)|z| + (¢ = D)[y)N Iy
= 2b(|z[ + |y)) (I — Jwv) + (N(a = b) + 2b)[z[ + (N(c — b) + 2b)[y])) v
Now since the matrices 1y — Jy, Jy are orthogonal projections, we have SU! > 0 if

and only if the coefficients of these matrices in the above expression are both positive.
Since the coefficient of 15 — Jy is clearly positive, the condition left is:

(N(a —b) + 2b)|x| + (N(c—b) +2b)|y| >0
So, we have obtained the condition in the statement, and we are done. O
Once again following [18], [21], we have the following result:

PROPOSITION 3.31. Assume that a,b,c € N satisfy ¢ > a and b(b — 1) = ac, and
consider the (a,b,c) pattern U = U(x,y), where:

_a—l—(l—a—b)\/g :b+(a+b)\/5

Na ’ Nb
Then H = v/NU is an almost Hadamard matriz.

PrRoOOF. We have b?> — ac = b, so Proposition 3.30 applies, and shows that with ¢ =
(b —v/b)/a we have an orthogonal matrix U = U(z, ), where:
t 1
- , y _ @
Vb(t +1) Vb(t +1)

In order to compute these variables, we use the following formula:

(a+b)?—b = a®>+b*+2ab—b

a® + 2ab + ac
= Na
This gives indeed the formula of y in the statement:
a ~(a+b)Vb+D

(a+Db)vVb—b Nb
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As for the formula of z, we can obtain it as follows:

r = —ty

(Vb — b)((a + b)Vb + b)

Nab

a+(1—a—bWb

Let us compute now the quantity appearing in Proposition 3.30. We have:

N(a—0b)+2b =

Na

(a+2b+c)(a—0b)+2b
a’® + ab — 2b* + ac — be + 2b
a’® + ab — ac — be

(a —c)(a+Db)

Similarly, we have the following formula:
N(c—0b)+2b=(c—a)(c+Db)
Thus the quantity in Proposition 3.30 is Ky, with:
K = (a—c)(a+bt+(c—a)(c+D)
= (c—a)(c+b—(a+0d))

= aa(ac+ab—(a+b)(b—\/l_)))

cC—a

= —((ac=0%) + (a + H)VD)

c—a

= ((a+b)vVb—1b)

a

Since this quantity is positive, Proposition 3.31 applies and gives the result.

We have the following result, from [18], [21]:

THEOREM 3.32. Assume that ¢ = p" is a prime power.

My(z,y), where N = ¢* +q+ 1 and

_1-a/q
VN

X

k

y = 1t )va
’ gV N

79

0

Then the matriz In €

having (1,q,q*> — q) pattern coming from the point-line incidence of the projective plane

over F, is an almost Hadamard matriz.

PRrOOF. Indeed, the conditions ¢ > a and b(b—1) = ac which are needed are satisfied,
and the variables constructed there are 2/ = z/v/N and v = y/v/'N.

We refer to [18], [21] for more on such matrices, and we will be back to this.

g
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3e. Exercises

There are many interesting questions in relation with the above, and especially with
the circulant matrices, and the block designs. Let us start with:

EXERCISE 3.33. Work out the formula of the basic circulant almost Hadamard matrix

1 —cosP T cosTl 2T cog~t DT
¥ N s ~
-1 (N=Dm _ane—l T el (N=2)7
) CoS ~ 1 COS™ R e Cos ~
Ly=—
v N
—eos—l T 121 _ opq-137
cos™ " & cos” I COS™ N ... 1

at N = 3,5,7,9,11, and compute its 1-norm.

The interest in these computations comes from the fact that Ly is believed to be
optimal in many cases, although there is no known proof for this.

Here is another exercise, this time in relation with the block designs:

EXERCISE 3.34. Draw the Fano plane, and compute the associated almost Hadamard
matriz, and its 1-norm.

Here is another exercise of the same type, which is beautiful as well:

EXERCISE 3.35. Draw the Paley biplane, and compute the associated almost Hadamard
matriz, and its 1-norm.

In the above two exercises, the definition and main properties of the Fano plane and
of the Paley biplane, and actually the pictures too, can be easily found with an internet
search. The problem is to compute the associated matrices, and their 1-norms.

Finally, here is an exercise of the same type, about projective planes:

EXERCISE 3.36. Draw the projective planes over F, with ¢ = p* small, and compute
the associated almost Hadamard matrices, and their 1-norm.

Here we have chosen not to give a precise bound for ¢q. The more, the better.



CHAPTER 4

Partial matrices

4a. Partial matrices

In this chapter we discuss a number of more specialized questions in the real case,
regarding the square or rectangular submatrices of the Hadamard matrices H € My (+1),
and some related classes of square or rectangular real matrices.

We have already met an interesting class of such matrices in chapter 1 above, namely
the partial Hadamard matrices (PHM), which naturally appear when classifying the Ha-
damard matrices H € My(£1) at small values of N. So, let us start by reviewing the
material there. The definition of these matrices is as follows:

DEFINITION 4.1. A partial Hadamard matriz (PHM) is a rectangular matriz
H € My«n(£1)
whose Tows are pairwise orthogonal, with respect to the scalar product of RY.

The motivating examples are the usual Hadamard matrices H € My(+1), and their
various M x N submatrices, with M < N. See [45], [54], [58], [93].

However, there are as well many examples which are not of this form, and the PHM
are interesting combinatorial objects, on their own. We will discuss this in what follows.
Following the study from the square case, we first have:

PROPOSITION 4.2. The set Yy n formed by the M x N partial Hadamard matrices is
Yarn = Myn(£1) N VNOy v
where Oy n s the following space of rectangular matrices:
OM,N - {U S MMXNGR)‘UUt == 1M}

Proor. This follows exactly as in the square case. Indeed, given a rectangular matrix

U € My«n(R) having rows Ry, ..., Ry € RY | we have:
(UUt)ij = Z Ukujk =< Ri, Rj >
k

Thus, the condition UU! = 1;; expresses the fact that Ry,..., Ry are pairwise or-
thogonal, and of norm 1, and this gives the formula in the statement. U

81
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The space Oy n appearing above can be thought of as being a generalization of the
orthogonal group Oy, which appears in the square case, M = N. Based on this analogy,
the space Oy, has several useful interpretations, as follows:

THEOREM 4.3. The space Oy n has the following properties:

(1) Its elements are the transposes of the isometries g : RM — RV,

2) It is the space of vectors Ry, ..., Ry € SN~ which are pairwise orthogonal.
R

(3) 1t is also an homogeneous space, given by Oy n =~ On/ONn_p.

(4) It is also the space determined by the first M rows of coordinates on Oy .

Proor. All this is standard algebra and geometry, the idea being as follows:

(1) Each matrix U € My n(R) determines a linear map f : RY — RM given by
f(x) = Uz, whose transpose is the linear map g : R® — R given by g(z) = U'z. Now
observe that for any two vectors z,y € RM we have:

< g(x),9(y) >=< Uz, U'y >=< 2,UU"'y >
Thus the condition UU? = 1 is equivalent to the following condition:
<g(z),9(y) >=<z,y >
But this latter condition tells us that g must be an isometry, as desired.

(2) This follows from the fact, that we know from the proof of Proposition 4.2, that
the condition UU? = 1, tells us that the row vectors Ry,..., Ry € RY of our matrix
U € My« n(R) must be pairwise orthogonal, and of norm 1.

(3) Since the condition UU" = 1 defining Oy n implies (UA)(UA?)! = 1, for any
orthogonal matrix A € O, we have an action, as follows:
On OM,N
A—[U—UAY
Let us compute now the stabilizer of the following particular element:
1 00 ... 0
U= ..
0 10 ...0
Given an orthogonal matrix A € Oy, we have the following formula:
A ... An
UA'=| :
A .. Anum
Thus U = UA! means that the matrix A € Oy must be of the following form:

At_ 1M 0
T % x
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Now since A’ is orthogonal, it must be of the following form, with B € On_j;:

¢ (1m0
)
Thus the stabilizer is Oy_ys, and we obtain Oy n ~ On/On_p-

(4) This follows from basic functional analysis, or algebraic geometry. Consider indeed
the algebra C(Oy) of continuous functions f : Oy — C. By Stone-Weierstrass, this
algebra is generated by the coordinate functions u;; : Oy — C, which are given by:

uii(U) = Uy
Consider now the following closed subalgebra of the algebra C'(Oy):
A = <uij

We have then A ~ C(Oyy n), coming from the homogeneous space result in (3). O

z':l,...,M,jzl,...,N>

As already mentioned, there are matrices in Y3, xy which do not complete into matrices
of Yy, and we will give some explicit counterexamples in a moment. This is in contrast
with the fact that any matrix from Oy n can be completed, for instance via the Gram-
Schmidt procedure, into a matrix of Oy. We will be back later to this phenomenon.

Let us discuss as well, as a continuation of the study from the real case, some basic
analytic aspects. In what regards the 1-norm bound, we have the following result:

THEOREM 4.4. Gwen a matriz U € Oy n we have
IUIlL < MVN
with equality precisely when H = \/NU is partial Hadamard.

PROOF. We have indeed the following estimate, valid for any U € O n:

UL = (Ul
i

1/2
< VMN <Z|Uij|2>
= MVN

In this estimate the equality case holds when we have, for any 4, j:
1
Ul = ——
| J | \/N
But this amounts in saying that the rescaled matrix H = v NU must satisfy H €
My n(£1), and so must be a partial Hadamard matrix, as claimed. ]
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In terms of the rescaled matrix H € v NOyy v, the inequality found above reformulates
as follows, with equality precisely when H is partial Hadamard:

[[H||y < MN
Thus, in analogy with the square matrix case, we can formulate:

DEFINITION 4.5. A matriz H € \/NOM,N 15 called:

(1) Almost PHM, when it locally mazimizes the 1-norm on v NOpsn.
(2) Optimal almost PHM, when it mazimizes the 1-norm on v/ NOx .
Some similar estimates hold for the p-norms, with p # 2, and so we have in fact

notions of p-almost PHM and optimal p-almost PHM matrices, for any p # 2. The whole
subject, while potentially quite interesting, is for the moment largely unexplored.

Following the study from the square case, let us formulate now:
DEFINITION 4.6. Two PHM are called equivalent when we can pass from one to the
other by permuting the rows or columns, or multiplying the rows or columns by —1. Also:

(1) We say that a PHM is in dephased form when its first row and its first column
consist of 1 entries.

(2) We say that a PHM 1is in standard form when it is dephased, with the 1 entries
moved to the left as much as possible, by proceeding from top to bottom.

Unlike in the square case, where the standard form is generally not used, putting a
rectangular matrix in standard form is something quite useful.
As an illustration here, here is a result that we already know, regarding the partial

Hadamard matrices put in standard form, at small values of M:

PropPOSITION 4.7. The standard form of dephased PHM at M = 2,3,4 is

- -
H=|_+ -
~ ~~
N/2  N/2

+ o+ o+ o+

+ o+ - -

H=14 - 4+ -

H = - 4+ o+ - =
— — + _ + —

R N N N N N
a b b a b a a b

where the numbers a,b € N satisfy a + b= N/4.
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PRroOF. This is something that we already know, from chapter 1 above, the idea being
as follows:

(1) The M = 2 result is obvious.
(2) The M = 3 result follows from the orthogonality conditions between the rows.

(3) The M = 4 result follows from the M = 3 result, by writing down and then solving
the supplementary equations coming from the 4th row. O

The above result and its proof might suggest that the standard form of the PHM
can be worked out by recurrence. However, this is not exactly true, the combinatorics
becoming quite complicated starting from M = 5. We will be back to this, later on.

We can fine-tune the M = 4 result, by using the equivalence relation, as follows:

THEOREM 4.8. The 4 X N partial Hadamard matrices are of the form
H=Wy ... Wy Ky ... Ky)

Vv Vv
a b

with a +b = N/4. Moreover, we can assume a > b.

PROOF. Let H € My, n(£1) be as in Proposition 4.7. The matrix formed by the a
type columns, one from each block, is equivalent to Wy, via a permutation of the columns:

+ + + o+
+ + - -
I
+ - -+

Also, the matrix formed by the b type columns, one from each block, is equivalent to
Ky, via a first column sign switch, plus a certain permutation of the columns:

+ 4+ +
+ + - -
+ - + -

~ K,

Thus, just by performing operations on the columns, we are led to the conclusion in
the statement, namely:
H~ Wy oo Wy Ky ... Ky)
o b
In order to prove now the last assertion, we must prove that we have:

vV vV VvV vV
a b a b
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But this can be seen by performing a sign switch on the last row, and then permuting
the columns. Equivalently, we can start with the original matrix, in standard form, and
perform a sign switch on the last row. The matrix becomes:

+ + + + 4+ o+ o+ o+

+ + + + - - - =
H~| + + - - + 4+ = =
-+, -+ —

Now by putting this matrix in standard form, we obtain:

+ o+ o+ o+ 4+ o+ o+
+ o+ o+ o+ = = = =
H=|+ + - - + + - -

Thus a, b got interchanged, and this gives the result. U

At M = 5 now, as already mentioned above, the combinatorics becomes quite com-
plicated, and we will see in a moment that there are 5 x N partial Hadamard matrices
which do not complete into Hadamard matrices. We first have the following result:

PROPOSITION 4.9. The 5 X N partial Hadamard matrices are of the form

H:(W4 o Wy Ky ol K4)

(%1 o Uy ry ... Xy

with a > b, a+b = N/4 and with v;,z; € (£1)* satisfying

T 51

] 52
Wy =-K,

rs 53

T4 S4

where ry = Zi<vi>t and s; = Zj(%‘)t-

Proor. This is something that we already worked out at N = 8, in chapter 1 above,
in both of the cases that can appear, namely a = 2,b = 0 and a = 1,b = 1. The
proof in general is similar, with the equations in the statement coming by processing the
orthogonality conditions between the 5th row and the first 4 rows. U
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As a first observation, the equations in the above statement can be written in the
following more convenient form:

r1 S1
-1 T2 S2
r3 53
Ty S4

Now observe that the matrix of this system is as follows:

- 4+ + +
_ - -+ -
K{'Wy ==
4 4 - 4+ - —
- - - +
Thus, the system can be written as follows:
- + + + 1 S1
R ] Y
— 4+ = = || 53
- - - +/ \n 54

Thus, we are led into parity and positivity questions, regarding the vectors 1, = >, (v;);
and s, = > ;(vj)i. It is possible to further go along these lines, but the structure of the
5 x N partial Hadamard matrices remains something quite complicated.

As an explicit consequence, however, of all this, we have the following result:

THEOREM 4.10. Consider an arbitrary 4 X N partial Hadamard matriz, written as
H:Q/V4 oo Wy Ky oL K%)

-~ -~

a b

with a > b, a + b= N/4, up to equivalence. In order for this matriz to complete into a
5 X N partial Hadamard matriz, the following condition must be satisfied:

ab=0 = N =0(8)

In particular, the following 4 x N partial Hadamard matriz does not complete into a 5x N

partial Hadamard matriz:
Z = (W, Wy Wy)

Proor. This follows from Proposition 4.9, because with the notations there, b = 0
implies that the system there is simply:

™
T2
T3
T4

Wy
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Since the Walsh matrix W, is invertible, the solution of this system is:

r=20

Now observe that, by definition of the numbers r;, as sums a quantities of type =+1,
we have r; = a(2) for any ¢. Thus, we must have:

a=0(2)

Since we have a = N/4, this gives, as desired:

N =0(8)

The proof in the case a = 0 is similar. U

In general, the full classification of all the possible 5 x 8 completions of a given 4 x N
partial Hadamard matrix are quite difficult, and we have already seen this at N = 8§,
where a careful study is needed, the result being as follows:

THEOREM 4.11. The 4 x 8 partial Hadamard matrices, namely

A=W, Wy)

B = (W, Ky)

both complete into b x 8 partial Hadamard matrices, with the solutions being those coming
from the lower rows of the following matrices, which are Hadamard:

Wy Wy Wy Wy
Wy =W, ’ K, —K4
W4 K 4 W4 K 4
Wy, —Ky ’ Ky =W,

This gives as well the higher completions, M x 8 with M = 6,7,8.

Proor. This is something that we aready know, from chapter 1 above.

At N =12 now, we have only one matrix to be studied, namely:

P = (W4 W4 K4)
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Observe that we have at least 8 solutions to the completion problem, coming from the
Paley matrix, which can be written as:

+ 4+ 4+ + -+ + 4+ -+ + +
+ -+ - + -+ 4+ 4+ -+ +
+ 4+ - - + 4+ -+ 4+ + -+
+ - -+ + + 4+ - + 4+ + -
-+ - - 4+ -+ 4+ -+ 4+ -
po_| - T+ F+ - -+ -
- - -+ 4+ +++ - - -+
+ 4+ 4+ - +++ - - - - -
-+ + 4+ 4+ -+ - + 4+ -+
+ 4+ -+ + - - - - - 4+ +
+ -+ + 4+ - - -+ - -
- -+ - 4+ + - - -+ 4+ +

In general, all this leads to quite complicated algebra and combinatorics. We refer to
[45], [54], [58], [93] for more on the combinatorics of the PHM.

4b. Counting results

Let us try now to count the partial Hadamard matrices H € My« n(£1). This is an
easy task at M = 2, 3,4, where the answer is as follows:

PROPOSITION 4.12. The number of PHM at M = 2,3,4 is

4PHMyy — 2N(N]52>

#PHM;n = 2 (N/4, N/4,N/4,N/4)

N
#PHMiy = 2V ) (a,b,b,a,b,%aab)

a+b=N/4

where the quantities on the right are multinomial coefficients.

PROOF. Indeed, the multinomial coefficients at right count the matrices having the
first row consisting of 1 entries only, and the 2%V factor comes from this. O

In order to convert the above result into N — oo estimates, we will need the following
technical result regarding the multinomial coefficients, from [79]:
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THEOREM 4.13. We have the estimate

P s(p—
Z N ~ PN s
a, ..., 0 p~1 (27 N)(s—D(p—1)

a1+...+as=N

m the N — oo limit.

PRroOOF. This is proved by Richmond and Shallit in [79] at p = 2, and the proof in
the general case, p € N, is similar. To be more precise, let us denote by cg, the sum on

the left in the statement:
N p
C g
2= X (0l )

ai+...+as=
Let us set now:

N
a; = — + TV N
s
By using the various formulae in [79], we obtain:

Csp
~ spN(QWN)(I_;)ps% exp ( °p Zx >
~ SPN(QWN p Bl / / exp ( ) day ...das_

(1-s) N N sp S sp 1 ’

= s*N(2rN 2”52’7]\7521/ / SENT 2 | dey . da,

sPY (27 N) s i i exp 22331 5 Zx, 1 Te_1

—_— =1 =1
s—1
1-—s
= SpN(27TN) (1725){9%]\75gl X T 573 (%) ’
1—s

= NN s E T (_p ) :

sPY (27 N) s Y
= SPN(QWN)i(FS)éFD 3?19153
_ SPN SS(P*U

ps—l(Qﬂ-N)(s—l)(p—l)
Thus we have obtained the formula in the statement, and we are done. [l

The above formula is something very useful, that we will heavily use in what follows.
Getting back now to the PHM, we have the following result:
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THEOREM 4.14. The probability for a random H € My« n(£1) to be a PHM is
2

V2

Py
1
P~ 10

TN
V(2T N)3

512

~

in the N € AN, N — oo limit.
PROOF. Since there are exactly 2% sign matrices of size N x M, the probability P,
for a random H € My;n(£1) to be a PHM is given by:

1

Py = 5w

#PHMMXN

With this formula in hand, the result follows from Proposition 4.12, by using the
standard estimates for multinomial coefficients from Theorem 4.13. O

4c. Asymptotic count

In their remarkable paper [45], de Launey and Levin were able to count the PHM, in
the asymptotic limit N € 4N, N — oo. Their method is based on:

PROPOSITION 4.15. The probability for a random H € My n(£1) to be partial Ha-
damard equals the probability for a length N random walk with increments drawn from

FE = {(eiéj)iq e c Zé\/l}

(%)

regarded as a subset of Zs*’ to return at the origin.
PROOF. Indeed, with T'(e) = (e;€;)i<j, a matrix X = [e1,...,en] € Myxn(Zsy) is
partial Hadamard if and only if:
T(e1)+...+T(en) =0
But this gives the result. U

As explained in [45] the above probability can be indeed computed, and we have:

THEOREM 4.16. The probability for a random H € My;«n(£1) to be PHM is

9(M—1)?
PM ~
M
2

(27TN)( )
in the N € AN, N — oo limit.
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PROOF. According to Proposition 4.15 above, we have:

1
Py = q(M—1)N#{€1"“’§NGE‘Z§i:0}

1
- qM-DN 03¢0
&1, ENEE

By using the Fourier inversion formula we have, with D = (]\2/[ ):
1 )
5 = z<)\,E§i>d)\
Hend (27T)D /[—7r,7r]D ‘

After many non-trivial computations, this leads to the result. See [45]. U

Let us mention as well that for the general matrices H € My« n(£1), which are not
necessarily PHM, such statistics can be deduced from the work of Tau-Vu [90]. All this
is quite interesting, because it provides an alternative to the HC problematics.

4d. Square submatrices

Following now [20], and some previous work from [65], let us discuss now another
topic, namely the square submatrices of the Hadamard matrices. We will see that all this
is related to the notion of almost Hadamard matrix (AHM), discussed in chapter 3.

Let us start with some basic linear algebra. We will need:

THEOREM 4.17. Any matriz D € My(R) can be written as
D=UT
with positive semi-definite T = v/D'D, and with orthogonal U € On. Moreover:
(1) If D is invertible, then U is uniquely determined, and we write:
U = Pol(D)
(2) If D = VAW with V, W orthogonal and A diagonal is the singular value decom-
position of D, then Pol(D) =VW?".

PrOOF. All this is very standard, and can be found in any linear algebra book, one
method for instance being that of deducing (2), and then the whole result, from the
singular value decomposition theorem for the matrices D € My (R). g

We will be interested in what follows in the sign matrices of the AHM:

DEFINITION 4.18. A matriz S € My(+£1) is called an almost Hadamard sign pattern
(AHP) if it appears as
Si; = sgn(H,;)
for a certain almost Hadamard matric H € My(R).
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Note that if a sign matrix S is an AHP, then there exists a unique almost Hadamard
matrix H such that S;; = sgn(H,;), namely:

H =V NPol(S)
Since the polar part is not uniquely defined for singular sign matrices, in what follows,

we will mostly be concerned with invertible AHP and AHM.

We start analyzing the square submatrices of the Hadamard matrices. By permuting
rows and columns, we can always reduce the problem to the following situation:

DEFINITION 4.19. D € My(+£1) is called a submatriz of H € My(%1) if we have
A B
n- (e )
up to a permutation of the rows and columns of H. In this case we set:
r=size(A) =N —d

Observe that any D € Ms(41) having distinct columns appears as a submatrix of Wy,
and that any D € My(%1) appears as a submatrix of Wg. In fact, we have:

PROPOSITION 4.20. Let D € My(£1) be an arbitrary sign matriz.

(1) If D has distinct columns, then D is as submatriz of Wy, with N = 22.
(2) In general, D appears as submatriz of Wy, with M = 24+oe24d1,

PRrROOF. This is elementary, as follows:
(1) Set N = 2¢. If we use length d bit strings z,y € {0,1}¢ as indices, then:
(Wi )ay = (=1)= %
Let WN € My n(£1) be the submatrix of Wy having as row indices the strings of
type:
z;=1(0...010...0)
N T N~
i N—i—1
Then for i € {1,...,d} and y € {0,1}¢, we have:

(Wa)iy = (1)
Thus the columns of Wy are the N elements of {£1}%, which gives the result.

(2) Set R = 2Me24l > (. Since the first row of Wy contains only ones, Wz @ Wy
contains as a submatrix R copies of Wy, in which D can be embedded, as desired. O

Let us go back now to Definition 4.19, and try to relate the matrices A, D appearing
there. The following result, due to Szollési [86], is a first one in this direction:
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THEOREM 4.21. Assuming that a square matrix
A B
7= (e 5)
is unitary, with A € M,.(C), D € M4(C), then:

(1) The singular values of A, D are identical, up to |r — d| values of 1.
(2) det A =detU - det D, so in particular, | det A| = |det D|.

PROOF. Here is a simplified proof. From the unitarity of U, we get:
A"A+C*C =1,
CC*+DD* =1,
AC* 4+ BD* = 0,44

(1) This follows from the first two equations, and from the well-known fact that the
matrices CC*, C*C have the same eigenvalues, up to |r — d| values of 0.

(2) By using the above unitarity equations, we have:
A 0\ (A B\ /(I C*
c 1) \C D)\0O D*
The result follows by taking determinants. U

We state and prove now our main results on the submatrices of Hadamard matrices.
Our first goal is to find a formula for the polar decomposition of D. Let us introduce:

DEFINITION 4.22. Associated to any A € M,(£1) are the matrices
X4 = (VNI +VAA) ' Pol(A)
Vi = (VNI +VAA)™!
depending on a parameter N.
Observe that, in terms of the polar decomposition A = V P, we have:
X4 = (WVN+P) V!
Yo = V(VN+P)'V!

The idea now will be that, under the assumptions of Theorem 4.21 above, the po-
lar parts of the matrices A, D should be related by a simple formula, with the passage
Pol(A) — Pol(D) involving the above matrices X4, Y.

In what follows we will focus on the case where U € Uy is replaced by U = VNH
with H € My(+1) Hadamard. In the non-singular case, we have:
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PROPOSITION 4.23. Assuming that a square matrix

H= (é g) € My(+1)

is Hadamard, with A € M,(£1) invertible, D € My(%1), and ||A|| < V'N, the polar
decomposition D = UT' is given by

1
U:\/—N(D—E)
T=+NI,— S

with E = CX 4B and S = B'Y,B.
PRrROOF. Since H is Hadamard, we can use the formulae coming from:
(A B) (At C’t) B (At Ot) (A B) B (N O)
C D)\B* DY) \B" D')J\C D) \0 N
We start from the singular value decomposition of A:
A = Vdiag(s;) X"

Here V, X € O(r), s; € (0, |4]]]. From AA* + BB' = N1, we get:

BB' = Vdiag(N — s)V!
Thus, the singular value decomposition of B is as follows, with Y € Oy:

B =V (diag(x/N — 82) Opxg—n)Y"

Similarly, from A*A 4 C*'C = I,, we infer the singular value decomposition for C', the
result being that there exists an orthogonal matrix Z € O(d) such that:

Ce—7% (diag(\/N - S?)) Xt
(d—r)xr
From B!B + D'D = N1, we obtain:
D'D =Y (diag(s}) & Nlg_r))Y"
Tus the polar decomposition of D reads:
D = UY (diag(s;) ® VNI 4 p)Y"
Let Z = UY and use the orthogonality relation C A* + DB? = 04, to obtain:

7 (d’iag(si N — 33)) _z (diag(siM))

O(d—r)xr O(d—ryxr
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From the hypothesis, we have s;4/N —s? > 0 and thus 727 = I, & Q, for some

orthogonal matrix @ € O,. Plugging 7=27 (I, & Q) in the singular value decomposition
formula for C', we obtain:

C=—2(I® Q) (diag(\/N — 3?)) Yi_ 7 (diag(\/N — sf)) Xt
O(d—ryxr O(d—ryxr
To summarize, we have found V, X € O, and Y, Z € O, such that:
A =Vdiag(s;) X"
B =V (diag(y/N = 57) Orx(a-n) V"
O—_7 (diag(\/W)) Xt

O(d—r)xr
D = Z(diag(s;) @ VNIg_)Y"
Now with U, T, E, S defined as in the statement, we obtain:
U = Zy!
E = Z(diag(vV'N — 5;) © 04_,)Y"
VAIA = Xdiag(s;) X"
(VNI + VAIA) ™ = Xdiag(1/(VN + s;))X*
Xa = Xdiag(1/(V'N + s;))V*
CX,B = Z(diag(V'N — 5;) ® 04_,)Y"

Thus we have F = CX 4B, as claimed. Also, we have:
T = Y(diag(s;) & VNI, ,)Y"
S = Y(diag(vV/N — s;) @ 04_,)Y"
AAY = Vdiag(s;)V*
Yy = Vdiag(1/(V'N + s;))V*
B'Y,B = Y(diag(VN —s;) ® 04_,)Y"
Hence, S = B'Y,B, as claimed, and we are done. U

Observe that, in the above statement, in the case where the size of the upper left block
satisfies r < /N, the condition ||A|| < VN is automatically satisfied.

As a first application, let us try to find out when D is AHP, in the sense of Definition
4.18. For this purpose, we must estimate the quantity ||E||. = max;;|E;;|:



PROPOSITION 4.24. Assuming that a matriz

is an Hadamard matriz, with A € M,(£1), D € My(+1) and r < d. Then,

with E satisfying:
(1) [[Ellee <
(2) [[Elle <
(3) [E]lee <

/T
VTV N

VN if 2 < N with ¢ = ||Pol(A)

N—r2

4D. SQUARE SUBMATRICES

H= (é g) € My(+1)
1
Pol(D) = ——(D = E)

when A 1s Hadamard.

r2(]\1[3/2ﬁ) if r* < N.

A
- Al

97

PROOF. We use the basic fact that for two matrices X € M,4,(C),Y € M,,,(C) we

have:

(1) If A is Hadamard, AA" = r1,, Pol(A) = A/+/r and thus:
At

Thus || X al|eo =

XY loo < 71X oY ]l

Thus, according to Proposition 4.23, we have:

[1E]]oo

= ||CXAB||OO

= || Xallx

X4 = (VNI ++/rl)™
At
T+ ViN
ﬁ, which gives the result.

(2) According to the definition of X4, we have:

(VNI +VAtA) " Pol(A)*

X4

We therefore obtain:

|1 Xallo0

(NI, — A'A) (VNI — VA A)Pol(A)!

(NI, — A'A)"H(V/NPol(A) — A)

T||(NI,, - AtA)_lHooH\/NPOl(A) - AHOO

rc

VN

(-

AtA
N

) .

< PCsol [ Xallool Bl

\/F
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Now by using [|A*Al|., < r, we obtain:

|(n-22) ), < S Iar

k=0
0 2k—1
) plat
k=0
1 1
r 1-r2?/N
T PN — 3
Thus we have the following estimate:
re N cvV/'N

Xl < 25 _
[1:Xall VN rN—7r3 N —r?

But this gives the result.
(3) This follows from (2), because:

1
¢ < ||Pol(A)]loc + [|A/VN|loe < 1+ i
The proof is now complete.
Following [20], we can now state and prove a main result, as follows:
THEOREM 4.25. Assume that a matriz
m=(e o)
is Hadamard, with A € M,(£1), H € My(%1).

(1) If A is Hadamard, and N > r(r — 1)?, then D is AHP.

(2) If N > %(x + V22 +4)%, where x = r||Pol(A) — %Hoo, then D is AHP.

(3) If N > %(7‘ +r2 4 8)?, then D is AHP.
Proor. This basically follows from the various estimates that we have, as follows:

(1) This follows from Proposition 4.24 (1), because:

\/FT+—\/;\/N<1 < r<1l++/N/r

— r(r—1?*<N
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(2) This follows from Proposition 4.24 (2), because:
2
N
i_<1 — N—7r2cV/N >?
N — 12
—  (2VN —1r%)? > ' + 4r?
Indeed, this is equivalent to:
N > rPc+rvVr2 + 4 = r(z + Va2 + 4)
Here the value of z is as follows:
Pol(A) —

r=rc=r

V N 00

2(1 N
PUEVN) L N UE s 2
N —r2?
— (2VN —1?)? >t 4 82
Indeed, this is equivalent to:

VN >r? +rvVr? 48
But this gives the result. U
As a technical comment, for A € M,(£1) Hadamard, Proposition 4.24 (2) gives:

VN (1 1
)
ry/rTN —r?

N —r2
Thus ||E||s < 1 for N > r? which is slightly weaker than Theorem 4.25 (1).

[1E1]oo

In view of the results above, it is convenient to make the following convention:

DEFINITION 4.26. We denote by {}mxn € Mpmxn(R) the all-z, m x n matriz, and by

r11r ... Ty

LTkl .. Tpl
(m1 ..... mk)x(nl ..... nl)

the matriz having all-v;; rectangular blocks Xij = {Zij}m;xn; € Mm;xn;(R), of prescribed
size. In the case of square diagonal blocks, we simply write {z}, = {x}nxn and

11 ... X1k r11 ... X1k

ok Kk )y, k1 RE ) (o) X (1)
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Modulo equivalence, the =1 matrices of size r = 1,2 are as follows:

T T
Mo - (15, )
W AT T ey

In the cases (1) and (2) above, where the matrix A is invertible, the spectral properties
of their complementary matrices are as follows:

THEOREM 4.27. For the N x N Hadamard matrices of type

(+ +)

+ —
Doy Doy
the polar decomposition D = UT with
1

Diy D1
VN
s given by the following formulae:

+ o+ 4
|+

(2)

U=—(D-E) , T=vVNI-S

1 1

2
Eqy = 1 By = —\/ { }
{1+\/N}N—1 2++v2N |1 —1 N/2—1,N/2—1

2 10
Sw =1{mw » Sy = s { }
{HW}N_I V2+ VN 101 N/2-1,N/2-1
In particular, all the matrices D above are AHP.

Proor. For A € M, (+1) Hadamard, the quantities in Definition 4.22 are:

At
Xj=—
4 r+vrN
1
Y4

- JFJ:W

These formulae follow indeed from the following equalities:
AA' = A'A =1,
Pol(A) = A/\/r

(1) Using the notation introduced in Definition 4.22, we have here:
Bay = {1}1xnv-1

Cuy = By
Since the matrix Ay = [+] is Hadamard we have:
1
Xagy =Yay, =

1++VN
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We therefore obtain that:

By = {1} 1xn-1

Ly
1+\/N N—1><1

1
[Eaii

Similarly, we obtain that:

1
Sy = —— {1
(1) 1+’_N{}N11{}1N1

1
it

(2) Using the orthogonality of the first two rows of H(), we find that the matrices Do

and Dy have size N/2 — 1. Since since the matrix Ay = [ ¥] is Hadamard we have:
A
X =
i@ 94 VAN
Iy
Ya, = —"—=
V2 VN
But this gives the following formula:

L)
B 1 {1 1 } (1 1 > {1 1 }
242N |1 - (N/2—1,N/2—1)x(1,1) 1 -1 1 -1 (1,1)x(N/2—1,N/2—1)
_ 2 11 }

2+ V2N {1 —1 N/2—1,N/2—-1

Similarly, we obtain the following formula:

S@)
B 1 {1 1 } {1 1 }
V2+ VN |1 —1 (N/2—1,N/2—1)x(1,1) 1 -1 (1,1)x (N/2—1,N/2—1)

B 2 {1 0}
V2+vN |01 N/2-1,N/2—1

Thus, we have obtained the formulae in the statement. Il

As an illustration for the above computations, let us first work out the case where
r=1,N =2, with H being the first Walsh matrix, namely:

()
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Here we have the following formulae:

1
E=5= — U=-1,T=1
1++2
At r =2, N = 4, consider the second Walsh matrix, written as in Theorem 4.27:

+ 4+ + +
! + - + -
Wi=ly + - -
+ + - +

We have the following formulae:

1 (11
E=——+
1+\/§(1 —1>

o2 (1 0)
2+v2\0 1

We obtain the polar decomposition D = UT of the corner D = (Z 7):

1 Y,
(3 )

Let us record as well the following consequence of Theorem4.27:
PROPOSITION 4.28. We have the formulae
det(A=Tpp)) = (A=DA—=VN)"™2
det(A—T) = (A~ V22(A— V)
so in particular we have the following formulae:
|det Dy)| = NN/
|det Dyy)| = 2NN/272

PROOF. These formulae follow from the above formulae of S(;) and S(), by using the
fact that the nonzero eigenvalues of {} 9}, are a and b. O

Modulo equivalence, the +1 matrices of size r = 3 are as follows:

+ + + + + + + + +
+ -+ + o+ - ~ 4+ o+
+ ot =)y + 4 =) + o+ )

Among these, only the matrix (3) is invertible, and the result here is as follows:
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PROPOSITION 4.29. For the N x N Hadamard matrices of type

+ + 4+ + o+ o+ o+
+ -+ + 4+ - -
+ 4+ - + - 4+ -
+ + + Do Dor Doz Do
+ + — Dig D Dip Dis
+ — + Dy Dy Dy Do
+ — — Dsg D3 D3y Dss

the polar decomposition D = UT with

1
U:ﬁ(D—E) , T=+NI-S

15 given by the following formulae

T Yy oy 1
Fo 1 y —y x —1
DTNty & -y -1
1 -1 -1 -3 N/4—1,N/4—1,N/4—1,N/4
z t t -1
g 1 t oz -t 1
O /N+1)t —t z 1
-1 1 1 3 N/4—1,N/4—1,N/4—1,N/4
where the entries are as follows:
TN +6 _5WN+6

r=-———, =
3v/N + 6 Y 3v/N +6

_WN+10 3N 42

2= =
3VN +6 3VN +6
In particular, if N > ||A||> = 4, then D is an AHP.

ProOF. By direct computation, we have:

. VN 2v/N +3 2v/N +3
= 2V/N +3 —(2VN +3) VN
SWNEDWN+) oK 13 VR VN +3)

From the orthogonality condition for the first three rows of H(s), we find that the sizes
of the matrices Dyg, D11, Dag, D33 are as follows:

N/4—1 , N/4—1 , N/4—1 ., N/4

Xa
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Thus, we have the following formula:

11 1 1
Bp =41 1 -1 -1
1 -1 1 -1

(1,1,1)x (N/4—1,N/4—1,N/4—1,N/4)
Also, we have C3) = Bfg)- As for the formulae for E3y and S(3), these follow by direct
computation. Finally, observe that we have:

_TN+6 5N 46
3VN+6  3VN+6
Thus ||E3)lle = 3/(V'N + 1) and the conclusion about D being AHP follows. O

3 1

Note that in the case N = 4, there is a unique way to complement the matrix As,
above into a 4 x 4 Hadamard matrix. Since the complement in this case is simply D = (1),
we conclude that, for all N > 4, the complement of A3y inside a N x N Hadamard matrix
is AHP. In this case, using Theorem 4.21, we get:

det(A —T) = (A+ 1)(A = 2)%(A — 1/V/N)N =2
Thus, we obtain in this case the following formula:
|det D| = 2NWV=3)/2
We refer to [20] for a complete discussion in relation with the above.
4e. Exercises
Here is a first exercise, in connection with the PHM:
EXERCISE 4.30. Find the almost PHM in the cases M = 1,2.

To start with, there is some differential geometry to be done here, in analogy with the
differential geometry computations done in chapter 3 above.

Here is a more difficult exercise, in relation with analytic aspects:
EXERCISE 4.31. Work out the asymptotic count for the 5 x N PHM.

To be more precise, the problem here is that of completing the M = 5 work that we
started above, and recovering from this the de Launey-Levin formula, at M = 5.

Finally, here is an exercise in relation with the AHP:

EXERCISE 4.32. Write down the axioms and basic theory of the AHP.

To be more precise, we know from chapter 3 above the axioms and basic theory of the
AHM, and the problem is that of converting that material in AHP terms.
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Beulah Land, I'm longing for you
And some day on thee I'll stand
There my home shall be eternal
Beulah Land, sweet Beulah Land



CHAPTER 5

Complex matrices

5a. Basic theory

We have seen that the Hadamard matrices H € My(+1) are very interesting objects.
In what follows, we will be interested in their complex versions:

DEFINITION 5.1. A complex Hadamard matrix is a square matriz whose entries belong
to the unit circle in the complex plane,

H e My(T)
and whose Tows are pairwise orthogonal, with respect to the scalar product of CY.

Here, and in what follows, the scalar product is the usual one on C¥, taken to be
linear in the first variable and antilinear in the second one:

<y >=) il

As basic examples of complex Hamadard matrices, we have of course the real Hada-
mard matrices, H € My(+£1), which have sizes N € {2} U4N. Here is now a new example,

with w = e?™/3 which appears at the forbidden size value N = 3:
1 1 1
=1 w w?
1 w? w

And here is another example, which appears at N = 4, and whose combinatorics is
different from the one of the unique 4 x 4 real Hadamard matrix, Wy ~ Kjy:

1 1 1 1
1 i -1 —

Py = 1 -1 1 -1
1 —i =1

We will see that there are many other examples, and in particular that there are such
matrices at any N € N, which in addition can be chosen to be circulant. Thus, the HC
and CHC problematics will dissapear in the general complex setting.

Let us start our study of the complex Hadamard matrices by extending some basic
results from the real case, from chapter 1 above. First, we have:

107
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PROPOSITION 5.2. The set formed by the N x N complex Hadamard matrices is the
real algebraic manifold

Xy = My(T) N VNUy
where Uy is the unitary group, the intersection being taken inside My (C).

PROOF. Let H € My(T). Then H is Hadamard if and only if its rescaling U = H/v/N
belongs to the unitary group Uy, and so when H € Xy, as claimed. O

We should mention that the above manifold X, while appearing by definition as an
intersection of smooth manifolds, is very far from being smooth. We will be back to this,
later on. As a basic consequence now of the above result, we have:

PROPOSITION 5.3. Let H € Mn(C) be an Hadamard matriz.

(1) The columns of H must be pairwise orthogonal.
(2) The matrices H', H, H* € My(C) are Hadamard as well.

PROOF. We use the well-known fact that if a matrix is unitary, U € Uy, then so is
its complex conjugate U = (Uj;;), the inversion formulae being as follows:

Uvr=u-t ., Ut=0!
Thus the unitary group Uy is stable under the following operations:

u—-uvt , U=U , U->U*
It follows that the algebraic manifold Xy constructed in Proposition 5.2 is stable as

well under these operations. But this gives all the assertions. U

Let us introduce now the following equivalence notion for the complex Hadamard
matrices, taking into account some basic operations which can be performed:

DEFINITION 5.4. Two complex Hadamard matrices are called equivalent, and we write
H ~ K, when it is possible to pass from H to K wvia the following operations:

(1) Permuting the rows, or permuting the columns.
(2) Multiplying the rows or columns by numbers in T.

Also, we say that H is dephased when its first row and column consist of 1 entries.

The same remarks as in the real case apply. First of all, we have not taken into
account the results in Proposition 5.3 when formulating the above definition, because the
operations H — H* H, H* are far more subtle than those in (1,2) above.

Regarding the equivalence, there is a certain group G acting there, made of two copies
of Sy, one for the rows and one for the columns, and of two copies of TV, once again one
for the rows, and one for the columns. The equivalence classes of the complex Hadamard
matrices are then the orbits of the action G ~ Xy. It is possible to be a bit more explicit
here, with a formula for G and so on, but we will not need this.
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Observe that, up to the above equivalence relation, any complex Hadamard matrix
H € My(T) can be put in dephased form. Moreover, the dephasing operation is unique, if
we allow only the operations (2) in Definition 5.4, namely row and column multiplications
by numbers in T. In what follows, “dephasing the matrix” will have precisely this meaning,
namely dephasing by using the operations (2) in Definition 5.4.

Regarding analytic aspects, once again in analogy with the study from the real case,
we can locate the complex Hadamard matrices inside My(T), as follows:

THEOREM 5.5. Given a matrix H € My(T), we have
| det(H)| < NV/?
with equality precisely when H is Hadamard.

PRrROOF. By using the basic properties of the determinant, we have indeed the following

estimate, valid for any vectors Hy, ..., Hy € T:
|det(Hy,..., Hy)| < ||Hi|| x ... x||Hp]||

= (VN)¥

The equality case appears precisely when our vectors Hy,..., Hy € TV are pairwise
orthogonal, and this gives the result. U

From a “dual” point of view, the question of locating Xy inside v NUy, once again
via analytic methods, makes sense as well, and we have here the following result:

THEOREM 5.6. Given a matriz U € Uy we have
lUll, < NVN
with equality precisely when H = v/NU is Hadamard.

PrOOF. We have indeed the following estimate, valid for any U € Uy:

101 = ) |Usl
i
1/2
< N(Z‘Uij’2>

ij
— NVN

The equality case holds when |U;;| = VN, for any i,j. But this amounts in saying
that the rescaled matrix H = v/ NU must satisfy H € My(T), as desired. O

The above Cauchy-Schwarz estimate can be improved with a Holder estimate, the
conclusion being that the rescaled Hadamard matrices maximize the p-norm on Uy at
any p € [1,2), and minimize it at any p € (2, 00]. We will be back to this.
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5b. Fourier matrices

At the level of the examples now, we have the following basic construction, which
works at any N € N, in stark contrast with what happens in the real case:

THEOREM 5.7. The Fourier matriz, Fy = (w"”) with w = e**/N  which in standard

matrixz form, with indices i,5 =0,1,..., N — 1, 1s as follows,
1 1 1 - 1
1 w w? o whN
Fy = 1 w? wt o wr®-D
i wj\}_l wz(N—l) w(N'—l)Q

is a complex Hadamard matriz, in dephased form.

ProOF. By using the standard fact that the averages of complex numbers correspond
to barycenters, we conclude that the scalar products between the rows of Fy are:

< Ry, Ry > = Zwajw_bj

J

Y et
J

= Naab

Thus Fly is indeed a complex Hadamard matrix. As for the fact that Fy is dephased,
this follows from our convention 7,5 = 0,1,..., N — 1, which is there for this. O

Thus, there is no analogue of the HC in the complex case. We will see later on, in
chapter 9 below, that the Fourier matrix Fy can be put in circulant form, so there is no
analogue of the CHC either, in this setting. This is of course very good news. We should
mention, however, that the HC and CHC do have some complex extensions, which are of
technical nature, by restricting the attention to the Hadamard matrices formed by roots
of unity of a given order. We will discuss this later on.

As a first classification result now, in the complex case, we have:

PROPOSITION 5.8. The Fourier matrices Fy, F3, which are given by

1 1 1
FQ = 1 1 s F3 = 1 w w2
1 -1 ;
1 w* w
with w = €2>™/3 are the only Hadamard matrices at N = 2,3, up to equivalence.
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PROOF. The proof at N = 2 is similar to the proof from the real case. Indeed, given
H € My(T) Hadamard, we can dephase it, as follows:

a by _ (1 1) _ (1 1
c d ac bd 1 abed

Now since the dephasing operation preserves the class of the Hadamard matrices, we

have abéd = —1, and so we obtain by dephasing the matrix F». Regarding now the case
N = 3, consider an Hadamard matrix H € Mj3(T), assumed to be in dephased form:
1 1 1
H=11 z y
1 2z t

The orthogonality conditions between the rows of this matrix read:

(1L2) : z4+y=-1
(1L3) : z+t=-1
(2L3) : zz4yt=-1

In order to process these conditions, which are all of the same nature, consider an
arbitrary equation of the following type:

p+tgq=-1 , pqeT

This equation tells us that the triangle having vertices at 1, p, ¢ must be equilateral,
and so that we must have {p, ¢} = {w,w?}, with w = €?>"/3. By using this fact, for the
first two equations, we conclude that we must have:

{xay} = {wan} ) {Zat} = {waw2}

As for the third equation, this tells us that we must have x # z.
Thus, our Hadamard matrix H is either the Fourier matrix Fj3, or the matrix obtained
from F3 by permuting the last two columns, and we are done. U

In order to deal now with the case N = 4, we already know, from our study in the
real case, that we will need tensor products. So, let us formulate:

DEFINITION 5.9. The tensor product of complex Hadamard matrices is given, in double
indices, by (H ® K)jq o = HijKqp. In other words, we have the formula

HuK ... HiuK
HoK=| - :
HinK ... HuuK

by using the lexicographic order on the double indices.
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Here the fact that H ® K is indeed Hadamard comes from the fact that its rows R;,
are pairwise orthogonal, as shown by the following computation:

< Rim ch > = Z Hinab ’ ‘E[ijCb
ib

j

= Z H;;Hy; Z KK
j b

— M(Slk’ . Naac

- MNéia,k'c

In order to advance now, our first task will be that of tensoring the Fourier matrices.
We have here the following statement, refining and generalizing Theorem 5.7:

THEOREM 5.10. Given a finite abelian group G, with dual group G = {x: G — T},
consider the Fourier coupling Fo : G x G — T, given by (i, x) — x(7).

(1) Via the standard isomorphism G ~ CA?, this Fourier coupling can be regarded as a
square matriz, Fo € Mq(T), which is a complex Hadamard matriz.

(2) In the case of the cyclic group G = Zy we obtain in this way, via the standard
identification Zy = {1,..., N}, the Fourier matriz Fy.

(3) In general, when using a decomposition G = Zy, X ... X Ly, the corresponding
Fourier matriz s given by Fg = Fn, @ ... ® Fy, .

Proor. This follows indeed from some basic facts from group theory:

(1) With the identification G ~ G made our matrix is given by (Fa)iy = x(7), and the
scalar products between the rows are computed as follows:

<Ry, R;> = ZX(”W

= > x(i—j)
X
= |G| -6y
Thus, we obtain indeed a complex Hadamard matrix.

(2) This follows from the well-known and elementary fact that, via the identifications

Ty =Ty = {1,..., N}, the Fourier coupling here is as follows, with w = 7/

(i,5) = w"

(3) We use here the following well-known formula, for the duals of products:

—

HxK=HxK
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At the level of the corresponding Fourier couplings, we obtain from this:
Fuxx = Fg ® Fi

Now by decomposing G into cyclic groups, as in the statement, and by using (2) for
the cyclic components, we obtain the formula in the statement. O

As a first application of the above result, we have:

ProPOSITION 5.11. The Walsh matriz, Wy with N = 2", which is given by

1 1\
o= (i )

is the Fourier matriz of the finite abelian group Ky = Z5.
ProOF. We know that the first Walsh matrix is a Fourier matrix:
Wy = Fy = F,
Now by taking tensor powers we obtain from this that we have, for any N = 2™
Wy = W5 = F' = Fin = Fg,,
Thus, we are led to the conclusion in the statement. Il
By getting back now to classification, we will need the following result, from [46]:

THEOREM 5.12. If H € My(T) and K € My(T) are Hadamard, then so are the
following two matrices, for any choice of a parameter matric Q € My n(T):

(1) H ®Q K e MMN(T), given by (H ®Q K)z'a,jb = Qininab-
(2) How K € Myn(T), given by (Ho® K )ia b = QjaHij Kap.

These are called right and left Dita deformations of H ® K, with parameter Q).

PROOF. These results follow from the same computations as in the usual tensor prod-
uct case, the idea being that the () parameters will cancel:

(1) The rows R;, of the matrix H ®¢ K are indeed pairwise orthogonal, because:

< Rig, Bpe > = Z QinHi; Ko - kagkjf(cb
b

= Moy Z K Ke
b

- M(szk : N(Sac
= MN&ik,ac
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(2) The rows L, of the matrix Ho® K are orthogonal as well, because:
< Lim ch > = Z QjaHinab : Qchijcb
b

= Néac Z Hijﬁkj
J

N(Sac ' M5zk:
= MN(Sik,ac
Thus, both the matrices in the statement are Hadamard, as claimed. U

As a first observation, when the parameter matrix is the all-one matrix I € My n(T),
we obtain in this way the usual tensor product of our matrices:

Hor K=HK=HK

As a non-trivial example now, let us compute the right deformations of the Walsh
matrix Wy = F, ® Fy, with arbitrary parameter matrix @ = (? 9):

Fy®qFy = G 11>®<p q) G —11)

r s

p a P q
_|p —a » —q
r S -r —S

r =S —-r S

This follows indeed by carefully working out what happens, by using the lexicographic
order on the double indices, as explained in chapter 1 above. To be more precise, the
usual tensor product Wy = Fy, ® Fy appears as follows:

ia\jb 00 01 10 11

00 1 1 1 1
Wy= 01 1 -1 1 =1
10 1 1 -1 -1
11 1 -1 -1 1

The corresponding values of the parameters (;;, to be inserted are as follows:
ia\jb 00 01 10 11

(Qb): 00 QOO QOl QOO QOl
’ 01 QOO C201 QOO C201
10 Qo Qu Qu Qu

11 Qo Qu Qu Qu
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With the notation @ = (? 9), this latter matrix becomes:

ia\jb 00 01 10 11

00

Y — y q9 p q
(Qa) 01 p 4 p ¢
10 r s r S

11 r s r s

Now by pointwise multiplying this latter matrix with the matrix W, given above, we
obtain the announced formula for the deformed tensor product F» ®¢ F5.

As for the left deformations of Wy = Fy ® F5, once again with arbitrary parameter
matrix @) = (? 9), these are given by a similar formula, as follows:

Fro® Fy = G _11) (p q>®G —11>

r S

p p r T
g —¢ s -—s
lp p —r —r

qg —q —s s

Observe that this latter matrix is transpose to Fy ®¢g F>. However, this is something
accidental, coming from the fact that Fy, and so W, as well, are self-transpose.

With the above constructions in hand, we have the following result:

THEOREM 5.13. The only complex Hadamard matrices at N = 4 are, up to the stan-
dard equivalence relation, the matrices

1 1 1 1
1 -1 1 -1
1 s -1 —s
1 —s =1 s

with s € T, which appear as right Dita deformations of Wy = Fy ® F5.

Fj =

ProOOF. First of all, the matrix F}; is indeed Hadamard, appearing from the construc-
tion in Theorem 5.12, assuming that the parameter matrix ) € My(T) is dephased:

o- (1)

Observe also that, conversely, any right Dita deformation of W, = F, ® F5 is of this

form. Indeed, if we consider such a deformation, with general parameter matrix @ = (? 9)
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as above, by dephasing we obtain an equivalence with Fj/, where s’ = ps/qr:

q
—-q
S
—S

T IR

p
p
—r
—-r

5. COMPLEX MATRICES

q
—q
—S

s

—

1 1 1 1
1 -1 1 1

r/p s/q  —r/p —s/q
r/p —slq —r/p s/q
1 1 1 1

1 -1 1 1

L ps/qr =1 —ps/qr
1 —ps/qr —1 ps/qr

It remains to prove that the matrices F} are non-equivalent, and that any complex
Hadamard matrix H € My(T) is equivalent to one of these matrices F}.

But this follows by using the same kind of arguments as in the proof from the real
case, and from the proof of Proposition 5.8. Indeed, let us first dephase our matrix:

1 1 11
1 a b ¢
H_ldef
1 g h 1

We use now the fact, coming from plane geometry, that the solutions z,y, z,t € T of
the equation x + y + 2z +t = 0 are as follows, with p,q € T:

{fE,y,Z,t} = {p7q> wZ _q}

In our case, we have 1 +a+d+ g = 0, and so up to a permutation of the last 3 rows,
our matrix must look at follows, for a certain s € T:

1 1 11
1 -1 b ¢
i = 1 s e f
1 —s h 1

In the case s = +1 we can permute the middle two columns, then repeat the same
reasoning, and we end up with the matrix in the statement.
In the case s # £1 we have 1+s+e+ f =0, and so —1 € {e, f}. Up to a permutation

of the last columns, we can assume e = —1, and our matrix becomes:
11 1 1
1 -1 b ¢
H = 1 s -1 —s
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Similarly, from 1 — s+ h + 4 = 0 we deduce that —1 € {h,i}. In the case h = —1 our
matrix must look as follows, and we are led to the matrix in the statement:

1 1 1 1
1 -1 b ¢
= 1 s -1 —s
1 —s —1 1
As for the remaining case i = —1, here our matrix must look as follows:
1 1 1 1
1 -1 b ¢
H = 1 s -1 —s
1 —s h -1
We obtain from the last column ¢ = s, then from the second row b = —s, then from

the third column h = s, and so our matrix must be as follows:

1 1 1 1
1 -1 —s s
1 s -1 -s
1 —s s -1

H =

But, in order for the second and third row to be orthogonal, we must have s € R, and
so s = 1, which contradicts our above assumption s # +1.

Thus, we are done with the proof of the main assertion. As for the fact that the
matrices in the statement are indeed not equivalent, this is standard as well. See [87]. O

5c. Haagerup theorem

At N = 5 now, the situation is considerably more complicated, with Fj being the only
matrix. The key technical result here, due to Haagerup [51], is as follows:

PROPOSITION 5.14. Given an Hadamard matric H € Ms(T), chosen dephased,

11111
1 a =z * x
H=|1 vy b % x
1 *x *x *x =%
1 *x *x *x %

the numbers a, b, x,y must satisfy the following equation:

(z —y)(z — ab)(y —ab) = 0
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PROOF. This is something quite surprising, and tricky, the proof in [51] being as
follows. Let us look at the upper 3-row truncation of H, which is of the following form:

11 1 11
H=1[1a z p q
1y b r s

By using the orthogonality of the rows, we have:
(I+a+z)1+b+g)(1+ay+bx) =—p+q)(r+s)(pr+qs)
On the other hand, by using p,q,r, s € T, we have:

P+q)(r+s)(pr+gs) = (r+pgs+pgr+s)(r+53)
1+ pgrs + pq + 7s + 15+ pg + pqrs + 1
= 2Re(1+ pGg+ 15+ pqrs)

2Re[(1 + pq)(1 + 73)]

We conclude that we have the following formula, involving a, b, z, y only:
(I+a+2)(1+b0+7)(1+ay+br)eR

Now this is a product of type (1 4 a)(1 4 8)(1 + 7), with the first summand being
1, and with the last summand, namely afv, being real as well, as shown by the above
general p,q,r, s € T computation. Thus, when expanding, and we are left with:

(a+2x)+ (b+7) + (ay +bx) + (a+2)(b+7)
+ (a+x)(ay +bz) + (b+y)(ay + bx) € R

By expanding all the products, our formula looks as follows:

a+x+b+7y+ay+ bz +ab+ ay + bz + xy
+ 1+abz +ary+b+aby+7+a+bry R

By removing from this all terms of type z + z, we are left with:
ab + xy + ab¥ + aby + axy + bzy € R

Now by getting back to our Hadamard matrix, all this remains true when transposing
it, which amounts in interchanging x <+ y. Thus, we have as well:

ab + zy + aby + abx + axy + bzy € R
By substracting now the two equations that we have, we obtain:

xy — Ty +ab(z — y) +ab(y —z) € R
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Now observe that this number, say Z, is purely imaginary, because Z = —Z. Thus
our equation reads Z = 0. On the other hand, we have the following formula:
abryZ = abz® —aby® + a*b*(y — x) + 2y(y — 1)
= (y—2)(a®b* + 2y — ab(x +y))
= (y—x)(ab—z)(ab —y)
Thus, our equation Z = 0 corresponds to the formula in the statement. U

By using the above result, we are led to the following theorem, also from [51]:

THEOREM 5.15. The only Hadamard matriz at N = 5 is the Fourier matrix,

11 1 1 1
1 w w? w w
FF=11 w? w* w
1w w w w?
1wt wd w? ow
with w = €2™/% up to the standard equivalence relation for such matrices.

PROOF. Assume that have an Hadamard matrix H € M;5(T), chosen dephased, and
written as in Proposition 5.14, with emphasis on the upper left 2 x 2 subcorner:

11111
1 a =z *x
H=1|1 9y b % x
1 % % % *
1 *x *x *x %

We know from Proposition 5.14, applied to H itself, and to its transpose H' as well,
that the entries a, b, x, y must satisfy the following equations:

(a—0)(a—zy)(b—zy) =0

(z —y)(z —ab)(y — ab) =0
Our first claim is that, by doing some combinatorics, we can actually obtain from this
a =0b and x =y, up to the equivalence relation for the Hadamard matrices:

11111
1 T *x %k
H~ 11 2 a * x
1 x % % %
1 % * % x%

Indeed, the above two equations lead to 9 possible cases, the first of which is, as
desired, a = b and = = y. As for the remaining 8 cases, here once again things are
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determined by 2 parameters, and in practice, we can always permute the first 3 rows and
3 columns, and then dephase our matrix, as for our matrix to take the above special form.

With this result in hand, the combinatorics of the scalar products between the first 3
rows, and between the first 3 columns as well, becomes something which is quite simple
to investigate. By doing a routine study here, and then completing it with a study of the
lower right 2 x 2 corner as well, we are led to 2 possible cases, as follows:

11111 11111
1 a b ¢ d 1 a b ¢ d
H~ |1 b a d ¢ , H~ 11 b a d c
1 ¢ d a b 1 ¢ d b a
1 d c b a 1 d c a b

Our claim now is that the first case is in fact not possible. Indeed, we must have:

a+btct+d = —1
2Re(ab) + 2Re(cd) = —1
2Re(ac) + 2Re(bd) = —1
2Re(ad) + 2Re(be) = —1

Now since |Re(z)| <1 for any x € T, we deduce from the second equation that:
Re(ab) < 1/2

In other words, the arc length between a, b satisfies 6(a, b) > m/3. The same argument
applies to ¢, d, and to the other pairs of numbers in the last 2 equations. Now since our
equations are invariant under permutations of a, b, ¢, d, we can assume that our numbers
a, b, c,d are ordered on the unit circle, and by the above, separated by > 7/3 arc lengths.
But this tells us that we have the following inequalities:

O(a,c) >2n/3 , 6(b,d)>2m/3
These two inequalities give the following estimates:
Re(ac) < —1/2 , Re(bd) < —1/2

But these estimates contradict the third equation. Thus, our claim is proved.

Summarizing, we have proved so far that our matrix must be as follows:

11111
1 a b ¢ d
H~11 b a d ¢
1 ¢ d b a
1 d c a b
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We are now in position of finishing. The orthogonality equations are as follows:

atb+ct+d = —1
2Re(ab) + 2Re(ed) = —1
ac+cb+bd+da = -1
The third equation can be written in the following equivalent form:
Re[(a+0b)(c+d)] = -1
Im[(a—=0b)(c—d)] = 0
By using now a, b, c,d € T, we obtain from this:
ZJ_FZ ciR | zfj € iR

Thus we can find s,t € R such that:
a+b=is(a—0b) , c+d=1it(c—d)

By plugging in these values, our system of equations simplifies, as follows:

(a4+b)+ (c+d) = -1
la+b)* +]c+d? = 3
(a+b)(c+d) = —1

Now observe that the last equation implies in particular that we have:
la+0b? |e+d? =1
Thus |a + b|?, |c + d|* must be roots of the following polynomial:
X?-3X+1=0
But this gives the following equality of sets:

{la+l, yc+d|}:{\/52+1, \/3_1}

2

This is good news, because we are now into 5-th roots of unity. To be more precise,
we have 2 cases to be considered, the first one being as follows, with z € T:

V51 V5 —1

h— d= —
a+ 5 zZ , Cc—+ 5 z
From a + b+ c+d = —1 we obtain z = —1, and by using this we obtain:
b=a , d=c

Thus we have the following formulae:
Re(a) = cos(2m/5) , Re(c) = cos(n/b)
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We conclude that we have H ~ Fj, as claimed. As for the second case, with a, b and
¢, d interchanged, this leads to H ~ Fj as well. Il

5d. Regular matrices

At N = 6 now, the situation becomes very complicated, with lots of “exotic” solutions,
and with the structure of the Hadamard manifold X4 being not understood yet. In fact,
this manifold Xg looks as complicated as the real algebraic manifolds can get.

The simplest examples of Hadamard matrices at N = 6 are as follows:

THEOREM 5.16. We have the following basic Hadamard matrices, at N = 6:

(1) The Fourier matriz Fg.

(2) The Dita deformations of Fy ® F3 and of F3 ® Fy.

(3) The Haagerup matriz Hf.

(4) The Tao matriz Tg.
Proor. All this is elementary, the idea, and formulae of the matrices, being as follows:
(1) This is something that we know well.

(2) Consider indeed the dephased Dita deformations of F» ® F3 and I3 ® Fy:

FP=Ren 1 B FKI=Ke, b
(1 T s) (1 7‘)
1 s
Here r, s are two parameters on the unit circle, ;s € T. In matrix form:
1 1 1 1 1 1
1 w  w? 1 w w?
1 w? w 1 w? w
F6(rs) _
1 r s -1 —r —S
1 wr w’s -1 —wr —w?s
1 w’r ws -1 —w?r —ws

As for the other deformation, this is given by:

1 1 1 1 1 1
1 -1 1 -1 1 -1

6 1 r w o owr w?  w?r
6 1 —r wo —wr w? —w?r
1 s w?  w?s w o ws

1 —s w? —w3s W —ws
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(3) The matrix here, from [51], is as follows, with ¢ € T:

11 1 1 1
-1 T -t —1
. -1 —1 q —q
1 —1 —1 —q ¢

- q —q v -1
- —q q -1

HY =

— = = = e

(4) The matrix here, from [89], is as follows, with w = 7/3:

11 1 1 1 1
1 1 w w w w?
T — I w 1 w w w
7L w w1 w w?
1w w w 1 w
1 v w w w 1
Observe that both H{ and Tg are indeed complex Hadamard matrices. U

The matrices in Theorem 5.16 are “regular”, in the sense that the scalar products
between rows appear in the simplest possible way, namely from vanishing sums of roots
of unity, possibly rotated by a scalar. We will be back to this in chepter 6 below, with a
result stating that these matrices are the only regular ones, at N = 6.

In the non-regular case now, there are many known constructions at N = 6. Here is
one such construction, found by Bjorck and Froberg in [34]:

PROPOSITION 5.17. The following is a complex Hadamard matrix,

1 a —a —t —a :1a

ia 1 1w —a —i —a

BF. — —-a 1w 1 1w —a —1
67— —a ia 1 ia —a
—a —t —a 1w 1 a

wa —a —1 —a a1

where a € T is one of the roots of a®> 4+ (v/3 — 1)a+1=0.

PROOF. Observe that the matrix in the statement is circulant, in the sense the rows
appear by cyclically permuting the first row. Thus, we only have to check that the first
row is orthogonal to the other 5 rows. But this follows from a? + (v/3 - 1)a+1=0. O

The obvious question here is how Bjorck and Froberg were able to construct the above
matrix. This was done via some general theory for the circulant Hadamard matrices, and
some computer simulations. We will discuss this in chapter 9 below.
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Further study in the N = 6 case leads to complicated things, and we have here, as an
illustrating example, the following result from [27]:

THEOREM 5.18. The self-adjoint 6 x 6 Hadamard matrices are, up to equivalence

1 1 1 1
-1 z -y -z vy
r -1 t -t —z

q __
BNe=11 5 & -1 ¢ -i

— = = e e

with x,y, z,t € T depending on a parameter q € T, in a very complicated way.

PROOF. The study here can be done via a lot of work, and tricks, in the spirit of the
Haagerup classification result at N = 5, and the equations are as follows:

142+ ¢* — V24/1+2q+2¢% + ¢

T 1+2¢—¢?
y = 4q
1+2q— ¢
o
g(=1+2¢+¢*)

. 1+2¢+¢* — vV2¢/1+2q+2¢3 + ¢*

—142q+ ¢?

All this is quite technical, and we refer here to [27]. O

There are many other examples at N = 6, and no classification known. For a recent
discussion on this subject, we refer to [87].

Let us discuss now the case N = 7. We will restrict the attention to case where the
combinatorics comes from roots of unity. We use the following result, from [86]:
THEOREM 5.19. If H € My(%1) with N > 8 is dephased symmetric Hadamard, and

(1+iyv/N —5)2
N—14

w =

then the following procedure yields a complex Hadamard matric M € My_1(T):

(1) Erase the first row and column of H.
(2) Replace all diagonal 1 entries with —w.
(3) Replace all off-diagonal —1 entries with w.
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ProoOF. We know from chapter 1 that the scalar product between any two rows of H,
normalized as there, appears as follows:

P - g-1-1—|—%-1-(—1)+%-(—1)-1+%-(—1)-(—1)
=0

Let us peform now the above operations (1,2,3), in reverse order. When replacing
—1 — w, all across the matrix, the above scalar product becomes:

N N N N
P = . 1-1+—1-0+=—=-w-1+=-(=1)-(=1
1 —|—4 w—|—4 w —|—4 (—=1)-(-1)
N
= 5(1+Re(w))

Now when adjusting the diagonal via w — —1 back, and 1 — —w, this amounts in
adding the quantity —2(1 + Re(w)) to our product. Thus, our product becomes:

P @-2) (14 Re(w))

_ N-4 1+6—N
N 2 N —4

=1

Finally, erasing the first row and column amounts in substracting 1 from our scalar
product. Thus, our scalar product becomes P” =1 —1 =0, and we are done. OJ

Observe that the number w in the above statement is a root of unity precisely at
N = 8, where the only matrix satisfying the conditions in the statement is the Walsh
matrix Ws. So, let us apply, as in [86], the above construction to this matrix, namely:

11 1 1
1 -1 1 -1
1 -1 -1 1 1 -1 -1
-1 -1 1 1 -1 -1 1
1 -1 -1 -1 -1
-1 1 -1 -1 1 -1 1
-1 -1 -1 -1 -1 1 1
-1 -1 1 -1 1 1 -1

1 1 1

— = = e e e e
—_
—_
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We obtain in this way the following matrix:

* % * * * * * *
* —1 1 w 1 w 1 w

x 1 -1 w 1 1 ww

, *x w w —w 1 w w 1
Ws = * 1 1 1 -1 w w w
* w1 woow —w W 1

x 1 w w w w —-—w 1

W w 1 w 1 1 -1

The Hadamard matrix obtained in this way, by deleting the * entries, is the Petrescu
matrix Py, found in [76]. Thus, we have the following result:

THEOREM 5.20. Pr is the unique matrixz formed by roots of unity that can be obtained
by the Szolldsi construction. It appears at N =8, from H = Wy. Its formula is

—w if (ijk) = (abe), ia + jb+ ke =0(2)
(Pr)ijk,abe = § W if (ijk) # (abc), ia + jb+ ke # 0(2)

(—1)tatibtke  otherwise
where w = e2™/3 and with the indices belonging to the set {0,1}® — {(0,0,0)}.
ProoF. We know that the Szollosi construetion maps Wy — P;. Since the formula of
the second Fourier matrix is (F3);; = (—1)¥, the formula of the Walsh matrix Wy is:
(We)ijeape = (—1)ictitrke
But this gives the formula in the statement. U

Now observe that we are in the quite special situation H = F, ® K, with K being
dephased and symmetric. Thus, we can search for a one-parameter affine deformation
K(q) which is dephased and symmetric, and then build the following matrix:

H(q) = (K[((q) _ ]](((q))

In our case, such a deformation K(q) = Wy(q) can be obtained by putting the ¢
parameters in the 2 x 2 middle block. Now by performing the Szollési construction, with
the parameters ¢, ¢ left untouched, we obtain the parametric Petrescu matrix [76]:
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THEOREM 5.21. The following is a complex Hadamard matriz,

—q q w 1 w 1 w
q —q w 1 1 w w
w o ow —w 1 w w 1
PPl=|1 1 1 -1 w wow
w 1 w w —qw qw 1
1 w w w quw —qw 1
w o w 1w 1 1 -1

where w = >3, and g € T.

Proor. This follows from the above considerations, or from a direct verification of
the orthogonality of the rows, which uses either 1 —1 =0, or 1 +w + w? = 0. Il

Observe that the above matrix P has the property of being “regular”, in the sense that
the scalar products between rows appear from vanishing sums of roots of unity, possibly
rotated by a scalar. We will be back to this in the next chapter, with the conjectural
statement that Fr, P/ are the only regular Hadamard matrices at N = 7.

5e. Exercises
In connection with the Fourier matrices, we first have:

EXERCISE 5.22. Prove the following formula, with w = e2™/N
1 :
7 2wt =0,
k
where all the indices, and the Kronecker symbol too, are taken modulo N.

This is something that we have used in the above, in order to prove that Fly is indeed
Hadamard, and the argument there, which was quick and correct, was that the above
average is the barycenter of the regular polygon formed by the numbers w’* in the complex
plane, which is 0 generically, and is 1 if the polygon is degenerate. The problem now is
that of finding another proof of this fact, by using abstract mathematics only.

Here is another exercise, once again in relation with the Fourier matrix:
EXERCISE 5.23. Compute the determinant of the Fourier matrix Fy.

This certainly looks like something that can be done, by using standard linear algebra
tricks. The problem is that of finding the trick which applies.

And here is a third exercise about Fy, which is more advanced:

EXERCISE 5.24. Diagonalize the Fourier matrix Fy.
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There is actually a lot of work here, and the answer is not trivial. In case you do not
find the answer, a study at N = 2,3,4,5,6 will do too.

Here is now an exercise regarding the Hadamard matrices at N = 4:
EXERCISE 5.25. Prove that the matrices F; are not equivalent to each other.

A natural idea here would be to look for an invariant ¢ of the complex Hadamard
matrices which gives p(F}) = s, but this is not obvious. In the lack of a good idea here,
the best is to assume Fj ~ F}, do computations, and look for a contradiction.

Here is now an exercise about the Hadamard matrices at N = 6:
EXERCISE 5.26. Find a simple formula for the Tao matriz Tg.

To be more precise, the problem here is that of finding a simple formula for (7%),;, as
function of ¢, j. This is actually quite difficult. We will be back to this.

Finally, here is one more exercise at N = 6, more reasonable this time:
EXERCISE 5.27. Prove that the Beauchamp-Nicoara matriz BN{ is indeed Hadamard.

There are some computations to be done here, which do not look very difficult. In
case you are done with them quickly, you can try then proving the converse, namely that
any self-adjoint Hadamard matrix at N = 6 is equivalent to a matrix of type BN{.



CHAPTER 6

Roots of unity

6a. Basic obstructions

Many interesting examples of complex Hadamard matrices H € My(T), including the
real ones H € My (=£1), have as entries roots of unity, of finite order. We discuss here
this case, and more generally the “regular” case, where the combinatorics of the scalar
products between the rows comes from vanishing sums of roots of unity.

Let us begin with the following definition, going back to the work in [37]:

DEFINITION 6.1. An Hadamard matriz is called of Butson type if its entries are roots
of unity of finite order. The Butson class Hy(l) consists of the Hadamard matrices

H € My(Zy)
where 7 is the group of the l-th roots of unity. The level of a Butson matric H € My(T)
is the smallest integer | € N such that H € Hy(1).

As basic examples, we have the real Hadamard matrices, which form the Butson class
Hx(2). The Fourier matrices are Butson matrices as well, because we have Fy € Hy(N),
and more generally F € Hy(l), with N = |G|, and with [ € N being the smallest
common order of the elements of G. There are many other examples of such matrices, as
for instance those as N = 6 discussed in chapter 5, at 1 values of the parameters.

Generally speaking, the main question regarding the Butson matrices is that of un-
derstanding when Hy(l) # 0, via a theorem providing obstructions, and then a result or
conjecture stating that these obstructions are the only ones. Let us begin with:

PROPOSITION 6.2 (Sylvester obstruction). The following holds,
Hy(2) #0 = N € {2} U4N
due to the orthogonality of the first 3 rows.

Proor. This is something that we know from chapter 1, with the obstruction, going
back to Sylvester’s paper [84], being explained there. O

The above obstruction is fully satisfactory, because according to the Hadamard Con-
jecture, its converse should hold. Thus, we are fully done with the case [ = 2. Our

129
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purpose now will be that of finding analogous statements at [ > 3, theorem plus conjec-
ture. At very small values of [ this is certainly possible, and in what regards the needed
obstructions, we can get away with the following simple fact, from [37], [98]:

PROPOSITION 6.3. For a prime power | = p®, the vanishing sums of [-th roots of unity
M+...+ Ay =0 , i € 7y
appear as formal sums of rotated full sums of p-th roots of unity.

ProoF. This is something elementary, coming from basic number theory. Consider
indeed the full sum of p-th roots of unity, taken in a formal sense:

p
S = Z(e2m/p)k
k=1

Let also w = ¢*™/! and for r € {1,2,...,1/p} let us denote by S7 = w" - S the above
formal sum of roots of unity, rotated by w":

p
S; _ Zwr(€27ri/p>k
k=1

We must show that any vanishing sum of [-th roots of unity appears as a sum of such
quantities S;, with all this taken of course in a formal sense.

For this purpose, consider the following map, which assigns to the abstract elements
of the group ring Z[Z;| their precise numeric values, inside Z(w) C C:

® : 7|7 — Z(w)

Our claim is that the elements {S] } form a basis of ker ®. In order to prove this claim,
observe first that we have:

S, € ker @

Also, the elements S are linearly independent, because the support of S contains a
unique element of the subset {1,2,...,p* '} C Z;, namely the element r € Z;, so all the
coefficients of a vanishing linear combination of such sums S; must vanish. Thus, we are
left with proving that ker ® is spanned by {S}}.

For this purpose, let us recall that the minimal polynomial of w is as follows:
X —1
Xrt -1
We conclude that the dimension of ker ® is given by:
dim(ker @) = p* — (p* — p*~') = p"

Now since this is exactly the number of the sums S}, this finishes the proof of our
claim. Thus, any vanishing sum of /-th roots of unity must be of the form 457, and
the above support considerations show the coefficients must be positive, as desired. [

a—1

=14+ X7 X x e
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We can now formulate a result in the spirit of Proposition 6.2, as follows:
PROPOSITION 6.4 (Butson obstruction). The following holds,
Hy(p*) #0 — N € pN
due to the orthogonality of the first 2 rows.

Proor. This follows indeed from Proposition 6.3, because the scalar product between
the first 2 rows of our matrix is a vanishing sum of /-th roots of unity. U

WIth these obstructions in hand, we can discuss the case [ < 5, as follows:

THEOREM 6.5. We have the following results,

(1) Hy(2) #0 = N € {2} U4N,
(2) Hy(3) #0 = N €3N,
(3) Hv(4) #0 = N € 2N,
(4) Hy(5) #0 = N € 5N,
with in cases (1,3), a conjecture stating that the converse should hold as well.

PROOF. In this statement (1) is the Sylvester obstruction, and (2,3,4) are particular
cases of the Butson obstruction. As for the last assertion, which is of course something
rather informal, but which is important for our purposes, the situation is as follows:

(1) Here, as already mentioned, we have the Hadamard Conjecture, which comes with
solid evidence, as explained in chapter 1 above.

(2) Here we have an old conjecture, dealing with complex Hadamard matrices over
{#£1, £}, going back to the work in [92], and called Turyn Conjecture. O

At | = 3 the situation is quite complicated, due to the following result, from [41]:
PROPOSITION 6.6 (de Launey obstruction). The following holds,
Hy(l) # 0 = 3d € Z[e*™/Y], |d]* = NV
due to the orthogonality of all N rows. In particular, we have
5N = Hy(6)=10
so in particular Hq5(3) = 0, showing that the Butson obstruction is too weak at l = 3.

PRrROOF. The obstruction follows from the unitarity condition HH* = N for the com-
plex Hadamard matrices, by applying the determinant, which gives:

|det(H)|* = NV
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Regarding the second assertion, let w = e?™/3, and assume that d = a+ bw + cw? with

a,b, ¢ € Z satisfies |d|* = 0(5). We have the following computation:

d? = (a+bw+ cw?)(a+ bw? + cw
|
= a4+ 0>+ —ab—be—ac

= a0+ (P +(c—ay

Thus our condition |d|*> = 0(5) leads to the following system, modulo 5:

r+y+z2=0

?+yt+22=0
But this system has no solutions. Indeed, let us look at 2% + y? + 22 = 0:

(1) If this equality appears as 0 + 0+ 0 = 0 we can divide z,y, z by 5 and redo the
computation.

(2) Otherwise, this equality can only appear as 0 + 1+ (—1) = 0.

Thus, modulo permutations, we must have x = 0,y = £1, 2 = 42, which contradicts
x+y+ 2z = 0. Finally, the last assertion follows from Hi5(3) C Hy5(6) = (. O

At | = 5 now, things are a bit unclear, with the converse of Theorem 6.5 (4) being
something viable, at the conjectural level, at least to our knowledge. At [ = 6 the situation
becomes again complicated, as follows:

PROPOSITION 6.7 (Haagerup obstruction). The following holds, due to Haagerup’s
N =5 classification result, involving the orthogonality of all 5 rows of the matrix:

Hy(l) £ 0 = 5]I

In particular we have Hs(6) = 0, which follows by the way from the de Launey obstruction
as well, in contrast with the fact that we generally have Hy(6) # ().

PROOF. In this statement the obstruction H5(I) = ' = 5|l comes indeed from
Haagerup’s classification result, explained in Theorem 5.15 above. As for the last asser-
tion, this is something informal, the situation at small values of N being as follows:

— At N =2, 3,4 we have the matrices Fy, F3, Wj.

— At N =6,7,8,9 we have the matrices Fy, P}, Wy, F3 @ F.
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— At N = 10 we have the following matrix, found in [13] by using a computer, and

written in logarithmic form, with k standing for e*#/3:

00 0O0O0OO0OOTOO0O©O0

0415313351

0123551353

0532153531

6 _ 0351411533
0=103333300¢00

01 15343¢0214

0153524320
05351202314

035114420 3

We refer to [13] for more details on this topic. O

All this is not good news. Indeed, there is no hope of conjecturally solving our Hy () #
() problem in general, because this would have to take into account, and in a simple and
conceptual way, both the subtle arithmetic consequences of the de Launey obstruction,
and the Haagerup classification result at N = 5, and this does not seem feasible.

6b. Sums of roots

In order to further comment on these difficulties, let us discuss now a generalization of
Proposition 6.3 above, and of the related Butson obstruction from Proposition 6.4, which
has been our main source of obstructions, so far. Let us start with:

DEFINITION 6.8. A cycle is a full sum of roots of unity, possibly rotated by a scalar,

l
k=1

and taken in a formal sense. A sum of cycles is a formal sum of cycles.

The actual sum of a cycle, or of a sum of cycles, is of course 0. This is why the word
“formal” is there, for reminding us that we are working with formal sums. As an example,
here is a sum of cycles, with w = €?™/6 and with |¢| = 1:

1+ w? 4+ w* + qu + qu* =0

We know from Proposition 6.3 above that any vanishing sum of [-th roots of unity
must be a sum of cycles, at least when [ = p® is a prime power. However, this is not the
case in general, the simplest counterexample being as follows, with w = e*7#/30:

w® +w® + w'? + w'® 4+ w +w* =0
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Indeed, this sum is obviously not a sum a cycles. However, this sum vanishes indeed,
as shown by the following computation:

W w2 w® L e w® = wd 4w
+ w4 w® + w'? + w'® 4w
— ol —
= 0+0-0
= 0
The following deep result on the subject is due to Lam and Leung [66]:
THEOREM 6.9. Let | = pi*...pi*, and assume that \; € Z; satisfy:

(1) Y-\ is a sum of cycles, with Z coefficients.

(2) If k <2 then > \; is a sum of cycles (with N coefficients).

(3) If k > 3 then Y_ \; might not decompose as a sum of cycles.

(4) >° A has the same length as a sum of cycles: N € pyN+ ... + p;N.

PRrROOF. This is something that we will not really need in what follows, but that we
included here, in view of its importance. The idea of the proof is as follows:

(1) This is a well-known result, which follows from basic number theory, by using
arguments in the spirit of those in the proof of Proposition 6.3 above.

(2) This is something that we already know at k = 1, from Proposition 6.3. At k = 2
the proof is more technical, along the same lines. See [66].

(3) The smallest possible I potentially producing a counterexample is [ = 2-3-5 = 30,
and we have here indeed the sum given above, with w = /30,

(4) This is a deep result, due to Lam and Leung, relying on advanced number theory
knowledge. We refer to their paper [66] for the proof. O

As a consequence of the above result, we have the following generalization of the
Butson obstruction, which is something final and optimal on this subject:

THEOREM 6.10 (Lam-Leung obstruction). Assuming the we have
l=p" .. .pF
the following must hold, due to the orthogonality of the first 2 rows:
Hy()#0 = N epN+...+pN

In the case k > 2, the latter condition is automatically satisfied at N >> 0.



6C. REGULARITY 135

PROOF. Here the first assertion, which generalizes the [ = p® obstruction from Propo-
sition 6.4 above, comes from Theorem 6.9 (4), applied to the vanishing sum of [-th roots
of unity coming from the scalar product between the first 2 rows. As for the second
assertion, this is something well-known, coming from basic number theory. O

Summarizing, our study so far of the condition Hy(l) # ) has led us into an optimal
obstruction coming from the first 2 rows, namely the Lam-Leung one, then an obstruction
coming from the first 3 rows, namely the Sylvester one, and then two subtle obstructions
coming from all N rows, namely the de Launey one, and the Haagerup one.

As an overall conclusion, by contemplating all these obstructions, nothing good in
relation with our problem Hy () # () is going on at small N. So, as a natural and more
modest objective, we should perhaps try instead to solve this problem at N >> 0.

The point indeed is that everything simplifies at N >> 0, with some of the above
obstructions dissapearing, and with some other known obstructions, not to be discussed
here, dissapearing as well. We are therefore led to the following statement:

CONJECTURE 6.11 (Asymptotic Butson Conjecture (ABC)). The following equiva-
lences should hold, in an asymptotic sense, at N >> 0,
(1) Hn(2) # 0 < 4|N,
(2) Hy(s") £0 = pN, for g > 3 prime power,
(3) Hy(l) #0 < 0, forl € N not a prime power,

modulo the de Launey obstruction, |d|> = NN for some d € Z[e*™/1].

In short, our belief is that when imposing the condition N >> 0, only the Sylvester,
Butson and de Launey obstructions survive. This is of course something quite nice, but in
what regards a possible proof, this looks difficult. Indeed, our above conjecture generalizes
the HC in the N >> 0 regime, which is so far something beyond reach.

One idea, however, in dealing with such questions, coming from the de Launey-Levin
result from [45], is that of looking at the partial Butson matrices, at N >> 0. Observe
in particular that restricting the attention to the rectangular case, and this not even in
the N >> 0 regime, would make dissapear the de Launey obstruction from the ABC,
which uses the orthogonality of all N rows. We will discuss this later on. For a number
of related considerations, we refer as well to the papers [41], [44].

6¢c. Regularity

Getting away now from all these arithmetic difficulties, let us discuss now, following
[13], the classification of the regular complex Hadamard matrices of small order. The
definition here, which already appeared in the above, is as follows:
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DEFINITION 6.12. A complex Hadamard matric H € My (T) is called regular if the
scalar products between rows decompose as sums of cycles.

We should mention that there is some notational clash here, with this notion being
sometimes used in order to designate the bistochastic matrices. In this book we use the
above notion of regularity, and we call bistochastic the bistochastic matrices.

Our purpose in what follows will be that of showing that the notion of regularity can
lead to full classification results at N < 6, and perhaps at N = 7 too, and all this while
covering most of the interesting complex Hadamard matrices that we met, so far. As a
first observation, supporting this last claim, we have the following result:

PROPOSITION 6.13. The following complex Hadamard matrices are regular:

(1) The matrices at N <5, namely Fy, F3, Fy, Fs.
(2) The main examples at N = 6, namely FéTS),Fég),Hg,TE;.
(3) The main examples at N =7, namely Fr, Py.

PROOF. The Fourier matrices Fly are all regular, with the scalar products between
rows appearing as certain sums of full sums of I-th roots of unity, with I|N. As for the
other matrices appearing in the statement, with the convention that “cycle structure”
means the lengths of the cycles in the regularity property, the situation is as follows:

(1) F} has cycle structure 2 + 2, and this because the verification of the Hadamard
condition is always based on the formula 1 + (—1) = 0, rotated by scalars.

(2) Férs), Fég) have mixed cycle structure 2+ 2+ 2/3 + 3, in the sense that both cases
appear, H¢ has cycle structure 2 4+ 2 + 2, and Tg has cycle structure 3 + 3.

(3) PZ has cycle structure 3+2+2, its Hadamard property coming from 1+w+w? = 0,
with w = €?™/3 and from 1+ (—1) = 0, applied twice, rotated by scalars. O

Let us discuss now the classification of regular matrices. We first have:
THEOREM 6.14. The reqular Hadamard matrices at N <5 are
Fy F3, F}, F
up to the equivalence relation for the complex Hadamard matrices.

PRrooOF. This is something that we already know, coming from the classification results
from chapter 5, and from Proposition 6.13 (1). However, and here comes our point,
proving this result does not need in fact all this, the situation being as follows:

(1) At N = 2 the cycle structure can be only 2, and we obtain F5.
(2) At N = 3 the cycle structure can be only 3, and we obtain Fj.
(3) At N = 4 the cycle structure can be only 2 + 2, and we obtain F}.
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(4) At N = 5 some elementary combinatorics shows that the cycle structure 3 4 2 is
excluded. Thus we are left with the cycle structure 5, and we obtain F5. U

Let us discuss now the classification at N = 6. The result here, from [13], states
that the matrices Férs), Fég), H{, T are the only solutions. The proof is quite long and

technical, but we will present here its main ideas. Let us start with:
PROPOSITION 6.15. The regular Hadamard matrices at N = 6 fall into 3 classes:

(1) Cycle structure 3 + 3, with Ts being an example.
(2) Cycle structure 2+ 2 + 2, with H{ being an example.

(3) Mized cycle structure 3+ 3/2 + 2 + 2, with Férs), Fég) being examples.

PROOF. This is a bit of an empty statement, with the above (1,2,3) possibilities being
the only ones, and with the various examples coming from Proposition 6.13 (2). O

In order to do the classification, we must prove that the examples in (1,2,3) are the
only ones. Let us start with the Tao matrix. The result here is as follows:

PROPOSITION 6.16. The Tao matriz, namely

1 1 1 1 1 1
1 1 w w w w
T — I w 1 w w w
Tl ow w1 ow w?
1 w? w? w 1 w
1 w? w w? w 1
with w = €2™/3 s the only one with cycle structure 3 + 3.

PROOF. The proof of this fact, from [13], is quite long and technical, the idea being
that of studying first the 3 x 6 case, then the 4 x 6 case, and finally the 6 x 6 case.

So, consider first a partial Hadamard matrix A € M3,6(T), with the scalar products
between rows assumed to be all of type 3 + 3.

By doing some elementary combinatorics, one can show that, modulo equivalence,
either all the entries of A belong to Zz = {1, w,w?}, or A has the following special form,
for certain parameters r, s € T:

1 1 1 1 1 1
A=|1 w w?> r wr w?r
1 w? w s w?s ws

With this result in hand, we can now investigate the 4 x 6 case.
Assume indeed that we have a partial Hadamard matrix B € My.¢(T), with the scalar
products between rows assumed to be all of type 3 + 3.
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By looking at the 4 submatrices A, A AG) A® obtained from B by deleting one
row, and applying the above 3 x 6 result, we are led, after doing some combinatorics, to
the conclusion that all the possible parameters dissapear.

Thus, our matrix must be of the following type:

B € Myys(Zs)

With this result in hand, we can now go for the general case. Indeed, an Hadamard
matrix M € Mg(T) having cycle structure 3 + 3 must be as follows:

M € Mg(Zs)
But the study here is elementary, with Ty as the only solution. See [13]. Il
Regarding now the Haagerup matrix, the result is similar, as follows:
PROPOSITION 6.17. The Haagerup matriz, namely
11 1 1 1 1

1 -1 = T —1 —1
1 ¢ -1 — q —q
q_
Hg = 1 ¢+ —i -1 —q g
1 —i § —q i -1

—1

[
|
I
L]
|
—_
-~

with ¢ € T is the only one with cycle structure 2 + 2 + 2.

PROOF. The proof here, from [13], uses the same idea as in the proof of Proposition
6.16, namely a detailed combinatorial study, by increasing the number of rows.

First of all, the study of the 3 x 6 partial Hadamard matrices with cycle structure

2 4+ 2 + 2 leads, up to equivalence, to the following 4 solutions, with ¢ € T being a
parameter:

11 1 1 1 1
Ai=|1 — 1 1+ -1 -1
1 -1 ¢+ — q —q

1 1 1 1 1 1
Ayj=11 — =1 @ q —q
1 =1 —q —ig iqg ¢
With this result in hand, we can go directly for the 6 x 6 case.



6C. REGULARITY 139

Indeed, a careful examination of the 3 x 6 submatrices, and of the way that differ-
ent parameters can overlap vertically, shows that our matrix must have a 3 x 3 block
decomposition as follows:

A B (C
M=|D zE yF
G zH tI

Here A, ..., I are 2 X 2 matrices over {#1,+i}, and x,y, z,t are in {1,¢q}. A more
careful examination shows that the solution must be of the following form:

A B C
M=|D FE g¢F
G qH ql

More precisely, the matrix must be as follows:

1 1 1 1 1 1
1 1 —i -1 -1
11 ¢+« -1 —-i —-q q
M=1, —i i =1 —iq iq
L =1 ¢ —ig g —q
L =1 —q¢ i¢ q -—ig
But this matrix is equivalent to H¢, and we are done. See [13]. O

Regarding now the mixed case, where both 2+2+-2 and 3+3 situations can appear, this
is a bit more complicated. We can associate to any mixed Hadamard matrix M € Mg(C)
its “row graph”, having the 6 rows as vertices, and with each edge being called “binary”
or “ternary”, depending on whether the corresponding scalar product is of type 2 + 2 + 2
or 3 + 3. With this convention, we have the following result:

PROPOSITION 6.18. The row graph of a mized matriz M € Mg(C) can be:
(1) Either the bipartite graph having 3 binary edges.
(2) Or the bipartite graph having 2 ternary triangles.

PROOF. This is once again something a bit technical, from [13], the idea being as
follows. Let X be the row graph in the statement. By doing some combinatorics, of
rather elementary type, we are led to the following conclusions about X:

— X has no binary triangle.

— X has no ternary square.

— X has at least one ternary triangle.

With these results in hand, we see that there are only two types of squares in our

graph X, namely those having 1 binary edge and 5 ternary edges, and those consisting of
a ternary triangle, connected to the 4-th point with 3 binary edges.
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By looking at pentagons, then hexagons that can be built with these squares, we see
that the above two types of squares cannot appear at the same time, at that at the level
of hexagons, we have the two solutions in the statement. See [13]. 4

We can now complete our classification at N = 6, as follows:

PROPOSITION 6.19. The deformed Fourier matrices, namely

1 1 1 1 1 1

1 w  w? 1 w w?

1 w? w 1 w? w
Férs) _

1 r s -1 —r -5

1 wr w?s -1 —wr -—-w’s

1 w?r ws -1 —w?r —ws

1 1 1 1 1 1

1 —1 1 -1 1 -1
o _ 1 r W wr w?  wir

6 1 —r w  —wr w? —w?r
1 s w?  w?s w o ws
1 —s w? —w’s w  —ws

with r,s € T are the only ones with mixed cycle structure.

PROOF. According to Proposition 6.18, we have two cases:

(1) Assume first that the row graph is the bipartite one with 3 binary edges. By
permuting the rows, the upper 4 x 6 submatrix of our matrix must be as follows:

1 1 1 1 1 1
B 1 w w? r wr wr
1 o w? o ow s w?s ws
1 1 1 ¢ t t

Now since the scalar product between the first and the fourth row is binary, we must
have t = —1, so the solution is:

1 1 1
2 2
woow® r  wr wr

1
w? w s w?s ws

1 1 -1 -1 -1

B =

—_ = =

We can use the same argument for finding the fifth and sixth row, by arranging the
matrix formed by the first three rows such as the second, respectively third row consist
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2

only of 1’s. This will make appear some parameters of the form w,w*,r, s in the extra

row, and we obtain in this way a matrix which is equivalent to Fém). See [13].

(2) Assume now that the row graph is the bipartite one with 2 ternary triangles. By
permuting the rows, the upper 4 x 6 submatrix of our matrix must be as follows:

1 1 1 1 1

1
1 1 w w w w?
1

B =
1 w? w w w

1 -1 »r —r s -—s

We can use the same argument for finding the fifth and sixth row, and we conclude
that the matrix is of the following type:

1 1 1 1 1 1
1 1 wo ow w? w?
1 1 w? w w w
M = 1 -1 r —r s —s
1 -1 a —a b =b
1 -1 ¢ —c¢ d —d

Now since the last three rows must form a ternary triangle, we conclude that the
matrix must be of the following form:

1 1 1 1 1 1
1 1 w w o w? w?
2 2

M= 1 1 w w w w
1 -1 r - s -5
1 -1 wr —wr w?s —w’s
1 -1 w’r —w?>r ws -—ws

But this matrix is equivalent to Fé;), and we are done. See [13]. 4

Summing up all the above, we have proved the following theorem, from [13]:

THEOREM 6.20. The reqular complex Hadamard matrices at N = 6 are:

(1) The deformations Fﬁ(rs), Fﬁ(g) of the Fourier matrixz Fy.
(2) The Haagerup matriz H.
(3) The Tao matriz Tg.

ProoF. This follows indeed from the trichotomy from Proposition 6.15, and from the
results in Proposition 6.16, Proposition 6.17 and Proposition 6.19. See [13]. O

All this is quite nice, and our belief is that the N = 7 classification is doable as well.
Here we have 3 possible cycle structures, namely 3+ 2+ 2, 5+ 2, 7, and some elementary
number theory shows that 5 4 2 is excluded, and that 3 + 2 4+ 2 and 7 cannot interact.
Thus we have a dichotomy, and our conjecture is as follows:
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CONJECTURE 6.21. The regular complex Hadamard matrices at N =7 are:

(1) The Fourier matriz F.
(2) The Petrescu matriz Py.

Regarding (1), one can show indeed that F7 is the only matrix having cycle structure
7, with this being related to more general results from [55]. As for (2), the problem is that
of proving that P? is the only matrix having cycle structure 3+ 2 + 2. The computations
here are unfortunately far more involved than those at N = 6, briefly presented above,
and finishing the classification work here is not an easy question.

As a conclusion to all this, when imposing the regularity condition, things simplify a
bit, with respect to the general case, according to a kind of N — N + 1 rule. To be more
precise, the difficulties in the general case are basically of real algebraic geometry nature,
and can be labeled as easy at N < 4, hard at N = 5, and not solved yet at N = 6. As
for the regular case, here the difficulties are basically of design theory nature, and can be
labeled as easy at N < 5, hard at N = 6, and not solved yet at N = 7.

Besides the classification questions, there are as well a number of theoretical questions
in relation with the notion of regularity, that we believe to be very interesting. We have
for instance the following conjecture, going back to [13], and then to [23]:

CONJECTURE 6.22 (Regularity Conjecture). The following hold:

(1) Any Butson matrix H € My(C) is regular.
(2) Any regular matric H € My (C) is an affine deformation of a Butson matriz.

In order to comment on the first conjecture, let us recall from Theorem 6.9 that in the
case where the level of the Butson matrix has at most 2 prime factors, [ = p® or | = p®q®,
any vanishing sum of roots of unity, and in particular the various scalar products between
rows, decompose as a sum of cycles. Thus, in this case, the conjecture holds.

The problem appears when the level [ has at least 3 prime factors, for instance when
[ = 30. Here we have “exotic” vanishing sums of roots of unity, such as the following one,
with w = e2™/30_ discussed after Definition 6.8 above:

W+ wt +w+w® +wt+w?® =0

The conjecture states that such an exotic vanishing sum of roots of unity cannot be
used in order to construct a complex Hadamard matrix, as part of the arithmetics leading
to the vanishing of the various scalar products between rows. This looks like a quite
difficult question, coming however with substantial computer evidence. We have no idea
on how to approach it, abstractly. See [13].
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As for the second conjecture, this simply comes from the known examples of regular
Hadamard matrices, which all appear from certain Butson matrices, by inserting parame-
ters, in an affine way. This conjecture is from [23], and we will further discuss the notion
of affine deformation, with some general results on the subject, in chapters 7-8 below.

6d. Partial matrices

As already mentioned above, after Conjecture 6.11, one way of getting away from these
algebraic difficulties is by doing N >> 0 analysis for the partial Hadamard matrices, with
counting results in the spirit of [45]. Following [7], let us start with:

DEFINITION 6.23. A partial Butson matriz (PBM) is a matriz
H e MMXN(Zq>

having its rows pairwise orthogonal, where Z, C C* is the group of g-roots of unity.

Two PBM are called equivalent if one can pass from one to the other by permuting
the rows and columns, or by multiplying the rows and columns by numbers in Z,. Up to
this equivalence, we can assume that H is dephased, in the sense that its first row consists
of 1 entries only. We can also put H in “standard form”, as follows:

DEFINITION 6.24. We say that that a partial Butson matric H € Myxn(Zg) is in

standard form if the low powers of
w = 62m’/q

are moved to the left as much as possible, by proceeding from top to bottom.

Let us first try to understand the case M = 2. Here a dephased partial Butson matrix
H € Msyn(Z,) must look as follows, with \; € Z, satisfying Ay + ...+ Ay = 0:

H=(3 )

With ¢ = pht .. .pls. we must have, according to Lam and Leung [66]:
NepN+.. . +pN

Observe however that at s > 2 this obstruction dissapears at N > pps.

Let us discuss now the prime power case. We have:

PROPOSITION 6.25. When q = p* is a prime power, the standard form of the dephased
partial Butson matrices at M = 2 is

1 1 ... 1 e 1 1 o 1
H = 1 woLow?PT L TP e/t et
~ ~— ~—— —\— ~—
al ao aq/p al ag aq/p

where w = >/ and where a4, . . . s aq/p € N are multiplicities, summing up to N/p.
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PROOF. Indeed, it is well-known that for ¢ = p* the solutions of A\; + ...+ Ay = 0
with \; € Z, are, up to permutations of the terms, exactly those in the statement Il
Now with Proposition 6.25 in hand, we can prove

THEOREM 6.26. When q = p® is a prime power, the probability for a randomly chosen
M € Msyyn(Z,), with N € pN, N — oo, to be partial Butson is

p gy
[P A
(27 N)T»
PRrROOF. First, the probability Py, for a random M € My« n(Z,) to be PBM is

Py = —x#PBMyxn

Thus, according to Proposition 6.25, we have the following formula

P 1 Z ( N )
2 qN B Ap...Q1 ... ... Ag/p - - - Qg/p
ai+..+ag/p=N/p “— —
p p
“ i) 2 G
N/p N/p ai+...4aq/,=N/p 4 a/p
P

piN(N/p.].v. N/p> T, D i < " )

..a
a1+ +ag = a/p
p

Now by using the Stirling formula for the left term, and the basic multinomial sum
estimate from chapter 4 with s = ¢/p and n = N/p for the right term, we obtain

(q/p)»" "
27TN p—1 27T

P
N/p( -1)(p—-1)

B pp—fp 1)- +1+(1—1 )(p— l)qq(p 1)
- (QWN);D*H(%*U(?* )

2—7 qg—4

p rq °
(2rN)*™»

P,

Thus we have obtained the formula in the statement, and we are done

O
Let us discuss now the case where M = 2 and ¢ = p]fl p’§2 has two prime factors. We

first examine the simplest such case, namely g = pips, with pi, po primes
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PROPOSITION 6.27. When q = p1ps is a product of distinct primes, the standard form
of the dephased partial Butson matrices at M = 2 is

1 1 o 1 AU 1 1 . 1
H= 1 wooL.owPr o TP ezl gl
~— ~ —— ~—— —— ~—
A1 A2 Alpy Apq1 Ap2 Ap1po

where w = 2™ and A € M, +p,(N) is of the form A;; = B; + C;, with B;,C; € N.

ProOOF. We use the fact that for ¢ = pyp, any vanishing sum of g-roots of unity
decomposes as a sum of cycles. Now if we denote by B;, C; € N the multiplicities of the
various py-cycles and pi-cycles, then we must have A;; = B; + C}, as claimed. O

Regarding now the matrices of type A;; = B; + C;, when taking them over integers,
B;,C; € Z, these form a vector space of dimension d = p; +ps — 1. Given A € M,, «,,(Z),
the “test” for deciding if we have A;; = B; + C} or not is:

Aij + Akl = Ail + Ajk

The problem comes of course from the assumption B;, C; > 0, which is quite a subtle
one. In what follows we restrict the attention to the case p; = 2. Here we have:

THEOREM 6.28. For q = 2p with p > 3 prime, Py equals the probability for a random
walk on ZP to end up on the diagonal, i.e. at a position of type (t,...,t), witht € Z.

PRrROOF. According to Proposition 6.27 above, we must understand the matrices A €
My, (N) which decompose as follows, with B;, C; > 0:

Ay =Bi+C,

But this is an easy task, because depending on the value of A;; compared to the value
of Ay we have 3 types of solutions, as follows:

ay ... Qp

ay ... Qp
aq ap
ap+t ... ap+t

ap+t ... ap+t
aq Qp

Here a; > 0 and t > 1. Now since cases 2,3 contribute in the same way, we obtain:

a1,0a1,...,0p,0p

2¥a;,=

N

NZ Z (al,a1+t,...,ap,ap+t)

t>1 2¥a;+pt=N
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We can write this formula in a more compact way, as follows:
1 N
Py X )
N
(2p) 12 250, plt=n NN - ap, ap £t
Now since the sum on the right, when rescaled by W, is exactly the probability for

a random walk on ZP to end up at (¢,...,t), this gives the result. O

According to the above result we have P, =%, , Pz(t), where PZ(t) with ¢ € Z is the
probability for a random walk on ZP to end up at (¢,...,t). Observe that, by using the
basic binomial sum estimate from [79], explained in chapter 4 above, we obtain:

N AT I |

ai+...+ap
2 pP
V 7N 2r=1(gN)p~1
p

= 2y/(5w)

Regarding now the probability PQ(t) of ending up at (¢,...,t), in principle for small ¢
this can be estimated by using a modification of the method in [79]. However, it is not
clear on how to compute the full diagonal return probability in Theorem 6.28.

12

Let us discuss now the exponents ¢ = 3p. The same method as in the proof of Theorem
6.28 works, with the “generic” solution for A being as follows:

aq Qp
A= a; +t a,+1t
ar+s+t ... apt+s+t

More precisely, this type of solution, with s,# > 1, must be counted 6 times, then its
s=0,t>1and s > 1,t = 0 particular cases must be counted 3 times each, and finally
the s =t = 0 case must be counted once. Observe that the s =t = 0 contribution is:

A = g (o) > (N/B)

ai+...+ap

27 " PP
2rN)2 ~\ 3127 N/3)20 D)

= 33 (L)p

2T N
Finally, regarding arbitrary exponents with two prime factors, we have:

12
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PROPOSITION 6.29. When q = p’flpé€2 has ezactly two prime factors, the dephased

partial Butson matrices at M = 2 are indexed by the solutions of
Aijay = Bijy + Ciay
with Bijy, Cjey € N, with ¢ € Zy,,, j € Zpllclfl, x €Ly, Yy € Zpngl.

Proor. We follow the method in the proof of Proposition 6.27. First, according to
[66], for g = plfl p;” any vanishing sum of ¢-roots of unity decomposes as a sum of cycles.
Let us first work out a simple particular case, namely ¢ = 4p. Here the multiplicity

matrices A € Myy,(N) appear as follows:

B, ... B e c,
B ... B D, D,
A=1B, ... B| | c,
B, ... B D, D,

Thus, if we use double binary indices for the elements of {1,2, 3,4}, the condition is:
Aijz = Bij + Cjy
The same method works for any exponent of type ¢ = plfl p’gz, the formula being:
Ail..jkl LTy Bil...ikl,:pg...sz + Cig../ikl L1 Ty
But this gives the formula in the statement, and we are done. U

At M = 3 now, we first restrict attention to the case where ¢ = p is prime. In this
case, the general result in Proposition 6.29 becomes simply:

1 1 1
H = 1 w ... wPt
— —— =~

We call a matrix A € M,(N) “tristochastic” if the sums on its rows, columns and
diagonals are all equal. Here, and in what follows, we call “diagonals” the main diagonal,
and its p — 1 translates to the right, obtained by using modulo p indices. With this
convention, here is now the result at M = 3:

PROPOSITION 6.30. For p prime, the standard form of the dephased PBM at M = 3

18
1 1 1 1 1 o 1
1 1 1 wP~l P! wbP™1
I— SRTTRRTE . B
1 woo..oowPTE 1 W CoowPt
~— ~—~— ~ ~—~—
A1l Aiz Aip Ap1 Ap2 App

where w = €>™/P and where A € M,(N) is tristochastic, with sums N/p.
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PRrOOF. Consider a dephased matrix H € Msyn(Z,), written in standard form as in
the statement. Then the orthogonality conditions between the rows are as follows:

11 2means Ajy +...+Ap=An+...+ A =...... =An+...+ A,

11 3means Ajy +...+ A =An+...+A4p=...... =Ap+... + A,

21 3means Ay ...+ A=A+ ...+ A, =...... =A,+. + A

Thus A must have constant sums on rows, columns and diagonals, as claimed. Il

It is quite unobvious on how to deal with the tristochastic matrices with bare hands.
For the moment, let us just record a few elementary results:

PROPOSITION 6.31. For p = 2,3, the standard form of the dephased PBM at M = 3
is respectively as follows, with w = ¢**/* and a +b+c= N/3 at p = 3:

( +  +
+
\/ —~ ~ —~~
N/4 N/4 N/4 N/4
1
L
w

1 1 1 1 1 1 1 1

! 1 wooow  ow  w? o w? w?
H = 2 2
1 w 1 w w 1 w w

Also, for p > 3 prime and N € pN, there is at least one Butson matriv H € Msyn(Zy).

PROOF. The idea is that the p = 2 assertion follows from Proposition 6.30, and from
the fact that the 2 x 2 tristochastic matrices are as follows:

(0

As for the p = 3 assertion, once again the idea is that this follows from Proposition
6.30, and from the fact that the 3 x 3 tristochastic matrices are as follows:

a b ¢
A=1b ¢ a
c a b

Indeed, the p = 2 assertion is clear. Regarding now the p = 3 assertion, consider an
arbitary 3 x 3 bistochastic matrix, written as follows:

a b n—a—>=bt
A= d c n—c—d

n—a—d n—b—c *
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Here x = a+ b+ ¢+ d —n, but we won’t use this value, because one of the 3 diagonal
equations is redundant anyway. With these notations in hand, the conditions are:

b+(n—c—d)+(n—a—d)=n

(n—a—-b)+d+(n—b—c)=n

Now since substracting these equations gives b = d, we obtain the result.
Regarding now the last assertion, consider the following p X p permutation matrix:

Since this matrix is tristochastic, for any p > 3 odd, this gives the result. U

Regarding now the asymptotic count, we have here:
THEOREM 6.32. For p = 2,3, the probability for a randomly chosen

M € Msun(Zy)

with N € pN, N — oo, to be partial Butson is respectively given by

0 if N ¢ 4N
at p =2, and
PO 243V/3
5T (2rN)3

at p = 3. In addition, we have P?)(p) > 0 for any N € pN, for any p > 3 prime.

PROOF. According to Proposition 6.31, and then to the Stirling formula, we have:

po _ L N ~ 10
°  AN\N/4,N/4,N/4,N/A) — /(27 N)3
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Similarly, by using the basic estimate with s = p =3, n = N/3, we have:

1 N
P(3) - =
3 9N Z <a, b,c,b,c,a,c, a, b)

a+b+c=N/3

- 3iN<N/3,N]\/73,N/3> X?%N 2 ((ivb/i)?’

atb+c=N/3
33 81
27N (2rN/3)*
2433
~ (27N)3
Finally, the last assertion is clear from the last assertion in Proposition 6.30. U

It is possible to establish a few more results in this direction. See [8].

However, the main question remains that of adapting the methods in [66] to the root
of unity case. As a preliminary observation here, also from [8], we have:

THEOREM 6.33. The probability Py for a random H € My n(Zy,) to be partial Butson
equals the probability for a length N random walk with increments drawn from

E = {(6iéj)i<j e € Zf]\/[}

(%)

regarded as a subset Zq~’, to return at the origin.

PROOF. Indeed, with T'(e) = (e;€;)i<j, a matrix X = [e1,...,en| € Myxn(Z,) is
partial Butson if and only if:

T(er)+...+T(ey) =0
But this leads to the conclusion in the statement. O

Observe now that, according to the above result, we have:

1
Py = q(MT)N#{fb--waEE’Zfi:U}

1
- qM=DN Z 0x¢;,0

The problem is to continue the computation in the proof of the inversion formula.
More precisely, the next step at ¢ = 2, which is the key one, is as follows:

1 .
5 = z<)\,E§i>d)\
el (27T)D /[—ﬂ,ﬂ']D ‘
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Here D = (1\24 ) The problem is that this formula works when 33¢; is real, as is the case
n [66], but not when X¢; is complex, as is the case in Theorem 6.33.

6e. Exercises

There are many interesting things to be done in connection with the roots of unity,
and the corresponding Hadamard matrices, and here is a first exercise on this:

EXERCISE 6.34. Find the minimal polynomial of an arbitrary root of unity w € T.

This is standard algebra, that we used in the proof of the Butson obstruction.

Here is another exercise, once again in connection with the Butson obstruction:

EXERCISE 6.35. Develop the theory of the conjecture Hs,(3) # 0, in analogy with the
theory of the Hadamard conjecture, namely Hy,(2) # .

This is of course a bit loosely formulated, the problem being that of finding some good
results here, including evidence at small values of n € N, and so on.

Here is now an exercise in connection with the sums of roots of unity:

EXERCISE 6.36. Prove that for any | € N, any vanishing sum of l-roots of unity
appears as a sum of cycles, with Z coefficients.

This is something that we already discussed in the above, but very briefly, with the
indication that this should follow from basic number theory, via arguments which are
similar to those from the proof of the Butson obstruction.

Here is another exercise on the same topic, more advanced:

EXERCISE 6.37. Prove that for | = p®q®, any vanishing sum of l-roots of unity appears
as a sum of cycles.

To be more precise here, we already know that the conclusion in the statement holds
in the case [ = p*. The problem is that of adapting that proof, from the case [ = p®, to
the case [ = p?¢®. This is not exactly easy, but with some work, can be done.

And here is another exercise, even more advanced:

EXERCISE 6.38. Read the proof of the Lam-Leung theorem, stating that the lenght of
a vanishing sum of roots of unity should equal the length of a sum of cycles, and write
down a brief account of that proof, explaining the main ideas there.

Obviously, this is something quite time-consuming. However, this is worth the effort,
the paper of Lam-Leung being an excellent introduction to advanced algebra.

Here is now an exercise in connection with the notion of regularity:
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EXERCISE 6.39. Work out all the details for the dichotomy in Proposition 6.18.

To be more precise here, Proposition 6.18 above comes with 1/2 page of proof, which
is quite brief, and the problem is that of adding 1 page or so of details.

Along the same lines, we have the following exercise, at N = T7:

EXERCISE 6.40. Prove that the 7 X 7 reqular matrices can only have
3+24+2 |, 542 , 7

as cycle structure, then prove that the case 5+ 2 is actually excluded.

Here the first assertion is something trivial, and the problem is that of finding the
good number theoretic argument for excluding the case 5 + 2.

Assuming the above exercise done, we have the following continuation to it:

EXERCISE 6.41. In the context of the previous exercise, prove that the cases
3+242 7

do not interact, in the sense that a reqular 7 x 7 Hadamard matriz has either all scalar
products between the rows of type 3+ 2 + 2, or of type 7.

As before, with the previous exercise, the problem is that of finding the good number
theoretic argument which applies, and gives the result.

Along the same lines, we have as well the following exercise:

EXERCISE 6.42. Prove that the Fourier matriz Fy is the only 7 x 7 complex Hadamard
matrix having cycle structure 7.

This exercise is independent from the previous exercises, and is of different nature too,
the problem here being not number theoretic, but rather purely combinatorial.



CHAPTER 7

Geometry, defect

7a. Affine deformations

In this chapter and in the next one we discuss various geometric aspects of the complex

Hadamard matrices. Let us recall that the complex Hadamard manifold appears as:

Xy = My(T) NV NUy

This intersection is far from being smooth. Given a point H € Xy, the problem is

that of understanding the structure of X around H, which is often singular.

for ¢ € Ty, meaning that ¢ € T is close to 1, we define ¢" with r € R by ()" = €.

We denote by X, an unspecified neighborhood of a point in a manifold, p € X. Also,

itr

With these conventions, we have the following result:

PROPOSITION 7.1. For H € Xy and A € My(R), the following are equivalent:
(1) The following is an Hadamard matriz, for any q € Ty:

H% = Hiquij
(2) The following equations hold, for any i # j and any q € T;:

ZHikijink_Ajk =0
k
(3) The following equations hold, for any i # j and any ¢ : R — C:
> HuHjyp(Ai — Agp) = 0
k
(4) For any i # j and any v € R, with Ej; = {k|Ay — Ajx = 1}, we have:

kEE],

PROOF. These equivalences are all elementary, and can be proved as follows:

153
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(1) <= (2) Indeed, the scalar products between the rows of H? are:

<H;1,H;1 > = ZHikinkﬁjkquk
k

= Z Hikﬁjkink_Ajk
k

(2) = (4) This follows from the following formula, and from the fact that the power
functions {¢"|r € R} over the unit circle T are linearly independent:

ZszH g = Zq Z Hy Hjy,

reR k:EET

(4) = (3) This follows from the following formula:

ZszijSD( ik ng Z Hlkﬁ]k

reR keE7;
(3) = (2) This simply follows by taking ¢(r) = ¢". d

In order to understand the above deformations, which are “affine” in a certain sense,
it is convenient to enlarge the attention to all types of deformations.

We keep using the neighborhood notation X, introduced above, and we consider func-
tions of type f : X, — Y,, which by definition satisfy f(p) = ¢. We have:

DEFINITION 7.2. Let H € My (C) be a complex Hadamard matriz.
(1) A deformation of H is a smooth function f: Ty — (Xy)g-
(2) The deformation is called “affine” if fi;(q) = Hijq"9, with A € My(R).
(3) We call “trivial” the deformations of type fi;(q) = H;jq%*%, with a,b € RY.

Here the adjective “affine” comes from the formula f;(e™) = H,;e*i*, because the
function t — A;;t which produces the exponent is indeed affine.

As for the adjective “trivial”, this comes from the fact that the affine deformations of
type f(q) = (Hijq%*"%);; are obtained from H by multiplying the rows and columns by
certain numbers in T, so are automatically Hadamard.

The basic example of an affine deformation comes from the Dita deformations H ®¢ K,
by taking all parameters ¢;; € T to be powers of ¢ € T. As an example, here are the
exponent matrices coming from the left and right Dita deformations of Fy ® Fj:

a a b b a b a b
c ¢ d d a b a b
A= a a b b ’ Ar = c d ¢ d
c ¢ d d c d c d
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There are of course many other examples, which are less trivial, as for instance the
Haagerup matrix, that we met in chapters 5-6 above:

11 1 1 1
-1 T -t —1
1 —1 —1 q —q
1 —1 —1 —q ¢

- q —q v -1
1 = —q q -1 1

HE =

— = = = =

Observe that this is indeed an affine deformation of Hg = Hj, in the sense of Definition
7.2 (2) above, the matrix of exponents being as follows:

00 0 0 00
00 0 0 00
00 0 0 11
A=1o0 0 0 11
00 -1 —-100
00 -1 -100

We will see that there are many other interesting examples of affine deformations, and
that some general theory for such deformations can be developed.

In order to investigate the above types of deformations, we will use the corresponding
tangent vectors. So, let us recall that the manifold X is given by:

Xy = My(T)NVINUN
This observation leads to the following definition, where in the first part we denote by
T,X the tangent space to a point in a smooth manifold, p € X:
DEFINITION 7.3. Associated to a point H € Xy are the following objects:

(1) The enveloping tangent space: Ty Xy = Ty My(T) N TV NUy.

(2) The tangent cone Ty Xn: the set of tangent vectors to the deformations of H.
(3) The affine tangent cone Ty Xn: same as above, using affine deformations only.
(4) The trivial tangent cone T Xn: as above, using trivial deformations only.

Observe that T uXn, Ty Xy are real linear spaces, and that Ty Xy, Ty Xy are two-
sided cones, in the sense that they satisfy the following condition:

ANeR AT = NAeT
Observe also that we have inclusions of cones, as follows:
TX Xy CTHXy CTuXy C TyXy

In more algebraic terms now, these various tangent cones are best described by the
corresponding matrices, and we have here the following result:
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THEOREM 7.4. The cones Ty Xy C Ty Xy C TuXn C THXN are as follows:

(1) Ty Xy can be identified with the linear space formed by the matrices A € My(R)
satisfying:

Z HyHjp (A — Aj) = 0
%

(2) Tu XN consists of those matrices A € My(R) appearing as Ay = g;;(0), where
g: Mn(R)y — My(R)o satisfies:

Z Hyp Hjp,e?9ix =936 — ()
k

(3) TH X is formed by the matrices A € My(R) satisfying the following condition,
for any i # 7 and any q € T:

Z HiHjpg "% =0
%

(4) Tj; X is formed by the matrices A € My(R) which are of the form A;; = a;+b;,
for certain vectors a,b € RY.

ProoOF. All these assertions can be deduced by using basic differential geometry:

(1) This result is well-known, the idea being as follows. First, My(T) is defined by
the algebraic relations |H;;|? = 1, and with H;; = X;; 4+ iY;; we have:

dH;|> = d(X}+Y))
= 2(Xi X5 + YyYy)
Consider now an arbitrary vector £ € Ty My (C), written as follows:

£ = Z ai; Xij + BiYy
ij

This vector belongs then to Ty My(T) if and only if we have:
< & d|Hyl? >=0

We therefore obtain the following formula, for the tangent cone:

Aij S R}

We also know that the rescaled unitary group v/NUy is defined by the following
algebraic relations, where Hy, ..., Hy are the rows of H:

< Hi, Hj >= N(ZJ

TyMy(T) = {Z Ay (YiiXij — XiYi))
i
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The relations < H;, H; >= N being automatic for the matrices H € My(T), if for
@ # 7 welet L;; =< H;, H; >, then we have:

TyCy = {g € TyuMy(T)| < &, L;; >= 0, Vi # j}
On the other hand, differentiating the formula of L;; gives:
Lij =Y (X + Vi) (X — i) + (Xg — i) (X + Vi)
k

Now if we pick & € Ty My (T), written as above in terms of A € My(R), we obtain:

<& Ly >= iZHZ'kij(Aik — Ajr)
2

Thus we have reached to the description of ZN“HX n in the statement.

(2) We pick an arbitrary deformation, and write it as f;(e") = Hijeigij(t). Observe
first that the Hadamard condition corresponds to the equations in the statement, namely:

Z Hikijei(gik(t)_gjk(t)) =0
k

Observe also that by differentiating this formula at ¢ = 0, we obtain:

Z Hiy Hji(935,(0) — ¢31,(0)) = 0

Thus the matrix A;; = g;;(0) belongs indeed to TuXy, so we obtain in this way a
certain map, as follows:

T Xy — THXN

In order to check that this map is indeed the correct one, we have to verify that, for
any 1, 7, the tangent vector to our deformation is given by:

&ij = 95 (0) (Vi X5 — Xi;Y55)

But this latter verification is just a one-variable problem. So, by dropping all i, j
indices, which is the same as assuming N = 1, we have to check that for any point H € T,
written H = X +iY, the tangent vector to the deformation f(e®) = He™® is:

£=4g(0)(YX - XY)

But this is clear, because the unit tangent vector at H € T is n = —i(Y X — XY'), and
its coefficient coming from the deformation is:

(€)= = —ig'(0)
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(3) Observe first that by taking the derivative at ¢ = 1 of the condition (2) in Propo-
sition 7.1, of just by using the condition (3) there with the function ¢(r) = r, we get:

> HuHjp(Ai — Agp) = 0
k

Thus we have a map TH Xy — THX ~, and the fact that is map is indeed the correct
one comes for instance from the computation in (2), with g,;;(¢t) = A;;t.

(4) Observe first that the Hadamard matrix condition is satisfied, because:
> HypHjq =% = "y " HyHy,
k k

i
As for the fact that 77, Xy is indeed the space in the statement, this is clear. O

Let Zny C Xy be the real algebraic manifold formed by all the dephased N x N
complex Hadamard matrices. Observe that we have a quotient map Xy — Zy, obtained
by dephasing. With this notation, we have the following refinement of (4) above:

PROPOSITION 7.5. We have a direct sum decomposition of cones
Tp Xy =ThXn & THZN
where at right we have the affine tangent cone to the dephased manifold Xy — Zy.

PRrROOF. If we denote by MR (R) the set of matrices having 0 outside the first row and
column, we have a direct sum decomposition, as follows:

TS Xy = MY(R) @ T Zy
Now by looking at the affine cones, and using Theorem 7.4, this gives the result. [J

Summarizing, we have so far a number of theoretical results about the tangent cones
Ty Xy that we are interested in, and their versions coming from the trivial and affine
deformations, and from the intersection formula Xy = My (T) NV NUy as well.

In practice now, passed a few special cases where all these cones collapse to the trivial
cone T3 X, which by Proposition 7.5 means that the image of H € Xy must be isolated
in the dephased manifold Xy — Zy, things are quite difficult to compute.

However, as a concrete numerical invariant arising from all this, which can be effec-
tively computed in many cases of interest, we have, following [87]:

DEFINITION 7.6. The real dimension d(H) of the enveloping tangent space
TuXy = TyMy(T) N TyVNUy
is called undephased defect of a complex Hadamard matrizc H € X .
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In view of Proposition 7.5, it is sometimes convenient to replace d(H) by the related
quantity d'(H) = d(H) — 2N + 1, called dephased defect of H. See [87]. In what follows
we will rather use the quantity d(H) defined above, which behaves better with respect to
a number of operations, and simply call it “defect” of H.

We already know, from Theorem 7.4, what is the precise geometric meaning of the
defect, and how to compute it. Let us record again these results, that we will use many
times in what follows, in a slightly different form, closer to the spirit of [87]:

THEOREM 7.7. The defect d(H) is the real dimension of the linear space
TuXy = {A S MN(R)’ > HiHjp(Ai — Ajy) = O,VZ}J}
k

and the elements of this space are those making Hfj = H,;;q"v Hadamard at order 1.

PROOF. Here the first assertion is something that we already know, from Theorem 7.4
(1), and the second assertion follows either from Theorem 7.4 and its proof, or directly

from the definition of the enveloping tangent space TuX ~, as used in Definition 7.6. [
Here are a few basic properties of the defect:

PrROPOSITION 7.8. Let H € Xy be a complexr Hadamard matrix.

(1) If H ~ H then d(H) = d(H).
(2) We have 2N —1 < d(H) < N*.
(3) Ifd(H) = 2N —1, the image of H in the dephased manifold Xy — Zy is isolated.

PRrROOF. All these results are elementary, the proof being as follows:

(1) If we let K;; = a;b;H;; with |a;| = |b;| = 1 be a trivial deformation of our matrix
H |, the equations for the enveloping tangent space for K are:

Z aikaikC_ljl_?kﬁjk(Aik - Ajk) =0
k

By simplifying we obtain the equations for H, so d(H) is invariant under trivial de-
formations. Since d(H) is invariant as well by permuting rows or columns, we are done.

(2) Consider the inclusions T5; Xy C Tg Xy C THXN. Since dim(T; Xy) = 2N — 1,
the inequality at left holds indeed. As for the inequality at right, this is clear.

(3) If d(H) = 2N — 1 then Ty Xy = Tj; Xy, so any deformation of H is trivial. Thus
the image of H in the quotient manifold Xy — Zy is indeed isolated, as stated. O
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7b. Defect computations

As an illustration for the above notions, let us discuss now the computation of the
defect for the most basic examples of complex Hadamard matrices that we know, namely
the real ones, and the Fourier ones. In order to deal with the real case, it is convenient
to modify the general formula from Theorem 7.7, via a change of variables, as follows:

PROPOSITION 7.9. We have a linear space isomorphism as follows,
Ty Xy ~ {E e MN((C)‘E — B (EH),;H;; € R,Vi,j}
the correspondences A — E and E — A being given by the formulae

Eij = ZszijAzk ’ Az’j = (EH)Z]H’L]
k

with A € Ty Xy being the usual components, from Theorem 7.7 above.

PROOF. Given a matrix A € My(C), if we set R;; = A;;H;; and E = RH*, the
correspondence A — R — FE is then bijective onto My (C), and we have:

E;; = Z H Hijp Ay
2

In terms of these new variables, the equations in Theorem 7.7 become:
E; = Ej

Thus, when taking into account these conditions, we are simply left with the conditions
A;; € R. But these correspond to the conditions (EH);jH;; € R, as claimed. O

With the above result in hand, we can now compute the defect of the real Hadamard
matrices. The result here, from [85], is as follows:

THEOREM 7.10. For any real Hadamard matrix H € My(£1) we have
THXN ~ MN(R)symm
and so the corresponding defect is d(H) = N(N +1)/2.

PROOF. We use Proposition 7.9. Since H is now real the condition (FH);;H;; € R
there simply tells us that £ must be real, and this gives the result. U

As another computation now, let us discuss the case N = 4. Here we know from
section 5 above that the only complex Hadamard matrices are, up to equivalence, the
Dita deformations of Fj. To be more precise, we have the following result:
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PROPOSITION 7.11. The complex Hadamard matrices at N = 4 are, up to equivalence,
the following matrices, appearing as Dita deformations of Fy:

1 1 1 1
1 1 1 1 1 -1 ¢q —q
q __ —
F272—(1 —1>® 11 <1 —1>— 11 -1 -1
1 ¢ 1 -1 —q ¢

At g € {1,i,—1, —i} we obtain tensor products of Fourier matrices, as follows:
(1) At g =1 we have Fjy = F, ® Fy.
(2) At g = —1 we have Fj, ~ F>, ® F.
(3) At g = +i we have Fyy ~ Fy.

PRrROOF. The first assertion is something that we already know, from section 5 above.
Regarding now the ¢ = 1,7, —1, —¢ specializations, the situation here is as follows:

(1) This is clear from definitions.

(2) This follows from (1), by permuting the third and the fourth columns:

11 1 1 11 1 1
4|1 -1 -1 1 1 -1 1 -1 _
Fop = 11 -1 -1 1 1 -1 =11 Fap
1 -1 1 -1 1 -1 -1 1
(3) This follows from the following computation:
11 1 1 11 1 1
; 1 -1 +i Fi 1 ¢ =1 —i
+i — ~ —
Ba=11 1 1 4 1 -1 1 -1 Fa
1 -1 F1 + 1 —i =1 1
Here we have interchanged the second column with the third one in the case ¢ = 1,
and we have used a cyclic permutation of the last 3 columns in the case ¢ = —1. El

Let us compute now the defect of the above matrices. We will work out everything in
detail, as an illustration for how the equations in Theorem 7.7 work. The result is:

THEOREM 7.12. The defect of the 4 x 4 complex Hadamard matrices is given by
10 (¢==1)
d(F2q,2) -
8 (q#=+1)
with F§2, depending on q € T, being the matrix in Proposition 7.11.

PRrROOF. Our starting point are the equations in Theorem 7.7, namely:

Z HyHp (A — Ajy) = 0
3
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Since the ¢ > j equations are equivalent to the i < j ones, and the ¢ = j equations
are trivial, we just have to write down the equations corresponding to indices i < j. And,
with 77 = 01,02,03, 12, 13, 23, these equations are:

o O O O O O

Assume first ¢ # +1. Then ¢ is not real, and appears in 4 of the above equations.
But these 4 equations can be written in the following way:

o O O O

Now since the unknowns are real, and ¢ is not, we conclude that the terms between
braces in the left part must be all equal, and that the same must happen at right:

AOO - AOl = AlO - All = AQO - A21 = A30 - A31
AOZ - AO3 = A12 - A13 = AZQ - A23 = A32 - A33

Thus, the equations involving ¢ tell us that A must be of the following form:

a a+x e+y e
. b b+x f+y f
c c+x g+vy g
d d+x h+4+y h

Let us plug now these values in the remaining 2 equations. We obtain:

a—ctatr—c—rv—e—y+gty—e+g = 0
b—d+b+zx—d—z—f—-y+h+y—f+h = 0

Thus we must have a+¢g = c+e and b+ h = d+ f, which are independent conditions.
We conclude that the dimension of the space of solutions is 10 — 2 = 8, as claimed.
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Assume now g = +1. For simplicity we set ¢ = 1, and we compute the dephased
defect. The dephased equations, obtained by setting A,y = Ay; = 0 in our system, are:

A — A + A

—Ag + Agp + Aoz =

Az + Azp — Azz =

—An+ Aoy — App+ App + Az — Agg =
Ay — Azt — Aig + Az — Ayz + Ass

—Agy + Agp + Agy — Azp — Az + Azz = 0

o O O o O

The first three equations tell us that our matrix must be of the following form:

a a+b b
A= |c+d c d
e f e+ f

Now by plugging these values in the last three equations, these become:
—a+ct+d—a—-b+c+b—-d = 0
a—e—a—b+f—-—b+e+f = 0
—c—d+e+c—f—d+e+f =0

Thus we must have a = ¢, b = f, d = e, and since these conditions are independent,
the dephased defect is 3, and so the undephased defect is 3 + 7 = 10, as claimed. O

In general, the defect computation for the Dita deformations, of even for the usual
tensor products, is a difficult question. We will be back to this in chapter 8 below.

7c. Fourier matrices

Let us discuss now the computation of the defect of the Fourier matrix F. The main
idea here goes back to [62], with some supplementary contributions from [71], the main
formula, in the cyclic group case, was obtained in [87], the extension to the general case
was done in [6], and the corresponding deformations were studied in [72].

As a first result on this subject, we have, following [87]:

THEOREM 7.13. For a Fourier matriz F = Fg, the matrices A € Tp Xy with N = |G,
are those of the form A = PF*, with P € My(C) satisfying

Pij = Piyj; = P

where the indices i, j are by definition taken in the group G.
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PRrROOF. We use the system of equations in Theorem 7.7, namely:
Z FuFi (A — Ajr) =0
k

By decomposing our finite abelian group as G'= Zy, X ... X Zy, We can assume:
F=Fy®...0Fy,
2mi/k we have:
Fiivgrg = (wn) L (wy

With N = N; ... N, and w = €™V we obtain:

Thus with w, = e

)irjr

171 irjr
( 4.+ )]V
F. . . = N N
81 bpy g1 Jr w 1 r

Thus the matrix of our system is given by:

_ (i1 =31k (ir—gr)kr
+...+ N
F;;l---ihkl---k"r'Fjjl---jmkl---k"r' = UJ( M e )

Now by plugging in a multi-indexed matrix A, our system becomes:

(i1—J1)k1 (ir—gr)kr
§ : +...+ N
N Ny . . J— . . —
w< ! ) (A'Ll---lrvkl---kr A]l---]rykl---kr) - 0
ki...kr

Now observe that in the above formula we have in fact two matrix multiplications, so
our system can be simply written as:

(AF)il---irail_jl---ir_jr - (AF)jl---j’mil_jl---i'r_j'r = 0

Now recall that our indices have a “cyclic” meaning, so they belong in fact to the
group GG. So, with P = AF', and by using multi-indices, our system is simply:

Pii—j = Pji-j
With ¢« = I + J,j = I we obtain the condition Pr;;; = Py in the statement. In
addition, A = PF™* must be a real matrix. But, if we set P;; = PL_j, we have:

" - _
(PF )i1~~-ir;j1~~-jr - E Pil...ir,kl...krFjl.‘.jT,kl...kr
k1...kr
_ § D *
- -Pil...ir,—kl...—kr(F )—kl...—kr,j1...jr
ki...kr

= (PF")i\irrir

Thus we have PE* = PF*, so the fact that the matrix PF™ is real, which means by
definition that we have PF* = PF*, can be reformulated as PF* = PF*, and hence as

P = P. So, we obtain the conditions P;; = P, _; in the statement. O

We can now compute the defect, and we are led to the following formula:
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THEOREM 7.14. The defect of a Fourier matrix Fg is given by

d(Fg) = il

2= ordlg)

and equals as well the number of 1 entries of the matrix Fg.

PROOF. According to the formula A = PF* from Theorem 7.13, the defect d(Fg) is
the dimension of the real vector space formed by the matrices P € My(C) satisfying:
Pyj = Piyj; = Pi
Here, and in what follows, the various indices i, j,... will be taken in G. Now the
point is that, in terms of the columns of our matrix P, the above conditions are:
(1) The entries of the j-th column of P, say C, must satisfy C; = Cy4;.
(2) The (—j)-th column of P must be conjugate to the j-th column of P.

Thus, in order to count the above matrices P, we can basically fill the columns one by
one, by taking into account the above conditions. In order to do so, consider the subgroup
Go = {j € G|2j = 0}, and then write G as a disjoint union, as follows:

G=G,UXU(—X)

With this notation, the algorithm is as follows. First, for any j € Gy we must fill the
j-th column of P with real numbers, according to the periodicity rule:

Ci = Ciyj

Then, for any j € X we must fill the j-th column of P with complex numbers,
according to the same periodicity rule C; = Cj;;. And finally, once this is done, for any
j € X we just have to set the (—j)-th column of P to be the conjugate of the j-th column.

So, let us compute the number of choices for filling these columns. Our claim is that,
when uniformly distributing the choices for the j-th and (—j)-th columns, for j ¢ G,
there are exactly [G :< j >] choices for the j-th column, for any j. Indeed:

(1) For the j-th column with j € G5 we must simply pick N real numbers subject to
the condition C; = Cy4; for any i, so we have indeed [G :< j >] such choices.

(2) For filling the j-th and (—j)-th column, with j ¢ G2, we must pick N complex
numbers subject to the condition C; = C;y; for any i. Now since there are [G :< j >|

choices for these numbers, so a total of 2[G :< j >| choices for their real and imaginary
parts, on average over j, —j we have [G :< j >] choices, and we are done again.

Summarizing, the dimension of the vector space formed by the matrices P, which is
equal to the number of choices for the real and imaginary parts of the entries of P, is:

d(Fg) =) |G :<j>]

jeG
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But this is exactly the number in the statement. Regarding now the second assertion,
according to the definition of Fi, the number of 1 entries of Fg is given by:

#1eFo) = #{(9.0) € GxCxig) =1}

= Z#{x “ @‘X(g) = 1}
G|
Z ord(g)

geG

Thus, the second assertion follows from the first one. O

Let us finish now the work, and explicitely compute the defect of F. It is convenient
to consider the following quantity, which behaves better:

1
=% o

As a first example, consider a cyclic group G = Zy, with N = p* power of a prime.
The count here is very simple, over sets of elements having a given order:

6(Zpe) = 14+(p—Dp +@*—pp > +...+ (" —p* "

a
= l4+a—-
p

In order to extend this kind of count to the general abelian case, we use two ingredients.
First is the following result, which splits the computation over isotypic components:

PROPOSITION 7.15. For any finite groups G, H we have:
G x H)>0(G)d(H)
In addition, if (|G|, |H|) = 1, we have equality.

ProOF. Indeed, we have the following estimate:

(G xH) = Zm

gh

1
n ; lord(g), ord(h)]

1
%; ord(g) - ord(h)
= U(G)i(H)
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Now in the case (|G|,|H|) = 1, the least common multiple appearing on the right
becomes a product:

lord(g), ord(h)] = ord(g) - ord(h)
Thus, we have equality, as desired. Il

We deduce from this that we have the following result:

PROPOSITION 7.16. For a finite abelian group G we have

5(G) =] 4(Gy)

where G, with G = x,G,, are the isotypic components of G.
ProOF. This is clear from Proposition 7.15, the order of GG, being a power of p. [

As an illustration for the above results, we can recover in this way the following key
defect computation, from [88]:

THEOREM 7.17. The defect of a usual Fourier matriz Fy s given by
S s
g Pi
where N = pi* ...p% is the decomposition of N into prime factors.

PRrROOF. The underlying group here is the cyclic group G = Zy, whose isotypic com-
ponents are the following cyclic groups:

Gy, = Ly
By applying now Proposition 7.16, and by using the computation for cyclic p-groups
performed before Proposition 7.15, we obtain:

d(Fy) = NH (1+p; ' (pi — Day)

But this is exactly the formula in the statement. U

Now back to the general case, where we have an arbitrary Fourier matrix Fg, we will
need, as a second ingredient for our computation, the following result:

PROPOSITION 7.18. For the p-groups, the quantities
= # {g S G’m"d(g) < p’“}

are multiplicative, in the sense that ¢;,(G x H) = ¢,(G)cr(H).
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PRrROOF. Indeed, for a product of p-groups we have:
(G x H) = #{(g,h)|ord(g,h) <"}
= #{(g.m)|ord(g) < p*,ord(n) < p*}
= #{g|ordlg) < p*} # {n|orain) < p*}

We recognize at right ¢(G)c,(H), and we are done. O

Let us compute now d in the general isotypic case:

PROPOSITION 7.19. For G = Zpa X ... X Lyar with ay < ag < ... < a, we have

5(G) =14+ Zp(r—k)ak.,l+(a1+...+ak,1)—1(pr—k+l _ 1)[ak _ akfl]pr—k
k=1

with the convention ag = 0, and with the notation [a], =1+ q+¢* +...+q¢* L

PRroOOF. First, in terms of the numbers ¢, we have:

(G =1+ S _p,f’“‘l

k>1

In the case of a cyclic group G = Z,. we have ¢, = p™®*@)_ Thus, in the general
isotypic case G' = Zye1 X ... X Zpar We have:

p = min(k,a1) o pmln(k,ar)
_ pmin(k,al)—i-...—&—min(k,ar)

Now observe that the exponent on the right is a piecewise linear function of k. More
precisely, by assuming a; < ay < ... < a, as in the statement, the exponent is linear on
each of the intervals [0, a4], [a1, as], ..., [a,_1,a,]. So, the quantity 6(G) to be computed
will be 1 plus the sum of 2r geometric progressions, 2 for each interval.

In practice now, the numbers ¢, are as follows:

T 2r ra
00:1761:])702:]7 yere3Cay =P 17
_ o1+(r—1)(a1+1 _ a1+(r—1)(a1+2 _ a1+(r—1)az
Cayi1 =P (r=1)( ),Ca1+2—P (r=1)( ),---,CaQ—P (r-1) ,
_ paitaz+(r—2)(az+1 _ paitaz+(r—2)(az2+2 __ ai1tas+(r—2)as
Cas+1 =P ( X )7Ca2+2_p ( X )7"'7Ca3_p ( ) )
_ aitetar—1+(ar—1+1) _ a1t tar—1+(ar—1+2) ai+...+ar

Car—l+1 - p 7C(17«_1+2 - p g 7Car = p
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Now by separating the positive and negative terms in the above formula of §(G), we
have indeed 2r geometric progressions to be summed, as follows:

§(G) = 1+ +p" ")

p Tl p T pP T plaT e

—(
+(p r—1)(a1+1)— +p(r—1)(a1+2)—2 + ... +pa1+(r—2)a2)
(palr a;—1 +p(r 1)(a1+1)—2 4+ pa1+(r71)(a271)7a2)

+<pa1+..-+ar—1 + pal+...+ar—1 + ... +pa1+~--+ar—l)
_(pa1+...+am_rl 4 pa1+...+ar_171 4o +pa1+...+ar_rl)

Now by performing all the sums, we obtain:

p(r—l)al -1
pr—l -1
p(T—Q)(az—al) -1

5(G) = 1+p'(p —1)

_|_p(7"—2)a1+(a1—1) (p’r‘—l _ 1)

pr72 _ 1
(r=3)(az—a2) _q
r—oa)a a a2 — T— p
+p( 3)az+(a1+a2 1)(p 2 1) pT_3 —

+ptrteter=ip — 1) (ar — ay—1)

By looking now at the general term, we get the formula in the statement. U

Let us go back now to the general defect formula in Theorem 7.14. By putting it
together with the various results above, we obtain:

THEOREM 7.20. For a finite abelian group G, decomposed as G = x,G,, we have

d(FG) — ’G| H (1 + Zp(T*k’)ak—1+(a1+...+ak71)*1<p1”7k’+1 _ 1)[ak . akl]pr—k’>

P k=1
where ag = 0 and a1 < ax < ... < a, are such that Gy, = Zpar X ... X Lpar.
ProOOF. Indeed, we know from Theorem 7.14 that we have:
d(Fe) = [G[o(G)

The result follows then from Proposition 7.16 and Proposition 7.19. O
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As a first illustration, we can recover in this way the formula in Theorem 7.17. As-
suming that N = pi*...p% is the decomposition of N into prime factors, we have:

d(Fy) = NH (1+p7 ' (pi — Das)

a;
= Ng (1 +a; — E)
As a second illustration, for the group G = Zpa X Zyex with a1 < ag we obtain:
d(Fg) = p" (1 +p~ (p* = Daaly +p" ' (p = 1)(az — a1))
= P (0 — D 7 (= Dl )
= p" T p+ (p+ D™ — 1) +p" (p — (a2 — ar))

In general, the formula becomes quite complicated.

Finally, let us mention that for general non-abelian groups, there does not seem to
be any reasonable algebraic formula for the quantity §(G). As an example, consider the
dihedral group Dy, consisting of N symmetries and N rotations. We have:

N
d(Dy) = > +0(Zn)
Now remember the formula for Zy, namely:

0(Zy) = [ [ + 27 (i = Das)

)

It is quite clear that the N/2 factor can not be incorporated in any nice way. See [6].

7d. Explicit deformation
Let us prove now, following the paper of Nicoara and White [72], that for the Fourier
matrices the defect is “attained”, in the sense that the deformations at order 0 are true
deformations, at order co. This is something quite surprising, and non-trivial.
Let us begin with some generalities. We first recall that we have:
PrROPOSITION 7.21. The unitary matrices U € Uy around 1 are of the form
U=¢e

with A being an antihermitian matriz, A = —A*, around 0.
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ProoF. This is something well-known. Indeed, assuming that a matrix A is antiher-

mitian, A = —A*, the matrix U = e follows to be unitary:
Uuur = et
= pAAT
_ ApA
=1

As for the converse, this follows either by using a dimension argument, which shows
that the space of antihermitian matrices is the correct one, or by diagonalizing U. U

Now back to the Hadamard matrices, we will need to rewrite a part of the basic theory
of the defect, using deformations of type t — U;H. First, we have:

THEOREM 7.22. Assume that H € My(C) is Hadamard, let A € My(C) be antiher-
mitian, and consider the matrix UH, where U = 4, with t € R.

(1) UH is Hadamard when, for any p,q:
| Z Hrqqu(etA)pr(eitA)szv’ =1

(2) UH is Hadamard at order 0 when, for any p,q:
[(AH )| =1

ProoOF. We already know that UH is unitary, so we must find the conditions which
guarantee that we have UH € My(T), in general, and then at order 0.

(1) We have the following computation, valid for any unitary U:
’(UH)qu = (UH)pq(UH)pq
= (UH>pq(H*U*)qp
= ZUerrq(H*)qS(U*)SP

rSs

= Z HrqquUprUps

rs

Now with U = e/ as in the statement, we obtain:
| AL pq|2 Z (e—tA)Sp

Thus, we are led to the conclusion in the statement.
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(2) The derivative of the function computed above, taken at 0, is as follows:

O|(e"H),,|?
%“:0 - ZH“I tAA pr( etAA)Sp\t:O

— ZHHA —A),,

Y AL A,

= (AH>pq(H*A*)qp
= |(AH),/?

Thus, we are led to the conclusion in the statement. U
In the Fourier matrix case we can go beyond this, and we have:

PROPOSITION 7.23. Given a Fourier matriz Fg € Ma(C), and an antihermitian ma-
triz A € Mg(C), the matriz H = UFg, where U = !4 with t € R, is Hadamard when

()2 At

for any p, with the indices being k,l,m € N, and n,p,s € G.

= 577,0

m|
k+l=m

PROOF. According to the formula in the proof of Theorem 7.22 (1), we have:

‘(UFG)qu = Z(FG)Tq(F_G)sq(etA)pr(e_tA)SP

rs

= Z <r,qg><—s5,q> ("), (e,
= Y < s> (e,

By setting n = r — s, can write this formula in the following way:

(UFa)pl* = Z <n,q>( ps+n< 7tA)5p

= Z <n,q > Z etA p,ern eitA)sp
n s

Since this quantity must be 1 for any ¢, we must have:

Z (etA)P,H-n (e_tA)SP = 0no

s
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On the other hand, we have the following computation:

tA —tA (tA)];,s+n (_tA)ép
Z(e )p,ern(e )Sp = ZZ -l : T

s s kl
1
= Z ; W Z(tA)];,s+n(_tA>lsp
tk+l X .
= Z Z W Z Ap,s-f—n(_A)sp
s kl s
DI D) SIS
S m k+l=m S
tm
- ZZ % Z (77) ZAIC,SJrn(_A)ip
s m k+Il=m s
Thus, we are led to the conclusion in the statement. Il

Following [72], let us construct now the deformations.

The result here is something quite surprising, which came a long time after the original
defect paper [87], and even more time after the early computations in [62]:

THEOREM 7.24. Let G be a finite abelian group, and for any g,h € G, let us set:
5 {1 if Ik € N,p = hFg,q = hF*lg

pg — .
0 otherwise

When (g, h) € G? range in suitable cosets, the unitary matrices

et(B—Bt)F

. t
ezt(B—f—B )FG’ P

Y

are both Hadamard, and make the defect of F to be attained.

PROOF. The proof of this result, from [72], is quite long and technical, based on the
Fourier computation from Proposition 7.23 above, the idea being as follows:

(1) First of all, an elementary algebraic study shows that when (g,h) € G? range
in some suitable cosets, coming from the proof of Theorem 7.14, the various matrices
B = B9 constructed above are distinct, the matrices A = i(B + B') and A’ = B — B!
are linearly independent, and the number of such matrices equals the defect of Fi.

(2) It is also standard to check that each B = (B,,) is a partial isometry, and that
B* B** are given by simple formulae. With this ingredients in hand, the Hadamard
property follows from the Fourier computation from the proof of Proposition 7.23. Indeed,
we can compute the exponentials there, and eventually use the binomial formula.
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(3) Finally, the matrices in the statement can be shown to be non-equivalent, and this
is something more technical, for which we refer to [72]. With this last ingredient in hand,
a comparison with Theorem 7.14 shows that the defect of Fi is indeed attained, in the
sense that all order 0 deformations are actually true deformations. See [72]. U

Finally, let us mention that [72] was written in terms of subfactor-theoretic commuting
squares, with a larger class of squares actually under investigation. We will discuss the
relation between Hadamard matrices and commuting squares in chapter 14 below.

7e. Exercises
Here is a first exercise, in connection with general geometric aspects:
EXERCISE 7.25. Prove that the Hadamard matriz manifold
Xy = My(T)NVNUy
is in general not smooth, and nor it is a complex algebraic manifold.

In order to deal with such questions, the best is to try at small values of N € N, by
using the classification results from chapter 5 above.

Along the same lines, we have the following exercise:
EXERCISE 7.26. Prove that the dephased Hadamard matriz manifold
Zy={He XN)HU — Hy =1}
15 in general not smooth, and not a complex algebraic manifold either.

As with the previous exercise, trying N € N small is the way to go.

The above two exercises show that, no matter whether we prefer to deal with Xy
or with Zy, what we have is a real algebraic manifold. In order to be complete, let us
formulate as well an exercise about what happens modulo equivalence:

EXERCISE 7.27. Prove that the set Ey formed by the N x N complex Hadamard
matrices modulo the equivalence relation is given by

En = ZN/(SNA X Sn-1)
and compute this set at N = 2,3,4,5.

As before, in order to solve this problem, the best idea is that of using the various
classification results from chapter 5 above.

In relation now with the defect, we first have:

EXERCISE 7.28. Work out the formula of the dephased defect of the Fourier matrix
Fy, and then of the generalized Fourier matriz Fg.
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As a comment here, if the final formulae do not look very good, this is normal. This
exercise is precisely there for showing that the undephased defect is the good quantity to
look at, and so that what we did in the above is indeed the thing to do.

Here is now an instructive exercise about the real case:
EXERCISE 7.29. Find an alternative proof for the formula
N(N +1)

a() = ==

for the real Hadamard matrices, H € My(%1).

To be more precise here, the above formula was fully proved in the above, by using
the general defect equations from the complex case, and then a number of tricks. The
problem is that of finding a purely combinatorial proof of this.

Along the same lines, we have the following exercise:

EXERCISE 7.30. Find the defect of the following matriz,

-1 1 1 1
1 -1 1 1
Ky = 1 1 -1 1
1 1 1 -1

via the simplest possible proof.

There are many things that can be tried here, such as solving the previous exercise
first, and then trying to see if there are simplifications in the case H = Ky, or using the
general computations that we did for FQ’{ 5, at a suitable value of ¢ € T.

Here is now a more difficult exercise, in connection with the notion of isolation:

EXERCISE 7.31. Prove that the Tao matriz,

1 1 1 1 1 1
1 1 w w w w?
o |1 w1 w? w? w
671 o w w1 ow w?
1 w? v w 1 w
1 w? w w? w 1
with w = e2™/3

, 15 1solated in the dephased Hadamard matriz manifold.

To be more precise, the problem here is that of computing the defect of this matrix
Ts. Normally this can be done with the defect equations that we have, and some time
invested into this problem, or a computer. Alternatively, one can try to find the affine
deformations of Ty, by using combinatorics and ad-hoc techniques.
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Here is now a theoretical question regarding the defect:
EXERCISE 7.32. Is the defect always equal to the number of 1 entries?

It is of course hard to believe that it is so, and the problem is that of finding the
simplest counterexample to this, knowing that the Fourier matrices won’t work.

As another theoretical question, we have:
EXERCISE 7.33. Prove that given two Hadamard matrices H, K, we have:
d(H® K) > d(H)d(K)
Is this actually always an equality, or not?

Here the first part does not look very difficult, and for the second part we just need a
counterexample, based on the various defect computations performed so far.

As yet another theoretical question, we have:

EXERCISE 7.34. Develop a defect theory for the partial Hadamard matrices
H e MMXN(T)
notably by finding the defect equations, in this setting.

This is actually something that we will discuss later in this book, but with no complete
proof for the defect equations. Thus, this is a good exercise to be solved now.



CHAPTER 8

Special matrices

8a. Deformed products

We have seen in the previous chapter that the defect theory from [87] can be suc-
cessfully applied to the real Hadamard matrices, and to the generalized Fourier matrices.
Following (2], [5], [6], [23], [69], [87], [88], we discuss here a number of more specialized
questions, once again in relation with the defect, regarding the following matrices:
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Let us begin with the tensor products. We have here the following result:
ProOPOSITION 8.1. For a tensor product L = H ® K we have
d(L) > d(H)d(K)
coming from an inclusion of linear spaces, as follows:
Tu X @ T Xn C T X
The above inequality is not an equality, in general.
ProOF. We have several things to be proved, the idea being as follows:

(1) Let us first prove that we have the inclusion of linear spaces in the statement. For
this purpose, we use the defect equations found in chapter 7, namely:

Z LinLi (A — Ajp) =0
2

177
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For a tensor product A = B ® C, we have the following formula:
Z(H ® K)ia,kc(H X K)j@kcAia,kc
kc

= Z HikKac . ijKbc : Bz’kCac

ke
= Z H’Lk‘ijBZk‘ Z Kackbccac
k c
On the other hand, we have as well the following formula:
Z(H ® K)ia,kc(H & K)jb7kcAjb,kc

ke
= Z Hip K I_{jkbCLTKbc : Bjkcbc

kc
= Z Hz‘kijBjk Z Kachchc
k c

Now by assuming B € THX v and C € TKX N, thg two quantities on the right in the
above formulae are equal. Thus we have indeed A € T, X/, as desired.

(2) The defect inequality d(L) > d(H)d(K) follows from (1).

(3) Regarding now the equality case, this does not happen, even in very simple cases.
For instance if we consider two Fourier matrices F5, we obtain:

d(F, @ Fy) =10 > 9 = d(F)?
There are of course many other counterexamples that can be constructed. U

Generally speaking, it is quite hard to go beyond the above result. In fact, besides
the isotypic decomposition results from chapter 7 above, valid for the Fourier matrices,
there does not seem to be anything conceptual on this subject. We will be back to this,
however, in Theorem 8.3 below, with a slight advance on all this.

In what regards now the computation of the defect for the Dita deformations, which
generalize the usual tensor products, this is an even more difficult question. Our only
result here will concern the case where the deformation matrix is generic:

DEFINITION 8.2. A rectangular matriz () € My;«n(T) is called “dephased and else-
where generic” if the entries on its first row and column are all equal to 1, and the
remaining (M — 1)(N — 1) entries are algebrically independent over Q.

Here the last condition takes of course into account the fact that the entries of @)
themselves have modulus 1, the independence assumption being modulo this fact. With
this convention made, we have the following result, from [6]:
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THEOREM 8.3. Assume that H € X, K € Xy are dephased, of Butson type, and
that Q € My«n(T) is dephased and elsewhere generic. We have then

A= (Aiage) € fH@;QKXMN
when the following equations are satisfied,

i AW
Aac - Abc

A=A
(Al),, € Tk Xy
for any a,b,c and i # j, where:

A= Z HixHji Ao ke
p

Proor. Consider the standard system of equations for the enveloping tangent space
in the statement, namely:

Z(H ®Q K)iake(H ®q K) jy 1o (Aia e — Ajoie) =0
kc

We have the following formula:
(H ®¢ K)iajb = qinHij Kap

Thus, our system of equations is:
Z GicQje K ac Kpe Z HiHip(Aiage — Ajpre) =0
c k
Consider now the variables in the statement, namely:
AY = Z Hi Hip Aso e
k
The conjugates of these variables are given by:

Afzjc = ZﬁiszjkAia,kc
k

= > HjyHi Ao ke
k
Thus, in terms of these variables, our system becomes simply:

Z QiCQjcKachc(Ag; - Aiz) =0

More precisely, the above equations must hold for any i, j, a, b. By distinguishing now
two cases, depending on whether 7, j are equal or not, the situation is as follows:
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(1) Case i # j. In this case, let us look at the row vector of parameters, namely:
(¢icGjc)e = (1, @11, - - - QGineins)
Now since @) was assumed to be dephased and elsewhere generic, and because of our
assumption ¢ # j, the entries of the above vector are linearly independent over Q. But,

since by linear algebra we can restrict attention to the computation of the solutions over
Q, the 7 #£ j part of our system simply becomes:

A=Al | Ya,be,Vi#j
Now by making now a, b, ¢ vary, we are led to the following equations:
AY = AZJC, AY = AlL Ya,b,ci

(2) Case i = j. In this case the ¢ parameters from our equations cancel, and our
equations become:

Z Kachc<Aijc - A_élc) = O, \V/Cl, b, C,’i

Now observe that we have:
AZC - Z Aia,kc
k

Thus, our equations become:

ZKQCKI,C (A% — A%) =0, Va,b,c,i

But these are precisely the equations for the space TKX ~, and we are done. Il

Let us go back now to the usual tensor product situation, and look at the affine cones.
In view of the inclusion found in Proposition 8.1, the problem here is that of finding the
biggest subcone of 1% Xasn, obtained by gluing 1% Xy, T Xy .

Our answer here, which takes into account the two “semi-trivial” cones coming from
the left and right Dita deformations, is as follows:
THEOREM 8.4. The cones Ty Xy = {B} and T5. Xn = {C} glue via the formulae
Aia gy = ABij + ¥;Cap + Xia + Yo + Fuj
Aza Jb — ¢bBZ] + :uCab + Xza + Y;’b + Eib
producing in this way two subcones of the affine cone T Xun = {A}.

PROOF. The idea here will be that X;,, Y, are the trivial parameters, and that Ey,, Fy;
are the Dita parameters. Given a matrix A = (A, ;5), consider the following quantity:

P= Z HikF[jk’Kachchm’kc_Ajb’kc

ke
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Let us prove now the first statement, namely that for any choice of matrices B €
THXn,C € Ty Xy and of parameters A, ¢, Xiq, Yjp, Foj, the first matrix A = (A;q )
constructed in the statement belongs indeed to T Xpn. We have:

Aia,kc = )\sz + wkCac + X@'a + ch + Fak
Ajpke = ABji + VpCre + Xjp + Yie + Fig,
Now by substracting these equations, we obtain:
Aia ke — Ajp ke = M Bir — Bji) + Vr(Coe — Che) + (Xio — Xjp) + (Far — For)
It follows that the above quantity P is given by:

P = Z HikijKac[_(bcq)‘(Bik_Bjk)""wk(Cac_cbc)"!‘(xia_ij)+(Fak_Fbk)
ke

_ qua_ij Z Hikﬁjquak_FbkqA(Bik_Bjk) Z KaCKbc(q¢k)Cac—Cbc
k c

— 6aquia—Xja Z szHJk (qA)sz_B]k
k

= Oap0i
We conclude that we have, as claimed:
A€ ThorXun

In the second case now, the proof is similar. First, we have:

Aiake = ¢eBix + 11C0c + Xia + Yie + Eic

Ajp ke = OB + 1Che + Xjp + Yie + Eje
Thus by substracting, we obtain:

Aiake — Ajp ke = Oc(Bir — Bji) + 11(Coe — Che) + (Xia — Xjp) + (Eic — Eje)

It follows that the above quantity P is given by:

P = Z HikijKaCKbcq¢c(Bik_Bjk)+H(Cac_Cbc)+(Xia_ij)+(Eic_ch)
ke

_ qu*ij Z Kackbchic*chq#(Cac*Cbc) Z Hik[:[jk(q%)Bik*Bjk
c k

— 5iquia_Xib Z KaCKbC(qH)CaC_CbC

- 5ij 5ab

Thus, we are led to the conclusion in the statement. U
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We believe Theorem 8.4 above to be “optimal”, in the sense that nothing more can
be said about the affine tangent space T§ g Xun, in the general case. See [6].

Let us discuss now some rationality questions, in relation with:
DEFINITION 8.5. The rational defect of H € Xy 1is the following number:
do(H) = dimg(TxCx N My(Q))
The vector space on the right is called rational enveloping tangent space at H.

As a first observation, this notion can be extended to all the tangent cones at H, and
by using an arbitrary field K C C instead of Q. Indeed, we can set:

T: Xn(K) = T5 Xy N My (K)

However, in what follows we will be interested only in the objects constructed in
Definition 8.5. It follows from definitions that do(H) < d(H), and we have:

CONJECTURE 8.6 (Rationality). For the Butson matrices we have:
do(H) = d(H)
That is, for such matrices, the defect equals the rational defect.

More generally, we believe that the above equality should hold in the regular case.
However, since the regular case is not known to fully cover the Butson matrix case, as
explained in chapter 6, we prefer to state our conjecture as above.

As a first piece of evidence now, we have the following elementary result:
THEOREM 8.7. The rationality conjecture holds for H € Hy(l) with | = 2,3, 4,6.

PROOF. Let us recall that the equations for the enveloping tangent space are:
Z Hyp Hjp (A, — Aji) = 0
k

With these equations in hand, the proof goes as follows:

Case I = 2. Here the above equations are all real, and have 41 coefficients, so in
particular, have rational coefficients.

Case | = 3. Here we can use the fact that, with w = e*/3, the real solutions of
r+wy+w?z = 0 are those satisfying = y = 2. We conclude that once again our system,
after some manipulations, is equivalent to a real system having rational coefficients.

Case [ = 4. Here the coefficients are 1,4, —1, —i, so by taking the real and imaginary
parts, we reach once again to a system with rational coefficients.

Case | = 6. Here the study is similar to the study at [ = 3.
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Thus, in all cases under investigation, [ = 2, 3,4, 6, we have a real system with rational
coefficients, and the result follows from standard linear algebra. O

Observe that the method in the above proof cannot work at [ = 5, where the equation
a+wb+w?c+wdd+wre = 0 with w = €*™/° and a, b, ¢, d, e € R can have “exotic” solutions.
We refer to [6] for more on these topics, including more evidence for Conjecture 8.6.

Let us prove now that Conjecture 8.6 is verified for the Fourier matrices. We say that
a matrix L™ over the group Z,- X Z,s is dephased if its nonzero entries belong to:

XTS - (Zpr - Zprfl) X (Zps — Zpsfl)

Here, and in what follows, we use the convention Z,-1 = (). We have:

PROPOSITION 8.8. For F' = F, the elements A € pr’N are the solutions of
_ rs
AZ] — Z Lpafri’pufsj
r+s<a

where the L variables are free, and form dephased matrices L.

PROOF. The number of L variables is given by:
d = Y |Zy —Lyr| - |Zp — Ly

r+s<a

= Zpa_T|Zpr — Zpr71|

r<a

a
_ pa + Zpa—r(pr - pr—l)
r=1
= pFalp—1p
= (p+ap—a)p™!
Thus the number of L variables equals the defect d(F'), so it is indeed the good one.
As for the proof now, in the general case, this is quite similar to the one at a = 1, 2.
More precisely, consider the map L — A. This map is linear, and in view of the above
calculation, it is enough to prove that this map is injective, and has the correct target.
For the injectivity part, recall that at a = 2 the formula in the statement reads:

Aij = Lo + Loy + Lyio + Loj + L + Ly

a—1

Now assume A = 0. Then with i = j = 0 we get L) = 0. Using this, with i = 0
and pj = 0,7 # 0 we get L88+L832' = 0, and so LS? = 0. So, with i = 0 and pj # 0 we

therefore obtain L) 4+ Lg; + L), = 0, and so Lg!; = 0. Now the same method gives as
well succesively Ly = 0 and L)) = 0, so we are left with A;; = L; ., so we must have

Lll

vip; = 0 as well, and we are done. This method works of course for any a € N.
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Regarding now the “target” part, we must prove A € TFC’N. The equations are:

E (i—j)k s __JTs _
w Lp(L—T‘iypa—Sk Lpa—rj’pa—sk - 0
k

r+s<a

So, for any indices ¢, 7 and any r 4+ s < a, we must prove that we have:
Zwl‘j L?"i rlpa sk LTZ r uak):()

In order to do this, consider the following quantity:

E: lkrrs
zl— wLaerask

We must prove X;;_; = X;,_;. But, with k = m + p°n, we have:

1
lpn Imyrs
Xil:EE’wp EwLa'erasm
n
l
D) :me"z S
m

Thus we have [ #0 = X; =0, and so X,,_; = X,,—,; and we are done. Il
By using the above result, we obtain:
PROPOSITION 8.9. For an isotypic Fourier matriz, H = Fy with N = p*, we have
T5Cy = TuCy = TyCy = {A € My(R ‘ =) L }
r+s<a

where the L variables are free, and form dephased matrices L.

ProOOF. We just have to show that the defect of Fy is exhausted by affine deforma-
tions. With k = m + p®n, as in the proof of Proposition 8.8, we have:

— T’S rs
E HZkH]kquk_Ajk f— E w k H q p(L T‘,L pa Sk Lpa—rj’pa—sk
k

r+s<a
— Z ] p°n (Z ] TZ i pG—S Lszfr~ a—s
= w w qr i,p m p J:p m
r+s<a
. rs _Jrs
= (Sijpa E w (i=g)m | | qLPa_Tiyp“_Sm Lp“_’“j,pa—sm
m r+s<a

Now since this quantity vanishes for ¢ # j, this gives the result. U
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Observe that this result shows that Conjecture 8.6 holds for the isotypic Fourier ma-
trices. We will see in what follows that the same happens for any Fourier matrix.

In order now to discuss the general case, H = Fl, we will need:
PROPOSITION 8.10. If G = H x K s such that (|H|, |K|) = 1, the canonical inclusion
Ty Ciar) ® Tr O € TreClay
constructed in Proposition 8.1 above is an isomorphism.
Proor. We have F; = Fy« g, and the defect of this matrix is given by:
d(Fuxk) = Z %

(h,k)eHxK

. |H x K|
T ord(h)ord(k)
= d(Fu)d(Fr)
Thus the inclusion in the statement must be indeed an isomorphism. U

With this lemma in hand, the idea now will be simply to “glue” the various isotypic
formulae coming from Proposition 8.9. Indeed, let us recall from there that in the isotypic
case, N = p®, the parameter set for the enveloping tangent space is:

Xp") = || Zpy = Zyr) X (L — L)
r+s<a

Now since the defect is multiplicative over isotypic components, the parameter set in
the general case, N = pi*...p*, will be simply given by:

X(pit...ppF) = X(pi*) x ... x X (pF)

One can obtain from this an even simpler description of the parameter set, just by
expanding the product, and gluing the group components. Indeed:

DEFINITION 8.11. Given a finite abelian group G = Zp? X ... X Zp;k we set:
GO = (ZPTI“I - Zp;‘l—l) X ... X (Zp;k - szk—l)
A matriz L € Mgy (R) will be called dephased if L;; =0 for any (i,5) € G° x H°.

Observe now that, with the above notation GG°, the parameter set discussed above is
given by the following simple formula:

X(N)= || & xH

GXHCZn
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In addition, we can see that the collection of dephased matrices L € Mgxu(R) , over
all possible configurations G x H C Zy, takes its parameters precisely in X (V).

In order to formulate our main result, we will need one more definition:

DEFINITION 8.12. Given N = p{'...py* and a subgroup G C Zy, we set

al— 7'1 Ak —Tk

walit, ... ix) = (pf P M)

where the exponents r; < a; are given by G = szl X oo X Zp;k.

Observe that in the case k£ = 1 this function is precisely the one appearing in Propo-
sition 8.9 above. In fact, we have the following generalization of Proposition 8.9:

THEOREM 8.13. For H = Fy the vectors A € THCN appear as plain sums of type

= Y Lo

GXHCZn

where the L variables form dephased matrices LY € Mgy u(R).

PROOF. According to the above discussion, we just have to glue the various isotypic
formulae coming from Proposition 8.9. The gluing formula reads:

Alllk,]ljk Ailjl ttt Alk]k
- T151P1 TkSkPk
- § L S s P e § : L YTk, %k Tk
P 21,P1 J1 Py 2k>Py Jk

r1+si1<ai rt+sg<ag

_ 2 : LT151P1 L""kskpk

a T a1 —s . st a T a B
+Z< — Pt T P Figp T Rk
ri1tsi1sal TkTSkX0k

Now, let us introduce the following variables:

71...Tk,81...Sg ___ T181 LT‘kSk

810, J1 Tk i1J1 ° 1kJk

In terms of these new variables, the gluing formula reads:

A o = E E I TR 5k
11Uy J1---Jk T ap—Th . a1 —7r] . ap—Tp .
»J1ee-] 1 1. kk klk’pll 131“'pkk k iy

r1+s1<ay rrtsg<ay

Together with the fact that the new L variables form dephased matrices, in the sense
of Definition 3.8 above, this gives the result. O

As a first consequence, we have the following result:
THEOREM 8.14. The rationality conjecture holds for the Fourier matrices.

PROOF. Indeed, the formula in Theorem 8.13 shows that for H = F)y the rational
defect, as constructed in Definition 8.5, counts the same variables as the usual defect. [J
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8b. Master matrices

Let us discuss now defect computations for an interesting class of Hadamard matrices,
namely the “master” ones, introduced in [2]:

DEFINITION 8.15. A master Hadamard matrix is an Hadamard matriz of the form
Hij =\’

with \; € T,n; € R. The associated “master function” is:
flz) =) 2"
J

Observe that with \; = €™ we have H,; = ¢"™". The basic example of such a matrix
is the Fourier matrix Fl, having master function as follows:

N1

z—1

f(z) =

Observe that, in terms of f, the Hadamard condition on H is simply:

Ai\
/()

These matrices were introduced in [2], the motivating remark there being the fact that
the following operator defines a representation of the Temperley-Lieb algebra [91]:

B-Ye o
]
At the level of examples, the first observation, from [2], is that the standard 4 x 4
complex Hadamard matrices are, with 2 exceptions, master Hadamard matrices:

PROPOSITION 8.16. The following complex Hadamard matriz, with |q] =1,

11 1 1
1 -1 1 -1
Fa=l1 ¢ -1 -
I —¢g -1 ¢

is a master Hadamard matriz, for any q # +1.
PROOF. We use the exponentiation convention (e*)" = ", for ¢ € [0,27) and r € R.
Since we have ¢*> # 1, we can find k& € R such that:

q2k —
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In terms of this parameter k € R, our matrix becomes:

10 11 12k 12k+1
¢ _ | (=D (D" (=1 (=1
2,2 q° q" e s

(—=0)° (=)' (=@ (—g)**!

Now let us pick A # 1 and write, by using our exponentiation convention above:

1=X, —-1=N
g=X\N , —q=X
But this gives the formula in the statement. O

Observe that the above result shows that any Hamadard matrix at NV < 5 is master
Hadamard. We have the following generalization of it, once again from [2]:

THEOREM 8.17. The deformed Fourier matrices Fy @ Fy are master Hadamard, for
any Q € Myr«n(T) of the form

where ¢ = e2™/MNkE with k € N, and po, ..., py-1 € R.

PROOF. The main construction in [2], in connection with deformations, that we will
follow here, is, in terms of master functions, as follows:

f(2) = fur (") f(2)
Here k € N, and the functions on the right are by definition as follows:

fM(Z) _ Z ZMn--‘,—i

In(z) =) ZNpete

We use the eigenvalues )\, = ¢'w?, where w = ¢*/V and where ¢"* = v, where
vM = 1. We have f(2) = far (V%) fn(2), so the exponents are:
njy = Nk(Mr;+j)+ Np, + b
Thus the associated master Hadamard matrix is given by:
Hiajp = (qz’wa)Nk(Merrj)Jerber
— Vijqi(prer)wa(prer)
— gt gi(NmHD)
Now let us recall that we have the following formula:

(Far @ EN)iagy = V9w™
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Thus we have as claimed H = )y ®¢ Fl, with:
Observe that @) itself is a “master matrix”, because the indices split. Il

In view of the above examples, and of the lack of other known examples of master
Hadamard matrices, he following conjecture was made in [2]:

CONJECTURE 8.18 (Master Hadamard Conjecture). The master Hadamard matrices
appear as Dita deformations of Fy.

There is a relation here with the notions of defect and isolation, that we would like to
discuss now. First, we have the following defect computation:

THEOREM 8.19. The defect of a master Hadamard matriz is given by
_ 1
d(H) = dimg {B c MN(C)‘B ~ < BL.(BR)i;; = (BR);; Vi, j}
where the matrices on the right are given by

1 A
Li=f () o Rt (5)
i\j i

with f being the master function.

PROOF. The first order deformation equations are as follows:

Z HyHj (A — Aj) =0
k

With H;; = A}’ we have the following formula:

_ A\
J

Thus, the defect is given by the following formula:
: A" M\
d(H) = dimg { A € MN(R)‘ 2}; Au, (A—]) - %:Ajk (A—J) Vi, j
Now, pick A € My (C) and set B = AH*. We have the following formula:

1 _
A= —BH
N

We have the following computation:
A€ My(R) <= BH=BH
1
<— B=—-BHH"
N
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On the other hand, the matrix on the right is given by:
(HH"); ZH““ Z()‘i)‘j)_nk = Ly
k

Thus A € My(R) if and only the condition B = & BL in the statement is satisfied.
Regarding now the second condition on A, observe that with A = %BH we have:

A\ 1 A\
2 Aw (%) - N 2 B (%)

1
= N Z BisRs,ij

1
= N(BR)i,ij

Thus the second condition on A reads (BR);;; = (BR);,;, which gives the result. [

8c. Isolated matrices

Let us discuss now yet another interesting construction of complex Hadamard matrices,
due to McNulty and Weigert [69]. The matrices constructed there generalize the Tao
matrix Ty, and usually have the interesting feature of being isolated. The construction in
[69] uses the theory of MUB, as developed in [28], [47], but we will follow here a more
direct approach, from [23]. The starting observation from [69] is as follows:

THEOREM 8.20. Assuming that K € My(C) is Hadamard, so is the matriz
1

VQ
provided that {Li,..., Ly} C /QUg and {Ry,...,Rn} C v/QUq are such that

1
ﬁLij €/QUq

with i,5 =1,..., N, are complexr Hadamard.

Hia,jb = Kij(L:Rj)ab

PRrROOF. The check of the unitarity is done as follows:

< Hw,ch > = Q Z aka](L R; )

— Z i K (LE L) ac

= N(Szk(Lz Lk)ac
= NQ(Sik(Sac

The entries being in addition on the unit circle, we are done. U
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As input for the above, we can use the following well-known Fourier construction:
PROPOSITION 8.21. For q > 3 prime, the matrices
{F,,DF,,...,D"'F,}

where Fy is the Fourier matriz, and where

. g1
D = diag (1,1,w,w3,w6,w10,...,w 8 ,...,wlo,wG,wB,w)

1
Va
Proor. With 0,1,...,¢g — 1 as indices, the formula of the above matrix D is:

with w = €™/, are such that E;E; is complex Hadamard, for any i # j.

c(c—1)

D, = @) — )%

Since we have \%EZ* E; € \/qU,, we just need to check that these matrices have entries
belonging to T, for any ¢ # j. With k = j — i, these entries are given by:

1 1
—(BJEj)ap = —=(F; DFFy)ap = — ch(b 9 D}
Vi Vi

Now observe that with s = b — a, we have the followmg formula:

2
Z wcsl)iC — Z wcs—dswﬁ;l).k_@.k
¢ cd
= Z WD (5= kts)
cd
= Z we (P k)
de

_ Z ( e(e 1) ktes Z w )
e(e—1)
—_ 2 w2 ‘k+es | (seO

= q
Thus the entries are on the unit circle, and we are done. U

We recall that the Legendre symbol is defined as follows:
0 ifs=0

<§>= 1 if 3o, 5 = a?
q .

—1 if Za,s = a?
With this convention, we have the following result from [23], following [69]:
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PROPOSITION 8.22. The following matrices,
1 * Mk
Gk - %Fq D Fq

with the matriz D being as abowve,

. c(c—1)
D = diag (w 2 >

and with k # 0 are circulant, their first row vectors V¥ being given by

q

where 6, =1 if g = 1(4) and 6, =i if ¢ = 3(4), and with all inverses being taken in Z,.

N

Proor. This is a standard exercice on quadratic Gauss sums. First of all, the matrices
G in the statement are indeed circulant, their first vectors being given by:

1 c(c—1) .
‘/ik - wT'k—Hc
Vi Z
Let us first compute the square of this quantity. We have:
1 cle=1) L d(d=D)7p 1 iy
W = L3 e e

The point now is that the sum S on the right, which has ¢* terms, decomposes as
follows, where x is a certain exponent, depending on ¢, i, k:

{(q—1)(1+w+...+wq1)+qu if ¢ = 1(4)

@+ DA+ w+ . wiT) —qut if g = 3(4)
We conclude that we have a formula as follows, where d, € {1,} is as in the statement,
so that 07 € {1, -1} is given by 07 = 1 if ¢ = 1(4) and 0; = —1 if ¢ = 3(4):
(VF)? = 52 Ww*
In order to compute now the exponent x, we must go back to the above calculation of
the sum S. We succesively have:
— First of all, at k = 1,7 = 0 we have x = qiT*l.

— By translation we obtain x = an*l —i(i—1), at k=1 and any 1.

— By replacing w — w® we obtain z = q%l k—1(+—1), at any k # 0 and any 1.

Summarizing, we have computed the square of the quantity that we are interested in,
the formula being as follows, with J, being as in the statement:

VR = 2 itk L kD
( 7,) — Yq w w
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By extracting now the square root, we obtain a formula as follows:

P, _EFGD

VF =46, w s *ow

The computation of the missing sign is non-trivial, but by using the theory of quadratic

Gauss sums, and more specifically a result of Gauss, computing precisely this kind of sign,

we conclude that we have indeed a Legendre symbol, + = <k7/2>, as claimed. U

Let us combine now all the above results. We obtain the following statement:
THEOREM 8.23. Let ¢ > 3 be prime, consider two subsets
S, Tc{0,1,...,q—1}
satisfying the conditions |S| = |T| and SNT =0, and write:
S={s1,...,sn} , T=At1,...,tn}
Then, with the matriz V' being as above, the matriz
Hiojo = KiV,? ™

is complex Hadamard, provided that K € My(C) is.

Proor. This follows indeed by using the general construction in Theorem 8.20 above,
with input coming from Proposition 8.21 and Proposition 8.22. U

As explained in [69], the above construction covers many interesting examples of
Hadamard matrices, known from [87], [88] to be isolated, such as the Tao matrix:

1 1 1 1 1 1

1 1 w w w w?

oo |1 w1 w? w? w
711 w w1 ow w?
1 w? v w 1 w

1 w? w w w 1

In general, in order to find isolated matrices, the idea from [69] is that of starting
with an isolated matrix, and then use suitable sets S, T

The defect computations are, however, quite difficult. As a concrete statement, how-
ever, we have the following conjecture:

CONJECTURE 8.24. The complex Hadamard matriz constructed in Theorem 8.20 is
1solated, provided that:
(1) K is an isolated Fourier matriz, of prime order.
(2) S, T consist of consecutive odd numbers, and consecutive even numbers.

This statement is supported by the isolation result for Ty, and by several computer
simulations in [69]. For further details on all this, we refer to [69], and to [23].
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8d. Partial matrices

As a final topic now, we would like to discuss an extension of a part of our results,
from here and from chapter 7, to the case of the partial Hadamard matrices (PHM).

The extension, from [23], is quite straightforward, but there are a number of subtleties

appearing. First of all, we can talk about deformations of PHM, as follows:

DEFINITION 8.25. Let H € Xy n be a partial complex Hadamard matriz.
(1) A deformation of H is a smooth function, as follows:
f : Tl — (XM,N>H
(2) The deformation is called “affine” if we have, with A € My n(R):
fij(q) = Hiquij
(3) We call “trivial” the deformations as follows, with a € RM b€ RN :
fii(q) = Hijq" "
Observe now that we have the following equality, where Uy, vy C My« (C) is the set
of matrices having all rows of norm 1, and pairwise orthogonal:

Xun = Myn(T) NV NUy
As in the square case, this leads to the following definition:
DEFINITION 8.26. Associated to a point H € Xy are the enveloping tangent space
THXM,N = TuMuyn(T) N TH\/NUM,N

as well as the following subcones of this enveloping tangent space:

(1) The tangent cone TuXnn: the set of tangent vectors to the deformations of H.
(2) The affine tangent cone Ty Xy n: same as above, using affine deformations only.
(3) The trivial tangent cone T Xy n: as above, using trivial deformations only.

Observe that TVHX v~ T'r Xy N are real vector spaces, and that Ty Xy v, T X N are
two-sided cones, in the sense that they satisfy the following condition:

ANeRAeT = NAeT
Also, we have inclusions as follows:
T3 Xun CToXun C TuXun C TaXyn
As in the square matrix case, we can formulate the following definition:
DEFINITION 8.27. The defect of a matriz H € Xy n is the dimension
d(H) = dim(Ty Xy x)

of the real vector space THXM,N constructed above.
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The basic remarks and comments regarding the defect from the square matrix case
extend then to this setting. In particular, we have the following basic result:

THEOREM 8.28. The enveloping tangent space at H € Xy 1s given by

THXM,N ~ {A € MMXN(R)‘ Z Hy Hpp (A — Ajp) = U,Vi,j}
A

and the defect of H 1is the dimension of this real vector space.

PROOF. In the square case this was done in chapter 7 above, and the extension of
the computations there to the rectangular case is straightforward. First, the manifold
My« n(T) is defined by the following algebraic relations:

|Hyl* =1
In terms of real and imaginary parts, H;; = X;; 4+ iY;;, we have:
dHy;|* = d(X}+Y}))
= 2(Xy; X + YY)
Consider now an arbitrary vector £ € Ty My« n(C), written as follows:

£ = Z @i Xy + BiYis
ij

This vector belongs then to Ty My« n(T) if and only if we have:
< {,d|H,~j|2 >= 0

We therefore obtain the following formula, for the tangent cone:

Ajj € R}

We also know that the manifold vV NU wm,n is defined by the following algebraic rela-
tions, where Hq, ..., Hy are the rows of H:

< Hi; Hj >= N(SZJ

The relations < H;, H; >= N being automatic for the matrices H € My n(T), if for
i # 7 welet L;; =< H;, H; >, then we have:

j:’HON = {f € THMN(T> < f,Lij >= 0, Vi 7A j}
On the other hand, differentiating the formula of L;; gives:

Lij = Z(sz + 1Y) (Xje — Vi) + (Xje — 1Y) (Xin + 1Y)
k

TyMuyxn(T) = {Z A (Y Xy — Xi5Yi5)
7
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Now if we pick a vector £ € Ty My« n(T), written as above in terms of A € My« n(R),
we obtain: . B
<&, Lijj >= lz HiHj (A, — Aji)
k
Thus we have reached to the description of THX v~ in the statement. O

Summarizing, the extension of the basic defect theory, from the square matrix case
to the rectangular matrix case, appears to be quite straightforward. By using the above
defect equations, most of the general comments and remarks from chapter 7 regarding
the square matrix case extend to the rectangular matrix case.

At the level of non-trivial results now, we first have:
THEOREM 8.29. Let H € Xy n, and pick a square matrix
K € VNUy
extending H. We have then the following formula,
TuXuw = {E = (X ¥) € Mux(©)|X = X", (EK);;fl; € R, Vi, j}
with the correspondence A — E being constructed as follows:

Ei; = Z Hip K jp A
2

Ayy = (BEK); Hy;

PRrOOF. Let us set indeed R;; = A;;H;j and E = RK*. The correspondence A —
R — E is then bijective, and we have the following formula:

E;; = Z Hip K A
2

With these changes, the system of equations in Theorem 8.28 becomes FE;; = Ej; for
any 7,j with j < M. But this shows that we must have £ = (X Y) with X = X*, and
the condition A;; € R corresponds to the condition (EK);jH;; € R, as claimed. O

As an illustration, in the real case we obtain the following result:
THEOREM 8.30. For an Hadamard matric H € My n(£1) we have
THXM,N ~ My (R)*™¥™ @ Mpyw(n—nm)(R)

and so the defect is given by

d(H) = w + M(N — M)

independently of the precise value of H.
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ProOOF. We use Theorem 8.29. Since H is now real we can pick K € v/ NUy extending
it to be real too, and with nonzero entries, so the last condition appearing there, namely
(EK);;H;; € R, simply tells us that E must be real. Thus we have:

THXM,N >~ {E = (X Y) € MMXN(R)

X = X*}
But this is the formula in the statement, and we are done. Il

A matrix H € Xy n cannot be isolated, simply because the space of its Hadamard
equivalents provides a copy TMYN C X}, v, passing through H. However, if we restrict the
attention to the matrices which are dephased, the notion of isolation makes sense:

PROPOSITION 8.31. The defect d(H) = dim(fHXMW) satisfies
d(H)> M+ N -1
and if d(H) = M + N — 1 then H is isolated inside the dephased quotient Xy n — Znn-
PROOF. Once again, the known results in the square case extend:

(1) We have indeed dim(T}; Xy n) = M + N — 1, and since the tangent vectors to

these trivial deformations belong to Ty Xy v, this gives the first assertion.

(2) Since d(H) = M + N — 1, the inclusions Ty Xy ny C Ty Xy n C T/HXMW must be
equalities, and from Ty Xy n = 17 Xy Ny we obtain the result. O

Finally, still at the theoretical level, we have the following conjecture:

CONJECTURE 8.32. An isolated partial Hadamard matrizc H € Zy n must have mini-
mal defect, namely:
d(H)=M+N -1

In other words, the conjecture is that if H € Zj; y has only trivial first order defor-
mations, then it has only trivial deformations at any order, including at oco.

In the square matrix case this statement comes with solid evidence, all known examples
of complex Hadamard matrices H € Xy having non-minimal defect being known to admit
one-parameter deformations. For more on this subject, see [87], [88].

Let us discuss now some examples of isolated partial Hadamard matrices, and provide
some evidence for Conjecture 8.32. We are interested in the following matrices:

DEFINITION 8.33. The truncated Fourier matriz Fsq, with G being a finite abelian
group, and with S C G being a subset, is constructed as follows:
(1) Given N € N, we set Fy = (w"),;, where w = e2™/N.
(2) Assuming G =7Zn, X ... X Zy., we set Fg = Fy, ® ... ® Fy,.
(3) We let Fs¢ be the submatriz of F having S C G as row index set.
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Observe that Fy is the Fourier matrix of the cyclic group Zy. More generally, Fg is
the Fourier matrix of the finite abelian group G. Observe also that I ¢ = Fg.

We can compute the defect of Fg¢ by using Theorem 8.28, and we obtain:
THEOREM 8.34. For a truncated Fourier matriv F' = Fg o we have the formula
TrXuy={Ae€ MMxN(R)’P — AF" satisfies P; = Prajy = P, Vi, j |
where M = |S|, N = |G|, and with all the indices being regarded as group elements.

PROOF. We use Theorem 8.28. The defect equations there are as follows:
Z FuFj (A — Ajr) =0
k
For F' = Fg ¢ we have the following formula:
FypFie = (F")iizj
We therefore obtain the following formula:
TrXun = {A € Murxn(R)|(AF)iij = (AFt)j,i—jaW,j}
Now observe that for an arbitrary matrix P € My,(C), we have:
-F)i,i—j - Pj,i—j7 VZL] < -Pi-i-j,i = -Pji7 \V/Z,j
= Py =Pb; Vi,
We therefore conclude that we have the following equality:
TrXyy={Ae MMxN(]R)’P — AF' satisfies Py = Py Vi, j }
Now observe that with A € My n(R) and P = AF" € My;(C) as above, we have:

Py = ) Aw(F )
k

= Z Aie(F')i,—;
k
Pi7_j
Thus, we obtain the formula in the statement, and we are done. U

Let us try to find some explicit examples of isolated matrices, of truncated Fourier
type. For this purpose, we can use the following improved version of Theorem 8.34:
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THEOREM 8.35. The defect of F' = Fs¢ is the number
d(F) = dim(K) + dim(I)
where K, I are the following linear spaces,
K = {A € MMXN(R)‘AFt = 0}
[ = {P € LM)HA € Myren(R), P = AFt}
with Ly being the following linear space,

Ly = {P € My/(C)

Pij = Piyjj = E,—j7Vi,j}
with all the indices belonging by definition to the group G.

PRrROOF. We use the general formula in Theorem 8.34. With the notations there, and
with the linear space Lj; being as above, we have a linear map as follows:

D : TFXM,N — LM
P(A) = AF"
By using this map, we obtain the following equality:
dim(Tp X sn) = dim(ker ®) + dim(Im @)

Now since the spaces on the right are precisely those in the statement, we have:

ker® = K
Imd=1
Thus by applying Theorem 8.34 we obtain the result. O

In order to look now for isolated matrices, the first remark is that since a deformation
of F will produce a deformation of Fg ¢ too, we must restrict the attention to the case
where G = Z,,, with p prime. And here, we have the following conjecture:

CONJECTURE 8.36. There exists a constant € > 0 such that Fs, is isolated, for any p
prime, once S C Z, satisfies |S| > (1 —¢)p.

In principle this conjecture can be approached by using the formula in Theorem 8.35,
and we have for instance evidence towards the fact that F},_; , should be always isolated,
that Fj,_, should be isolated too, provided that p is big enough, and so on. However,
finding a number € > 0 as above looks like a quite difficult question. See [23].
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8e. Exercises

There has been a lot of material in this chapter, regarding many types of Hadamard
matrices. As a first exercise, in connection with the tensor products, we have:

EXERCISE 8.37. Write down a list of examples where we have equality case,
d(H® K) =d(H)d(K)
in the general inequality d(H @ K) > d(H)d(K) established above.

To be more precise, there is some work to be done in the Fourier matrix case, and
passed that, the problem is to see which other of our defect computations can help.

As a second exercise now, in relation with the McNulty-Weigert matrices, we have:

EXERCISE 8.38. Prove that the Tao matriz, namely

11 1 1 1 1
1 1 w w w w?
o |1 w1 w? w? w
Tl ow w1 w w?
1 w? w? w 1 w
1 w? w w w 1
with w = >3 is indeed a McNulty-Weigert matriz.

Observe in particular that a solution to this exercise would provide a solution to one
of our previous exercises, asking for an explicit formula for Ty, with the matrix entries
(T%);; expressed as explicit functions of the indices 4, j.

In relation now with the partial Hadamard matrices, we have:

EXERCISE 8.39. Compute the defect of the truncated Fourier matrices, at small values
of the truncation parameter.

The problem here is that of applying the various results established above.
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Look what theyve done to my song, ma

It was the only thing I could do half right

And it’s turning out all wrong, ma, look
What they’ve done to my song



CHAPTER 9

Circulant matrices

9a. Cyclic roots

We discuss in this chapter an important class of special complex Hadamard matrices,
namely the circulant ones. There has been a lot of work here, starting with the Circulant
Hadamard Conjecture (CHC) in the real case, and with many results in the complex case
as well. We will present here the main techniques in dealing with such matrices.

It is convenient to introduce the circulant matrices as follows:
DEFINITION 9.1. A complex matrix H € My(C) is called circulant when we have
Hij = 7j-i
for some v € CN, with the matriz indices i,5 € {0,1,..., N — 1} taken modulo N.

Here the index convention is quite standard, as for the Fourier matrices Fy, and with
this coming from Fourier analysis considerations, that we will get into later on.

In practice, the fact that a matrix is circulant means that it has the following pattern,
with the entries in the first row “circulating” downwards and to the right:

As a basic example of a circulant Hadamard matrix, in the real case, we have the matrix
K,4. The circulant Hadamard conjecture states that this matrix is, up to equivalence, the
only circulant Hadamard matrix H € My(+£1), regardless of the value of N € N:

CONJECTURE 9.2 (Circulant Hadamard Conjecture (CHC)). The only circulant real
Hadamard matrices H € My(£1) are the matriz

and its Hadamard conjugates, and this regardless of the value of N € N.
203
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The fact that such a simple-looking problem is still open might seem quite surprising.
Indeed, if we denote by S C {1,..., N} the set of positions of the —1 entries of the first
row vector v € (£1)", the Hadamard matrix condition is simply:

|ISN(S+k)|=|S|—N/4
To be more precise, this must hold for any k& # 0, taken modulo N. Thus, the above
conjecture simply states that at N # 4, such a set S cannot exist.
Let us record here this latter statement, originally due to Ryser [81]:
CONJECTURE 9.3 (Ryser Conjecture). Given an integer N > 4, there is no set
ScA{l,...,N}
satisfying |S N (S + k)| = |S| — N/4 for any k # 0, taken modulo N.

Our purpose now will be that of showing that the CHC dissapears in the complex
case, where we have examples at any N € N. As a first result here, we have:

PROPOSITION 9.4. The following are circulant and symmetric Hadamard matrices,

i1 w 1 1
Fy = <1 2) : Fo=11 w 1
1 1 w

" o__
F4_

where w = e27/3 mif4

,v = ¢e"% equivalent to the Fourier matrices Iy, F3, Fy.

PROOF. The orthogonality between rows being clear, we have here complex Hadamard
matrices. The fact that we have an equivalence Iy ~ Fj follows from:

1 1 i i1
1 -1 1 -1 1 4
At N = 3 now, the equivalence F3 ~ F} can be constructed as follows:

1 1
w  w?
w?  w

—_ = =

1 1 w w 1 1
w 1 1 1 1 w
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As for the case N = 4, here the equivalence F; ~ F}' can be constructed as follows,

where we use the logarithmic notation [k], = e2™/¢ with respect to s = 8:
0000 0141 4 1 01
0 2 46 1410 1 410
0 40 4 4 1 01 0141
0 6 4 2 g 1 01 4 g 1 01 4 g
Thus, the Fourier matrices Fy, F3, Fy can be put indeed in circulant form. U

We will explain later the reasons for denoting the above matrix F', instead of F}, the
idea being that F will be a matrix belonging to a certain series.

Getting back now to the real circulant matrix Ky, this is equivalent to the Fourier
matrix Fg = Fy» ® F; of the Klein group G = Zs X Zs, as shown by:

1 1 1 1 1 1 1 -1
1 -1 1 1 1 -1 1 1
1 1 -1 1] 7|1 1 -1 1
1 1 1 -1 -1 1 1 1
1 1 1 1
1 -1 1 -1
A I T (R R |
1 -1 -1 1

In fact, we have the following construction of circulant and symmetric Hadamard
matrices at N = 4, which involves an extra parameter g € T:

PROPOSITION 9.5. The following circulant and symmetric matriz is Hadamard,

g 1 ¢ -1
for any q € T. At ¢ = 1,e™* recover respectively the matrices Ky, Fy.

PRrROOF. The rows of the above matrix are pairwise orthogonal for any ¢ € C, and so
at ¢ € T we obtain a complex Hadamard matrix. The last assertion is clear. Il

As a first conclusion, coming from the above considerations, we have:
THEOREM 9.6. The complex Hadamard matrices of order N = 2,3,4,5, namely
F27 F37 F4pa F5

can be put, up to equivalence, in circulant and symmetric form.
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PROOF. As explained in chapter 5 above, the Hadamard matrices at N = 2,3,4,5
are, up to equivalence, those in the statement. But at N = 2,3 the problem is solved by
Proposition 9.4 above. At N = 4 now, our claim is that, with s = ¢2, we have:

K] ~ F;

By multiplying the rows of K{, and then the columns, by suitable scalars, we have:

-1 q 1 q

g _ g -1 1
ki = 1 ¢ -1 ¢
qg 1 q -1

1 —q -1 —q

1 =g 1 ¢

I ¢ -1 ¢

1 ¢ 1 —¢q

1 1 1 1

1 s —1 -—s

1 -1 1 -1

1 —s —1 s

On the other hand, by permuting the second and third rows of F, we obtain:

1 1 1 1
1 -1 1 -1
s __
by = 1 s —-1 —s
1 —s —1 s

Thus these matrices are equivalent, and the result follows from Proposition 9.5. At

N =5 now, the matrix that we are looking for is as follows, with w = e

[\
—_

2

w
1
wh
w

€ ~& ~ &

1 1 1 1

1 s -1 -—s

1 -1 1 -1

1 —s -1 s

2mi/5.

4wt 1

wt wt
2 1 w4

w? 1
4 1 w2

It is indeed clear that this matrix is circulant, symmetric, and complex Hadamard,
and the fact that we have F; ~ F} follows either directly, or by using [51]. O

Summarizing, many interesting examples of complex Hadamard matrices are circulant.
This is in stark contrast with the real case, where the CHC, discussed above, states that
the only circulant real matrices should be those appearing at N = 4.
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Let us prove now, as a generalization of the above results, that any Fourier matrix Fy
can be put in circulant and symmetric form.
We use Bjorck’s cyclic root formalism [33], which is as follows:

THEOREM 9.7. Assume that a matric H € My(T) is circulant, H;; = ~v;—;. Then H
15 15 a compler Hadamard matriz if and only if the vector

zZz = (Zo, ARERE 7ZN—1)
given by z; = v;/7vi—1 satisfies the following equations:
ZQ+2’1+...+ZN_1 =0

2021+ 2122+ ...+ 2ZN_120 =

Z()Zl...ZN_2+...+ZN_1ZQ...ZN_3 = 0
20”21 ---~RN—-1 — 1
If so is the case, we say that z = (zg,...,2zn_1) S a cyclic N-root.

Proor. This follows from a direct computation, the idea being that, with H;; = ~,_;
as above, the orthogonality conditions between the rows are best written in terms of the
variables z; = 7;/7:-1, and correspond to the equations in the statement. See [33]. O

Observe that, up to a global multiplication by a scalar w € T, the first row vector
v = (Yo, -.-,7Yn-1) of the matrix H € My(T) constructed above is as follows:

v = (20, 2021, 202122, -+ - - - - V2071« ZN-1)

We will use this observation several times, in what follows. Now back to the Fourier
matrices, we have the following result:

THEOREM 9.8. Given N € N, construct the following complex numbers:

v = eTri/N
qg= I/N_l
w = 7/2

We have then a cyclic N-root as follows,

(¢, qw, qu?, ... qu"")

and the corresponding complex Hadamard matriz Fy is circulant and symmetric, and
equivalent to the Fourier matrix Fy.
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PROOF. Given two numbers ¢,w € T, let us find out when (g, qw, qu?, ..., quw™~1) is

a cyclic root. We have two conditions to be verified, as follows:

(1) In order for the = 0 equations in Theorem 9.7 to be satisfied, the value of ¢ is
irrelevant, and w must be a primitive N-root of unity.

(2) As for the = 1 equation in Theorem 9.7, this states in our case that we must have:

N N@-b

g w 2z =1

Thus, we must have ¢ = (=1)V~1, so with the values of ¢,w € T in the statement,
we have indeed a cyclic N-root. Now construct H;; = 7,_; as in Theorem 9.7. We have:

k(k—1)
2

k41 RGetD) —k+1
Ve =7-r <= ¢ Tw 2z =q¢ " w

s q2 — wfl

But this latter condition holds indeed, because we have:

2N-2 -2

q2:u = 2i=yw!

We conclude that our circulant matrix H is symmetric as well, as claimed. It remains
to construct an equivalence as follows:

H ~ Fy

In order to do this, observe that, due to our conventions ¢ = vV~ w = 12, the first
row vector of H is given by:

k(k+1)
wo= ¢
_ L (N=D (D) k(1)

(N +E=1)(k+1)

Thus, the entries of H are given by the following formula:

H_;; = Hotj
_ (N = 1)(i+)
— P2+ NN+ N =1

2ij

B o . 5 .
VN 1.V1+NZ'V] +N]'I/

With this formula in hand, we can now finish. Indeed, the matrix H = (H;;) is
equivalent to the following matrix:

H = (H_;;)

Now regarding this latter matrix H’, observe that in the above formula, the factors
pN=1 NG NG correspond respectively to a global multiplication by a scalar, and
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to row and column multiplications by scalars. Thus this matrix H' is equivalent to the
matrix H” obtained from it by deleting these factors.

But this latter matrix, given by H;; = V¥ with v = €™V is precisely the Fourier
matrix Fly, and we are done. Il

As an illustration, let us work out the cases N = 2,3,4,5. We have here:

PROPOSITION 9.9. The matrices F}, are as follows:
(1) At N = 2,3 we obtain the old matrices Fy, Fy.

(2) At N = 4 we obtain the following matriz, with v = e™/4:
v o1 T 1
A v o1 7
Fi= V1ol

(3) At N =5 we obtain the old matriz F}.

Proor. With notations from Theorem 9.8, the proof goes as follows:
(1) At N =2 we have v = i,q = i,w = —1, so the cyclic root is:

(i, —i)
The first row vector is (¢, 1), and we obtain indeed the old matrix F}.

2 2mi/3

At N=3wehavev=e¢"P andg=w=1>=c¢ , the cyclic root is:

(w,w?, 1)
The first row vector is (w, 1, 1), and we obtain indeed the old matrix Fj.

(2) At N = 4 we have v = e™/* and ¢ = 13, w = 12, the cyclic root is:

(3, 0° 0" v)
The first row vector is (v3,1,27,1), and we obtain the matrix in the statement.

(3) At N =5 we have v = ¢™/° and ¢ = v* = w?, with w = v* = €2™/°, and the cyclic
root is therefore:

(w?, w*, w, 1, w)

The first row vector is (w?, 1,w*, w* 1), and we obtain in this way the old matrix FY,
as claimed. O

Regarding the above matrix Fj, observe that this is equivalent to the matrix F}’
from Proposition 9.4 above, with the equivalence F; ~ F}' being obtained by multiplying
everything by the number v = e™/4,
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While both these matrices are circulant and symmetric, and of course equivalent to
F},, one of them, namely F}, is “better” than the other, because the corresponding cyclic
root comes from a progression. This is the reason for our notations Fj, F} .

Let us discuss now the case of the generalized Fourier matrices F. In this context,
the assumption of being circulant is somewhat unnatural, because this comes from a Zy
symmetry, and the underlying group is no longer Zy.

It is possible to fix this issue by talking about G-patterned Hadamard matrices, with
GG being a finite abelian group which is no longer cyclic, but for our purposes here, best
is to formulate the result in a weaker form, as follows:

THEOREM 9.10. The generalized Fourier matrices Fg, associated to the finite abelian
groups G, can be put in symmetric and bistochastic form.

PrOOF. We know from Theorem 9.8 that any usual Fourier matrix Fjy can be put in
circulant and symmetric form. Since circulant implies bistochastic, in the sense that the
sums on all rows and all columns must be equal, the result holds for Fly.

In general now, if we decompose G' = Zy, X ... X Zy,, we have:

Fo=Fy ®...®Fy,

Now since the property of being circulant is stable under taking tensor products, and
so is the property of being bistochastic, we therefore obtain the result. O

We have as well the following alternative generalization of Theorem 9.8, coming from
Backelin’s work in [3], and remaining in the circulant and symmetric setting:

THEOREM 9.11. Let M|N, and set w = *™/N. We have a cyclic root as follows,

N-1 N-1
(quo--vqm, u, o QW s qw T gquw )
Vv Vv

~
M M M

provided that q.,...,qy € T satisfy the following condition:
(@ ... qu)™ = (—1)M@W-D
Moreover, assuming that the following conditions are satisfied,
ae=1 , @Gv=@u1=...=w

which imply (q1 ... qu)N = (=1)MN=Y the Hadamard matriz is symmetric.

ProOF. We have several things to be proved, the idea being as follows:
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(1) Let us first check the = 0 equations for a cyclic root. Given arbitrary numbers

G, ---,qu € T, if we denote by (z;) the vector in the statement, we have:
Zz‘l P G- qg + Q2. Q41+ tqu-K41---qm
— M K42 QW+ + g - - g w" !

X (14w +w + . 4 p®DE)
Now since the sum on the right vanishes, the = 0 conditions are satisfied.

(2) Regarding now the = 1 condition, the total product of the numbers z; is given by:

H’Zi = (@ q)¥ (1w -w?. . wNHM

= (q1... qM)Nw e

2mi/N

By using w =e we obtain that the coefficient on the right is:

MN(N—1) 2mi MN(N-1)
2 2

= e N
eWiM(N—l)

(_1)M(N71)

w

Thus, if (q1...qu)YN = (=1)MP =D we obtain a cyclic root, as stated. See [3], [49].

(3) The corresponding first row vector can be written as follows:

M-1 2

w w w
V=I\la,q19,. - .,¢1---quyeoooon... e, ——, —, 1
~ Y q2 ... 4Mm qm—-19m 9m
M

Thus, the corresponding circulant complex Hadamard matrix is as follows:

q1 q192 q19293 4192493494 41492434495
1 q1 q1492 q192943 41929344
" % 1 q1 4192 q19293
N aM—1qMm arr 1 ¢« 7192
w3 ’11)2 w
aM —29M —19M amM —19Mm q_M 1 ql

We are therefore led to the symmetry conditions in the statement, and we are done. [

Observe that the story is not over here, because Theorem 9.11 still remains to be
unified with Theorem 9.10. There are many interesting questions here.
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9b. Butson matrices

Still in relation with the CHC, the problem of investigating the existence of the cir-
culant Butson matrices of a given level appears.

The first result here, due to Turyn [92], is as follows:

PROPOSITION 9.12. The size of a circulant Hadamard matrix
H e My(£1)
must be of the form N = 4n?, with n € N.
PRrOOF. Let a,b € N with a+b = N be the number of 1, —1 entries in the first row of

H. If we denote by Hy,..., Hy_1 the rows of H, then by summing over columns we get:
N-1
Z <H0,HZ‘ > = a(a—b)+b(b—a)
i=0
= (a—0b)?
On the other hand, by orthogonality of the rows, the quantity on the left is:
< Hy,Hy >= N
Thus the number N = (a — b)? is a square, and together with the fact that we have
N € 2N, this gives N = 4n?, with n € N. O

Also found by Turyn in [92] is the fact that the above number n € N must be odd,
and not a prime power. In the general Butson matrix setting now, we have:

PROPOSITION 9.13. Assume that H € Hy(l) is circulant, let w = e*™/!. If
ag, ... a1 €N

with " a; = N are the number of 1,w,...,w'=! entries in the first row of H, then:
Z wkaiaHk =N
ik

This condition, with > a; = N, will be called “Turyn obstruction” on (N,1).

PROOF. Indeed, by summing over the columns of H, we obtain:
Z<H0,Hi> = Z<wi,wj>aiaj
i ij
= Z wi_ja,»aj
]

Now since the left term is < Hy, Hy >= N, this gives the result. U

We can deduce from this a number of concrete obstructions, as follows:
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THEOREM 9.14. When [ is prime, the Turyn obstruction is

Z(ai — CLH_k)Q = 2N

for any k # 0. Also, for small values of I, the Turyn obstruction is as follows:

(1) At =2 the condition is:
(ap —ay)* =N
(2) Atl =3 the condition is:
(ap — a1)* + (a1 — a9)* + (ag — a3)* = 2N
(3) At l =4 the condition is:
(ap — ag)* + (a; —a3z)* = N
(4) Atl =15 the condition is:
D (ai—ai)’ =) (@ —ai0)* = 2N

ProOOF. We use the fact, from chapter 6 above, that when [ is prime, the vanishing

sums of [-roots of unity are exactly the sums of the following type, with ¢ € N:
S=c+cw+... 4+ cw™?

We conclude that the Turyn obstruction is equivalent to the following system of equa-
tions, one for each k # 0:
SLED TN
i i

Now by forming squares, this gives the equations in the statement. Regarding now
the [ = 2,3, 4,5 assertions, these follow from the first assertion when [ is prime, [ = 2, 3, 5.
Also, at [ = 4 we have w = i, so the Turyn obstruction reads:

((lg + CL% + CL% + CL%) +1 Z ;A1 — 2(@0&2 + alCLg) —1 Z a;a;11 = N
Thus the imaginary terms cancel, and we obtain the formula in the statement. U

The above results are of course just some basic observations on the subject, and
the massive amount of work on the CHC has a number of interesting Butson matrix
extensions. For some more advanced theory on all this, we refer to [19], [40].
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9c. Haagerup count

Let us go back now to the pure complex case, and discuss Fourier analytic aspects.
From a traditional linear algebra viewpoint, the circulant matrices are best understood
as being the matrices which are Fourier-diagonal, and we will exploit this here.

Let us fix N € N, and denote by F = (w¥)/v/N with w = ¢>™/¥ the rescaled Fourier

matrix, with indices ¢, = 0,1,..., N — 1, which is unitary:
1 1 1 1
w w? wN-1
ja 1 1 w? w w2@™-1)
VN
1 wN-1 2(v-1) w(N—1)2
Also, given a vector ¢ € CV, once again with cyclic indices, i = 0,1,...,N — 1, we

denote by @ € My(C) the diagonal matrix having ¢ as vector of diagonal entries:

qo
Q —
gN—-1

With these conventions, we have the following well-known result:

THEOREM 9.15. For a complex matrix H € My (C), the following are equivalent:
(1) H is circulant, H;; = &_; for some & € CV.
(2) H is Fourier-diagonal, H = FQF* with ) diagonal.

In addition, the first row vector of FQF™ is given by £ = Fq/\/N
Proor. If H;; = {;_; is circulant then ) = F*HF is diagonal, given by:

1 I
Qi = N Z W'y,
Kl
0ij Z w’"E,
Also, if Q = diag(q) is diagonal then H = FQF™* is circulant, given by:
Hi = Y FyQuF
k
= LYl
N5

Thus, we have proved the equivalence between the conditions in the statement. Finally,
regarding £ = Fq/ VN, this follows from the last formula established above. O
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The above result is useful in connection with any question regarding the circular
matrices, and in relation with the orthogonal and unitary cases, we have:

PROPOSITION 9.16. The various sets of circulant matrices are as follows:

(1) The set of all circulant matrices is:

My(C)eire = {FQF*

gec? }
(2) The set of all circulant unitary matrices is:

qE’]I‘N}

(3) The set of all circulant orthogonal matrices is:
q € TN7q_Z = q7wVZ}

In addition, the first row vector of FQF™ is given by & = Fq/\/N

yeire = {FQF*

o5 = {FQr

Proor. All this follows from Theorem 9.15, as follows:
(1) This assertion, along with the last one, is Theorem 9.15 itself.
(2) This is clear from (1), because the eigenvalues must be on the unit circle T.

(3) In order to prove this result, observe first that for a vector ¢ € CV we have the
following formula, with ¢; = q_;:
Fqg=Fg
We conclude from this that the vector ¢ = F'q is real if and only if ¢; = ¢q_; for any <.
Together with (2), this gives the result. O

Observe that in Proposition 9.16 (3) above, the equations for the parameter space for
O5re are as follows, going until [N/2] + 1:

q0 = Qo
q_l = (Gn-1
42 = Qn—2

Thus, with the convention Z.,, = T, we have the following formula:

Ooire o 22 Z8 V2 (N odd)
Mo Zz2 x 282 (N even)

In terms of circulant Hadamard matrices, we have the following statement:
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THEOREM 9.17. The sets of complex and real circulant Hadamard matrices are:

Xgire — {\/NFQF*

ge ’JI‘N} A My(T)

vire = {VNFQF'

qgeTV, g = Q—z‘} N My(£1)

In addition, the sets of q parameters are invariant under cyclic permutations, and also
under mutiplying by numbers in T, respectively under multiplying by —1.

PRrROOF. All the assertions are indeed clear from Proposition 9.16 above, by intersect-
ing the sets there with My (T). O

The above statement is of course something quite theoretical in the real case, where
the CHC states that we should have Y7 = (), at any N # 4. However, in the complex
case all this is useful, and complementary to Bjorck’s cyclic root formalism.

Let us discuss now a number of geometric and analytic aspects. First, we have the
following deep counting result, due to Haagerup [52]:

THEOREM 9.18. When N 1is prime, the number of circulant N x N complex Hadamard
matrices, counted with certain multiplicities, is exactly:

2N —2
Ncirc =
(v-7)
ProoF. This is something advanced, using a variety of techiques from Fourier analy-
sis, number theory, complex analysis and algebraic geometry. The idea is as follows:

(1) As explained in [52], when N is prime, Bjorck’s cyclic root formalism, explained
above, can be further manipulated, by using discrete Fourier transforms, and we are
eventually led to a simpler system of equations.

(2) This simplified system can be shown then to have a finite number of solutions, the
key ingredient here being a well-known theorem of Chebotarev, which states that when
N is prime, all the minors of the Fourier matrix Fl are nonzero.

(3) With this finiteness result in hand, the precise count can be done as well, by using
various techniques from classical algebraic geometry, and we are led to the formula in the
statement. For the details here, see [52]. O

When N is not prime, the situation is considerably more complicated, with some values
leading to finitely many solutions, and with other values leading to an infinite number of
solutions, and with many other new phenomena appearing. See [33], [34], [35], [52].



9D. ANALYTIC ASPECTS 217

9d. Analytic aspects

Let us discuss now an alternative take on these questions, based on the p-norm con-
siderations from chapters 2-3 above. As explained in [19], the most adapted exponent for
the circulant case is p = 4. So, as a starting point, let us formulate:

PROPOSITION 9.19. Given a matriz U € Uyxy we have
|Ul|ls > 1

with equality precisely when H = U/\/N 1s Hadamard.

Proor. This follows from the Cauchy-Schwarz inequality, as follows:

Ul = > 1yl
i

2
1
= 3 (Z |Uz‘j|2>
ij

= 1
Thus we have ||U||; > 1, with equality if and only if H = v/NU is Hadamard. O

In the circulant case now, and in Fourier formulation, the estimate is as follows:

THEOREM 9.20. Given a vector ¢ € TN, written ¢ = (qo,...,qn_1) consider the
following quantity, with all the indices being taken modulo N :

P — Z qiqk

iy Ll

Then this quantity ® is real, and we have the estimate
® > N?

with equality happening precisely when / Nq is the eigenvalue vector of a circulant Hada-
mard matric H € My(C).

PROOF. By conjugating the formula of ® we see that this quantity is indeed real. In
fact, ® appears by definition as a sum of N3 terms, consisting of N(2N — 1) values of 1
and of N(N — 1)? other complex numbers of modulus 1, coming in pairs (a, a).
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Regarding now the second assertion, by using the various identifications in Theorem
9.15 and Proposition 9.16, and the formula £ = Fq/\/N there, we have:

i = Ny el
B % DD wlay wlg Yy whey wlg

s % j k I
= % Z Z w(i—i+k—0s 19k

s ijkl q%

1 ;
:mzq%

ithmyt U9

Thus Proposition 9.19 gives the following estimate:
= N?||U][} > N2
Moreover, we have equality precisely in the Hadamard matrix case, as claimed. U

We have the following more direct explanation of the above result:

PROPOSITION 9.21. With the above notations, we have the formula

O =N+ (uf* = |y
i#

where v = (vg, ..., Un_1) is the vector given by v = Fq.

PRrROOF. This follows by replacing in the above proof the Cauchy-Schwarz estimate by
the corresponding sum of squares. More precisely, we know from the above proof that:

$ = N° Z &
On the other hand U;; = &;_; being unitary, we have:

Z ‘51“2 =1

7
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We therefore have the following computation:

I = Z|§z|4+2|§z|2 |£j|2

i#£j
- NZ|§Z-|4—< -0 Y6l =3l w)
i i#£]
= (I) Z ‘51’2 |£J

i#]
Now by multiplying by N2, this gives the formula in the statement. U

We will explore the minimization problem for ® in what follows, by using various
combinatorial and analytic methods.

As an illustration for the difficulties in dealing with this problem, let us work out the
case where N is small. At N = 1 our inequality ® > N? is simply:

d=1>1

At N = 2 our inequality is also clearly true:

2
<I>_6+(q0) +(@> >4
q1 do

At N = 3 now, the inequality is something more subtle:
3., 3.4 3
d =15+ 4Re (M) >0
409192
Observe that in terms of a = ¢2/(q142), b = ¢¢/(q0q2), ¢ = ¢3/(qoq1), which satisfy
la| = |b] = |¢| =1 and abc = 1, our function is:
O =15+ 4Re(a+ b+ c)

Thus at N = 3 our inequality still has a quite tractable form, namely:
3
la| = |b| = |¢| = 1,abc =1 = Re(a+b+c) > )
At N = 4 however, the formula of ® is as follows:

d — 28+4(QOQ1_I_Q2(J3+QOQ3+Q1Q2>+<qo+Q2+Q1_I_Q:g)
293 Qo091 G192 Gog3 QQ QO (13 Q1
2 2 2 2
49 (%6212 4 q7 i QO212 1 qs3 i 61133 4 4o n Ch;]:s i qs >
i qoq2 q3 qoq2 ‘0 q193 a5 4143
It is not clear how to obtain a simple direct proof of ® > 16.
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As an application of the above considerations, in the real Hadamard matrix case, we
have the following analytic reformulation of the CHC, from [19]:

THEOREM 9.22. For a vector ¢ € TV satisfying §; = q_; the following quantity is real,

o= > Ggna

i+j+k+1=0
and satisfies the following inequality:
o > N?

The CHC states that we cannot have equality at N > 4.

Proor. This follows from Theorem 9.20, via the identifications from Theorem 9.15,
the parameter space in the real case being:
¢ = Q—i}

{qG']I‘N

Thus, we obtain the result. O

Following [19], let us further discuss all this. We first have:
THEOREM 9.23. Let us decompose the above function as
(D:(I)O—f—...—i—q)]\[,l

with each ®; being given by the same formula as ®, namely

qiqk
qiqk

b =
ith=j+1

but keeping the index i fixed. Then:

(1) The critical points of ® are those where ®; € R, for any .
(2) In the Hadamard case we have ®; = N, for any i.

Proor. This follows by doing some elementary computations, as follows:

(1) The first observation is that the non-constant terms in the definition of ® involving
the variable ¢; are the terms of the sum K; + K;, where:

K, = Z Q_§+2Z Z 4idk

gijri L Wi kg1 D!
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Thus if we fix ¢ and we write ¢; = €, we obtain:

e . Qiqk
do; Afte (Z Z Z'QjCJz)

k ith=j+1

) 41m( 5 qiqk)

ith=gtt

Now since the derivative must vanish for any ¢, this gives the result.

(2) We first perform the end of the Fourier computation in the proof of Theorem 9.20
above backwards, by keeping the index 7 fixed. We obtain:

b, = 4Gk
ikt TG
= 1 (i—j+k—1)s Lk
i Zs: % v q;q
= %Zwﬁq@‘zw_s@‘ Zwsquzw_slql
s j 3 .
- N2 Z wSiQigsfsgs

Here we have used the formula £ = Fq/ V/N. Now by assuming that we are in the
Hadamard case, we have || = 1/v/N for any s, and so we obtain:

(I)z' = Nzwm%gs

= Nqg;
= N

Thus, we have obtained the conclusion in the statement. [l

Let us discuss now a probabilistic approach to all this. Given a compact manifold
X endowed with a probability measure, and a bounded function © : X — [0,00), the
maximum of this function can be recaptured via following well-known formula:

1/p
max © = lim (/ O(x)? dx)
p—r00 X

In our case, we are rather interested in computing a minimum, and we have:
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PROPOSITION 9.24. We have the formula

1/p
min ® = N° — lim (/ (N3—q))pdq>
TN

pP—00
where the torus TV is endowed with its usual probability measure.

PRroor. This follows from the above formula, with © = N2 — ®. Observe that O is
indeed positive, because ® is a sum of N? complex numbers of modulus 1. Il

Let us restrict now the attention to the problem of computing the moments of ®,
which is more or less the same as computing those of N® — ®. We have here:

PROPOSITION 9.25. The moments of ® are given by

ki .. ik
PSP dg = ; i
/TN 1 #{(jllljplp>

where the sets between brackets are by definition sets with repetition.

is + ks = js + s, [tnky .. ipky] = [1ly - .jplp]}

PROOF. This is indeed clear from the formula of ®. See [20]. O

Regarding now the real case, an analogue of Proposition 9.25 holds, but the combina-
torics does not get any simpler. One idea in dealing with this problem is by considering
the “enveloping sum”, obtained from ® by dropping the condition i + k = j + [

& — 4i4k
im L

The point is that the moments of ® appear as “sub-quantities” of the moments of (i),
so perhaps the question to start with is to understand very well the moments of ®. And
this latter problem sounds like a quite familiar one, because:

4
ZQi

We will be back to this later. For the moment, let us do some combinatorics:

o =

PROPOSITION 9.26. We have the moment formula

fowa= 5 (Do

TEP(2p)
where the coefficients on the right are given by

(2:> B (b12p bm)

with by, ..., by being the lengths of the blocks of .
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PROOF. Indeed, by using the same method as for ¢, we obtain:

[ aardn = { (W) fik ] =it}

Jili o gply

The sets with repetitions on the right are best counted by introducing the correspond-
ing partitions m = ker (ilkrl .. .ipkp), and this gives the formula in the statement. O

In order to discuss now the real case, we have to slightly generalize the above result,
by computing all the half-moments of ®. The result here is best formulated as:

ProPOSITION 9.27. We have the moment formula

/TN ;%’

with the coefficients being given by

B p
= 2. <b1,...,b,,,>

w€P(p),|w|=k

2p
N
da = gcp’“(N — k)|

where by, ..., bix are the lengths of the blocks of .

Proor. This follows indeed exactly as Proposition 9.26 above, by replacing the expo-
nent p by the exponent p/2, and by splitting the resulting sum as in the statement. [

Finally, here is a random walk formulation of the problem:

PROPOSITION 9.28. The moments of ® have the following interpretation:

(1) First, the moments of the enveloping sum f%p count the loops of length 4p on
the standard lattice ZV C RY, based at the origin.

(2) [ ®P counts those loops which are “piecewise balanced”, in the sense that each of
the p consecutive 4-paths forming the loop satisfy i + k = j 4+ 1 modulo N.

PRrOOF. The first assertion follows from the formula in the proof of Proposition 9.26,
and the second assertion follows from the formula in Proposition 9.25. O

This statement looks quite encouraging, but passing from (1) to (2) is quite a delicate
task, because in order to interpret the condition ¢ + £k = j 4+ [ we have to label the
coordinate axes of RY by elements of the cyclic group Zy, and this is a quite unfamiliar
operation. In addition, in the real case the combinatorics becomes more complex due to
the symmetries of the parameter space, and no further results are available so far.
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9e. Exercises

There has been a lot of interesting combinatorics in this chapter, and we have several
exercises on the subject. Let us start with:

EXERCISE 9.29. Work out the details for Bjorck’s cyclic root equations,
20+ 21+ ... +2N_1

2021+ 2122+ ...+ 2y_120 = 0

2071..-AN_2+ ...+ 2ZN_120---2N_3 = 0
20”1 ..--2AN—-1 —
which produce Hadamard matrices via H;; = vj_;, with z; = ~;/vi-1.

This is a standard computation, which is normally not very difficult.

In relation now by the Butson matrices, we have:

EXERCISE 9.30. Work out the Turyn obstruction for the circulant Butson matrices at
the exponent values | = 6,7, 8.

To be more precise, we have seen in the above how to deal with such questions at the
exponent values [ = 2, 3,4, 5, and the problem now is that continuing that work.

In connection now with the Haagerup count, we have:

EXERCISE 9.31. Work out formulae or estimates for the number of circulant complex
N x N complex Hadamard matrices, at small values of N € N, not prime.

This is something quite tricky, normally requiring some computer programming.
Finally, in connection with the analytic aspects, we have:

EXERCISE 9.32. Find a proof for the estimate ® > 16 at N = 4.

This question was already mentioned in the above, with the comment that there is no
obvious proof. The problem is that of finding a reasonably elementary proof.



CHAPTER 10

Bistochastic form

10a. Basic theory

In this chapter and the next two ones we discuss certain further analytic aspects of
the complex Hadamard matrices. Let us begin with the following definition:

DEFINITION 10.1. A complex Hadamard matric H € My(C) is called bistochastic
when the sums on all rows and all columns are equal,

> Hi =) Hi =X
¢ J
for a certain number A\ € C. We denote by
Xtis — {H c XN‘ H= bistochastic}

the real algebraic manifold formed by such matrices.

The bistochastic Hadamard matrices are quite interesting objects, and include for
instance all the circulant Hadamard matrices, that we discussed in chapter 9. Indeed,
assuming that H;; = £;_; is circulant, all rows and columns sum up to A =), &;:

ij—z‘ = ij—i = Z&'

Let us begin, however, with some considerations regarding the real case. Our point
here is that the real Hadamard matrices often “look better” in complex bistochastic form,
and that there is some potentially interesting mathematics behind all this.

As a first and trivial remark, the first Walsh matrix Wy = F5 looks better in complex
bistochastic form, modulo the standard equivalence relation:

1 1 i1 11
1 -1 1 -1 1 4
To be more precise, the matrix on the right, while having the slight disadvantage of

being complex instead of real, is something very nice, circulant and symmetric.

225
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The second Walsh matrix W, = Wy ® W5 looks as well better in bistochastic form:

1 1 1 1 1 1 1 1
1 -1 1 -1 1 1 -1 -1
1 1 -1 =1} 7 1 =1 1 =1
1 -1 -1 1 1 -1 -1 1
1 -1 —1 -1
1 -1 1 1
N I TS R |
1 1 1 -1
-1 1 1 1
1 -1 1 1
~ 1 1 -1 1

As before with the first Walsh matrix, the matrix on the right looks much better than
the one on the left, because it is circulant and symmetric.

All this is quite interesting, philosophically speaking. Indeed, we have here a new
idea, in connection with the various questions explained in chapters 1-4 above, namely
that of studying the real Hadamard matrices H € My(£1) by putting them in complex
bistochastic form, H' € My(T), and then studying these latter matrices.

Let us record here, as a partial conclusion, the following simple fact:

THEOREM 10.2. All the Walsh matrices can be put in bistocastic form, as follows:
(1) The matrices Wy with N = 4" admit a real bistochastic form, namely:

-1 1 1 1\"
1 -1 1 1
My~ 1 -1
11 1 -1

(2) The matrices Wy with N = 2 x 4™ admit a complex bistochastic form, namely:
-1 1 1 1\"

i1 1 -1 1 1

Wa ~ (1 z) P11 o1 -1

1 1 1 -1

ProoF. This follows indeed from the above discussion. g

Let us review now the material in chapter 9. According to the results there, and to
the above-mentioned fact that circulant implies bistochastic, we have:
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THEOREM 10.3. The class of bistochastic Hadamard matrices is stable under permut-
ing rows and columns, and under taking tensor products. As examples, we have:

(1) The circulant and symmetric forms F) of the Fourier matrices Fy.
(2) The bistochastic and symmetric forms F{, of the Fourier matrices F.
(3) The circulant and symmetric Backelin matrices, having size MN with M|N.

PROOF. In this statement the claim regarding permutations of rows and columns is
clear. Assuming now that H, K are bistochastic, with sums A, y, we have:

Z(H@K)m’jb = ZHinab
= ) Hy;)» Ku
SV

We have as well the following computation:

Z(H®K)ia,jb = ZHinab

Jb Jb
= D Hy) Ka
7 b
Thus, the matrix H ® K is bistochastic as well. As for the assertions (1,2,3), we
already know all this, from chapter 9 above. U

In the above list of examples, coming from the material in chapter 9, the entry (2)
is the key one. Indeed, while many interesting complex Hadamard matrices, such as the
usual Fourier ones Fly, can be put in circulant form, this is something quite exceptional,
which does not work any longer when looking at the general Fourier matrices Fi.

To be more precise, given a finite abelian group G = Zy, X ... X Zy, , we can consider
the following matrix, which is equivalent to Fg:
Fo=Fy ®...0Fy
Now since the tensor product of circulant matrices is bistochastic, but not necessarily

circulant, we can only say that this matrix F{, is bistochastic.

As a conclusion to all this, the bistochastic complex Hadamard matrices are interesting
objects, covering all the generalized Fourier matrices, up to equivalence, and definitely
worth some study. So, let us develop now some general theory, for such matrices.

First, we have the following elementary result:
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PROPOSITION 10.4. For a complex Hadamard matrizx H € My(C), the following con-
ditions are equivalent:

(1) H 1is bistochastic, with sums X.
(2) H is row-stochastic, with sums X, and |[\|?> = N.

PROOF. Both the implications are elementary, as follows:

(1) = (2) If we denote by Hy,..., Hy € TV the rows of H, we have indeed:
N = ) <H,H>

7

= 2D Hyly

? J

— Y Hy; Y Hy
7 i
i

= AP

(2) = (1) Consider the all-one vector ¢ = (1); € CV. The fact that H is row-
stochastic with sums A reads:

ZHZ']‘ = )\,Vl <~ Zngj = )\&,Vl
J J

— H¢{= X
Also, the fact that H is column-stochastic with sums A reads:
Y Hy=AVj <= Y Hy&=)\,v)

J

= H'¢=X

We must prove that the first condition implies the second one, provided that the row
sum \ satisfies [\|> = N. But this follows from the following computation:

HE=) = H'HE=\H"¢

— N2 =)\H*¢
— N2 = \H'
— H'¢ =\
Thus, we have proved both the implications, and we are done. O

Here is another basic result, that we will need as well in what follows:
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PROPOSITION 10.5. For a complex Hadamard matric H € My(C), and a number
A € C satisfying |\|? = N, the following are equivalent:

(1) We have H ~ H', with H' being bistochastic, with sums .
(2) Kij = a;bjH;; is bistochastic with sums X, for some a,b € TV.
(3) The equation Hb = \a has solutions a,b € TV .

PROOF. Once again, this is an elementary result, the proof being as follows:

(1) <= (2) Since the permutations of the rows and columns preserve the bistochas-
ticity condition, the equivalence H ~ H' that we are looking for can be assumed to come
only from multiplying the rows and columns by numbers in T. Thus, we are looking for
scalars a;, b; € T such that the following matrix is bistochastic with sums A:

Kij = aiijij
Thus, we are led to the conclusion that (1) and (2) are equivalent, as claimed.

(2) <= (3) The row sums of the matrix K;; = a;b; H;; are given by:
Z Kij = Z aiijij = CL1<Hb)z
J J

Thus K is row-stochastic with sums A precisely when Hb = Aa, and by using the
equivalence in Proposition 10.4, we obtain the result. U

Finally, here is an extension of the excess inequality from chapter 2 above:

THEOREM 10.6. For a complex Hadamard matrix H € My (C), the excess,

E(H)=) H;

satisfies |E(H)| < NN, with equality if and only if H is bistochastic.
PROOF. In terms of the all-one vector £ = (1); € CV, we have:
E(H) = > Hj
(]
= ) Hygg
(]
= Y (HO&

i

= <HEE>
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Now by using the Cauchy-Schwarz inequality, along with the fact that U = H/ VN is
unitary, and hence of norm 1, we obtain, as claimed:
[E(H)| < [[HE- 1€l
< [|H]] - [lgl)®
NVN

Regarding now the equality case, this requires the vectors H¢, & to be proportional,
and so our matrix H to be row-stochastic. Now, let us assume:

HE = A¢
We have then |A\|?> = N, and by Proposition 10.4 we obtain the result. O

Let us go back now to the fundamental question, which already appeared several times
in the above, of putting an arbitrary Hadamard matrix in bistochastic form.

As already explained in the above, we are interested in solving this question in general,
and in particular in the real case, with potential complex reformulations of the HC and
CHC, and other real Hadamard questions, at stake.

What we know so far on this subject can be summarized as follows:

PROPOSITION 10.7. An Hadamard matric H € My (C) can be put in bistochastic form
when one of the following conditions is satisfied:

(1) The equations |Ha|; = /N, with i = 1,..., N, have solutions a € TV.
(2) The quantity |E| attains its mazimum NN over the equivalence class of H.

Proor. This follows indeed from Proposition 10.4 and Proposition 10.5 above, which
altogether gives the equivalence between the two conditions in the statement. O

Thus, we have two approaches to the problem, one algebraic, and one analytic.

10b. Idel-Wolf theorem
Let us first discuss the algebraic approach, coming from Proposition 10.7 (1).
What we have there is a certain system of N equations, having as unknowns N real

variables, namely the phases of aq,...,ay. This system is highly non-linear, but can be
solved, however, via a certain non-explicit method, as explained by Idel and Wolf in [57].

In order to discuss this material, which is quite advanced, let us begin with some
preliminaries. The complex projective space appears by definition as follows:

P =Y —{0})/ <z =Xy >
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Inside this projective space, we have the Clifford torus, constructed as follows:
TV = {(21,...,2N) e PP z=...= |2N|}

With these conventions, we have the following result, from [57]:
ProPOSITION 10.8. For a unitary matrix U € Uy, the following are equivalent:

(1) There exist L, R € Uy diagonal such that the following matriz is bistochastic:

U =LUR
(2) The standard torus TV C CV satisfies:
TV NUTN £0
(3) The Clifford torus TN=' C PY™! satisfies:
TV PNUTN ! £

PROOF. These equivalences are all elementary, as follows:

(1) = (2) Assuming that U’ = LUR is bistochastic, which in terms of the all-1
vector ¢ means U'¢ = &, if we set f = RE € TV we have:

Uf = LURf
= LU'¢
= LeeTV
Thus we have Uf € TV NUTY, which gives the conclusion.
(2) = (1) Given g € TN NUTY, we can define R, L as follows:
g1
R=
gn
) (Ugh
L =
(Ug)n
With these values for L, R, we have then the following formulae:
RE¢=g , LE=Uyg
Thus the matrix U’ = LUR is bistochastic, because:
U'¢ = LURE
= LUyg
= ¢
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(2) = (3) This is clear, because TN=' € PY~! appears as the projective image of
TN c CV, and so TN "' N UTYN~! appears as the projective image of TV N UTY.
(3) = (2) We have indeed the following equivalence:
TV IAUTVN 1 £0 = IANA0NTVNUTN £0
But U € Uy implies |A| = 1, and this gives the result. O

The point now is that the condition (3) above is something familiar in symplectic
geometry, and known to hold for any U € Uy. Thus, following [57], we have:

THEOREM 10.9. Any unitary matrix U € Uy can be put in bistochastic form,
U =LUR
with L, R € Uy being both diagonal, via a certain non-explicit method.

PROOF. As already mentioned, the condition TNt N UTN~! £ () in Proposition 10.8
(3) is something quite natural in symplectic geometry. To be more precise:

(1) TN-! ¢ PY¥~!is a Lagrangian submanifold.
(2) TN — UTN! is a Hamiltonian isotopy.

(3) A result from [32], [38] states that TV~! cannot be displaced from itself via a
Hamiltonian isotopy.

Thus, the results in [32], [38] tells us that TVN=! N UTN=1 £ () holds indeed, for any
U € Un. We therefore obtain the result, via Proposition 10.8. See [57]. O

In relation now with our Hadamard matrix questions, we have:

THEOREM 10.10. Any complex Hadamard matriz can be put in bistochastic form, up
to the standard equivalence relations for such matrices.

PROOF. This follows indeed from Theorem 10.9, because if H = v/NU is Hadamard
then so is H' = v/NU’, and with the remark that, in what regards the equivalence relation,
we just need the multiplication of the rows and columns by scalars in T. O

There are many further things that can be said here. As explained in [57], the various
technical results from [32], [38] show that in the generic, “transverse” situation, there
are at least 2V~1 ways of putting a unitary matrix U € Uy in bistochastic form, and this
modulo the obvious transformation U — zU, with |z| = 1.

Thus, the question of explicitely putting the Hadamard matrices H € My(C) in
bistochastic form remains open, and open as well is the question of finding a simpler
proof for the fact that this can be done indeed, without using [32], [38].
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10c. Complex glow

Regarding the latter question raised above, a possible approach comes from the excess
result from Theorem 10.6. Indeed, in view of the result there, it is enough to show that
the law of |E| over the equivalence class of H has NV N as upper support bound.

In order to comment on this, let us first formulate:

DEFINITION 10.11. The glow of H € My (C) is the measure p € P(C) given by:

/(C@(ﬂf)du(w) = /TNxTN @ <Z aiijZ-j) d(a,b)

That is, the glow is the law of the excess
]
over the equivalence class of H.

In this definition H can be any complex matrix, but the equivalence relation is the
one for the complex Hadamard matrices.

To be more precise now, let us call two complex matrices H, K € My(C) Hadamard
equivalent if one can pass from one to the other by permuting rows and columns, or
by multiplying the rows and columns by numbers in T. Now since permuting rows and

columns does not change the quantity £ = Zij H;;, we can restrict attention from the

full equivalence group G = (Sy x TV) x (Sy x TV) to the smaller group G' = TV x TV,
and we obtain in this way the measure p in Definition 10.11.

As in the real case, the terminology comes from a picture of the following type, with
the stars * representing the entries of our matrix, and with the switches being supposed
now to be continuous, randomly changing the phases of the concerned entries:

114l
* K K ¥
* ¥ X ¥
EE S U
* K% X ¥

TT T

In short, what we have here is a complex generalization of the Gale-Berlekamp game
[50], [80], and this is where the main motivation for studying the glow comes from.

We are in fact interested in computing a real measure, because we have:
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PROPOSITION 10.12. The laws pu, u* of the variables
E,|E|
over the torus TV x TN are related by the formula
p=exput

where X is the multiplicative convolution, and € is the uniform measure on T.

PROOF. By definition of the excess E, as being the total sum of the entries of the
matrix, we have the following equality, valid for any A € T:

E(\H) = \E(H)

We conclude from this that g = law(FE) is invariant under the action of T. Thus p
must decompose as follows, with u being a certain probability measure on [0, 00):

p=exp*
But, according to our definitions, this measure p* is the measure in the statement,
and this gives the result. O

In particular, we can see from the above result that the glow is invariant under rota-
tions. With this observation made, we can formulate the following result:

THEOREM 10.13. The glow of any Hadamard matrizc H € My(C), or more generally
of any H € V/NUy, satisfies the following conditions, where D) is the unit disk,

NVNT C supp(u) € NVND

with the inclusion on the right coming from Cauchy-Schwarz, and with the inclusion on
the left corresponding to the fact that H can be put in bistochastic form.

ProoF. We have two inclusions to be proved, the idea being as follows:

(1) The inclusion on the right comes indeed from Cauchy-Schwarz, as explained in the
proof of Theorem 10.6 above, with the remark that the computation there only uses the
fact that the rescaled matrix U = H/+/ N is unitary.

(2) Regarding now the inclusion on the left, we know from Theorem 10.9 that H can
be put in bistochastic form. According to Proposition 10.7, this tells us that we have:

NVNTN supp(p) # (0

Now by using the rotational invariance of the glow, and hence of its support, coming
from Proposition 10.12, we obtain from this:

NVNT C supp(p)

Thus, we are led to the conclusions in the statement. U
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The challenging question now is that of proving the above result, which comes from
heavy symplectic geometry, by using standard probabilistic techniques.

Indeed, as explained in chapter 9 above, in the context of the questions investigated
there, the support of a real measure can be recaptured from the moments, by computing
a limit. Thus, knowing the moments of the glow well enough would solve the problem.

Regarding these moments, the formula is as follows:

PROPOSITION 10.14. For H € My(T) the even moments of |E| are given by

/ Er= Y Hiyjy - Hiy,
e =iirpi= Tt el

where the sets between brackets are by definition sets with repetition.

ProoOF. We have indeed the following computation:

/ B
TN xTN

- /N N‘ZHijaibj

S (e
TN xTN ikl Hy  agb

H; .H,

— § : 1J1 e ipjp / ail"'aip / bj "'bjp
ijkl Hklll s Hkplp ™ Qfq - - - CLk-p TN bl1 . bl

P

2p

Now since the integrals at right equal respectively the Kronecker symbols dj;,x and
d(j1,» we are led to the formula in the statement.

With this formula in hand, the main result, regarding the fact that the complex
Hadamard matrices can be put in bistochastic form, reformulates as follows:

THEOREM 10.15. For a complex Hadamard matrix H € My(T) we have

1/p
H; . ...H ;
lim Z 1J1 pJp — N3

p—0o0

Heo, ... H
[ =lk), ()=l i Frlp

coming from the fact that H can be put in bistochastic form.
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Proor. This follows from the well-known fact that the maximum of a bounded func-
tion © : X — [0,00) can be recaptured via following formula:

max(©) = lim ( /X @(x)pdm) "

p—00
We can use this estimate for the following function, over X = TV x TV:
0= |E|?

We conclude that the limit in the statement is the square of the upper bound of the
glow. But, according to Theorem 10.13 above, this upper bound is known to be < N3 by
Cauchy-Schwarz, and the equality holds by [57]. O

To conclude now, the challenging question is that of finding a direct proof for Theorem
10.15. All this would provide an alternative aproach to the results in [57], which would
be of course still not explicit, but which would use at least some more familiar tools.

We will discuss such questions in chapter 11 below, with the remark however that the
problems at N € N fixed being quite difficult, we will do a N — oo study only.

10d. Fourier matrices

Getting away now from these difficult questions, we have nothing concrete so far,
besides the list of examples from Theorem 10.3, coming from the circulant matrix consid-
erations in section 9. So, our purpose will be that of extending that list.

A first natural question is that of looking at the Butson matrix case. To start with,
we have the following elementary result:

PROPOSITION 10.16. Assuming that Hx(l) contains a bistochastic matriz, the equa-
tions

g+ a1+ ... +a_1 = N
lag +aw+ ... +a_wP = N
must have solutions, over the positive integers.

PRrooOF. This is a reformulation of the following equality, from Proposition 10.5 above,
regarding the row sums of a bistochastic Hadamard matrix:

A =N

Indeed, if we set w = e*/!, and we denote by a; € N the number of w’ entries
appearing in the first row of our matrix, then the row sum of the matrix is given by:
-1

2mi/l

A=aptaw+...+a_jw

Thus, we obtain the system of equations in the statement. U
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The point now is that, in practice, we are led precisely to the Turyn obstructions from
section 9 above. At very small values of [, the obstructions are as follows:

THEOREM 10.17. Assuming that Hy(l) contains a bistochastic matriz, the following
equations must have solutions, over the integers:

1) I =2:4n?> = N.

(1)

(2) =322 +y*+22=2N, withz+y+2=0.
(3) l=4:a®>+0b*=N.

PRrRoOOF. This follows indeed from the results that we have:
(1) This is something well-known, which follows from Proposition 10.17.

(2) This is best viewed by using Proposition 10.17, and the following formula, that we
already know, from chapter 5 above:

’a—i—bw—i—ch‘Q = %[(a—b)2+ (b—c)*+ (c—a)?

At the level of the concrete obstructions, we must have for instance 5/N. Indeed, this
follows as in the proof of the de Launey obstruction for Hy(3) with 5|N.

(3) This follows again from Proposition 10.17, and from |a + ib|? = a® + b*. O

As a conclusion, nothing much interesting is going on in the Butson matrix case, with
various arithmetic obstructions, that we partly already met, appearing here. See [63].

In order to reach, however, to a number of positive results, beyond those in Theorem
10.4, we can investigate various special classes of matrices, such as the Dita products.
In order to formulate our results, we will use the following notion:

DEFINITION 10.18. We say that a complexr Hadamard matric H € My(C) is in “al-
most bistochastic form” when all the row sums belong to VN - T.

Observe that, assuming that this condition holds, the matrix H can be put in bis-

tochastic form, just by multiplying its rows by suitable numbers from T.

We will be particularly interested here in the special situation where the affine defor-
mations H? € My(C) of a given complex Hadamard matrix H € My(C) can be put in
almost bistochastic form, independently of the value of the parameter q.

For the simplest deformations, namely those of F, ® F5, this is indeed the case:
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PROPOSITION 10.19. The deformations of Fy ® Fy, with parameter matriz QQ = (£ 9),

p g9 p q
Reeh=|\ 5 7
r —s —r s

can be put in almost bistochastic form, independently of the value of Q).

PrRoOOF. By multiplying the columns of the matrix in the statement with 1,1, —1,1
respectively, we obtain the following matrix:

p 49 —pP g
" _ P —q —p —q
Bogh=1, o  _
r —s r s

The row sums of this matrix are as follows:
2q,—2q,2r,2r € 2T

Thus, by multiplying by suitable scalars, namely the complex conjugates of these
numbers, we can put our matrix in bistochastic form, as desired. U

We will see later on that the above matrix F, ®¢ Iy is equivalent to a certain matrix
Fy ® Fy, which looks a bit more complicated, but is part of a series Fiy ®' Fly.

Now back to the general case, we have the following result:

THEOREM 10.20. A deformed tensor product H ®¢g K can be put in bistochastic form
when there exist numbers ' € T such that with

(K*xz)b
Qiv

Gy =

we have |(H*G) | = VMN, for any i,b.

PROOF. According to our tensor product conventions, the deformed tensor product
L = H ®q K is given by the following formula:

Liajb = QinHij Kap
By multiplying the columns by scalars Rj, € T, this matrix becomes:

: RipyQinHij K

ia,jb —
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The row sums of this matrix are given by:

Sia = ZijQininab
b

= Z K Qi Z H;;Rj,
b J

= Z KapQin(HR) iy,
b

Consider now the following variables:
Cy = Qu(HR)y,
In terms of these variables, the rows sums are given by:

Siy =Y KaCj = (KC"),
b

Thus H ®¢g K can be put in bistochastic form when we can find scalars Rj, € T and
z! € T such that, with C} = Q;(HR);, the following condition is satisfied:

(KC", =VvMNz. |, Via

But this condition is equivalent to the following condition:
KC'=vMNz' | Vi
Now by multiplying to the left by K*, we are led to the following condition:
VNC! = VMK*z | Vi
Now by recalling that C} = Qu(H R), this condition is equivalent to:
VNQu(HR)y = VM(K*z'), , Vib
Consider now the variables in the statement, namely:

(K*l‘l)b
Gyp = —=2
" Qa

In terms of these variables, the above condition reads:
VN(HR)y, =VMGy , Vi,b

But this condition is equivalent to:

VNHR = VMG

Now by multiplying to the left by H*, we are led to the following condition:
VMNR=H"G

Thus, we have obtained the condition in the statement. U
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As an illustration for the above result, assume that H, K can be put in bistochastic
form, by using vectors y € TV, 2z € TV. If we set 2, = y;z,, with Q = 1 we have:
Gib = (K*$2)b
(K7 (yiz)lo
= yi(K72)
We therefore obtain the following formula:
(H*G)w > (H)yGy,
J
= > (H)iy (K*2),
J
= (H'y)i(K"2)

Thus the usual tensor product H ® K can be put in bistochastic form as well.

In the case H = F); the equations simplify, and we have:

PROPOSITION 10.21. A deformed tensor product Fyy ®¢ K can be put in bistochastic
form when there exist numbers z, € T such that with

(K*l’l)b
Qiv
we have the following formulae, with | being taken modulo M :

ZGjbéj—H,b:MNél,O , VI,b

J

Gip =

Moreover, the M x N matriz |G,|* is row-stochastic with sums N?, and the l = 0 equations
state that this matriz must be column-stochastic, with sums M N.

PrOOF. With notations from Theorem 10.20, and with w = e*™/M  we have:

(H*G)zb = Z w_ijGjb
J

The absolute value of this number can be computed as follows:

(H*G)a|* = Zwi(kij)Gbekb
ik

= Zw“GjbéjH,b
1

J
il ~
= > "y GG
I j
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If we denote by v} the sum on the right, we obtain:

Zb]2 Zw”vl = FMU)

Now if we denote by & the all-one vector in CM | the condition |(H*G)y| = vV MN for
any 7, b found in Theorem 10.20 above reformulates as follows:

FMyb = MNE Vb
By multiplying to the left by F,/M, this condition is equivalent to:
MN
V= NFyE=| |
0
Let us examine the first equation, v} = M N. By definition of v}, we have:

w=2 GuGin=) |Gul
j j

Now recall from Theorem 10.20 that we have, for certain numbers :c{) eT:
(K*2%),

Qi

Since we have @, € T and K*/V/N € Uy, we obtain:

DGR = DO IE ),
b b

= [[K"2[[3
= Nl27ll;
= N?

Gjb —

Thus the M x N matrix |Gj|* is row-stochastic, with sums N2, and our equations
= M N for any b state that this matrix must be column-stochastic, with sums M N.

Regarding now the other equations that we found, namely v = 0 for [ # 0, by
definition of v and of the variables G, these state that we must have:

> GuGiap=0 , VI#0,b
J

Thus, we are led to the conditions in the statement. U
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As an illustration for this result, let us go back to the () = 1 situation, explained after
Theorem 10.20. By using the formula Gy, = y;(K*2), there, we have:

Z GGy = Z Y (K 2)p Y (K*2)
; .

J

= |(K=2pP Y

7 Yj+i
= M : N5l70
Thus, if K can be put in bistochastic form, then so can be put Fj; ® K.
As a second illustration, let us go back to the matrices Fj ®’Q Iy from the proof of
Proposition 10.19 above. The vector of the row sums is:
S = (2q,—2q,2r,2r)
Thus, with the above notations, we have the following formula:
T = (Q> —q,T, 7“)

We therefore obtain the following formulae for the upper entries of G:

(G 169 N €9)

QOb QOb

As for the lower entries of GG, these are as follows:

o G0 ),

le le

Thus, in this case the matrix G is as follows, independently of Q:

o-(0)

In particular, we see that the conditions in Proposition 10.21 are satisfied.

As a main application now, we have the following result:
THEOREM 10.22. The Dita deformations of tensor squares of Fourier matrices,
Fn ®qg Fn
can be put in almost bistochastic form, independently of the value of Q € My (T).
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Proor. We use Proposition 10.21 above, with M = N, and with K = Fy. Let
w = e?™/N and consider the vectors ' € TV given by:

(Ei — (w(ifl)a)a

Since K*K = N1y, and z* are the column vectors of K, shifted by 1, we have:

0 N 0
0 0 0
K*2=| : . Kat=| s, KNl =
0 0 N
N 0 0

We conclude that we have the following formula:
(K*2"), = No;_14

Thus the matrix G is given by:

Noi1p

Qo

With this formula in hand, the sums in Proposition 10.21 are given by:

= Noj_1p Nojpi—1p
GGty = S ey e
zj: T ZJ: Qjp Qi+

In the case [ # 0 we clearly get 0, because the products of Kronecker symbols are 0.
In the case [ = 0 the denominators are |Q;,|*> = 1, and we obtain:

ZGjbC_;’jb = N2 Z 5]‘_1,[) = N2
J J

Thus, the conditions in Proposition 10.21 are satisfied, and we obtain the result. [

Gy =

In relation with the various questions raised above, regarding the Dita deformations
of the Fourier matrices, this is best result that we have, so far.

Here is an equivalent formulation of the above result:
THEOREM 10.23. The matriz Fx ®g Fy, with Q € My(T), defined by
,wz’jJrab Qib

Wbt Qpip

(Fn ®4 FN)iagp =

2mi/N

where w = e is almost bistochastic, and equivalent to Fiy ®¢g Fi.
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PROOF. Our claim is that this is the matrix constructed in the proof of Theorem
10.22. Indeed, let us first go back to the proof of Theorem 10.20. In the case M = N and
H = K = Fy, the Dita deformation L = H ®¢g K studied there is given by:

o _ _ij+ab
Lia,jb = Qz’bHinab = w7 Qu

As explained in the proof of Theorem 10.22, if the conditions in the statement there

are satisfied, then the matrix Lj, ;, = RjyLia b is almost bistochastic, where:

VMN - -R=H'G

In our case now, M = N and H = K = Fy, we know from the proof of Proposition
10.21 that the choice of G which makes work Theorem 10.22 is as follows:

_ Noi1p

G;
" Qu

With this formula in hand, we can compute the matrix R, as follows:

1 *
Rjy = NU{ G

= % Z w7 Gy

o 0il1p
— w” . ;
2 Qv

7
w— D)3

Qbt1,p

Thus, the modified version of Fiy ®¢g Fx which is almost bistochastic is given by:

/ —_—
Lm,jb - ijLia,jb
—(b+1)j
- 7
Qbt1,p
iy o
witehQy

Wt Qpip

Thus we have obtained the formula in the statement, and we are done. U
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As an illustration, let us work out the case N = 2. Here we have w = —1, and with
Q= (I'?), and then with u = £,v = 2, we obtain the following matrix:

P a4 _p g
T q T q
p _49 _pP _4
IS I8
Fy ®q B, = T §q T _g
rq T q
ro o _s r s
T q q
u 1 —u 1
. u —1 —u -1
o 1 1 —v
1 —v 1 v

In general, the question of putting the Dita deformations of the tensor products in
explicit bistochastic form remains open. Open as well is the question of putting the
arbitrary affine deformations of the Fourier matrices in explicit bistochastic form.

We would like to end this chapter by discussing a related interesting question, which
can serve as a good motivation for all this, namely the question on whether the real
Hadamard matrices, H € My(%1), can be put or not in bistochastic form, in an explicit
way. This is certainly true for the Walsh matrices, but for the other basic examples, such
as the Paley or the Williamson matrices, no results seem to be known so far.

Having such a theory would be potentially very interesting, with a complex reformu-
lation of the HC and of the other real Hadamard questions at stake.

We already know that we are done with the case N < 8. The next problem regards
the Paley matrix at N = 12, which is the unique real Hadamard matrix there:

1 2
P12NP12NP12
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This matrix is as follows, with the 4+ signs standing for +1 entries:

+ 4+ ++ -+ + 4+ -+ + +
+ -+ - 4+ -+ + + - + +
+ 4+ - - 4+ + -+ + 4+ -+
+ - -+ + + + - + 4+ + -
-+ - - 4+ -+ + -+ 4+ -
po_| -+ £+ - -+ -
- - -+ ++++ - - -+
+ 4+ 4+ - +++ - - - - -
-+ + 4+ 4+ -+ - + 4+ -+
+ 4+ -+ + - - - - - 4+ +
+ -+ + + - -+ - 4+ - -
- -+ - 4+ + - - -+ 4+ +

This matrix cannot be put of course in real bistochastic form, its size being not of the
form N = 4n% Nor can it be put in bistochastic form over {#+1, +i}, because the Turyn
obstruction for matrices over {41, 4i} is N = a? + b?, and we have:

12 # a® + b*

However, the question of putting Pj5 in bistochastic form over the 3-roots of unity
makes sense, because the Turyn obstruction here is:

r+y+z=0
B +y*+ 2" =2N
And, we do have solutions to these equations at N = 12, as follows:
L4 (=24 (-2 =24

Another question is whether Pj5 can be put in bistochastic form over the 8-roots of
unity. In order to comment on this, let us first work out the Turyn obstruction, for the
bistochastic matrices having as entries the 8-roots of unity. The result is as follows:

PROPOSITION 10.24. The Turyn obstruction for the bistochastic matrices having as
entries the 8-roots of unity is

Py + 2+t =N

Yy +yz+ 2zt =at
with z,y, z2,t € Z.
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PROOF. The 8-roots of unity are as follows, with w = e™/*:
1, w,,mw,—1, —w, —i, —tw
Thus, we are led to an equation as follows, with x,y, 2, t € Z:
|z 4+ wy + iz + iwt|* = N
We have the following computation:
|z + wy + iz + iwt|?
= (z+wy+iz+iwt)(x —iwy — iz — wt)
= 2+ + 22+ +w(l —i)(rvy +yz + 2t — at)
= 22+ ? + 22 12— V2wy +yz + 2t — at)

Thus, we are led to the conclusion in the statement. U

In relation with the above, the point now is that the equations in Proposition 10.24
do have solutions at N = 12, namely:

r=0y=2,2=—-2,t ==+2

Summarizing, the Paley matrix P;5 cannot be put in bistochastic form over the 4-roots,
but the question makes sense over the 3-roots, and over the 8-roots.

There are many interesting questions here, and as already mentioned above, the in-
terest in this subject comes from the fact that all this can potentially lead to a complex
reformulation of the HC and of the other real Hadamard matrix questions.

10e. Exercises

The material in the present chapter has often gone into research matters, and our
exercises here will be of the same type, more difficult than usual. First, we have:

EXERCISE 10.25. Check the symplectic geometry literature, and write down a concise
proof for the Idel-Wolf theorem, based on that, by explaining the main ideas involved.

An even better question would be of course that of writing down a concise proof for the
Idel-Wolf theorem, in the rescaled complex Hadamard matrix case, that we are interested
in here. We do not know if this is really possible, in the sense that if the Hadamard
matrix assumption can really bring some simplifications. Bonus question.

In what regards the analytic approach, we have here the following question:

EXERCISE 10.26. Find the best bound for the support of the glow of the complex Ha-
damard matrices, by using the moment method, and combinatorics.
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As with the previous exercise, this is rather a research question.

In the same spirit, here is another interesting question, regarding this time the arbi-
trary deformations of the Fourier matrices:

EXERCISE 10.27. Study the deformations of the Fourier matrix Fg, with the aim of
putting them in bistochastic form, and write down what you found.

To be more precise here, we know from the above that the deformations of the tensor
products of type Fiy ® Fy can be put in bistochastic form, and in order to get beyond
this, the case of the matrices Fy ® Fy; with M # N, which numerically starts with the
case of the matrix Fy = F, ® F3 = F3 ® Fy, is the one to be investigated first.

Finally, in connection with the real case, we have the following exercise:

EXERCISE 10.28. Study the Paley matrix Py, with the aim of putting it in bistochastic
form, over the complex numbers, and write down what you found.

And this is all we have. Only research exercises for this chapter. Sorry for this, and
enjoy. Working on difficult exercises can be more fun than working on easy ones, and in
any case, any type of work always leads to “things”, that can be written down.



CHAPTER 11

Glow computations

11a. Basic results

We discuss here the computation of the glow of the complex Hadamard matrices,
in the N — oo limit. As a first motivation, we have the Gale-Berlekamp game [50],
[80]. Another motivation comes from the questions regarding the bistochastic matrices,
in relation with [57], explained in chapter 10. Finally, we have the question of connecting
the defect, and other invariants of the Hadamard matrices, to the glow.

Let us begin by reviewing the few theoretical things that we know about the glow,
from chapter 10. The main results there can be summarized as follows:

THEOREM 11.1. The glow of H € My (C), which is the law p € P(C) of the excess
E=) H;
ij

over the Hadamard equivalence class of H, has the following properties:

(1) p=¢ex u*, where u* = law(|E]).

(2) p is invariant under rotations.

(3) H € VNUy implies supp(p) € NVND.

(4) H € V/NUy implies as well Nv/N'T C supp(p).

Proor. We already know all this from chapter 10, the idea being as follows:

(1) This follows indeed by using H — zH with |z| = 1.

(2) This follows from (1), the convolution with ¢ bringing the invariance.

(3) This folllows indeed from Cauchy-Schwarz.

(4) This is something highly non-trivial, coming from [57]. O

In what follows we will be mainly interested in the Hadamard matrix case, but since
the computations here are quite difficult, let us begin our study with other matrices.

249
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It is convenient to normalize our matrices, as to make them a bit similar to the
Hadamard ones. To be more precise, consider the corresponding 2-norm, given by:

1H|l2= Y [Hjl?
\

We will assume in what follows, by multiplying our matrix H € My(C) by a suitable
scalar, that this norm takes the same value as for the Hadamard matrices, namely:

|Hlls =N

We recall that the complex Gaussian distribution C is the law of z = \/ii(xq%y), where

x,y are independent standard Gaussian variables. In order to detect this distribution, we
can use the moment method, and the following well-known formula:

E(|2|*) = p!

Finally, we use the symbol ~ to denote an equality of distributions.

With these conventions, we have the following result:

PROPOSITION 11.2. We have the following computations:

(1) For the rescaled identity Iy = v NIy we have

E~VN(g+...4+qv)

with ¢ € TV random. With N — oo we have E/N ~ C.
(2) For the flat matriz Jy = (1);; we have

EN<CL1+...+CLN)(b1+...+bN)

with (a,b) € TV x TV random. With N — oo we have E/N ~ C x C.

Proor. We use Theorem 11.1, and the moment method:
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(1) Here we have E = v/N Y, a;b;, with a,b € TV random. With ¢; = a;b; this gives
the first assertion. Let us estimate now the moments of |E|?. We have:

/ EP?
TN xTN

= Np/N g1 + ... + qn|*dg
T

Qiy - - Gi
= Np/ ——Ldq
TN%:Qh"'ij
- Np#{(z',j)e{l,...,N}px{l,...,N}” [il,...,z'p]:[jl,...,jp]}
~ NP.pIN(N—-1)...(N—p+1)

NP . pINP

p!N?

12

Here, and in what follows, the sets between brackets are by defintion sets with repe-
tition, and the middle estimate comes from the fact that, with N — oo, only the multi-
indices ¢ = (i1, ...,1%,) having distinct entries contribute. But this gives the result.

(2) Here we have the following formula, which gives the first assertion:
EeYat-YaYh
ij i j

Now since a,b € TV are independent, so are the quantities Y, a;, Zj b;, so we have:

2
/ B> = (/ |q1—|—...—|—qN|2”dq>
TN TN T~

~ (p!NP)?
Here we have used the estimate in the proof of (1), and this gives the result. U

As a first conclusion, the glow is intimately related to the basic hypertoral law, namely
the law of the variable ¢; + ... + gy, with ¢ € TV being a random vector.

Observe that at N = 1 this hypertoral law is simply the Dirac mass d;, and that at

N = 2 we obtain the following law:

law|1+q| = law/(1+et)(1+eit)

= lawv2+ 2cost

= law (2 CoS E)
2
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In general, the law of > ¢; is known to be related to the Pélya random walk [77].
Also, as explained for instance in chapter 9, the moments of this law are:

D N!
g+ .+ qn|Pdg = ()—
. 2 )w—mm

As a second conclusion, even under the normalization ||H||s = N, the glow can behave
quite differently in the N — oo limit.

So, let us restrict now the attention to the complex Hadamard matrices.

At N = 2 we only have F; to be invesigated, the result being as follows:
PRrROPOSITION 11.3. For the Fourier matriz Iy we have
|E]? =4+ 2Re(a — B)
for certain variables o, 8 € T which are uniform, and independent.

PRrROOF. The matrix that we interested in, namely the Fourier matrix £} altered by a
vertical switching vector (a,b) and an horizontal switching vector (¢, d), is

~ ac ad
E:chﬁ

With this notation, we have the following formula:

|E]? = |ac+ ad + bc — bd)?

For proving that the variables o = “—‘Ci and g = a—c are independent, we can use the
moment method, as follows:

/T4 (%)p(%)q z !:p;/bq p/ /dp+q

- 5p,q,0

Thus «, § are indeed independent, and we are done. Il

It is possible of course to derive from this some more concrete formulae, but let us
look instead at the case N = 3. Here the matrix that we are interested in is:

B ad ae af

F3=|bd wbe w?bf

cd wice wcf
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Thus, we would like to compute the law of the following quantity:
|E| = |ad + ae + af + bd + wbe + w?bf + cd + wice + wef]

The problem is that when trying to compute |E|?, the terms won’t cancel much. More
precisely, we have a formula of the following type:

|E]? =9+ Co+ Ciw + Cow?®

Here the quantities Cy, C, Cs are as follows:

_ae af af bd  be bf cd ce cf
Co = 37+ d+bd+cd+ gt + + gt

ad ad ae af be  be be cd cf cf cf

C, = — — - - 4 L

VS ettt + + i af T f+ TR

ad ad ae af f bf bf ce ce ce

c, = —y2, =~ *~ 2, v, J, 2, =2, ==

2 be+cf+ f+ + f—l—ad—i— +cd+be+ad+ f+bd

In short, all this leads nowhere, and the exact study stops at F5. In general now, one
idea is that of using Bernoulli-type variables coming from the row sums, as follows:

THEOREM 11.4. The glow of H € My(C) is given by the formula

law(FE) = /eTN B((Ha)i,...,(Ha)n)

where the quantities on the right are

B(ey, ... en) = law (Z )\Z'CZ)

with A € TV being random.

ProoF. This is clear from the following formula:

E=<a,Hb>
Indeed, when the vector a € TV is assumed to be fixed, this variable E follows the
law B((Ha)y,...,(Ha)y) in the statement. 0
Observe that we can write a formula of the following type:
B(ey,...yen) =€ x B(|aa], .. |en])
To be more precise, such a formula holds indeed, with the measure B(ry,...,ry) €

P(R,) with r1,...,7x > 0 being given by:

B(ry,...,ry) = law

ZAﬂ’i
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Regarding now the computation of 3, we have:

B(ry,...,ry) = law

Consider now the following variable, which is easily seen, for instance by using the
moment method, to be uniform over the projective torus TV=! = TV /T:

A1 Ao AN
XA N

Now since we have A\;/\; = piftit1 - . . f;, with the convention p;...pu; = fi; .. f; for
i > 7, this gives the following formula, with u € TV ! random:

(ILL]-7/’L27"'?ILLN) = (

B(ri,...,rn) = law ZMz’Mz’Jrl---Mj'?”ﬂ“j
ij

It is possible to further study the laws § by using this formula. However, in practice,
it is more convenient to use the complex measures B from Theorem 11.4.

Let us end these preliminaries with a discussion of the “arithmetic” version of the
problem, which makes the link with the Gale-Berlekamp switching game [50], [80] and
with the work in the real case, from chapter 2 above.

We have the following unifying formalism:
DEFINITION 11.5. Given H € My(C) and s € NU {0}, we define a measure
ps € P(C)
by the following formula, valid for any continuous function p,
/gp(x)d,us(x) = / © (Z aiij,»j> d(a,b)
C ZN xZ ”
where Zs C T is the group of the s-roots of unity, with the convention Z., = T.

Observe that at s = oo we obtain the measure in Theorem 11.1.

Also, at s = 2 and for a usual Hadamard matrix, H € My(+£1), we obtain the measure
from section 2.

Observe also that for H € My(=+1), knowing ps is the same as knowing the statistics
of the number of one entries, |1 € H|. This follows indeed from the following formula:

Y H; = [leH|-|-1€H|
]

= 2[1€ H|—- N?
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More generally, at s = p prime, we have the following result:
THEOREM 11.6. When s is prime and H € My(Zs), the statistics of the number of
one entries, |1 € H|, can be recovered from that of the total sum, E = Zij H;;.

PROOF. The problem here is of vectorial nature, so given V' € Z7, we would like to
compare the quantities |1 € V| and > V;. Let us write, up to permutations:

We have then |1 € V| = ag, as well as:
ZVi =ag+aw+ ...+ a_qwt

We also know that ag+a;+ ...+ as_1 = n. Now when s is prime, the only ambiguity
in recovering ay from ag + aqw + ... + as_;w*"! can come from:

l+w+...+w =0

But since the sum of the numbers a; is fixed, ag + a1 + . .. + as_1 = n, this ambiguity
dissapears, and this gives the result. O

11b. Glow moments

Let us investigate now the glow of the complex Hadamard matrices, by using the
moment method. We use the moment formula from chapter 10, namely:

PRroOPOSITION 11.7. For H € My(T) the even moments of |E| are given by
/ ’E|2p _ Z Hiljl c Hipjp
- =g Tt Mty
where the sets between brackets are by definition sets with repetition.

PROOF. As explained in chapter 10, with £/ =3, H;;a;b; we obtain:

[, e

TN xTN

-/ vy abs !

B TNXTN \ 57k Hy  agb

_ ZHiljl...Hipjp/ a,-l...a,-p/ bj --'bjp
o Hyyy oo Hyyy Jow agy - oag, Jov by . by,

The integrals on the right being dj;) x) and dj;,;;, we obtain the result. O

As a first application, let us investigate the tensor products. We have:
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PROPOSITION 11.8. The even moments of the variable |E| for a tensor product

L=H®K
are given by the following formula,
/ ’E’QP _ Z H'iljl e H’L'pjp ) Kalbl “ e Kapbp
TNM 5 TNM Hklll . Hkplp Kcldl R chdp

[ia]=[kc],[jb]=[ld]

where the sets between brackets are as usual sets with repetition.

Proor. With L = H ® K, the formula in Proposition 11.7 reads:

L‘ y L
[|2p z : ira1,j1b1 - - -
/NM NM | |
T xT

Lisertndy - - - Ly
lia)=[kc],[jb]=[ld] kiei,lid kpcplpdyp

ipap,jpbp

But this gives the formula in the statement, and we are done. U

Let us develop now some moment machinery, in relation with the above.

Let P(p) be the set of partitions of {1,...,p}, with its standard order relation <,
which is such that, for any = € P(p):
Mm...<a<|]...]]

We denote by u(m, o) the associated Mobius function, given by:

1 itr=o0
(o) =S =3 o ulm ) ifr<o
0 if Lo

To be more precise, the Mdbius function is defined by recurrence, by using this formula.
The main interest in the Mobius function comes from the Mobius inversion formula, which
states that the following happens, at the level of the functions on P(p):

flo)=) g(m) = glo)=) ulm a)f(m)

For m € P(p) we use the following notation, where by, ..., b}, are the block lenghts:

P\ _ p _ 7
™ b1 .. b|ﬂ—‘ bl' .. b|ﬂ—|'

Finally, we use the following notation, where H,, ..., Hy € TV are the rows of H:
H.(i) = Q[ [ .
BeT re

With these notations, we have the following result:
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THEOREM 11.9. The glow moments of a matriz H € My(T) are given by
/ B = Y K(mN(n)
TN xTN ~€P(p)
where the coefficients are given by
p
k=3 uno)(?)
c€P(p)

and where the contributions are given by

I(m) le\ Z < H.(i), H:(j) >
=[]

by using the above notations and conventions.

Proor. We know from Proposition 11.7 that the moments are given by:
TN x TN 1 H

[i]=[5],[=]=[v] Hjiy, - Hipy,

With ¢ = kerz,p = kery, we deduce that the moments of |E|?> decompose over
partitions, according to a formula as follows:

[, er=[ % cen)
TN x TN

a,p€P(p)
To be more precise, the contributions are as follows:

Zw.. 7,:r Qiy - .. Q4
Clop)= Y by y]z = pr.aji-..ajp

ker z=0,ker y=p ij ]lyl c JpYp P

We have C(o, p) = 0 unless o ~ p, in the sense that o, p must have the same block
structure. The point now is that the sums of type ), . .__ can be computed by using the
Mobius inversion formula. We obtain a formula as follows:

C0,p) = 05np y_ ulm,0) [] Clsi(a)

<o BET
Here the functions on the right are by definition given by:

. A, - - - A
ZlI ’L$ 11 (2
C’f’( ) ZZ ' . .T
Hj, ... aj, ...a;

JT-Z’ T

- Z<Hi1. Hi Hj, . Hj, > ST

Ay - - Ay,
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Now since there are (g ) partitions having the same block structure as o, we obtain:

/ e
TN xTN

- [ ¥ (EXweo) T

meP(p o~p p<lo BeE™

- > | S uma(2)) [

w€P(p) \o€P(p) Be™

But this gives the formula in the statement, and we are done. U

Let us discuss now the asymptotic behavior of the glow. For this purpose, we first
study the coefficients K(7) in Theorem 11.9. We have here the following result:

PROPOSITION 11.10. The coeffients appearing in the above, namely

= ulm,0) (g)

have the following properties:

(1) The function K (r) = % is multiplicative, in the sense that:
K(r7') = K(7)K ()
(2) On the one-block partitions, we have:
K(m...m) = D)7 (o] = 1)1 (P
mm = 3 1 ol - i
o€P(p)

(3) We have as well the following fomula,
p

K(m...my=> (=17 (r=1)C,

r=1

where the coefficients on the right are given by:
2
p
Cpr =
DY
p=ai+...+ar
PRroOOF. This follows from some standard computations, as follows:

(1) We can use here the following formula, which is a well-known property of the
Mobius function, which can be proved by recurrence:

w(rr' oo’) = p(m, o)pu(r', o)
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Now if by,...,bs and ¢y, ..., ¢ are the block lengths of o, 0’, we obtain, as claimed:
K (r7')
1 1
/ /
= m,o0) - .
Wg«m,“( VT b el
1 1
_ / / . .
= 2 umoulr.o) bl b ol
<o, <o’
= K(r)K(w)

(2) We can use here the following formula, which once again is well-known, and can
be proved by recurrence on |o|:

w(m...Mo) = (=1)2(|o| - 1)!

We therefore obtain, as claimed:

K(m1...m)
— U;p),u(l_ll_l...l_l,a) (i)
- % 0l (")

(3) By using the formula in (2), and summing over r = ||, we obtain:
p
_ p
K(m...m=>» (=1 r—1)
(- = 3= 5 ()

Now if we denote by aq,...,a, with a; > 1 the block lengths of o, then:

0)-(" )

On the other hand, given aq, ..., a, > 1 with a;+...4a, = p, the number of partitions
o having these numbers as block lengths is:

p
Na1 ..... aT:(
A1y...,0p

Thus, we are led to the conclusion in the statement. Il
Now let us take a closer look at the integrals I(7) from Theorem 11.9, namely:
1 . .
[<7T) = W Z < HTr<Z)7H7r(j) >
[i]=[]
We have here the following result:
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PROPOSITION 11.11. Consider the one-block partition IT1...M € P(p).
(1) L(rm1...m) = #{d, j € {1,... . N}PI[i] = [5]}.

(2) I(m...n) = [on [, az|2pda

(3) I(T...1) = Zaep 4 )UVL\'U\)!'

(4) I(rM...M) =

------

PROOF. Once again, all these formulae follow from some standard combinatorics, as
follows:

(1) This follows indeed from the following computation:
1
(m..n = Y —<H, . H H,. . H>
[i)=[4]
S
[i]=[4]
(2) This follows from the following computation:
2p
Aiy - .. 04
| o= ALY
/']TN zi:a /TN%:CL]-I...&jp a4
= #{i.d|i =11}
(3) If we let o = keri in the above formula of I(I'T1...M), we obtain:

(m..m= Y #{z,j)kem':a,[z‘] = [j]}

c€P(p)

Now since there are o | i choices for the multi-index ¢, and then (ﬁ ) choices for the
multi-index 7, this gives the result.

(4) If we set r = |o|, the formula in (3) becomes:
p-1 N‘ Z (p>
=1 N vertorior \7

Now since there are exactly ( ) permutations o € P(p) having by, ..., b, as block
lengths, the sum on the right is given by:

> (- (")

c€P(p),lo|=r p=bi+...4+b,

Thus, we are led to the conclusion in the statement. Il

In general, the integrals I(m) can be estimated as follows:
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PROPOSITION 11.12. Let H € My (T), having its rows pairwise orthogonal.

(1) I(] ... [) = N

(2) I(]|...| m) = N*I(m), for any T € P(p — a).
(3) [(m)| < pINP, for any m € P(p).

ProoF. This is something elementary, as follows:

(1) Since the rows of H are pairwise orthogonal, we have:

I = > Iows

[i]=[j] r=1

— Z 8i;
[i]=1s]
- 21

— NP
(2) This follows by the same computation as the above one for (1).

(3) We have indeed the following estimate:

(7)< Z II:

=[j] Bem

— Zl
[i]=14]
= #{ij e L. MYl = 171}

~ p!NP
Thus we have obtained the formula in the statement, and we are done. U

We have now all needed ingredients for a universality result:

THEOREM 11.13. The glow of a complex Hadamard matric H € My(T) is given by:

1 |E| 2 p -1 -2
— — =1- N O(N
Pl o N ( N) 2 - ( )

In particular, E/N becomes complex Gaussian in the N — oo limit.
PRrROOF. We use the moment formula in Theorem 11.9 above, namely:

Ji 8= 3 st
X

TEP(p)
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By using Proposition 11.12 (3), we conclude that only the p-block and (p — 1)-block
partitions contribute at order 2, so:

/’]I‘N TrN|E|2p = K(||...)N?I(]]...])

+ O(N*72)

Now by dividing by N2 and then by using the various formulae in Proposition 11.10,
Proposition 11.11 and Proposition 11.12 above, we obtain, as claimed:

|E| 2p_ p\p! 2N —1 .
/qrmw(W =r=y)g T TN

Finally, since the law of F is invariant under centered rotations in the complex plane,
this moment formula gives as well the last assertion. U

Summarizing, the complex glow of the complex Hadamard matrices appears to have
similar properties to the real glow of the real Hadamard matrices.

11c. Fourier matrices

Let us study now the glow of the Fourier matrices, F' = Fg. We use the following
standard formulae, which all come from definitions:
}Qxlay ::Ath+y

Pyx ::la,fx
> Fi, = Néy
We first have the following result:
PRrROPOSITION 11.14. For a Fourier matrix Fg we have

I(m) = # {i,jtm —LY =Yg e w}

res rep

with all the indices, and with the sums at right, taken inside G.

PROOF. The basic components of the integrals /() are given by:

1 1
W <H F’ir? H Fr> = N <FZ7'EB ir) FZrEﬁ 1r>
rep rep

0, cpir v ir
But this gives the formula in the statement, and we are done. U
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We have the following interpretation of the above integrals:
PropPOSITION 11.15. For any partition ™ we have the formula

I(m) = /TN 11 (%Z |Hz‘j|2lﬁ> da

ber
where H = FAF*, with F = Fg and A = diag(ao, . ..,an_1).

PRrOOF. We have the following computation:

H=F*AF
e O
ij EIEY?/ G/]’
— |H |2P_Z.Fjlx....Fjpm ) -F7,1y~--Fipy ail. aip
Ty -
Py Elx Ce pr F’le e Fjpy ajl Cljp
2 2 QG ...044
— Z |H,, | = Z < H;,...H;,, Hy, ... Hj, >| a} -
J1 - Jp
But this gives the formula in the statement, and we are done. Il

We must estimate now the quantities I(m). We first have the following result:
PrROPOSITION 11.16. For I we have the estimate
I(m) = byl b IN? + O(NP™)
where the numbers by, ..., bz with
bi+...+bgy=p

are the block lengths of .

Proor. With o = ker¢ we obtain:

Z #{@ ]’kem—a ZZT ZjT,VBEW}
oc€P(p) ref ref

The number of choices for ¢ satisfying ker: = o is:
N!
(N = |o])!

Then, the number of choices for j satisfying [i] = [j] is:

()-oo

~ Nl
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We conclude that the main contribution comes from the following partition:
o=1|...]
Thus, we have the following formula:

=0 i =YgV e w} + o)

rep rep

Now the condition keri = ||...| tells us that ¢ must have distinct entries, and there

N!

are =y ~ NP choices for such multi-indices 7.

Regarding now the indices 7, the main contribution comes from those obtained from
i by permuting the entries over the blocks of 7, and there are b,!...b! choices here.

Thus, we are led to the conclusion in the statement. Il
At the second order now, the estimate is as follows:
PROPOSITION 11.17. For F we have the formula

" ](b)'Np—H(ZZ( )( >_%;(Z>)N_1+O(N‘2)

1<j c¢>2

where by, ..., bs being the block lengths of m € P(p).
PROOF. Let us define the “non-arithmetic” part of I(m) as follows:
1°(v) = # {3 |lisIr € 8] = [joIr € B, 8 € 7}

We then have the following formula:

1w = [T {ii e 1 = 11} = [T 109)

Bem pBerm

Also, Proposition 11.16 shows that we have the following estimate:
I(m) = I°(7) + O(NP~1)
Our claim now is that we have the following formula:

s -2 () () oo

1<j ¢>2

Indeed, according to Proposition 11.16, we have a formula of the following type:

I(7) = I°(7) + I' (%) + O(NP?)
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More precisely, this formula holds indeed, with ['(7) coming from iy,...,i, distinct,
[i] = [j], and with one constraint of type:

Sie=Y . lilres£liles
rep JjEB

Now observe that for a two-block partition m = (a, b) this constraint is implemented,
up to permutations which leave invariant the blocks of 7, as follows:

iveie Kiekoe  Greeide Do loce
Gieeide kiokoe  reeiie Do loee
—_—— — —— ~——

c a—c c b—c

Let us compute now I'(a,b). We cannot have ¢ = 0,1, and once ¢ > 2 is given,
we have (‘Z), (Z) choices for the positions of the 7,7 variables in the upper row, then
NP~1 4+ O(NP2) choices for the variables in the upper row, and then finally we have a!b!
permutations which can produce the lower row.

We therefore obtain the following formula:
a\ (b
It = alb! p-l p=2
(a,b) = alb! ) (c) (C)N + O(NP72)
c>2
In the general case now, a similar discussion applies.

Indeed, the constraint of type > sir = > c5Jr With [i,[r € 8] # [j:|r € ] cannot
affect < 1 blocks, because we are not in the non-arithmetic case, and cannot affect either
> 3 blocks, because affecting > 3 blocks would require > 2 constraints.

Thus this condition affects exactly 2 blocks, and if we let ¢ < j be the indices in
{1,...,s} corresponding to these 2 blocks, we obtain:

M) =bl b Y <i> <bcj)Np1 + o)

1<j ¢>2
But this proves the above claim. Let us estimate now I(I'T1...1M). We have:

I(m...n)

N! P\ p! N! 9
= —— = - P
p'(N—p)!+(2)2 N _prm TOWT

= pIN" (1 — (g) N+ O(N2)> + (‘g) %!Npl + O(NP~?)

= p!NP (1 — %(g) N7+ O(N2)>
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Now recall that we have:

ro(m)=1110)

pem

We therefore obtain:
I°(m) = by! ... by!NP (1 — 12 (b> N7+ O(N2)>
244\2

By plugging this quantity into the above estimate, we obtain the result. U

In order to estimate glow, we will need the explicit formula of I(MM):

PROPOSITION 11.18. For Fg with G = Zn, X ... X Zn, we have the formula

I(MMN) = N(4N® — 11N +2° +7)

where e € {0,1,...,k} is the number of even numbers among Ny, ..., Ny.

PROOF. Let us first recall that the conditions defining the quantities I(7) are as

follows:
j{:ir?ZZEE:jr

rep rep

We use the fact that, when dealing with these conditions, one can always erase some
of the variables i,, j,, as to reduce to the “purely arithmetic” case, namely:

{izlr € By {jslr € B} =10
We deduce from this that we have:
(M) = 1°(mm) 4 I1°7(mr)
Let us compute now I7*(I1r1). There are 3 contributions to this quantity, namely:

(1) Case ((77), with i # j, 2i = 2j. Since 2(iy,...,ix) = 2(j1,...,jx) corresponds

Jgii
to the collection of conditions 2i, = 2j,., inside Zy,, which each have 1 or 2 solutions,
depending on whether N, is odd or even, the contribution here is:

LrOn) = #{i # 4120 = 25}
= ##{i,j|2i = 25} — #{i. jli = j}
= 2N-N
= (2°—1)N
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(2) Case (%), with 4, j, k distinct, 2i = j + k. The contribution here is:
(N = 4#+{i, j, k distinct|2i = j + k}
= 4A#{1 # j12i —j # i, 5}
= 44H{i # j|20 # 25}
= A(##{i,jli # g} — #{i # j120 = 25})
= 4(N(N—-1)—(2°=1)N)
= 4N(N —2°)

(3) Case (Zfl’;l), with 4, j, k, [ distinct, ¢ + 7 = k + [. The contribution here is:
L7y = 44+{i, 4, k, 1 distinct|i +j = k + [}
= 44#{i, j, k distinct|i + j — k # 4,5, k}

= 44{i,j, k distinct]i + j — k # k}
= 44{i, j, k distinct|i # 2k — j}

We can split this quantity over two cases, 27 # 2k and 25 = 2k, and we obtain:
I"(MN) = 4(#{i, 4, k distinct|2j # 2k, # 2k — 5}
+#{i, 7, k distinct|2j = 2k, 1 # 2k — j})

The point now is that in the first case, 2j # 2k, the numbers j, k, 2k — j are distinct,
while in the second case, 27 = 2k, we simply have 2k — 7 = 7. Thus, we obtain:

I8 (mn)
- 4( S #{ili £k 2k— + ) #{i|i%j,k}>
j#k,2j#2k J#k,2j=2k

— 4(N(N —2°)(N —3)+ N(2° = 1)(N — 2))
= AN(N(N —3) = 2°(N —3) +2°(N —2) — (N = 2))
4N(N? — 4N +2° +2)
We can now compute the arithmetic part. This is given by:
I°7(mn)
= (2°—=1)N +4N(N —2°) +4N(N? — 4N +2¢ +2)
N(2° — 1+ 4(N —2°) + 4(N? — 4N +2° + 2))
= N(4N? — 12N +2°+7)
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Thus the integral to be computed is given by:
I(m)
= N?(2N —1)2 + N(4N? — 12N +2° 4+ 7)
= N(AN? —4N? 4+ N +4N? — 12N 4+ 2°+7)
= N@A4N? — 11N +2°+7)

Thus we have reached to the formula in the statement, and we are done.

11d. Universality
We have the following asymptotic result, from [8]:
THEOREM 11.19. The glow of Fg, with |G| = N, is given by

1 |E| 2 -1 -2 -3 —4
=) =1-K N '+ KN 22— KN+ O(N™Y
TN xTN

! N
=)

with the coefficients being as follows:
2 —
K, — <p> 3p”+p—38

2 12
3 2 _
Ky = p\p’° +4p° +p— 18
3 8
Thus, the rescaled complex glow is asymptotically complex Gaussian,

E
—~C
N

and we have in fact universality at least up to order 3.

PrROOF. We use the following quantities:

K(r) = Kg)
I(n) = ]]&?

These are subject to the following formulae:

K(x|...]) = K(n)

I(w|...|)=I(n)
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Consider as well the following quantities:

In terms of these quantities, we have:
1

p! TN xTN

B[ = J0)

+ + +
===

+ O(N*
We have the following formulae:
Ky=1
K, =
~ 1 1
Ko=—-—1=——
272 2
~ 1 3 2
Ki==-—=-42=-
T6 27773
~ 1 4 3 n 12 6 — 11
T 6 42 T8
Regarding now the numbers C), in Proposition 11.16, these are given by:
Cpi =1

1/2p
Cpo = 5(p) .
pl(p
=5 (5)

Cpp = p!
We deduce that we have the following formulae:
I([) =N

I(M) = N(2N —1)
I(IT) = N(6N? — 9N +4)
I(ITT) = N(24N3 — 72N? 4+ 82N — 33)



270 11. GLOW COMPUTATIONS

By using Proposition 11.17 and Proposition 11.18, we obtain the following formula:
1

p! Jpn s

1— 1(17) (2N' = N7?) + g(g) (6N~2 —9N~?)

2\2
)

p -2 p -3
3 N —33 N7 —40
(g m(i) o
But this gives the formulae of K, K5, K3 in the statement, and we are done. U

| [

o3

~ 15 @ N34+ O(N™

It is possible to compute the next term as well, the result being as follows:

THEOREM 11.20. Let G = Zpn, X ... X Zy, be a finite abelian group, and set:

N =N;...N,
Then the glow of the associated Fourier matriz Fg is given by
1 1E| o -1 —2 -3 —4 -5
p! TN xTN N

where the quantities K, Ko, K3, K4 are given by

k- (3)

3p? -8
Ky — @w

2 12
3 2 _
Ky — p\p’ +4p° +p— 18
3 8
8(p 3 2¢ D P 2915 (p P P
K, = - — (121 + — 416 — 40 105
. 3(3)+4( +N)<4>+ <5>+ > (6 O] T
where e € {0,1,...,k} is the number of even numbers among Ny, ..., Ny.

ProOF. This is something that we already know, up to order 3, and the next coefficient
K, can be computed in a similar way, based on results that we already have. O

The passage to Theorem 11.20 is quite interesting, because it shows that the glow of
the Fourier matrices Fy is not polynomial in N = |G|. When restricting the attention to
the usual Fourier matrices Fly, the glow up to order 4 is polynomial both in N odd, and
in N even, but it is not clear what happens at higher order.
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An interesting question here is that of computing the complex glow of the Walsh
matrices. Indeed, for the Walsh matrices the integrals I(7), and hence the glow itself,
might be polynomial in N. We do not know if this is really the case.

11e. Exercises

There had been a lot of advanced combinatorics and probability in this chapter, and
our exercises here will be the most about this, advanced combinatorics and probability.
Let us start with a very standard exercise, as follows:

EXERCISE 11.21. Establish the Mobius inversion formula, namely
flo)=> g(m) = glo)=) ulm0)f(r)
<o <o

for the functions on P(p).

The idea here is that the formula on the left in the statement should allow the com-
putation of g in terms of f, by some kind of recurrence, via a formula as the one from
the right. And the point is that when working out the coefficients, we are normally led
to the recurrence formula for the Mobius function, namely:

1 ifr=0
o) =< =3 o ulm) ifr<o
0 ifr Lo

Here is a related exercise, which is equivalent to the above one:

EXERCISE 11.22. Prove that the inverse of the adjacency matriz of P(k), given by

Ag(m,0) = {

1 fn<o
0 ifrLo

is the Mébius matriz of P, given by My(m, o) = p(m, o).

This exercise is indeed equivalent to the first exercice (exercise). As for the proof, the
idea here is that Ay is upper triangular, with respect to a suitably chosen order on the
partitions, and when inverting, we are led into the above recurrence for p.

In relation now with probability, here is a very classical exercise:

EXERCISE 11.23. Prove that given independent normal variables x,y, by setting

1
2z =—(x +iy)

V2

the even moments of the variable |z| are given by the following formula:
E(]2|*) = p!
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This is something well-known, that we have been heavily using in the above. As for
the proof of this fact, this depends on your knowledge of calculus.

In relation now with the Fourier matrices, we have:

EXERCISE 11.24. FEstablish the following formulae,
ExFiy = E,x+y

Fix = E,—m
> Fi = Néy
valid for any generalized Fourier matriz, F = Fg.

As before with the previous exercise, this is something well-known, that we have been
heavily using in the above. As for the proof, this should not be difficult.

Finally, in connection with the actual things that we discussed in this chapter, namely
technical computations for the glow, we have the following research exercise:

EXERCISE 11.25. Compute the glow of the Walsh matrices
Wy = FE"
with N = 2", and check if this glow is polynomial or not in N.

There are some interesting computations here, and as before with previous research-
level exercises, doing them at least partly, or even very partly, can be source of joy.



CHAPTER 12

Local estimates

12a. Norm maximizers

We discuss here some further analytic questions, regarding the complex Hadamard
matrices, following [18], in analogy with the considerations in chapters 2-3 above.

First, we have the following basic estimate, that we already know:

THEOREM 12.1. Given a function ¢ : [0,00) — R, the following function over Uy
FU) = ¢(Uyl*)
]
satisfies the following inequality, when v is conver,
1
F(U) > N*% | —
@)= ¥ ()
and the following inequality, when 1 is concave,
1
F(U) < N% | —
W) =¥ ()
and assuming that 1 is strictly convex/concave, the equality case appears precisely for the

rescaled Hadamard matrices, U = H//N with H € My (T) Hadamard.

Proor. This follows indeed from the Jensen inequality, exactly as in the real case, as
explained in chapter 2 above. U

Of particular interest for us are the power functions t(x) = 2?/2, which are concave
at p € [1,2), and convex at p € (2,00). These lead to the following statement:

THEOREM 12.2. Let U € Uy, and set H = /NU.
(1) Forp € [1,2) we have the following estimate:
1U]], < N*P71/2
(2) For p € (2,00] we have the following estimate:
1U]], > NP1/
In both cases, the equality situation happens precisely when H is Hadamard.

273
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ProoF. Consider indeed the p-norm on Uy, which at p € [1,00) is given by:

1/p
U, = (E |Uij|”>
i

By the above discussion, involving the functions t(x) = x?/2, Theorem 12.1 applies
and gives the results at p € [1,00), the precise estimates being as follows:
< N2/P=12 i p < 2
1Ull, = q=N'2 ifp=2
> N2/p=1/2 if p> 2
As for the case p = oo, this follows with p — oo, or directly via Cauchy-Schwarz. [J

For future reference, let us record as well the particular cases p = 1,4, co of the above
result, that we already met before, and which are of particular interest:

THEOREM 12.3. For any matrix U € Uy we have the estimates
U]l < NVN

NUlls > 1
1
Ulloo > —=
1Vl >
which in terms of the rescaled matric H = VNU read

|H|[ < N?

|H|ls > VN
[H]loo > 1
and in each case, the equality case holds when H is Hadamard.
PRrROOF. These results follow from Theorem 12.2 at p = 1,4, oo, with the remark that

for each of these particular exponents, we do not really need the Holder inequality, with
a basic application of the Cauchy-Schwarz inequality doing the job. U

The above results suggest the following definition:

DEFINITION 12.4. Given U € Uy, the matrizc H = v/ NU s called:

(1) Almost Hadamard, if U locally maximizes the 1-norm on Uy.

(2) p-almost Hadamard, with p < 2, if U locally mazimizes the p-norm on Uy.
(3) p-almost Hadamard, with p > 2, if U locally minimizes the p-norm on Uy.
(4) Absolute almost Hadamard, if it is p-almost Hadamard at any p # 2.

We have as well real versions of these notions, with Uy replaced by Oy .
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All this might seem a bit complicated, but this is the best way of presenting things.
We are mainly interested in (1), but as explained in chapter 9, the exponent p = 4 from
(3) is interesting as well, and once we have (3) we must formulate (2) as well, and finally
(4) is a useful thing too, because the absolute case is sometimes easier to study.

As for the “doubling” of all these notions, via the last sentence, this is necessary too,
because given a function F': Uy — R, an element U € Oy can be a local extremum of
the restriction Flo, : Ox — R, but not of the function F' itself. And, we will see in what
follows that this is the case, and in a quite surprising way, with the p-norms.

Let us first study the critical points. Things are quite tricky here, and complete results
are available so far only at p = 1. Following [18], we first have the following result:

THEOREM 12.5. If U € Uy locally mazimizes the 1-norm, then
Ui #0
must hold for any 1, 7.

Proor. We use the same method as in the real case, namely a “rotation trick”. Let
us denote by Uy, ..., Uy the rows of U, and let us perform a rotation of Uy, Us:

Uil lcost- Uy —sint - Uy
Ul |sint- Uy 4 cost - Uy

In order to compute the 1-norm, let us permute the columns of U, in such a way that
the first two rows look as follows, with X, Y, A, B having nonzero entries:

Uil |0 00Y A
U] |0 X 0 B
The rotated matrix will look then as follows:

Ufl |0 —sint-X cost-Y cost-A—sint-B
Utl |0 cost-X sint-y sint-A+cost-B

Our claim is that X, Y must be empty. Indeed, if A and B are not empty, let us fix a
column index k for both A, B, and set o = Ay, f = Bj. We have then:

(O] + [(Uy)rl
= |cost-a —sint- 5|+ |sint-a+ cost - [

= \/COSZt- |2 + sin?¢ - |B]2 — sint cost(a + fa)

+ \/Sin2t |af? 4 cos?t - |82 + sint cost(af + fa)
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Since «, B # 0, the above function is differentiable at ¢ = 0, and we obtain:
O (I(UD)k| + |(U3)])
ot )
B sin 2t(|B)? — |a|?) — cos 2t(aB + fa)
24/cos?t - |a|? + sin®t - | 8|2 — sint cost(afB + fa)
sin 2t (o> — |B]%) + cos 2t(af + Ba)
2/sin?t - |a|? + cos?t - | 8|2 + sint cost(af + fa)
Thus at ¢t = 0, we obtain the following formula:

QDI gy ot (1LY

ot 2 18l el

Now since U locally maximizes the 1-norm, both directional derivatives of ||U*||; must
be negative in the limit ¢ — 0. On the other hand, if we denote by C' the contribution
coming from the right, which might be zero in the case where A and B are empty, i.e.
the sum over k of the above quantities, we have:

oW _ o
ot ‘t:0+ ot ‘t:O'*‘
= (—sint+ Cost)‘t

| cost| + [sint|)(|[ X[l + [[Y][) + C

(XL + 1Y)+

=0
= [IXIh + Y] +C
As for the derivative at left, this is given by the following formula:
oWl _ 0

ot |t:0* ot ‘t:O*
= (—sint — cost)’t:0(||X||1 +||[Y]h)+C

| cost| + | sin¢) (|| X[[s + [[Y[h) + C

= X[ =YL +C
We therefore obtain the following inequalities, where C' is as above:
IX[L+ Y[ +C < 0
=X =Y[h+C < 0
Consider now the matrix obtained from U by interchanging Uy, Us. Since this matrix

must be as well a local maximizer of the 1-norm, and since the above formula shows that
C changes its sign when interchanging Uy, Uy, we obtain:

X[+ Y] —C < 0
—[I Xl =YL -C < 0

The four inequalities that we have give altogether || X||; + ||Y]|1 = C = 0, and from
[| X1 + [|Y||1 = 0 we obtain that both X, Y must be empty, as claimed.
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As a conclusion, up to a permutation of the columns, the first two rows must be of
the following form, with A, B having only nonzero entries:

Uyl [0 A

Uyl |0 B
By permuting the rows of U, the same must hold for any two rows U;, U;. Now since U
cannot have a zero column, we conclude that U cannot have zero entries, as claimed. [J

Let us compute now the critical points.

Following [18], we have:

THEOREM 12.6. Let ¢ : [0,00) — R be a differentiable function. A matriz U € U}, is
a critical point of the quantity

FU) = 3 #(Us)

precisely when WU™ is self-adjoint, where:
Wiy = sgn(Uy)¢'([Uy1)

PRrROOF. We regard Uy as a real algebraic manifold, with coordinates U,j, Uij. This
manifold consists by definition of the zeroes of the following polynomials:

Aij = Z UUjr — 63
k

Since Uy is smooth, and so is a differential manifold in the usual sense, it follows from
the general theory of Lagrange multipliers that a given matrix U € Uy is a critical point
of F' precisely when the following condition is satisfied:

dF € span(dA;;)
Regarding the space span(dA;;), this consists of the following quantities:
Z MijdAij = Z M, (U dUjy, + Ui dUy,)
ij ijk
Jk ik
= Y (M'U)ydUy + Y (MU)dU

ij 5]
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In order to compute dF', observe first that, with S;; = sgn(U;;), we have:

d|Uy| = dy/UyU;
2|Us|
1 o

Now let us set, as in the statement:
Wij = sgn(Ui;)¢'(|Uy])

In terms of these variables, we obtain:

dF = Zd (1U3))
= Z<P |Uis1)d|Us;1
1 _ _

We conclude that U € Uy is a critical point of F' if and only if there exists a matrix
M € My(C) such that the following two conditions are satisfied:

W =2M'U

W =2MU

Now observe that these two equations can be written as follows:

1
M' = -WU*
2

t ]' *
M = §UW

Summing up, the critical point condition on U € Uy simply reads:
wuU*=UW*

But this means that the matrix W U™ must be self-adjoint, as claimed. U
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12b. Balanced matrices
In order to process the above result, we can use the following notion:

DEFINITION 12.7. Given U € Uy, we consider its “color decomposition”
U=> rU,
r>0
with U, € Mn(T U{0}) containing the phase components at r > 0, and we call U:

(1) Semi-balanced, if U, U* and U*U,, with v > 0, are all self-adjoint.
(2) Balanced, if U.U? and UUs, with r,s > 0, are all self-adjoint.

These conditions are quite natural, because for a unitary matrix U € Uy, the relations
UU* = U*U = 1 translate as follows, in terms of the color decomposition:

S Ut =) rUU, =1

r>0 >0
E rsUU; = E rsUUs =1
r,s>0 r,s>0

Thus, our balancing conditions express the fact that the various components of the
above sums all self-adjoint.

Now back to our critical point questions, we have:

THEOREM 12.8. For a matriz U € Uy, the following are equivalent:
(1) U is a critical point of F(U) = 3, ¢(|Usl), for any ¢ : [0,00) — R.
(2) U is a critical point of all the p-norms, with p € [1,00).
(3) U is semi-balanced, in the above sense.

PrRoOOF. We use Theorem 12.6 above. The matrix constructed there is given by:
WUy = > sen(Uan)¢ (Ui Ujk
k

Thus we have the following formula:

wWU* = Zgo’(r)UrU*
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Now when ¢ : [0,00) — R varies, as a differentiable function, or as a power function
o(x) = 2P with p € [1,00), the individual components must be self-adjoint, as desired. [

In practice now, most of the known examples of semi-balanced matrices are actually
balanced. We have the following collection of simple facts, regarding such matrices:

PROPOSITION 12.9. The class of balanced matrices is as follows:

(1) It contains the matrices U = H//N, with H € My(C) Hadamard.

(2) It is stable under transposition, complex conjugation, and taking adjoints.
(3) It is stable under taking tensor products.

(4) It is stable under the Hadamard equivalence relation.

(5) It contains the matriz Vy = +(2Iy — Nly), where Ly is the all-1 matriz.

ProOF. All these results are elementary, the proof being as follows:

(1) Here U € Uy follows from the Hadamard condition, and since there is only one
color component, namely U, JVN = H, the balancing condition is satisfied as well.

(2) Assuming that U = ) _ U, is a color decomposition of a given matrix U € Uy,
the following are color decompositions too, and this gives the assertions:

Ut=> rUt

r>0
0= r0,
r>0
U => rU;
r>0

(3) Assuming that U = > _ rU, and V =} _, sV are the color decompositions of
two given unitary matrices U, V', we have:

UV = ZT’S-UT(@‘/S

Thus the color components of W = U ® V are the following matrices:

W,=> U, @V,

p=rs
It follows that if U,V are both balanced, then sois W =U ® V.

(4) We recall that the Hadamard equivalence consists in permuting rows and columns,
and switching signs on rows and columns. Since all these operations correspond to certain
conjugations at the level of the matrices U, U}, UUs, we obtain the result.
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(5) The matrix in the statement, which goes back to [21], is as follows:

2—N 2 o 2
1 2 2—N ... 2
W=yl o
2 2 ... 2—N
Observe that this matrix is indeed unitary, its rows being of norm one, and pairwise
orthogonal. The color components of this matrix are:

Voyno1 = 1In

Voyn =1y — 1In
It follows that this matrix is balanced as well, as claimed. Il

Let us look now more in detail at Vi, and at the matrices having similar properties.
Following [21], let us call (a, b, ¢) pattern any matrix M € My(0, 1), with N = a+2b+c,
such that any two rows look as follows, up to a permutation of the columns:

0...0 0...0 1...1 1...1
0...0 1...1 0...0 1...1

As explained in [21], there are many interesting examples of (a, b, ¢) patterns, coming
from the balanced incomplete block designs (BIBD), and all these examples can produce
two-entry unitary matrices, by replacing the 0,1 entries with suitable numbers z, y.

Now back to the matrix Vi from Proposition 12.9 (5), observe that this matrix comes
from a (0,1, N — 2) pattern. And also, independently of this, this matrix has the remark-
able property of being at the same time circulant and self-adjoint.

We have in fact the following result, generalizing Proposition 12.9 (5):

THEOREM 12.10. The following matrices are balanced:
(1) The orthogonal matrices coming from (a,b,c) patterns.
(2) The unitary matrices which are circulant and self-adjoint.

PROOF. These observations basically go back to [21], the proofs being as follows:

(1) If we denote by P,Q € My(0,1) the matrices describing the positions of the 0,1
entries inside the pattern, then we have the following formulae:

PP!= PP = aly +bly
QQ' =Q'Q = dy+0bly
PQ' = PIQ=QP' = Q'P = by —bly

Since all these matrices are symmetric, U is balanced, as claimed.
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(2) Assume that U € Uy is circulant, U;; = v;_;, and in addition self-adjoint, which
means v; = vy_;. Consider the following sets, which must satisfy D, = —D,.

Dy ={k:|v| =k}

In terms of these sets, we have the following formula:

UUD = > (U)in(U)n
k
= > Ol S8 (Vh—i) - O .5 S80(Th—j)
k

_ > sgn(es) sgn(Gi—))

ke(Dy+i)N(Ds+4)
With £ =14 7 — m we obtain, by using D, = —D,, and then 7; = v_;:
(0.09)i; = > sen(y-m)sen(Yiom)

me(—Dyr+j)N(—Ds+i)

= S sen(ymm) sen(Fiim)

me(Dy+i)N(Dr+j)
= > sen(Fm—s) sen(Ym—i)
me(Dy+4)N(Dr+j)
Now by interchanging ¢ <> j, and with m — k, this formula becomes:
(U:U;)ji = > sgn (r—i) sgn(Ve—j)
ke(Dy+i)N(Dy+5)

We recognize here the complex conjugate of (U,U});;, as previously computed above,
and we therefore deduce that U,U; is self-adjoint. The proof for U}Uj is similar. O

12c. Hessian computations

Let us compute now derivatives. As in Theorem 12.6, it is convenient to do the
computations in a more general framework, where we have a function as follows:

FU) = > w(lUyl)

In order to study the local extrema of these quantities, consider the following function,
depending on ¢ > 0 small:

flt) = F(Ue) = Zwuwe“)im)

Here U € Uy is a unitary matrix, and A € My(C) is assumed to be anti-hermitian,
A* = — A, as for having e € Uy. Let us first compute the derivative of f. We have:
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PropPoOSITION 12.11. We have the following formula,
F() = 23 W ((Ue)2) Re |(UA) ;T
(]

valid for any U € Uy, and any A € My(C) anti-hermitian.
PROOF. The matrices U, e being both unitary, we have:

(Ue)yl? = (Ue);(Ueth),
= (U ((Ue));
(UetA>ZJ( tA*U*)JZ
(UetA)U( _tAU*)Jz

We can now differentiate our function f, and by using once again the unitarity of the
matrices U, e, along with the formula A* = —A, we obtain:

fit) = ZW(KUGM)MF) [(UA);i(e7AU);; — (Ueh)y(e AU 1]

= ZW(KUGM)M’Q) [(UA@tA)ij((eftAU*)*)ij - (UetA)ij((e’tAAU*)*)ij]
= ZW(KU@m)ijP) [(UA@tA)ij(UetA)ij + (UetA)ij(UAetA)ij}

But this gives the formula in the statement, and we are done. U
Before computing the second derivative, let us evaluate f’(0). We have:
ProprosiTION 12.12. We have the following formula,
=2 1/ (r*)Re [Tr(U;UA)]
>0
where the matrices U, € Mn(T U{0}) are the color components of U.

PROOF. We use the formula in Proposition 12.11 above. At ¢t = 0, we obtain:
F1(0) =2 ' (|U;*)Re [(UA);;T ]
]
Consider now the color decomposition of U. We have the following formulae:

Uy =Y r(Un)y

r>0

— U =D r?(U)y]

r>0

— (U =D W0

r>0
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Now by getting back to the above formula of f’(0), we obtain:
F10)=2) ¢/ (r*)> " Re [(UA);T|(Uy)y5]]
r>0 i
Our claim now is that we have:

Uil(Uy)i5] = r(U,),;

ij

Indeed, in the case |Uj;| # r this formula reads Uij -0 =1r-0, which is true, and in the
case |U;;| = r this formula reads rS;; - 1 = r - S;;, which is once again true.
We therefore conclude that we have:

f’(O) = QZT’w’(TQ) ZR@ [(UA)Z](UT)Z]]

r>0

But this gives the formula in the statement, and we are done. U

Let us compute now the second derivative. The result here is as follows:

ProprosIiTION 12.13. We have the following formula,
F10) = 4> (U4 Re [(UA),T]
ij
+2 "/ ([Us; ") Re [(UA?);;T5]
ij

+2 Z (U5 PIU Ay

2

valid for any U € Uy, and any A € My(C) anti-hermitian.

ProOF. We use the formula in Proposition 12.11 above, namely:
1) =23 W (Ue)y) Re [ (U AT,
(]
Since the real part on the right, or rather its double, appears as the derivative of the
quantity |(Ue™);;|?, when differentiating a second time, we obtain:

() = A W) Re [0 AT, |

+2) ¢ (|(Ue)i;*) Re [(UA@tA)ij(UetA)ij}

ij

!/
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In order to compute now the missing derivative, observe that we have:

(UAGtA)ij(UetA)ij]
(UA2€tA>ij(U€tA)ij + (UAetA)ij<UA€tA)ij
= (UA%);;(Uett)y; + (U A )
Summing up, we have obtained the following formula:
2
) = 4D WUy Re [(U AU

]

123 W (U ) Re |(UAZH), (TR 5

]

+2) (U PI(U Ay
]
But at ¢ = 0 this gives the formula in the statement, and we are done. U

We are now in position of formulating a first key result, regarding the second derivative.
By using the function ¢ (z) = \/x, corresponding to F(U) = ||U||;, we obtain:

PROPOSITION 12.14. Let U € Uj;. For the function F(U) = ||U||; we have the formula

710) = Re ey + 30 D5

valid for any anti-hermitian matriz A, where U;; = Si;|Ui;|.

PRrROOF. We use the formula in Proposition 12.13 above, with the following data:
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We obtain the following formula:

" UAzUl} Re[(U ij z |UA1|2
o) = -y Rl o R S IO

ij

A o 2
_ _ZRG[(U i3] +ZRe [(UA%),;5;] +Z|UA”|
Ui Ui

ij

= Re [Tr(S*UAz)} + Z ( UA)ij’

ij

— Re [(UA)”SU] 2
1251

But this gives the formula in the statement, and we are done. O
We are therefore led to the following result, regarding the 1-norm:

THEOREM 12.15. A matriz U € Uy locally maximizes the one-norm on Uy precisely
when S*U s self-adjoint, where S;; = sgn(U;;), and when

I A)..5..12
ij

tj

holds, for any anti-hermitian matrizc A € My (C).

PRrROOF. According to Theorem 12.6 and Proposition 12.14, the local maximizer con-
dition requires X = S*U to be self-adjoint, and the following inequality to be satisfied:

Im UAijgij2
S [(UA)i;S]

Re [Tr(S*UA*)| +
FrEva)] U]

<0

tj
Now observe that since both X and A? are self-adjoint, we have:
1
Re [Tr(XA%)] = 3 [Tr(XA%) + Tr(A*X)]
= Tr(XA?
Thus we can remove the real part, and we obtain the inequality in the statement. [

In order to further improve the above result, we will need:

PROPOSITION 12.16. For a self-adjoint matriz X € My(C), the following conditions
are equivalent:
(1) Tr(X A?) <0, for any anti-hermitian matriz A € My(C).
(2) Tr(XB?) >0, for any hermitian matric B € My(C).
(3) Tr(XC) >0, for any positive matriz C € My(C).
(4) X >0.
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PROOF. These equivalences are well-known, the proof being as follows:

(1) = (2) follows by taking B = i A.

(2) = (3) follows by taking C = B.
(3) = (4) follows by diagonalizing X, and then taking C' to be diagonal.
(4) = (1) is clear as well, because with Y = /X we have:
Tr(XA?) = Tr(Y?A?)

= Tr(Y A%)

= -Tr(YA)(YA))

< 0
Thus, the above four conditions are indeed equivalent. O

Following [18], we can now formulate a final result on the subject, as follows:
THEOREM 12.17. Given U € Uy, set S;; = sgn(U;;), and let:
X =5U
Then U locally mazimizes the 1-norm on Uy precisely when X > 0, and when
= 12
Re [(UB)y;S44]

O(U,B) =Tr(XB*) -y i

ij

is positive, for any hermitian matrizx B € My(C).

Proor. This follows from Theorem 12.15, by setting A = iB, and by using Proposi-
tion 12.16, which shows that we must have indeed X > 0. O

Summarizing, we have results in the complex case which are quite similar to those
from the real case, from chapter 3 above.

12d. The conjecture

In relation with the above, quite surprisingly, the basic real almost Hadamard matrix
Ky is not an almost Hadamard matrix in the complex sense. That is, while Ky /v N
locally maximizes the 1-norm on Oy, it does not do so over Uy.

In fact, the same happens for the other basic real almost Hadamard matrices discussed
in chapter 3 above, such as the circulant ones, and the 2-entry ones studied there. The
verifications here, from [18], are quite technical, and will be discussed later on.

Summarizing, the situation in the complex case is drastically different from the one
in the real case, and we are led in this way to the following statement:



288 12. LOCAL ESTIMATES

CONJECTURE 12.18 (Almost Hadamard conjecture (AHC)). Any local mazimizer of
the 1-norm on Uy must be a global mazimizer, i.e. must be a rescaled Hadamard matrix.

In other words, our conjecture would be that, in the complex setting, almost Hadamard
implies Hadamard. This would be something useful, because we would have here a new
approach to the complex Hadamard matrices, which is by construction analytic and local.

As an example of a potential application, numeric methods, such as the gradient
descent one, could be used for finding new examples of complex Hadamard matrices.

In order to explain this, let us study now more in detail the quantity ®(U, B) appearing
in Theorem 12.17, namely:
= 12
Re [(UB)y;S44]
Ui

®(U,B) =Tr(XB*) -

]
As a first observation here, we have the following result:
PROPOSITION 12.19. With S;; = sgn(U;;) and X = S*U as above, we have

®(U,B)=®(U,B+ D)
for any D € My(R) diagonal.
PROOF. The matrices X, B, D being all self-adjoint, we have:
(XBD)" = DBX

Thus when computing ®(U, B + D), the trace term decomposes as follows:

Tr(X(B + D)?)
= Tr(XB*) +Tr(XBD)+Tr(XDB)+ Tr(XD?
= Tr(XB*) +Tr(XBD)+Tr(DBX)+ Tr(XD?
= Tr(XB?) +2Re[Tr(XBD)] + Tr(XD?

Regarding now the second term, with D = diag(\y, ..., Axy) with A; € R we have the
following formula:

(UD)ijSs; = UijA;Si = Al Ui
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Thus the second term decomposes as follows:
E:ReKUB+UDM§d2
Uy

i
-y Re [(UB)i;Si; + \i|Uy]”
Ui

ij

_ [Re [(UB);;S3;] + X|U1]”
-2 U3

ij

Re [(UB);;S::]? =
_ Z I |U-)-\] i + QZAjRe [(UB);S4] + Z)\ﬂUiﬂ
ij

i i i

Now observe that the middle term in this expression is given by:

22 >\jR€ [(UB)UEU} = 2R6 Z AJ(UB%JgU
L ij

ij

= 2Re Z(S*)ji(UB)iijj]
_ ﬂ%ﬁ&XBDH

As for the term on the right in the above expression, this is given by:
S XU = > NS,U
ij ij
= Z gij(UDQ)ij
]

= Tr(XD?
Thus when doing the substraction we obtain ®(U, B + D) = ®(U, B), as claimed. [

Observe that with B = 0 we obtain ®(U, D) = 0, for any D € My(R) diagonal. In
other words, the inequality is Theorem 12.17 is an equality, when B is diagonal.

Consider now the following matrix, which is the basic example of a real AHM:

2—-N 2 2

1 2 2—N ... 2
Ky=—
NN o
2 2 ... 2—N
We have the following result, which provides the first piece of evidence for the AHC:
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THEOREM 12.20. Consider the following matriz:
1
U=—2Iy—- N1
v (v )
Assuming that B € My(R) is symmetric and satisfies UB = AB, we have:

N—4 )
O(U, B) = A+ —— |Tr(B?) +—ZB

In particular, Ky = VNU is not complex AHM at N # 4, because:
(1) For B =1Iy we have

N2(N — 1)(N — 4)

®(U,B) = 2(N — 2)

which s negative at N = 3.
(2) For B € My(R) nonzero, symmetric, and satisfying Bly = 0, diag(B) = 0 we
have

N
B(U.B) = (2 3 )Tr(BY)
which 1s negative at N > 5.
Proor. With U € O(N), B € My(R), the formula in Theorem 12.17 reads:

(UB);;
Uij]

O(U,B) =Tr(S'UB*) — )

ij

Asusming now U = %(Q]IN — Nly) and UB = AB, this formula becomes:

_ t
O(U,B) =\ |Tr(S'B )\NZ|2_N5

il

Now observe that in our case, we have:
A+ 1)N
2

Thus the trace term is given by the following formula:
TT(Sth) = 1Tr [(I[N — 21N)BZ:|

= (w — 2> Tr(B?)

N
IvB =5 (U+15)B = B



12D. THE CONJECTURE 291

Regarding now the sum on the right, this can be computed as follows:
o IR Y A C=RHL)
— %TT(Bz) — % Z B2
We obtain the following formula, which gives the one in the statement:

(U, B) = A <w—2—A—N) Tr(BQ)—F%ZBZ%

2 2

We can now prove our various results, as follows:

(1) Here we have A = 1, and we obtain, as claimed:

N-4[., N?
QUB) = —— [N +N_2}
N2(N —4)(N - 1)
- 2(N — 2)
(2) Here we have A = —1, and we obtain, as claimed:

N
®(U, B) = <2 - 5) Tr(B?)
It remains to prove that matrices B as in the statement exist, at any N > 5.

As a first remark, such matrices cannot exist at N = 2,3. At N = 4, however, we
have solutions, which are as follows, with x + y + 2z = 0, not all zero:

0 =z y =z
p_|*® 0 z y
y z 0 x
z y x 0
At N > 5 now, we can simply use this matrix, completed with 0 entries. U

Let us go back now to the inequality in Theorem 12.17.

When U is a rescaled complex Hadamard matrix we have of course equality, and in
addition, the following happens:

PROPOSITION 12.21. For a rescaled complex Hadamard matriz, a stronger version of
the inequality in Theorem 12.17 holds, with the real part replaced by the absolute value.
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PROOF. Indeed, for a rescaled Hadamard matrix U = H/+v/N we have:
S=H=+VNU
Thus X = v/ N1y. We therefore obtain:
®(U,B) = VN |Tr(B*)—) Re [(UB)Z-]EJ-]z]

L ij

> VN TT(BZ)—ZKUB)UEAQI

= VN |Tr(BY) = 3 |UB),F

= VN [Tr(B?) — Tr(UB*U")]
=0

But this proves our claim, and we are done. O
We have the following result, in relation with the notion of defect, from [88]:

THEOREM 12.22. For a rescaled complex Hadamard matriz, the space

Ey = {B e My(C)

B = B',0(U,B) =0}

is 1isomorphic, via B — [(UB);;U,jlij, to the following space:

Dy = {A € MN(R)‘ Z UriUkj(Agi — Agj) = O;WJ}
k

In particular the two “defects” dimg Ey and dimg Dy coincide.

PROOF. Since a self-adjoint matrix B € My(C) belongs to Ey precisely when the
only inequality in the proof of Proposition 12.21 above is saturated, we have:

Ey = {B € My(Q)|B = B, Im [(UB),T,}] =0,%,j

The condition on the right tells us that the matrix A = (UB);;U;; must be real. Now
since the construction B — A is injective, we obtain an isomorphism, as follows:

Ey =~ {A c MN(]R)‘AM — (UB),;Uy; = B = B*}

Our claim is that the space on the right is Dy. Indeed, let us pick A € My (R). The
condition A;; = (UB);;U;; is then equivalent to (UB);; = NU;;A;;, and so in terms of the
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matrix Cz'j = Uiinj we have (UB)Z] = NCij, and so UB = NC. Thus B = NU*C, and
we can now perform the study of the condition B = B*, as follows:

B=DB" < UC=CU
<— Z Ukiij = ZékiUkj,WJ
k k

= Z UpiUgjArj = Z Ui AkiUs;j, Vi, j
P !

Thus we have reached to the condition defining D;;, and we are done. U

Regarding now the known verifications of the AHC, as already mentioned above, these
basically concern the natural “candidates” coming from Theorem 12.9 and Theorem 12.10,
as well as some straightforward complex generalizations of these candidates. All this is
quite technical, and generally speaking, we refer here to [18].

As an illustration, in the circulant self-adjoint unitary case, we have:

THEOREM 12.23. If U € Uy is circulant, U;j = v;_;, and self-adjoint, we have

BR(UB) = N3l - (m BN Zm)

where e = 0,1 is the parity of N and E denotes the expectation with respect to the uniform
measure on the set of circulant self-adjoint unitary matrices B.

PROOF. Since B is circulant, we diagonalize it as B = Fdiag(3;) F*. The requirement
that B is unitary and self-adjoint amounts then to 8; = +1. The expectation is taken in
the probability space where the random variables (; are i.i.d., with symmetric Bernoulli
distributions (d_; + d1)/2. In particular, we have E[3;5;] = 0;;.

Using B? = 1y, the first term in the expression of ®(U, B) reads:

Tr(S*UB*) = Tr(S*U)
= > Uyl
]
= N Z |7l
For the second term in the formula of ®, we develop first:

Rel(UB)S, ) = | [(UB),8% + 0B, S5 + 2UB),(UB),

1] (¥}
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We then have the following computation:
E(UB)}; = E(Fdiag(q)diag(8)F")};
= N2) w0 qR(BB)
kl

= N7 w* g g6y
Kl

— N2 Z w2k
k

We therefore obtain the following formula:

Nt if 2(i — j) =0 (mod N)
0 otherwise

E(UB);; = {

Similarly, we have the following formula:

E(UB)ij<UB)ij = N7 Z w(k_l)(i_j)QkQZE(ﬁkﬁz)

kl

= N7? Z |gi|?
k

- N1

Since in both the cases i = j and i = j + N/2, when N is even, we have S;; € {£1},
the above two formulae are all that we need, and we obtain the following formula:

= 1
E [Re[(UB)Z]S”]Q] = Z_l [2N715ij + 2(1 — €)N71(Si’j+]\//2 + 2N71}

Now by summing over ¢, 7, and then taking into account as well the first term in the
expression of ®(U, B), computed above, we obtain the formula in the statement. O

In the orthogonal case now, we have a similar result, as follows:
THEOREM 12.24. If U € Oy is circulant, U;; = vy;—;, and symmetric, we have

E(@(U,B))INZ!%-I— (L — +N_]5+62ﬁ>

+
|Vo| |7N/2|

where e = 0,1 is the parity of N and E denotes the expectation with respect to the uniform
measure on the set of circulant symmetric orthogonal matrices B.

PROOF. As before, the expectation is taken with respect to the distribution of the
eigenvalues fy,...,08yv_1 = £1 of B, which are constrained in this case by the extra
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condition 8; = f;—;. The first term in the expression of ®(U, B) is equal to N ) . |y;|. For
the second term in ®, we need the following covariance term:

1 ifk+l=0
0 otherwise

E(BrB1) = {

Since all the quantities are real in this case, we have (recall that g, = q_r = £1):

E(UB);, = N2> w*igqR(5.8)
K

= N2 D g (S0 + Gt — Banzi0)
kl

- k
= N2 [N(sgigj +N -2+ 6]
We have then:

1 1—ce
Nﬁl\Uz‘"flfszw': "Ykrl(s%o:——i‘—
2N W by = Dl ko =

We have as well:

N—-2+4e 1
N3N —24e)|Uj| ' = ————
%: ’ N Zi:|%|

Putting everything together gives the formula in the statement. U

As an illustration for the above methods, we can now go back to the matrices in
Theorem 12.20, and find a better proof for the fact that these matrices are not complex
AHM. Indeed, we have the following result, which basically solves the problem:

PROPOSITION 12.25. With U = ~(2Iy — N1y) we have the formula

E(@(U,B))z%(]\f—zl— 2+€)

N -2
where e = 0,1 s the parity of N, and where B varies over the space of orthogonal circulant
symmetric matrices. This quantity is —2,0,0, —%, —1—58, ..at N=3,4,5,6,7...
Proor. This follows indeed from the general formula in Theorem 12.24 above. U

In general, the main idea that emerges from [18] is that of using a method based on
a random derivative, pointing towards a suitable homogeneous space coset.
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12e. Exercises

The material in the present chapter has been quite research-oriented, and our exercises
here will be of the same type, rather difficult. First, we have:

EXERCISE 12.26. FEstablish the rotation trick, stating that we must have
Uij # 0
for the local mazxima/minima of the p-norms on Uy, at values p # 1.

The cases p < 2 and p > 2 are of quite different nature, at least when using a
straightforward approach to the problem, in the spirit of the one that we used in the
above, at p = 1. The first problem is that of deciding which case is the one to go with.

Also at the theoretical level, we have:

EXERCISE 12.27. Establish the Hessian formula for the second derivative of the 1-norm
by using advanced differential geometry techniques.

To be more precise here, the formula for the second derivative that we obtained in
the above was based on some straightforward computations, which are quite long. The
problem is that of replacing these computations by something more conceptual, based on
advanced knowledge of differential geometry, or of calculus in several variables.

In relation now with the Almost Hadamard Conjecture (AHC), we first have:

EXERCISE 12.28. Verify the AHC' for the various examples of almost Hadamard ma-
trices, in the real sense, from chapter 4 above, coming from block designs.

There are many things that can be done here, and as a bottom line, your computations
should generalize those that we have for Ky, explained in the above.

Still in relation with the AHC, but regarding now the circulant case, we have:

EXERCISE 12.29. Reformulate the verifications of the AHC for circulant matrices pre-
sented in the above in a more conceptual way, by using a random derivative method,
pointing towards a suitable homogeneous space coset.

To be more precise here, the homogeneous space coset in question should appear by
applying a discrete Fourier transform to the circulant matrices.
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Quantum permutations



Many things about tomorrow
I don’t seem to understand
But I know who holds tomorrow
And I know who holds my hand



CHAPTER 13

Quantum groups

13a. Operator algebras

We discuss in what follows the relation between the complex Hadamard matrices and
the quantum permutation groups, and its potential applications to certain questions from
mathematical physics, regarding operator algebras, statistical mechanics, and more.

The idea is very simple, namely that associated to any Hadamard matrix H € My(C)
is a certain quantum permutation group G C Sy, which describes the “symmetries” of
the matrix. As a basic illustration, for a Fourier matrix H = F; we obtain the group G
itself, acting on itself, G C Sg. In general, we obtain non-classical quantum groups.

In order to discuss all this, we will need many preliminaries, namely operator theory,
operator algebras and compact quantum spaces, then compact quantum groups following
Woronowicz [99], then quantum permutation groups following Wang [95], and finally
matrix models for such quantum groups, which produce the above correspondence.

Let us begin with the following standard result:

THEOREM 13.1. Given a Hilbert space H, the linear operators T : H — H which are
bounded, in the sense that ||T|| = sup, < |[Tx]| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, so we have a Banach algebra.
(2) B(H) has an involution T — T*, given by < Tx,y >=< x,T*y >.

In addition, the norm and involution are related by the formula ||TT*|| = ||T||*.

PROOF. The fact that we have indeed an algebra follows from:
IS + Tl < [IS]l + 17|
IAT]] = [A]- [T
ST < (S]] - |17
Regarding now (1), if {7,,} € B(H) is Cauchy then {7T,z} is Cauchy for any € H,
so we can define the limit 7" = lim,, ., T,, by setting:

Tx= lim T,z

n—o0

299
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As for (2), here the existence of 7% comes from the fact that ¢(z) =< Tx,y > being
a linear map H — C, we must have, for a certain vector T*y € H:
o(x) =< z,T"y >
Moreover, since this vector is unique, 7™ is unique too, and we have as well:
(S+T) =85"+T"
(AT)* = \T™*
(ST)" =T"5"
(") =T
Observe also that we have indeed T* € B(H), because:

|T|| = sup sup <Tx,y>
[lz][=1 [|y||=1

= sup sup <ux, Ty >
llyll=1||z||=1

= (177
Regarding the last assertion, we have:
||| < [|T|] - (|77 = ||| ?

Also, we have the following estimate:

IT|? = sup | <Ta, Tz > |
||=1
= sup | <z, TTx > |
|l=||=1
< |17
By replacing T — T* we obtain from this ||T'||* < ||TT*||, and we are done. O

We will be interested in fact in the algebras of operators, rather than in the operators
themselves. The basic axioms here, inspired from Theorem 13.1, are as follows:

DEFINITION 13.2. A C*-algebra is a complex algebra with unit A, having:
(1) A norm a — ||al|, making it a Banach algebra (the Cauchy sequences converge).

(2) An involution a — a*, which satisfies ||aa*|| = ||a||?, for any a € A.

According to Theorem 13.1, the operator algebra B(H) itself is a C*-algebra. More
generally, we have as examples all the closed *-subalgebras A C B(H). We will see later
on (the “GNS theorem”) that any C*-algebra appears in fact in this way.

Generally speaking, the elements a € A are best thought of as being some kind of
“generalized operators”, on some Hilbert space which is not present.
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By using this idea, one can emulate spectral theory in this setting, and the basic
results that can be obtained in this way can be summarized as follows:

THEOREM 13.3. Given a € A, define its spectrum as being the set
o(a) = {/\ c C(a ¢ A—l}

and its spectral radius p(a) as the radius of the smallest centered disk containing o(a).

) The spectrum of a norm one element is in the unit disk.

) The spectrum of a unitary element (a* = a=') is on the unit circle.

) The spectrum of a self-adjoint element (a = a*) consists of real numbers.
) The spectral radius of a normal element (aa* = a*a) is equal to its norm.

PROOF. Our first claim is that for any polynomial f € C[X], and more generally for
any rational function f € C(X) having poles outside o(a), we have:

o(f(a)) = f(o(a))
This indeed something well-known for the usual matrices. In the general case, assume

first that we have a polynomial, f € C[X]. If we pick an arbitrary number A\ € C, and
write f(X) —A=c¢(X —ry)...(X — ), we have then, as desired:

N o(fla)
<
<
<
<

fla)—re A
cla—r))...(a—ry) € A
a—ry,...,a—1, €A
T1,..., 7k & o(a)

A ¢ fo(a))

Assume now that we are in the general case, f € C(X). We pick A € C, we write
f = P/Q, and we consider the following polynomial:

F=P-)\Q
By using the above finding, for this polynomial F', we obtain, as desired:
Aeo(f(a) <= Fla)g A
< 0€0(F(a))
< 0€ F(o(a))
< dueco(a),F(n) =0
— e f(o(a)

Regarding now the assertions in the statement, these basically follow from this:

(1) This comes from the following formula, valid when ||a|| < 1:

l1—a

=l4+a+a®+...
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! we have the following norm computations:

lall = v/llaa*]] = V1 =1
la™H] =1la*[| = [lal| = 1

If we denote by D the unit disk, we obtain from this, by using (1):

(2) Assuming a* = a~

lla|| =1 = o(a) C D

la™'||=1 = o(a')C D
On the other hand, by using the rational function f(z) = 27!, we have:

ola’yc D = o(a) c D!
Now by putting everything together we obtain, as desired:

olayc DND =T
(3) This follows by using (2), and the following rational function, with ¢ € R:
z+it

J(z) = z—1t
Indeed, for ¢ >> 0 the element f(a) is well-defined, and we have:

a+it\" a—it  [(a+it\""
a—it) a+it \a—it
Thus f(a) is a unitary, and by (2) its spectrum is contained in T. We conclude that

we have f(o(a)) = o(f(a)) C T, and so o(a) C f~1(T) = R, as desired.
(4) We have p(a) < ||a|| from (1). Conversely, given p > p(a), we have:

n o
/ : dz = Z (/ z”kldz) ak = q" !
lo|=p = — @ o \Jlzl=p
By applying the norm and taking n-th roots we obtain:
p> lim [la”|[V"
n—oo
In the case a = a* we have ||a™|| = ||a||™ for any exponent of the form n = 2%, and by
taking n-th roots we get p > ||a||. This gives the missing inequality, namely:
p(a) > Jlal
In the general case aa® = a*a we have a™(a™)* = (aa*)", and we get:
p(a)® = p(aa”)
Now since aa* is self-adjoint, we get p(aa*) = ||a||?, and we are done. O

With these preliminaries in hand, we can now formulate some theorems. The basic
facts about the C*-algebras, that we will need here, can be summarized as:
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THEOREM 13.4. The C*-algebras have the following properties:

(1) The commutative ones are those of the form C(X), with X compact space.
(2) Any such algebra A embeds as A C B(H), for some Hilbert space H.

(3) In finite dimensions, these are the direct sums of matriz algebras.

Proor. All this is standard, the idea being as follows:

(1) Given a compact space X, the algebra C'(X) of continuous functions f : X — C
is indeed a C*-algebra, with norm and involution as follows:

I1£11 = sup| £ ()
f(z) = f(x)

Observe that this algebra is indeed commutative, because:
f(x)g(x) = g(z)f(x)
Conversely, if A is commutative, we can define X = Spec(A) to be the space of all

characters x : A — C, with the topology making continuous all the evaluation maps
ev, : X — x(a). We have then a morphism of algebras, as follows:

ev:A— C(X)
a — ev,

Theorem 13.3 (3) shows that ev is a s-morphism, Theorem 13.3 (4) shows that ev is
isometric, and finally the Stone-Weierstrass theorem shows that ev is surjective.

(2) This is standard for A = C'(X), where we can pick a probability measure on X,
and set H = L?(X), and use the following embedding:

AC B(H)
f—=(g—fg)

In the general case, where A is no longer commutative, the proof is quite similar, by
emulating basic measure theory in the abstract C*-algebra setting.

(3) Assuming that A is finite dimensional, we can first decompose its unit as follows,
with p; € A being central minimal projections:

l=p1+...+p

Each of the linear spaces A; = p;Ap; is then a non-unital x-subalgebra of A, and we
have a non-unital x-algebra sum decomposition, as follows:

A=A4,9...0 A,

On the other hand, since each central projection p; was assumed minimal, we have
unital x-algebra isomorphisms as follows, with r; = rank(p;):
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Thus, we obtain an isomorphism A ~ M, (C) & ... ® M, (C), as desired. O

All the above was of course quite brief, but full details on this, covering 10-15 pages,
can be found in any book on operator algebras.

In what concerns us, we will be mainly interested in Theorem 13.4 (1), called Gelfand
theorem, which suggests formulating:

DEFINITION 13.5. Given a C*-algebra A, not necessarily commutative, we write
A=C(X)
and call the abstract object X a compact quantum space.

In other words, we define the category of the compact quantum spaces X to be the
category of the C*-algebras A, with the arrows reversed. Due to the Gelfand theorem, 13.4
(1) above, the category of the usual compact spaces embeds covariantly into the category
of the compact quantum spaces, and the image of this embedding consists precisely of
the compact quantum spaces X which are “classical”, in the sense that the corresponding
C*-algebra A = C(X) is commutative. Thus, what we have done here is to extend the
category of the usual compact spaces, and this justifies Definition 13.5.

In practice now, the general compact quantum spaces X do not have points, but we
can perfectly study them via the associated algebras A = C'(X), a bit in the same way as
we study a compact Lie group via its associated Lie algebra, or an algebraic manifold via
the ideal of polynomials vanishing on it, and so on. In short, nothing that much abstract
going on here, just another instance of the old idea “we will use algebras, no need for
points”, with the remark that for us, the use of points will be actually forbidden.

13b. Quantum groups

We will be interested in what follows in the case where the compact quantum space
X is a “compact quantum group”. The axioms for the corresponding C*-algebras, found
by Woronowicz in [99], are, in a soft form, as follows:

DEFINITION 13.6. A Woronowicz algebra is a C*-algebra A, given with a unitary
matriz u € My(A) whose coefficients generate A, such that the formulae

Alug;) = Z Uik, & U
k

e(uij) = 04
S(uy) = uj;

define morphisms of C*-algebras A : A —+ AR A, ¢: A—C, S: A— A%PP,
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The morphisms A, e, S are called comultiplication, counit and antipode. We say that
A is cocommutative when YA = A, where ¥(a ® b) = b ® a is the flip. We have the
following result, which justifies the terminology and axioms:

PrROPOSITION 13.7. The following are Woronowicz algebras:
(1) C(G), with G C Uy compact Lie group. Here the structural maps are:

Alp) = (g9,h) = ¢(gh)
elp) = (1)
Slp) = g—=¢lg™)
(2) C*(T"), with Fy — T finitely generated group. Here the structural maps are:

Alg) = g®g
elg) = 1
Slg) = g7

Moreover, we obtain in this way all the commutative/cocommutative algebras.

Proor. This is something very standard, the idea being as follows:

(1) Consider a compact Lie group G C Uy. We can set A = C(G), which is a
Woronowicz algebra, together with the matrix v = (u;;) formed by coordinates of G,
given by:

un(g) ... win(g)
9= : :
uni(g) .. unn(9)

Conversely, if (A,u) is a commutative Woronowicz algebra, by using the Gelfand
theorem we can write A = C(X), with X being a certain compact space. The coordinates
u;; give then an embedding X C My(C), and since the matrix v = (u;;) is unitary we
actually obtain an embedding X C Uy, and finally by using the maps A, ¢, S we conclude
that our compact subspace X C Uy is in fact a compact Lie group, as desired.

(2) Consider a finitely generated group Fy — I'. We can set A = C*(I'), which is
by definition the completion of the complex group algebra C[I'], with involution given by
g* = g1, for any g € T, with respect to the biggest C*-norm, and we obtain a Woronowicz
algebra, together with the diagonal matrix formed by the generators of I':

g1 0
0 gn
Conversely, if (A, u) is a cocommutative Woronowicz algebra, the Peter-Weyl theory

of Woronowicz, to be explained below, shows that the irreducible corepresentations of A
are all 1-dimensional, and form a group I', and so we have A = C*(I"), as desired. O
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In relation with the above, starting from Definition 13.5, we should mention that
there are some functional analysis subtleties here, coming from the fact that our quantum
spaces and groups must be actually divided by an equivalence relation, for everything to
work fine. To be more precise, in the context of Definition 13.6, we write (A, u) = (B, v)
when there is a *-algebra isomorphism < wu;; >~< v;; > mapping u;; — v;;. See [99].

In general now, the structural maps A, e, S have the following properties:

PROPOSITION 13.8. Let (A, u) be a Woronowicz algebra.

(1) A e satisfy the usual axioms for a comultiplication and a counit, namely:
(A®id)A = (id® A)A
(e@id)A = (id®e)A=id
(2) S satisfies the antipode aziom, on the x-subalgebra generated by entries of u:
m(S ®id)A = m(id ® S)A = ¢(.)1
(3) In addition, the square of the antipode is the identity, S* = id.

PROOF. The two comultiplication axioms follow from:

(A®id)Auy) = (id® A)A(uy) =Y ug ® ug @ gy
kl
As for the antipode formulae, the verification here is similar. O

Summarizing, the Woronowicz algebras appear to have nice properties. In view of
Proposition 13.7 and Proposition 13.8, we can formulate the following definition:

DEFINITION 13.9. Given a Woronowicz algebra A, we formally write
A=C(G)=CcI)
and call G compact quantum group, and I' discrete quantum group.

When A is both commutative and cocommutative, G is a compact abelian group, I'
is a discrete abelian group, and these groups are dual to each other, G = T'\I' = G. In
general, we still agree to write, but in a formal sense:

G=[ , I'=G

With this in mind, let us call now corepresentation of A any unitary matrix v € M, (A)
satisfying the same conditions as those satisfied by u, namely:

A(Uij) = Z Vik @ Uk 5(Uij) = 5ij ) S<UU) = U;i
k
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These corepresentations can be thought of as corresponding to the unitary representa-
tions of the underlying compact quantum group G. As main examples, we have u = (u;;)
itself, its conjugate u = (ufj), as well as any tensor product between wu, .

We have the following key result, due to Woronowicz [99]:

THEOREM 13.10. Any Woronowicz algebra has a unique Haar integration functional,

()3 (= [) o= [0

which can be constructed by starting with any faithful positive form ¢ € A*, and setting

where ¢ x 1p = (¢ @ P)A. Moreover, for any corepresentation v € M,(C) ® A we have

(id®/0>v:P

where P is the orthogonal projection onto Fix(v) = {£ € C*"|v§ = &}
PRrROOF. Following [99], this can be done in 3 steps, as follows:

(1) Given ¢ € A*, our claim is that the following limit converges, for any a € A:

1 n
a= lim — ©**(a)

Indeed, by linearity we can assume that a is the coefficient of corepresentation, a =
(T ® id)v. But in this case, an elementary computation shows that we have the following
formula, where P, is the orthogonal projection onto the 1-eigenspace of (id ® ¢)uv:

(id@é)v:P@

(2) Since v€ = ¢ implies [(id ® ¢)v]¢ = &, we have P, > P, where P is the orthogonal
projection onto the space Fiz(v) = {£ € C"|v€ = £}. The point now is that when ¢ € A*
is faithful, by using a positivity trick, one can prove that we have P, = P. Thus our
linear form f@ is independent of ¢, and is given on coefficients a = (7 ® id)v by:

(id@[p)v:P

(3) With the above formula in hand, the left and right invariance of [, = feo is clear
on coefficients, and so in general, and this gives all the assertions. See [99]. u
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Consider the dense x-subalgebra A4 C A generated by the coefficients of the funda-
mental corepresentation u, and endow it with the following scalar product:

<a,b >:/ab*
G

We have then the following result, also from [99]:
THEOREM 13.11. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u®r.

(3) A= D,crrr(a) Maim(w)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

PROOF. All these results are from [99], the idea being as follows:

(1) Given v € M, (A), its intertwiner algebra End(v) = {T € M, (C)|Tv = vT} is a
finite dimensional C*-algebra, and so decomposes as End(v) = M,,(C) & ... ® M,, (C).
But this gives a decomposition of type v = v; + ... + v,, as desired.

(2) Consider indeed the Peter-Weyl corepresentations, u®* with k colored integer,
defined by u® = 1, u®° = u, u® = @ and multiplicativity. The coefficients of these
corepresentations span the dense algebra A4, and by using (1), this gives the result.

(3) Here the direct sum decomposition, which is technically a *-coalgebra isomorphism,
follows from (2). As for the second assertion, this follows from the fact that (id ® [,)v is
the orthogonal projection P, onto the space Fixz(v), for any corepresentation v.

(4) Let us define indeed the character of v € M,,(A) to be the matrix trace, x, = Tr(v).
Since this character is a coefficient of v, the orthogonality assertion follows from (3). As
for the norm 1 claim, this follows once again from (id ® [,)v = P, U

Observe that in the cocommutative case, we obtain from (4) that the irreducible
corepresentations must be all 1-dimensional, and so that we must have A = C*(T") for
some discrete group I', as mentioned in Proposition 13.7 above.

13c. Quantum permutations

We will be interested here in the quantum permutation groups, and their relation with
the Hadamard matrices. The following key definition is due to Wang [95]:

DEFINITION 13.12. A magic unitary matrix is a square matriz over a C*-algebra,
u € MN(A)

whose entries are projections, summing up to 1 on each row and each column.
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The basic examples of such matrices come from the usual permutation groups, G C Sy.
Indeed, given such subgroup, the following matrix is magic:

Ui; = X (0' S G’O'(j) = Z>
The interest in these matrices comes from the following functional analytic description
of the usual symmetric group, from [95]:
PRrROPOSITION 13.13. Consider the symmetric group Sy .

(1) The standard coordinates v;; € C(Sn), coming from the embedding Sy C On

giwen by the permutation matrices, are given by v;; = x(o|o(j) = 1).
e matriz v = (v;;) s magic, in the sense that its entries are orthogonal pro-

2) Th tre i)t ic, in th that it tri th [
jections, summing up to 1 on each row and each column.

3) The algebra C(Sy) is isomorphic to the universal commutative C*-algebra gen-

g P Y g

erated by the entries of a N x N magic matriz.

PROOF. These results are all elementary, as follows:

(1) The canonical embedding Sy C Oy, coming from the standard permutation ma-
trices, is given by o(e;) = e,(j). Thus, we have o = Zj €s(j)j» SO the standard coordinates
on Sy C Oy are given by v;;(0) = 0; 4(;). Thus, we must have, as claimed:

Vij = X <0‘0(j) = z)

(2) Any characteristic function y € {0,1} being a projection in the operator algebra
sense (x? = x* = x), we have indeed a matrix of projections. As for the sum 1 condition
on rows and columns, this is clear from the formula of the elements v;;.

(3) Consider the universal algebra in the statement, namely:
A=Clomm <(wij)i,j:1,...7N‘w = magic)

We have a quotient map A — C(Sn), given by w;; — v;;. On the other hand, by
using the Gelfand theorem we can write A = C(X), with X being a compact space, and
by using the coordinates w;; we have X C Oy, and then X C Sy. Thus we have as well
a quotient map C'(Sy) — A given by v;; — w;;, and this gives (3). See Wang [95]. O

We are led in this way to the following result:

THEOREM 13.14. The following is a Woronowicz algebra,
C(S]T/) =C" ((uij)i,jzl,...,N)u = magic)

and the underlying compact quantum group Sy is called quantum permutation group.
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PROOF. As a first remark, the algebra C(S};) is indeed well-defined, because the magic
condition forces ||u;;|| < 1, for any C*-norm. Our claim now is that we can define maps
A, e, S as in Definition 13.6. Consider indeed the following matrix:

Uij = E Uik, & Uk
k

As a first observation, we have U;; = U;; In fact the entries U;; are orthogonal
projections, because we have as well:

2
Uz‘j = E Uik Uiy & U U

kl
= E Uik, & U
k

In order to prove now that the matrix U = (U;;) is magic, it remains to verify that
the sums on the rows and columns are 1. For the rows, this can be checked as follows:

Z Uyj = Z Uy @ Up;
J Jk
%

= 1®1

For the columns the computation is similar, as follows:

Z Uj; = Z Uik, @ Up;
i ik
k

= 1®1

Thus the matrix U = (U;;) is magic indeed, and so we can define a comultiplication
map by setting:
A(uy) = Uy
By using a similar reasoning, we can define as well a counit map by e(u;;) = d;;, and

an antipode map by S(u;;) = uj;. Thus the Woronowicz algebra axioms from Definition
13.6 are satisfied, and this finishes the proof. O

The terminology comes from the following result, also from [95]:
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PROPOSITION 13.15. The quantum group S% acts on the set X = {1,...,N}, the
corresponding coaction map ® : C(X) — C(X) ® C(S};) being given by:

(6:) = > 6; ® uji
j

In fact, S¥ is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that (tr ® id)® = tr(.)1, where tr(5;) = +, Vi.

PROOF. Our claim is that given a compact quantum group G, the formula ®(6;) =
> ; 0; ® uj; defines a morphism of algebras, which is a coaction map, leaving the trace
invariant, precisely when the matrix u = (u;;) is a magic corepresentation of C(G).

Indeed, let us first determine when & is multiplicative. We have:

k) = Z 5j5l X UjiUl = Z (5]' (059 Uji Uik
Jl J
On the other hand, we have as well:

O(6;04) = 0P (8;) = d 25 ® g

We conclude that the multiplicativity of ® is equlvalent to the following conditions:
Ujitgr = Oipti Vi, 7,k

Regarding now the unitality of ®, we have the following formula:

DI SOENES 3OEYp o)
i ij ] i
Thus @ is unital when the following conditions are satisfied:
Z Uji = 1 s \4)

Finally, the fact that ® is a x-morphism translates into:
g =uy; o, Vi, j

Summing up, in order for ®(§;) = Z J; @ uj; to be a morphism of C*-algebras, the
elements wu;; must be projections, summing up to 1 on each row of u. Regarding now the
preservation of the trace condition, observe that we have:

(tr ® id)® =N Z wj;

Thus the trace is preserved precisely when the elements u;; sum up to 1 on each of
the columns of u. We conclude from this that ®(d;) = >, J; ® uy; is a morphism of C*-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
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on ¢ are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. Il

As a quite surprising result now, also from [95], we have:

THEOREM 13.16. We have an embedding Sy C S3;, given at the algebra level by:
This is an isomorphism at N < 3, but not at N > 4, where S5 is not classical, nor finite.

PROOF. The fact that we have indeed an embedding as above is clear. Regarding now
the second assertion, we can prove this in four steps, as follows:

Case N = 2. The fact that S5 is indeed classical, and hence collapses to S, is trivial,
because the 2 x 2 magic matrices are as follows, with p being a projection:

-2, ')
I-p »p
Case N = 3. It is enough to check that w1, uss commute. But this follows from:

Upilley = UniUga(U1n + Uiz + trg)
= Up1U22U11 + Us1U22UL3
= U11lUgoU11 + Un(l — U21 — U23)U13
= U11U22U71

Indeed, by applying the involution to this formula, we obtain from this that we have
U22U11] = UT1U22UT1 AS Well, and so we get U11U22 = U22UT1, AS desired.

Case N = 4. Consider the following matrix, with p, ¢ being projections:
P 1—p O 0

1—p p 0 0
0 0 q 1—¢q
0 0 1—g¢q q

U:

This matrix is then magic, and if we choose p,q as for the algebra < p,q > to be
infinite dimensional, we conclude that C'(S;) is infinite dimensional as well.

Case N > 5. Here we can use the standard embedding S, C Sj(,, obtained at the level
of the corresponding magic matrices in the following way:

u — u 0
0 In—4

Indeed, with this in hand, the fact that S is a non-classical, infinite compact quantum
group implies that S3; with N > 5 has these two properties as well. See [95]. U
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13d. Partitions, easiness

In order to study the quantum permutation group S}, we use representation theory.

We will need the following version of Tannakian duality:

THEOREM 13.17. The following operations are inverse to each other:

(1) The construction A — C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Cyy = Hom(u®*, u®").

(2) The construction C' — A, which associates to any tensor category C' the Woro-
nowicz algebra A presented by the relations T € Hom(u®*,u®), with T € Cy,.

PRroOF. This is something quite deep, going back to [100] in a slightly different form,
and to [67] in the simplified form presented above. The idea is as follows:

(1) We have indeed a construction A — C' as above, whose output is a tensor C*-
subcategory with duals of the tensor C*-category of Hilbert spaces.

(2) We have as well a construction C' — A as above, simply by dividing the free
x-algebra on N? variables by the relations in the statement.

Regarding now the bijection claim, some elementary algebra shows that C' = Cjy,
implies A = Ac,, and also that C' C C}, is automatic. Thus we are left with proving
Cy4. C C. But this latter inclusion can be proved indeed, by doing some algebra, and
using von Neumann’s bicommutant theorem, in finite dimensions. See [67]. 4

We will need as well the notion of “easiness”, from [25]. Let us start with:

DEFINITION 13.18. Let P(k,l) be the set of partitions between an upper row of k
points, and a lower row of | points. A set D = | |, , D(k,l) with D(k,l) C P(k,l) is called
a category of partitions when it has the following 7pr0pe7’tz'es:

(1) Stability under the horizontal concatenation, (w,0) — [no].

(2) Stability under the vertical concatenation, (w,0) — [2].
(3) Stability under the upside-down turning, ™ — 7*.

(4) Each set P(k,k) contains the identity partition ||...||.
(5) The set P(0,2) contains the semicircle partition N.

As a basic example, we have the category of all partitions P itself.
Other basic examples include the category of pairings P, or the categories NC, NC5
of noncrossing partitions, and pairings. There are many other examples, and we will be

back to this.

The relation with the Tannakian categories and duality comes from:



314 13. QUANTUM GROUPS

PROPOSITION 13.19. Each 7 € P(k,l) produces a linear map Ty : (CN)®F — (CV)®!,

Tﬂ(ei1®"'®6ik): Zdw(l-l Z.}C>€j1®...®€jl

Juo-o

with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or not.
The assignement m — T}, s categorical, in the sense that we have
T @Ty =T , Tuly=NTTo | TF =T,

™

where c¢(m,0) are certain integers, coming from the erased components in the middle.

PROOF. The concatenation axiom follows from the following computation:

(T, @T,)(€;, ®...Q€, ey, ®...Rex,)

= E Eéﬁ(;i ;'p>6"(lll l)6j1®---®€jq®€zl®--~®€ls
oo Jg oo

j1~--jq l1...ls
J1--Jq l1..ls q s

= T[wa](eil & ... ®€ip ®6k1 &R ... ®€kr)
The composition axiom follows from the following computation:

Tng(eil ®...Q eip)

B iy [T
- Zé"(jl ].q> Z&r(kzl kr)em@...@ekr

jl---jq kl...k'r
Y Nees T
2] k L €k, €k,
ky..ky Lo i

= NC(”"’)T[g}(eil ®...®e¢,)
Finally, the involution axiom follows from the following computation:
Ti(ej, ®...®ej,)
= Z <Tr(e;; ®...Q¢€j,),6, D...Q0¢€, >¢€,Q...0e¢,

i1..ip

_ Zéfr(;i ;p>eil®...®eip

q

i1...0p
== Tﬂ-*<€j1 ®X...Q ejq)
Summarizing, our correspondence is indeed categorical. U

In relation with the quantum groups, we have the following notion, from [25]:
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DEFINITION 13.20. A compact quantum matriz group G is called easy when we have

Hom(u®* u®") = span (T7r TE D(k;,l))

for any colored integers k, 1, for certain sets of partitions D(k,l) C P(k,l), where

Tﬂ(ei1®"'®6ik): Zaw(l-l Z.k)€j1®...®€jl

Juoo 0

with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or not.
We can now formulate our main result regarding Sy, as follows:

THEOREM 13.21. We have the following results:

(1) Sn is easy, coming from the category of all partitions P.
(2) Sy is easy, coming from the category of all noncrossing partitions NC.

ProoF. This is something quite fundamental, with the proof, using the above Tan-
nakian results and subsequent easiness theory, being as follows:

(1) Sy. We know that this quantum group comes from the magic condition. In order
to interpret this magic condition, consider the fork partition:

Y € P(2,1)
The linear map associated to this fork partition Y is then given by:
Ty (e; ® ej) = 0;je;
Thus, in usual matrix notation, this linear map is given by:
Ty = (8ik)ijk
Now given a corepresentation u, we have the following formula:

(TYU®2>i,jk = Z(TY)i,lm(u®2)lm,jk = Ui Uik

lm

We have as well the following formula:
(uTy )ik = Zuil(TY)l,jk = 0jkUij
!

We conclude that we have the following equivalence:
Ty € Hom(u®? u) < wjjug = 6w, Vi, j, k

The condition on the right being equivalent to the magic condition, we obtain that
S5 is indeed easy, the corresponding category of partitions being, as desired:

D=<Y >=NC
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(2) Sn. Here there is no need for new computations, because we have:
Sy = SN0y

At the categorical level means that Sy is easy, coming from:
< NC,\>=P

Alternatively, we can rewrite the above proof for S, by adding at each step the basic
crossing Y next to the fork partition Y. U

Let us discuss now the computation of the law of the main character. This computation
is the main problem regarding any compact quantum group, as shown by the following
result, which summarizes the various motivations for doing this:

THEOREM 13.22. Given a Woronowicz algebra (A, u), the law of the main character

N
X = Z Uy
i=1

with respect to the Haar integration has the following properties:

(1) The moments of x are the numbers M, = dim(Fiz(u®*r)).

2) My, counts as well the lenght p loops at 1, on the Cayley graph of A.

) law(x) is the Kesten measure of the associated discrete quantum group.
) When u ~ a the law of x is a usual measure, supported on [—N, N].

) The algebra A is amenable precisely when N € supp(law(Re(x))).

) Any morphism f: (A,u) — (B,v) must increase the numbers Mj,.

) Such a morphism f is an isomorphism when law(x,) = law(x.).

(

(3
(4
(5
(6
(7

Proor. All this is quite advanced, the idea being as follows:

(1) This comes from the Peter-Weyl type theory in [99], which tells us the number of
fixed points of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for A = C*(T"), with I' =< ¢4, ..., gy >
being a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case A = C*(I"), with
['=<g,...,gn > being a discrete group. In general, this follows from (2).

(4) The equivalence u ~ u translates into x, = x;, and this gives the first assertion.
As for the support claim, this follows from uu* =1 = ||u|| < 1, for any i.

(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C*(T'), with I' =< ¢y, ..., gy > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.
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(7) This follows by using (6), and the Peter-Weyl type theory from [99], the idea being
that if f is not injective, then it must strictly increase one of the spaces Fiz(u®*). O

All the above was quite short, but details on all this, characters and motivations for
computing laws of characters, can be found in any good quantum group book.

In the case of the symmetric group Sy, the character result is as follows:

THEOREM 13.23. For the symmetric group Sy the main character counts the fixed
points,

X(a):#{z'e{l,...,]\/} a(i):i}

and its law becomes Poisson (1), in the N — oo limit.

Proor. This is something very classical, which can be done in 3 steps, as follows:

(1) The trace of the permutation matrices ¢ € Sy C O being the number of 1 entries,
which correspond to fixed points, we have:

Tr(o) = # {z eq1,... ,N})a(z’) - z}

If we denote by F; C Sy the set of permutations satisfying (i) = i, the number of
permutations ¢ € Sy having no fixed point at all, called derangements, is:

Fy = |Sv|=D>_IE[+) IFnF[—..... +(=DNIF N .. N Fy|
i i<j
N N
- N!—N-(N—l)!+(2>(N—2)!— ...... +(—1)N(N)1!
N! N! NI N!
= Nl — — 4+ ———+4...... .
1 + 2 6 * +(=1) N!
(2) Thus, when dividing by N!, and letting N — 0o, we obtain:
1
P(x=0)~-
(x=0) =~
(3) In fact, the same method gives the following formula, valid for any k& € N:
1
Plx=Fk) ~ —
(x=k)=—
But this shows that y becomes Poisson (1) with N — oo, as claimed. O

Summarizing, we have here some interesting results regarding the classical permutation
group Sy. In what follows we will present some similar results regarding the quantum
permutation group Sy, and we will discuss the relation between the classical results and
the free results, which will complement the easiness theory developed above.
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In order to include as well Sy in our discussion, we will need the following result, with
*« being the classical convolution, and B being Voiculescu’s free convolution [94]:

THEOREM 13.24. The following Poisson type limits converge, for any t > 0,

1 1 *n
py = lim ((1 — —) do + —5t>
n—o0 n n
1 1 Hn
Ty = lim ((1 — —> (5(] + _5t)
n—00 n n

the limiting measures being the Poisson law py, and the Marchenko-Pastur law ,

1 46,
=S

\/4t—(:c—1—t)2d

= 1—1t,0)
7 = max( ,0)d + 5

T

whose moments are given by the following formulae:

My(p) = Yy t"

meP (k)

My(m) = > "

TeNC(k)

The Marchenko-Pastur measure 7y 1s also called free Poisson law.

Proor. This is something quite advanced, related to probability theory, free proba-
bility theory, and random matrices, the idea being as follows:

(1) The first step is that of finding suitable functional transforms, which linearize the
convolution operations in the statement. In the classical case this is the logarithm of the
Fourier transform log F', and in the free case this is Voiculescu’s R-transform.

(2) With these tools in hand, the above limiting theorems can be proved in a standard
way, a bit as when proving the Central Limit Theorem. The computations give the
moment formulae in the statement, and the density computations are standard as well.

(3) Finally, in order for the discussion to be complete, what still remains to be ex-
plained is the precise nature of the “liberation” operation p; — 7, as well as the random
matrix occurrence of ;. This is more technical, and we refer here to [29], [68], [94]. O

We refer to [29], [68], [94] for more on the above.

Getting back now to quantum permutations, the results here are as follows:
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THEOREM 13.25. The law of the main character, given by
X = Z Ug

for Sx/S% becomes py/m with N — oo. As for the truncated character

[tN]

Xt = Z Ui
i=1

for S /S%, with t € (0,1], this becomes p;/m; with N — o0o.
Proor. This is something quite technical, the idea being as follows:

(1) In the classical case this is well-known, and follows by using the inclusion-exclusion
principle, and then letting N — oo, as in the proof of Theorem 13.23, at ¢t = 1.

(2) In the free case there is no such simple argument, and we must use what we know
about S}, namely its easiness property. We know from easiness that we have:

Fiz(u®) = span(NC(k))

On the other hand, a direct computation shows that the partitions in P(k), and in
particular those in NC(k), implemented as linear maps via the operation = — T} from
Proposition 13.19, become linearly independent with N > k. Thus, in what regards the
main character, we can prove the result here by using Peter-Weyl theory, as follows:

/S+ = dim (Fiz(u®))
= dim <spcm (T,T
INC(F)]

— Z 17l

TeNC(k)

me NC(k)))

12

In the general case now, where our parameter is an arbitrary number ¢ € (0, 1], the
above computation does not apply, but we can still get away with Peter-Weyl theory.
Indeed, we know from Theorem 13.10 above how to compute the Haar integration of S},
out of the knowledge of the fixed point spaces Fiiz(u®*), and in practice, by using easiness,
this leads to the following formula, called Weingarten integration formula:

/+ uiljl"'uikjk = Z 5W(i)5a(j)WkN(7T,O')
Sy m,0eNC (k)

Here the 6 symbols are Kronecker type symbols, checking whether the indices fit or not
with the partitions, and Wiy = Gpp, with Gy (7, 0) = NIl where |.| is the number
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of blocks. Now by using this formula for computing the moments of x;, we obtain:

(IN]  [tN]
[t = X [
SN i1=1 1= 1
[EN]
SID SILACED w88 »20
m,0eNC(k i1=1 ip=1
= Z WkNTFO')thN(U )
m,0eNC(k)
= Tr(WinGrpn)

The point now is that with N — oo the Gram matrix Gy, and so the Weingarten
matrix Wy too, becomes asymptotically diagonal. We therefore obtain:

[k > e
Sy TeNC(k)

Thus, we are led to the conclusion in the statement. Il

13e. Exercises

There has been a lot of theory in this chapter, and as a best exercise, we can only rec-
ommend spending some time with functional analysis, operator theory, operator algebras,
Hopf algebras, quantum groups, and of course quantum permutation groups.

Here is however an exercise, which would certainly help in relation with all this:

EXERCISE 13.26. Find an alternative, more conceptual proof for the equality
S =S4
by considering the following morphism, called universal coaction map
d:C* = C*C(S7)

ei—>Zej®uﬁ
J

then by applying the Fourier transform over the group Zs on the C* part, and then ob-
serving that the coefficients of u, in Fourier transform, must clearly commute.

This might seem a bit twisted, but the exercise hides many conceptual things, to be
discovered when working hard for solving it, and once all this done, the whole thing is
guaranteed to look and feel quite conceptual. In addition, there is a nice relation here
with the Hadamard matrices, and more specifically with the Fourier matrix Fj.



CHAPTER 14

Hadamard models

14a. The correspondence

We have seen that a free analogue S3; of the usual permutation group Sy can be con-
structed, as a compact quantum group, according to the following formula, with “magic”
meaning formed of projections, which sum up to 1 on each row and each column:

C(Sy)=C* ((U/i]‘)i,j:L._.,N’u = magic)

Moreover, we have seen that the inclusion Sy C S}, is not an isomorphism at N > 4,
where the quantum group S} is non-classical, and infinite. Finally, we have seen that the
passage Sy — Sy is best understood by using representation theory, and probability.

We discuss here the construction of the quantum permutation group G C S5 associ-
ated to a complex Hadamard matrix H € My (C). The idea will be that G encodes the
“symmetries” of H, a bit in the same way as Zy encodes the symmetries of Fy.

As a first observation, the complex Hadamard matrices are related to the quantum
permutation groups, via the following simple fact:

ProOPOSITION 14.1. If H € My(C) is Hadamard, the rank one projections

H;
P;; = Proj (#)
J

where Hy, ..., Hy € TV are the rows of H, form a magic unitary.

ProoF. This is clear, the verification for the rows being as follows:

<@ &> _ oyt B
H;' Hy — Hy H,
- Hy
- X,
— Ny



322 14. HADAMARD MODELS
As for the verification for the columns, this is similar, as follows:
H;" H; l H; Hy
-y
; Hy
= Néw

Thus, we have indeed a magic unitary, as claimed. U

The above result suggests the following definition:

DEFINITION 14.2. Associated to any compler Hadamard matric H € My (C) is the
representation

7:C(SY) = My(C)

H,
(1 r0j ( Hj>
where Hy,...,Hy € TV are the rows of H.
The representation 7 constructed above is a “matrix model” for the algebra C'(S%),

in the sense that the standard generators u;; € C(S3;), and more generally any element
a € C(SY), gets modelled in this way by an explicit matrix 7(a) € My(C).

The point now is that, given such a model, we have the following notions:

DEFINITION 14.3. Let G be a compact matriz quantum group, and let
m:C(G) = My(C)
be a matriz model for the associated Woronowicz algebra.
(1) The Hopf image of w is the smallest quotient Woronowicz algebra C(G) — C(H)
producing a factorization of the following type:
m:C(G) = C(H) — My(C)

(2) When the inclusion H C G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that 7 is inner faithful.

As a first observation, in relation with the above notions, in the case where the model
is faithful, in the sense that we have an inclusion 7 : C(G) C My(C), the Hopf image is
the algebra C'(G) itself, and the model is inner faithful as well.

However, this situation will not appear often in practice, because the existence of an
embedding C(G) C My(C) forces the algebra C(G) to be finite dimensional, and so G to
be a finite quantum group, which is something that we cannot expect, in general.
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At the level of non-trivial examples now, we have:
(1) In the case where G = Tisa group dual, the model is as follows:

m:C(G)=C*(T) = My(C)
Thus, this model must come from a unitary group representation:

p:I' = Uy
The minimal factorization of 7 is then the one obtained by taking the image:
p:I'—=ACUy
Also, the model 7 is inner faithful when we have:
I'cUnx

This is the main example of the construction in Definition 14.3, which provides intu-

ition, and justifies the terminology as well.

(2) In the case where G is a classical compact group, we have a standard construction of
a matrix model for C'(G), obtained by taking an arbitrary family of elements gq,...,gx €
G, and then constructing the following representation:

m:C(G) —» My(C)
f(g1)

f—
fgn)

The minimal factorization of 7 is then via the algebra C'(H), with:

H=<g¢g, . .,gv>CG

Also, 7 is inner faithful precisely when G = H, and so when:

G=<g1,...,9n >
This is the second main example for the construction in Definition 14.3, which provides

some further intuition, and once again justifies the terminology as well.

In general, the existence and uniqueness of the Hopf image follow by dividing C(G)
by a suitable ideal. We refer to [11] for more details regarding this construction.

In relation now with the complex Hadamard matrices, we can simply combine Defini-
tion 14.2 and Definition 14.3, and we are led in this way into the following notion:
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DEFINITION 14.4. To any Hadamard matric H € My(C) we associate the quantum
permutation group G C S} given by the following Hopf image factorization,

C(Sy) = My(C)

~ 7

C(@G)

where w(u;;) = Proj(H;/H;), with Hy,...,Hy € TV being the rows of H.

This was for the general theory, which is elementary. Our claim now is that this
construction H — G is something really useful, with G encoding the combinatorics of H,
a bit in the same way as Zy encodes the combinatorics of Fly.

There are several results supporting this, and we will discuss this gradually, in what
follows. As a first such result, we have:

THEOREM 14.5. The construction H — G has the following properties:

(1) For H = Fx we obtain the group G = Zy, acting on itself.
(2) More generally, for H = Fg we obtain the group G itself, acting on itself.
(3) For a tensor product H = H' ® H" we obtain a product, G = G' x G".

Proor. All this is standard, and elementary, as follows:

(1) The rows of the Fourier matrix H = Fy are given by H; = p’, where p =

(1,w,w?, ..., wN™"), with w = €™V, Thus, we have the following formula:
H;
==

It follows that the corresponding rank 1 projections P; = Proj(H,;/H;) form a cir-
culant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G C Sy. Now by taking into account the circulant property
of P = (P;;) as well, we are led to the conclusion that we have G = Zy.

(2) In the general case now, where H = Fy, with G being an arbitrary finite abelian
group, the result can be proved either by extending the above proof, of by decomposing
G =Zn, X ... X Zy, and using (3) below, whose proof is independent from (1,2).
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(3) Assume that we have a tensor product H = H' ® H”, and let G,G’,G” be the
associated quantum permutation groups. We have then a diagram as follows:

C(S{) ® C(Syn) —= C(G") ® C(G") — My/(C) & My»(C)

C(SH) C(G) My(C)

Here all the maps are the canonical ones, with those on the left and on the right
coming from N = N'N”. At the level of standard generators, the diagram is as follows:

P, @ Pl

! 1 ! 1
U;j & Ugy W;; & Wey,

Uia,jb Wia, jb Pig j»

Now observe that this diagram commutes. We conclude that the representation asso-
ciated to H factorizes indeed through C(G') ® C'(G”), and this gives the result. O

Generally speaking, going beyond Theorem 14.5 is a quite difficult question. There
are several computations available here, for the most regarding the deformations of the
Fourier matrices, and we will be back to all this later, in chapter 16 below.

At a more abstract level, one interesting question is that of abstractly characterizing
the magic matrices coming from the complex Hadamard matrices. We have here:

PROPOSITION 14.6. Given an Hadamard matric H € My(C), the vectors

on which the magic unitary entries P;; project, have the following properties:

(1) &i = & is the all-one vector.
(2) &€k = &k, for any i, 5, k.
(3) &ijém = Sulkj, for any i,5,k, 1.

PROOF. All these assertions are trivial, by using the formula &;; = H;/H;. U

Let us call now magic basis of a given Hilbert space H any square array of vectors
¢ € My(H), all whose rows and columns are orthogonal bases of H. With this convention,
the above observations lead to the following result, at the magic basis level:
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THEOREM 14.7. The magic bases £ € MN(S(]CV’l) coming from the complex Hadamard
matrices are those having the following properties:

(1) We have &; € TV, after a suitable rescaling.
(2) The conditions in Proposition 14.6 are satisfied.

PROOF. By using the multiplicativity conditions (1,2,3) in Proposition 14.6, we con-
clude that, up to a rescaling, we must have §;; = §;/&;, where &, ..., &y is the first row
of the magic basis. Together with our assumption &; € T, this gives the result. O

14b. General theory

Let us keep discussing what happens at the general level. We will need the following
result, valid in the general context of the Hopf image construction:

THEOREM 14.8. Given a matriz model 7 : C(G) — My(C), the fundamental corepre-
sentation v of its Hopf image is subject to the Tannakian conditions
Hom(v®* v®) = Hom(U®* U®")

where U;; = m(u;;), and where the spaces on the right are taken in a formal sense.

PROOF. Since the morphisms increase the intertwining spaces, when defined either in
a representation theory sense, or just formally, we have inclusions as follows:

Hom(u®* u®) ¢ Hom(U®*, U®)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of 7. Thus, by Tannakian duality [100], the Hopf image must be given by
the fact that the intertwining spaces must be the biggest, subject to these inclusions.

On the other hand, since u is biunitary, so is U, and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H,v) given by:

Hom(v®* v®") = Hom(U®*, U®")
By the above discussion, C'(H) follows to be the Hopf image of 7, as claimed. O

With the above result in hand, we can compute the Tannakian category of the Hopf
image, in the Hadamard matrix case, and we are led in this way to:

THEOREM 14.9. The Tannakian category of the quantum group G C S associated to
a complex Hadamard matric H € My(C) is given by

T € Hom(u®" u®) <= T°GF?* = G'T°
where the objects on the right are constructed as follows:
(1) T°=id T ® id.
(2) Glo = X2, HinHjx HurHy.
(3) G = Gt GRI

01Tk J1 - Jk Iglk—1 1211
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PRrOOF. With the notations in Theorem 14.8, we have the following formula:
Hom(u®*, u®") = Hom(U®* U®")

The vector space on the right consists by definition of the complex N! x N* matrices
T, satisfying the following relation:

TU®* = U®'T
If we denote this equality by L = R, the left term L is given by:
Ly = (TU®);
- Y

a
= § TiOLUaﬂl s Uakjk
a

As for the right term R, this is given by:
Ry = (U®'T)y
!
= > Ui'Ty
b
- Z Uilbl ce e UilblTbj
b
Consider now the vectors &;; = H;/H;. Since these vectors span the ambient Hilbert

space, the equality L = R is equivalent to the following equality:

< Lijgpfﬁgm >=< Rijgpqagrs >

We use now the following well-known formula, expressing a product of rank one pro-
jections Py, ..., P, in terms of the corresponding image vectors &, ..., &:

<P1...Pkl’,y>:<$,fk><§k7§1€_1> ...... <§2,§1 ><§1,y>

This gives the following formula for L:

< Lijgpmfrs > = Zﬂa < Pa1j1 cee Pakjkgpqagrs >
a
== ZTia < quagakjk > ... < £a1j17£rs >
a
pag — agag—1 azai — air

_ k2
- Z Tmep,sm
a

= (T°G"*)ripsjq

— E TmGthk GUkik=1 (20 (s
a
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As for the right term R, this is given by:

< Rz‘jgpqa gT‘S > = Z < ~P’ilb1 s Pilblépqyfrs > Tb]
b
= Z < &pg> Gty > -+ < &inys &rs > Ty
b

= ) GUG . GENGIT,

Pl i—1 41 T 41T
b

_ E: 142 ,
- Grip,squbJ

b
- (Gl+2TO)TiP15jq

Thus, we obtain the formula in the statement. See [13]. O

We should mention that the formula in Theorem 14.9 was first obtained by Jones
in [61], in the subfactor context. We will be back to this later on, when discussing the
relation between our construction H — G and the related subfactor constructions.

Let us discuss now the computation of the Haar functional for the quantum permuta-
tion group G C Sy associated to a complex Hadamard matrix H € My/(C).

In the general random matrix model context, we have the following formula for the
Haar integration functional of the Hopf image, coming from the work in [15], [96]:

THEOREM 14.10. Given an inner faithful model 7 : C(G) — My(C(T)), we have

1< [T
=1 _
/G i{.sz/

with the truncated integrals on the right being given by

| =tomr

where ¢ = tr ® fT 1s the random matriz trace.

PROOF. As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in chapter 13 above.

In fact, the above result holds more generally for any model = : C(G) — B, with
@ € B* being a faithful trace. With this picture in hand, the Woronowicz construction
explained in chapter 13 above simply corresponds to the case m = id, and the result itself
is therefore a generalization of Woronowicz’s existence result for the Haar measure.
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In order to prove now the result, we can proceed as in chapter 13. If we denote by f C:,
the limit in the statement, we must prove that this limit converges, and that we have:

Iy

It is enough to check this on the coefficients of corepresentations, and if we let v = u®*
be one of the Peter-Weyl corepresentations, we must prove that we have:

(iae [ Jo=(iae [ )o

We know from chapter 1 that the matrix on the right is the orthogonal projection onto
Fiz(v). Regarding now the matrix on the left, this is the orthogonal projection onto the
1-eigenspace of (id ® ¢m)v. Now observe that, if we set V;; = m(v;;), we have:

(id @ pm)v = (id @ p)V

Thus, as in chapter 13, we conclude that the 1-eigenspace that we are interested in
equals Fiz(V'). But, according to Theorem 14.8, we have:

Fizx(V) = Fizx(v)
Thus, we have proved that we have |, é = [, as desired. O

In practice now, we are led to the computation of the truncated integrals |, (Z appearing
in the above result, and the formula of these truncated integrals is as follows:

PROPOSITION 14.11. The truncated integrals in Theorem 14.10, namely

J

are given by the following formula, in the orthogonal case, where u = 1,

T
. T
/ ualbl e uapbp - (Tp)al...ap,blu.bp
G

with the matriz on the right being given by the formula

(D)o i = (tr o [ ) Ui Usy)

where U;; = m(u;;) are the images of the standard coordinates in the model.

ProoF. This is something straightforward, which comes from the definition of the
truncated integrals. Indeed, we have the following computation:

T
/ Uayby - - - Uayb, = (pom) " (Uaypy - - .uapbp)

G
= (po 7r)®’"A(T) (Uaypy - - .uapbp)

= (Tg)al...ap,bl...bp



330 14. HADAMARD MODELS

In addition to this, let us mention as well that in the general compact quantum group
case, where the condition © = @ does not necessarily hold, an analogue of the above result
holds, by adding exponents e, ..., e, € {1, *} everywhere.

For more on all this, we refer to [12]. O
Regarding now the main character, the result here is as follows:

THEOREM 14.12. In the context of Theorem 14.10, let " be the law of the main
character x = T'r(u) with respect to the truncated integration:

[~ton

(1) The law of the main character is given by the following formula:
1
p=lim g 2w
(2) The moments of the truncated measure u" are the following numbers:
c, =Tr(T,)
PROOF. These results are both elementary, the proof being as follows:
(1) This follows from the general limiting formula in Theorem 14.10.

(2) This follows from the formula in Proposition 14.11 above, by summing the integrals
computed there over pairs of equal indices, a; = b;. O

In connection with the complex Hadamard matrices, we can use the above technology
in order to compute the law of the main character, and also to discuss the behavior of the
construction H — G with respect to the operations H — H', H, H*.

Following [12], let us first introduce the following abstract duality:

DEFINITION 14.13. Let w: C(G) — Mn(C) be inner faithful, mapping u;; — Us;.
(1) We set (Uy,)ij = (Uij)m, and define a model as follows:

p:C(UN) = My(C)
Vgl — Ulgl
(2) We perform the Hopf image construction, as to get a model as follows:

p: C(G') — My(C)
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In this definition U} is Wang’s quantum unitary group, whose standard coordinates
are subject to the biunitarity condition u* = u=! u! = @=L

Observe that the matrix U’ constructed in (1) is given by U’ = XU, where ¥ is the
flip. Thus this matrix is indeed biunitary, and produces a representation p as in (1), and
then a factorization as in (2).

The operation A — A’ is a duality, in the sense that we have A” = A, and in the
Hadamard matrix case, this comes from the operation H — H'. See [12].

We denote by D the dilation operation for probability measures, or for general *-
distributions, given by the formula D, (law(X)) = law(rX). We have:

THEOREM 14.14. Consider the rescaled measure n" = Dy /n(1").

(1) The moments ~;, = ¢, /NP of 0" satisfy the following formula:
36) =H()
(2) 0" has the same moments as the following matriz:
T = 1)
(3) In the orthogonal case, where u = @, we have:
n" = law(T})
Proor. All the results follow from Theorem 14.12; as follows:

(1) We have the following computation:

cp(A)
= Z(Tp)i}...i;,i%..z‘g ------ (Tp)z‘;...i;,i{...i;
= ZtT(Ui%Z? o Upge) oo tT(Uzgi% . Ulvlil))
1
- Nv Z Z(Ui%i%)j%j% s (Uz},z’g)j;jll ------ (Ui{z})j{jg T (Ui;z‘},)j{)j{
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In terms of the matrix (U},;);j = (Uij)xi, then by permuting the terms in the product
on the right, and finally with the changes 1% <+ ¢, j° <5 j2, we obtain:
(4)

p

- erz P i oo Uil U

= ¥ Z Z@w;)ﬁﬁ Uit Uiy - )iy

= NZZ 2)itiy - Ujge )izt - Uips )iz - (Ujpjiizas

On the other hand, if we use again the above formula of ¢j(A), but this time for the
matrix U’, and with the changes r <+ p and i <> j, we obtain:

Cp A/ Np Z Z 1 2 il 12 e (U],}]g)lili ...... (U.]/fjll)zng (U]/gj})lrll

Now by comparing this with the previous formula, we obtain:
N'cy(A) = NPcP(A")
Thus we have the following equalities, which give the result:
GA4) _ a(A)
NP NT
(2) By using (1) and the formula in Theorem 14.12, we obtain:
A a4)
NP NT
Tr((17)")
NT
= tr((T7)")

But this gives the equality of moments in the statement.

(3) This follows from the moment equality in (2), and from the standard fact that for
self-adjoint variables, the moments uniquely determine the distribution. U

We will be back to such computations in chapter 16 below.

14c. Von Neumann algebras

Let us discuss now some potential applications of the construction H — G, and of the
Hadamard matrices in general, to certain questions from mathematical physics.
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In order to start, we will need some basic von Neumann algebra theory, coming as a
complement to the basic C*-algebra theory explained in section 13 above, as follows:

THEOREM 14.15. The von Neumann algebras, which are the x-algebras of operators
AC B(H)
closed under the weak operator topology, making each T' — Tx continuous, are as follows:

(1) They are exactly the x-algebras of operators A C B(H) which are equal to their
bicommutant, A = A”.

(2) In the commutative case, these are the algebras of type A = L>®(X), with X
measured space, represented on H = L*(X), up to a multiplicity.

(3) If we write the center as Z(A) = L>(X), then we have a decomposition of type
A= fX A, dx, with the fibers A, having trivial center, Z(A,) = C.

(4) The factors, Z(A) = C, can be fully classified in terms of 11y factors, which are
those satisfying dim A = oo, and having a faithful trace tr : A — C.

(5) The 11y factors enjoy the “continuous dimension geometry” property, in the sense
that the traces of their projections can take any values in [0, 1].

(6) Among the 11, factors, the most important one is the Murray-von Neumann hy-
perfinite factor R, obtained as an inductive limit of matriz algebras.

Proor. This is something quite heavy, the idea being as follows:

(1) This is von Neumann’s bicommutant theorem, which is well-known in finite di-
mensions, and whose proof in general is not that complicated, either.

(2) Tt is clear, via basic measure theory, that L>°(X) is indeed a von Neumann algebra
on H = L*(X). The converse can be proved as well, by using spectral theory.

(3) This is von Neumann’s reduction theory main result, whose statement is already
quite hard to understand, and whose proof uses advanced functional analysis.

(4) This is something heavy, due to Murray-von Neumann and Connes, the idea being
that the other factors can be basically obtained via crossed product constructions.

(5) This is a gem of functional analysis, with the rational traces being relatively easy
to obtain, and with the irrational ones coming from limiting arguments.

(6) Once again, heavy results, by Murray-von Neumann and Connes, the idea being
that any finite dimensional construction always leads to the same factor, called R. U

In relation now with our questions, variations of von Neumann’s reduction theory idea,
basically using the abelian subalgebra Z(A) C A, available for any von Neumann algebra
A, include the use of maximal abelian subalgebras B C A, called MASA.

In the finite von Neumann algebra case, where we have a trace, the use of orthogonal
MASA is a standard method as well, and we have:
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DEFINITION 14.16. A pair of orthogonal MASA inside a von Neumann algebra A with
a trace, tr : A — C, is a pair of maximal abelian subalgebras

B,CCA
which are orthogonal with respect to the trace, in the sense that we have:

(B&Cl) L (CeCl)

Here the scalar product is by definition < b, ¢ >= tr(bc*), and by taking into account
the multiples of the identity, the orthogonality condition reformulates as follows:
tr(bc) = tr(b)tr(c)
This notion is potentially useful in the infinite dimensional context, in relation with
various structure and classification problems for the II; factors.

However, as a “toy example”, we can try and see what happens for the simplest factor
that we know, namely the matrix algebra My (C), endowed with its usual matrix trace.
In this context, we have the following surprising observation of Popa [78]:

THEOREM 14.17. Up to a conjugation by a unitary, the pairs of orthogonal MASA in
the simplest factor, namely the matriz algebra My (C), are as follows,

A=A
B=HAH*
with A C My (C) being the diagonal matrices, and with H € My(C) being Hadamard.

PROOF. Any MASA in My(C) being conjugated to A, we can assume, up to conju-
gation by a unitary, that we have, with U € Uy:

A=A
B =UAU"

Now observe that given two diagonal matrices D, E € A, we have:

1
tr(D-UEU*) = NZ(DUEU*)“

1 _
= NZDMUUEJ'J‘UU
ij
1
= NZDMEJHUUF
i

Thus, the orthogonality condition A 1 B reformulates as follows:

1 1
N > DiEy|Uyl* = e > Dikj
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But this tells us precisely that the entries |U;;| must have the same absolute value:

1
Ul = ——
Ui VN
Thus the rescaled matrix H = v NU must be Hadamard. O

Along the same lines, but at a more advanced level, we have the following result:

THEOREM 14.18. Given a complex Hadamard matriz H € My (C), the diagram formed
by the associated pair of orthogonal MASA, namely

A Mn(C)
C HAH*

1s a commuting square in the sense of subfactor theory, in the sense that the expectations
onto A, HAH* commute, and their product is the expectation onto C.

Proor. It follows from definitions that the expectation Ean : My(C) — A is the
operation which consists in keeping the diagonal, and erasing the rest:

M — Ma
Consider now the other expectation, namely:
Eyag: My(C) - HAH®
It is better to identify this with the following expectation, with U = H/v/N:
Eyavs : My(C) — UAU

This latter expectation must be given by a formula of type M — UXAU*, with X
satisfying the following condition:

<M, UDU* >=<UXAU*,UDU* > |, VDeA
The scalar products being given by < a,b >= tr(ab*), this condition reads:
tr(MUD*U*) =tr(XaD*) , VDeA
Thus X = U*MU, and the formulae of our two expectations are as follows:

Ex(M) = Ma
Epap-(M) = UU*MU)AU*
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With these formulae in hand, we have the following computation:
(BEaByav-M)iy; = 6;;(UUMU)AU)s
= 0 Z U (U*MU) Uy
k
= 5, L MUy,
p N
= §,;tr(U"MU)
= §;tr(M)
= (EcM);
As for the other composition, the computation here is similar, as follows:
(Bvav-EaM)ij = (UU"MaU)AU")y;
= Y Un(U*MAU) Uy
k

= Y UnUMyUyUsy
Kl

1 _
= 2 UnMyUs
Kl
= (SijtT(M )
= (EcM)y;
Thus, we have indeed a commuting square, as claimed. Il

As a conclusion, all this leads us into commuting squares and subfactor theory. So,
let us explain now the basic theory here. As a first object, which will be central in what
follows, we have the Temperley-Lieb algebra [91], constructed as follows:

DEFINITION 14.19. The Temperley-Lieb algebra of index N € [1,00) is defined as
TLn(k) = span(NCy(k, k))
with product given by vertical concatenation, with the rule
O=N
for the closed circles that might appear when concatenating.

In other words, the algebra T'Ly(k), depending on parameters k € N and N € [1,00),
is the formal linear span of the pairings m# € NCs(k, k).

The product operation is obtained by linearity, for the pairings which span 7Ly (k)
this being the usual vertical concatenation, with the conventions that things go “from top
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to bottom”, and that each circle that might appear when concatenating is replaced by a
scalar factor, equal to V.

Observe that there is a connection here with S3;, and more specifically with the cate-
gory of noncrossing partitions NC producing Sy, due to the following fact:

PRrROPOSITION 14.20. We have bijections
NC(k) ~ NCy(2k) ~ NCy(k, k)
constructed by fattening/shrinking and rotating/flattening, as follows:

(1) The application NC(k) — NC5(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

(3) The bijection NCo(2k) ~ NCs(k,k) is obtained by rotating and flattening the
noncrossing pairings, in the obvious way.

PROOF. The fact that the two operations in (1,2) are indeed inverse to each other
is clear, by computing the corresponding two compositions, with the remark that the
construction of the fattening operation requires indeed the partitions to be noncrossing.
Thus, we are led to the conclusions in the statement. Il

We should mention that the above result, regarded in the representation theory con-
text, is the basis for a number of advanced combinatorial and probabilistic considerations
regarding the quantum permutation groups, and their relation to the quantum orthogonal
groups. For more on all this, we refer to [25] and related papers.

Getting back now to von Neumann algebras, following Jones [59], consider an inclusion
of I1; factors, which is actually something quite natural in quantum physics:
Ay C Ay
We can consider the orthogonal projection e; : A; — Ay, and set:
Ay =< Ay, eq >

This procedure, called “basic construction”, can be iterated, and we obtain in this
way a whole tower of II; factors, as follows:

The basic construction is something quite subtle, making deep connections with ad-
vanced mathematics and physics.

All this was discovered by Jones in the early 80s, and his main result from [59], which
came as a big surprise at that time, along with some supplementary fundamental work,
done later, in [60], can be summarized as follows:
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THEOREM 14.21. Let Ay C Ay be an inclusion of 11y factors.

(1) The sequence of projections ey, es, €3, ... € B(H) produces a representation of the
Temperley-Lieb algebra

TLy C B(H)
where the parameter is the index of the subfactor:
N = [Aq, Ao
(2) The collection P = (Py) of the linear spaces
P = Ay N Ay

which contains the image of T'Ly, has a planar algebra structure.
(3) The index N = [Ay, Ao|, which is by definition a Murray-von Neumann continu-
ous quantity N € [1, 00|, must satisfy:

N e {4COS2 (%) ’n € N} U [4, 0]

ProoF. This is something quite heavy, the idea being as follows:

(1) The idea here is that the functional analytic study of the basic construction leads to

the conclusion that the sequence of projections ey, s, €3,... € B(H) behaves algebrically
exactly as the rescaled sequence of diagrams e1,¢5,¢3,... € T Ly given by:
_u
€1 = n
e2=n
es=|n

But these diagrams generate T'Ly, and so we have an embedding T'Ly C B(H), where
H is the Hilbert space where our subfactor Ag C A; lives, as claimed.

(2) Since the orthogonal projection e; : Ay — Ay commutes with Ay we have:
e1 € P
By translation we obtain eq,...,e._1 € P, for any k, and so:
TLy CP

The point now is that the planar algebra structure of T'Ly, obtained by composing
diagrams, can be shown to extend into an abstract planar algebra structure of P.

(3) This is something quite surprising, which follows from (1), via some clever positivity
considerations, involving the Perron-Frobenius theorem.

In fact, at a more advanced level, the subfactors having index N € [1,4] can be
classified by ADE diagrams, and the obstruction N = 4 cos*(Z) itself comes from the fact
that N must be the squared norm of such a graph. U
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As before with other advanced operator algebra topics, our explanations here were
quite brief. For more on all this, we recommend Jones’ paper [59], and follow-ups.

14d. Spin models

Getting back now to the commuting squares, the idea is that any such square C'
produces a subfactor of the hyperfinite II; factor R.

Indeed, under suitable assumptions on the inclusions Cyg C Cig, Cor C Cip, we can
perform the basic construction for them, in finite dimensions, and we obtain a whole array
of commuting squares, as follows:

A Ay Ay

6502 6512 C;Q <<<<<<<<<<<<<<<< > By
Co1 Cn Clyp e - B,
Coo Cho Clg = > By

Here the various A, B letters stand for the von Neumann algebras obtained in the
limit, which are all isomorphic to the hyperfinite II; factor R.

The point now is that the planar algebra of the associated subfactor can be computed
explicitely in terms of the combinatorial data, namely the original commuting square:

C101 C’11

C100

Cho
To be more precise, we have the following result:

THEOREM 14.22. In the context of the above diagram, the following happen:
(1) Ao C Ay is a subfactor, and {A;} is the Jones tower for it.
(2) The corresponding planar algebra is given by Ay N Ax = Cy N Cho.
(3) A similar result holds for the “horizontal” subfactor By C By.
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ProoF. This is something very standard in subfactor theory, with the result itself
being the starting point for various explicit constructions of subfactors, out of concrete
combinatorial data, such as the construction of the ADE subfactors mentioned in the
above, in the context of the Jones index theorem, the idea being as follows:

(1) This is something quite routine.
(2) This is a subtle result, called Ocneanu compactness theorem [73].
(3) This follows from (1,2), by flipping the diagram. d

Getting back now to the Hadamard matrices, we can extend our lineup of results,
namely Theorem 14.17 and Theorem 14.18, with an advanced statement, as follows:

THEOREM 14.23. Given a complex Hadamard matric H € My (C), the diagram formed
by the associated pair of orthogonal MASA, namely

A Mn(C)
C HAH*

is a commuting square in the sense of subfactor theory, and the associated planar algebra
P = (Py) is given by the following formula, in terms of H itself,
T e P, — T°G? = GF21°
where the objects on the right are constructed as follows:
(1) T°=id®T ®id.
(2) Gl = 3o, HinHjp HorHys.
PrROOF. We have two assertions here, the idea being as follows:
(1) The fact that we have indeed a commuting square is something that we already
know, from Theorem 14.18 above.

(2) The computation of the associated planar algebra is possible thanks to the Ocneanu
compactness theorem, corresponding to the formula in Theorem 14.22 (2). To be more
precise, by doing some direct computations, which are quite similar to those in the proof
of Theorem 14.9 above, we obtain the formula in the statement.

For full details here, we refer to [61]. 0

The point now is that all the above is very similar to Theorem 14.9.

To be more precise, by comparing the above result with the formula obtained in
Theorem 14.9, which is identical, we are led to the following result:
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THEOREM 14.24. Let H € My (C) be a complex Hadamard matriz.

(1) The planar algebra associated to H is given by P, = Fixz(u®*), where G C S, is
the associated quantum permutation group.

(2) The corresponding Poincaré series f(z) = >, dim(P;)z* equals the Stieltjes
transform fG ﬁ of the law of the main character x =), w;.

ProOF. This follows by comparing the quantum group and subfactor results:

(1) As already mentioned above, this simply follows by comparing Theorem 14.9 with
the subfactor computation in Theorem 14.23. For full details here, we refer to [13].

(2) This is a consequence of (1), and of the Peter-Weyl type results from [99], which
tell us that fixed points can be counted by integrating characters. O

Summarizing, we have now a clarification of the various quantum algebraic objects
associated to a complex Hadamard matrix H € My(C), the idea being that the central
object, which best encodes the “symmetries” of the matrix, and which allows the com-
putation of the other quantum algebraic objects as well, such as the associated planar
algebra, is the associated quantum permutation group G C SY;.

Regarding now the subfactor itself, the result here is as follows:

THEOREM 14.25. The subfactor associated to H € My(C) is of the form
A% c (CN ® A)¢
with A= R X @, where G C Sy is the associated quantum permutation group.

Proor. This is something more technical, the idea being that the basic construction
procedure for the commuting squares, explained before Theorem 14.22, can be performed
in an “equivariant setting”, for commuting squares having components as follows:

D®gE=(D®(ExG))°

To be more precise, starting with a commuting square formed by such algebras, we ob-
tain by basic construction a whole array of commuting squares as follows, with {D;}, { E;}
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being by definition Jones towers, and with D, E, being their inductive limits:

Dy ®¢ Ex Dy ®¢ Ex Dy ®¢ Ex

; ; ]
Dy ®G E, D, ®G E, D, ®G Ey e > Do @ Eo
Do ®¢ By D, ®a E; Dy @g By - Do, @ By
Do ®c Ey D, ®¢ E, Dy @ g o ~ Do, @ Ey

The point now is that this quantum group picture works in fact for any commuting
square having C in the lower left corner. In the Hadamard matrix case, that we are
interested in here, the corresponding commuting square is as follows:

C®qg CcN Cc¥ e CcN

C®qC CN ®¢q C

Thus, the subfactor obtained by vertical basic construction appears as follows:
(C®GEoo C CN®GEOO

But this gives the conclusion in the statement, with the II; factor appearing there
being by definition A = E,, x G, and with the remark that we have E,, >~ R. See [4]. O

All this is of course quite heavy, with the above results being subject to several ex-
tensions, and with all this involving several general correspondences between quantum
groups, planar algebras, commuting squares and subfactors, that we will not get into.

As a technical comment here, it is possible to deduce Theorem 14.24 directly from
Theorem 14.25, via some quantum group computations. However, Theorem 14.25 and
its proof involve some heavy algebra and functional analysis, coming on top of the heavy
algebra and functional analysis required for the general theory of the commuting squares,
and this makes the whole thing quite unusable, in practice.

Thus, while being technically weaker than Theorem 14.25, and dealing with pure
algebra only, Theorem 14.24 above remains the main result on the subject.
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We refer to [4], [13], [22] and related papers for the full story of all this.

As already mentioned in the beginning of this book, all this is conjecturally related
to statistical mechanics. Indeed, the Tannakian category/planar algebra formula from
Theorem 14.23 has many similarities with the transfer matrix computations for the spin
models, and this is explained in Jones’ paper [61], and known for long before that, from his
1989 paper [60]. However, the precise significance of the Hadamard matrices in statistical
mechanics, or in related areas such as link invariants, remains a bit unclear.

From a quantum group perspective, the same questions make sense. The idea here,
which is old folklore, going back to the 1998 discovery by Wang [96] of the quantum
permutation group Sy, is that associated to any 2D spin model should be a quantum
permutation group G' C Sj;, which appears by factorizing the flat representation C'(Sy) —
My (C) associated to the N x N matrix of the Boltzmann weights of the model, and whose
representation theory computes the partition function of the model.

This is supported on one hand by Jones’ theory in [60], [61], via the connecting
results presented above, and on the other hand by a number of more recent results, such
as those in [17], having similarities with the computations for the Ising and Potts models.
However, the whole thing remains not axiomatized, at least for the moment, and in what
regards the Hadamard matrices, their precise physical significance remains unclear.

14e. Exercises

As already mentioned, on several occasions, going beyond the above results is a quite
difficult task, and we will partly do this in the next two chapters. There are however a
few possible exercises, which are doable. Let us start with:

EXERCISE 14.26. Find the necessary conditions for a magic basis formed by rank 1
projections to produce a classical quantum group, via the Hopf image construction.

Here we use the notion of magic basis, which already appeared in the above, and the
application of the Hopf image construction, in order to produce a quantum permutation
group, is exactly as in the context of the correspondence H — G discussed here.

Here is a related exercise, in the same spirit:

EXERCISE 14.27. Find the necessary conditions for a magic basis formed by rank 1
projections to produce a group dual, via the Hopf image construction.

As before with the previous exercise, after clearly formulating what precisely is to be
done, this can only be a mixture of linear algebra and combinatorics.

As an application of the above two exercises, or as an independent exercise if you
prefer, and in relation now with the Hadamard matrices, we have:
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EXERCISE 14.28. Prove that the generalized Fourier matrices Fg are the only ones
producing a classical group, or a group dual.

This is something quite interesting, justifying some of our philosophical comments in
the above. As for the proof, as before, this is a mix of linear algebra and combinatorics.

In relation now with operator algebras, quantum physics and more, we have the fol-
lowing exercise, which deals with a theme that we have not discussed yet here:

EXERCISE 14.29. Learn the theory of MUB, and find a relation with the quantum
permutation groups.

Actually we already met the notion of MUB, in relation with the McNulty-Weigert
matrices, in chapter 8 above, and the first thing is therefore to go back there, then find
and read the relevant literature. And then, try to solve the exercise.



CHAPTER 15

Generalizations

15a. Unitary entries

We discuss in this chapter two extensions of the construction H — G from the previous
chapter, which are both quite interesting:

(1) A first idea, from [10], is that of using complex Hadamard matrices with noncom-
mutative entries.

(2) A second idea, from [24], is that of using partial complex Hadamard matrices,
with usual complex entries.

Needless to say, there is room for unification here, by taking about partial complex
Hadamard matrices with noncommutative entries. However, this is something quite the-
oretical, which has not been done yet. So, instead, we will discuss (1) and (2) above.

Let us begin by discussing (1), following the paper [10]. Let A be an arbitrary C*-
algebra. For most of the applications A will be a commutative algebra, A = C(X) with X
being a compact space, or a matrix algebra, A = Mg (C) with K € N. We will sometimes
consider, as a joint generalization, random matrix algebras, A = Mg (C(X)).

Two row or column vectors over A, say a = (ay,...,ay) and b = (by,...,by) by
writing both of them horizontally, are called orthogonal when:

Observe that, by applying the involution, we have as well:

With this notion in hand, we can formulate:

DEFINITION 15.1. An Hadamard matrixz over an arbitrary C*-algebra A is a square
matric H € My(A) such that:

(1) All the entries of H are unitaries, H;; € U(A).
(2) These entries commute on all rows and all columns of H.
(3) The rows and columns of H are pairwise orthogonal.

345
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As a first remark, in the simplest case A = C the unitary group is the unit circle in
the complex plane, U(C) = T, and we obtain the usual complex Hadamard matrices. In
the general commutative case, A = C'(X) with X compact space, our Hadamard matrix
must be formed of “fibers”, one for each point x € X. Therefore, we obtain:

PROPOSITION 15.2. The Hadamard matrices H € My(A) over a commutative algebra
A = C(X) are exactly the families of complex Hadamard matrices of type

H:{H””

ZUEX}

with H* depending continuously on the parameter x € X.

Proor. This follows indeed by combining the above two observations. Observe that,
when we wrote A = C'(X) in the above statement, we used the Gelfand theorem. g

Let us comment now on the above axioms. For U,V € U(A) the commutation relation
UV = VU implies as well the following commutation relations:

uov:=vU
Uuv=vur

Thus the axiom (2) tells us that the C*-algebras Ry, ..., Ry and Cy, ..., Cy generated
by the rows and the columns of A must be all commutative.
We will be particulary interested in the following type of matrices:

DEFINITION 15.3. An Hadamard matric H € My(A) is called “non-classical” if the
C*-algebra generated by its coefficients is not commutative.

Let us comment now on the axiom (3). According to our definition of orthogonality
there are 4 sets of relations to be satisfied, namely for any 7 # k we must have:

D HiyHy = ) HiH
j j
= Y HuHj
j
= ZH;iij
j

= 0
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Now since by axiom (1) all the entries H;; are known to be unitaries, we can replace
this formula by the following more general equation, valid for any i, k:

J J
= Y HuH},

J
= ZH;iij

J

= Noi
The point now is that everything simplifies in terms of the following matrices:
H = (Hj)
H* = (H ]*z)
H' = (Hj;)
H= (H;;)

Indeed, the above equations simply read:
HH*=H*H=H'H=HH"'= Nly
So, let us recall now that a square matrix H € My(A) is called “biunitary” if both

H and H' are unitaries. In the particular case where A is commutative, A = C(X), we
have “H unitary = H! unitary”, so in this case biunitary means of course unitary.

In terms of this notion, we have the following reformulation of Definition 15.1:

PROPOSITION 15.4. Assume that H € My(A) has unitary entries, which commute on
all rows and all columns of H. Then the following are equivalent:

(1) H is Hadamard.
(2) H/VN s biunitary.
(3) HH* = H'H = Nly.
Proor. This basically follows from the above discussion, as follows:

— We know from definitions that the condition (1) in the statement happens if and
only if the axiom (3) in Definition 15.1 is satisfied.

— By the above discussion, it follows that this axiom (3) in Definition 15.1 is equivalent
to the condition (2) in the statement.

— Regarding now the equivalence with the condition (3) in the statement, this follows
from the commutation axiom (2) in Definition 15.1.

— Thus, all the conditions in the statement are indeed equivalent. U
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Observe that if H = (H;;) is Hadamard, then so are the following matrices:

i = ()
H' = (Hj,)
H* = (H]*z)

In addition, we have the following result:

PROPOSITION 15.5. The class of Hadamard matrices H € My(A) is stable under:

(1) Permuting the rows or columns.
(2) Multiplying the rows or columns by central unitaries.

When successively combining these two operations, we obtain an equivalence relation on
the class of Hadamard matrices H € My (A).

ProOF. This is clear from definitions, exactly as in the usual complex Hadamard
matrix case. Observe that in the commutative case A = C(X) any unitary is central,
so we can multiply the rows or columns by any unitary. In particular in this case we
can always “dephase” the matrix, i.e. assume that its first row and column consist of 1
entries. Note that this operation is not allowed in the general case. U

Let us discuss now the tensor product operation:

PROPOSITION 15.6. Let H € My(A) and K € My(A) be Hadamard matrices, and
assume that < H;; > commutes with < Ko, >. Then the “tensor product”

H® K e MNM(A)
given by (H ® K)iq jp = H;j Ko, is an Hadamard matriz.

Proor. This follows from definitions, and is as well a consequence of the more general
Theorem 15.7 below, that will be proved with full details. Il

Following [46], the deformed tensor products are constructed as follows:

THEOREM 15.7. Let H € My(A) and K € My (A) be Hadamard matrices, and Q €
Mnyxm(Ua). Then the “deformed tensor product” H ®¢g K € My (A), given by

(H ®¢ K)iajp = QuHi; Kap

is an Hadamard matriz as well, provided that the entries of () commute on rows and
columns, and that the algebras < H;; >, < Kg >, < Qy > pairwise commute.
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PROOF. First, the entries of L = H ®g K are unitaries, and its rows are orthogonal:

*
E Lia,jbLie 6
Jb

> QuHijKa, - Qi Ko Hy

b

Noi Z QinKap - Qrp K
b

Now Y KuK,
J

NM - 6;104¢

The orthogonality of columns can be checked as follows:

*
§ : Lia,ijia,kC
i

Z Qininab : chchij
M dpe Z QuHyj - Qi Hy,

Moy Y HyHp,

NM - 5,454

For the commutation on rows we use in addition the commutation on rows for Q):

Lia jv Liec,jb

QinHij Kap - QroHyj Ko
QuQrp - HijHyj - Koy Ky
QuQip - HyjHij - Koy Kap
QuHii Ky - QinHij Kap

ch,ijia,jb

The commutation on columns is similar, using the commutation on columns for @:

Lia,ijia,kc

Qininab QicH i Kae
Qi Qic - HijHyp, - Koy Ko
QicQiv - HinHij - Koo Koy
QicHixKac - QinHij Kap
Liq kcLia jb

Thus all the axioms are satisfied, and L is indeed Hadamard. Il

As a basic example, we have the following construction:
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ProrosSITION 15.8. The following matrixz is Hadamard,

r 'y T vy
lr —y v -y
M = z t —z —t
z -t —z t

for any unitaries x,y, z,t satisfying the following condition:
[z, y] = [z, 2] = [y,t] = [2, ] =0

Proor. This follows indeed from Theorem 15.7, because we have:

r Yy L Y
1 1 2 1 1\ |z -y = -y
1 -1 r y\\1 =1) |2z t —z —t
z t z —t —z t
In addition, the commutation relations in Theorem 15.7 are satisfied indeed. U

The usual complex Hadamard matrices were classified in [51] at N = 2, 3,4, 5. In what
follows we investigate the case of the general Hadamard matrices. We use the equivalence
relation constructed in Proposition 15.5 above. We first have:

PROPOSITION 15.9. The 2 X 2 Hadamard matrices are all classical, and are all equiv-
alent to the Fourier matriz Fs.

ProoF. Consider indeed an arbitrary 2 x 2 Hadamard matrix:
A B
n-(e )
We already know that A, D each commute with B, C'. Also, we have:
AB*+CD* =0

We deduce that A = —C'D*B commutes with D, and that C' = —AB*D commutes
with B. Thus our matrix is classical, any since all unitaries are now central, we can
dephase our matrix, which follows therefore to be the Fourier matrix F,. O

Let us discuss now the case N = 3. Here the classification in the classical case uses
the key fact that any formula of type a + b+ ¢ = 0, with |a| = |b| = |¢| = 1, must be, up
to a permutation of terms, a “trivial” formula of the following type, with j = e2™/3:

a+ja+j*a=0

Here is the noncommutative analogue of this simple fact:
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PRrROPOSITION 15.10. Assume that a+b+c = 0 is a vanishing sum of unitaries. Then
this sum must be of type
a+wa+w?a =0

with w unitary satisfying 1 +w + w? = 0.
PROOF. Since —c = a + b is unitary we have:
(a+b)(a+b)* =1
Thus ab* + ba* = —1, and so we obtain:
ab*ba* + (ba*)* = —ba*
With w = ba* we obtain from this equality:
1+w?=—w
Thus, we are led to the conclusion in the statement. O

With the above result in hand, we can start the N = 3 classification. We first have
the following technical result, that we will improve later on:

ProproSITION 15.11. Any 3 x 3 Hadamard matriz must be of the form

a b c
H= | ua wv*w?vb uv*wvc
va  wub w?ve

with w being subject to the equation 1 + w + w? = 0.

PRroOF. Consider an arbitrary Hadamard matrix H € M3(A). We define a, b, ¢, u, v, w
as for that part of the matrix to be exactly as in the statement, as follows:

a b ¢
H=lua z= vy
va wub z

Let us look first at the scalar product between the first and third row:
vaa® + wobb* + z¢* =0

By simplifying we obtain v+wv+ zc* = 0, and by using Proposition 15.10 we conclude
that we have 1 +w + w? = 0, and that z¢* = w?v, and so z = w?ve, as claimed.
The scalar products of the first column with the second and third ones are:
a*b+ a*u*r 4+ a*v*wvb =0

20e =0

a*c+ a*u'y + a*vtw
By multiplying to the left by va, and to the right by b*v* and c*v*, we obtain:
14+ vuzb™ v +w =0

1 4+ vutyc v +w? =0
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Now by using Proposition 15.10 again, we obtain:
vut bt = w?
vutyctvt = w
Thus z = wv*w?vb and y = uv*wve, and we are done. O
We can already deduce now a first classification result, as follows:

PROPOSITION 15.12. There is no Hadamard matric H € Ms(A) with self-adjoint
entries.

PRrROOF. We use Proposition 15.11. Since the entries are idempotents, we have:
a?=b0=c=u"=0"=(uw)* = (vw)* =1
It follows that our matrix is in fact of the following form:

a b c
H=[ua uwb uw?c
va wvb w?ve

The commutation between Hyy, Hog reads:
[uwb, wvb] =0 = [uw,wv] =0
=  uwwv = wouw
—  ww = vuw?
= w=1
Thus we have reached to a contradiction, and we are done. O

Let us go back now to the general case. We have the following technical result, which
refines Proposition 15.11 above, and which will be in turn further refined, later on:

ProPOSITION 15.13. Any 3 x 3 Hadamard matriz must be of the form

a b c
H=[ua w*ub wuc

va wvb w?vc

where (a,b,c) and (u,v,w) are triples of commuting unitaries, and:
1+w+w?>=0
Proor. We use Proposition 15.11. With e = uv*, the matrix there becomes:

a b c

H = | eva ew?vb ewvc

va wub w?ve
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The commutation relation between Hqs, H3y reads:

[ew?vh, wob] = 0 2

lew v, wv] = 0

erUwv = U)UGU)2U

€w2U = wvew

P

lew, wv] =0

Similarly, the commutation between Haz, H33 reads:

[ewve, w?ve] =0 = [ewv,w?v] =0
= ewvwv = wivewv
=  ewv = wvew?
= [ew®, w*] =0
We can rewrite this latter relation by using the formula w? = —1 — w, and then, by

further processing it by using the first relation, we obtain:

e(l+w),1+wv] =0 = [e,wv]+ [ew,v] =0

— 2ewv — wve —vew =0

1
= ewv = i(wve + vew)

We use now the key fact that when an average of two unitaries is unitary, then the
three unitaries involved are in fact all equal. This gives:

cwv = wve = vew
Thus we obtain [w, e] = [w,v] = 0, so w, e,v commute. Our matrix becomes:

a b c
H=|eva w?evb wevc
va wvb w?ve

Now by remembering that u = ev, this gives the formula in the statement. O
We can now formulate our main classification result, as follows:

THEOREM 15.14. The 3 x 3 Hadamard matrices are all classical, and are all equivalent
to the Fourier matrix Fj.

ProoOF. We know from Proposition 15.13 that we can write our matrix in the following
way, where (a,b, c) and (u,v,w) pairwise commute, and where 1 + w + w? = 0:

a b c
H=\|au buw cuw
av bvw*  cow

*
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We also know that (a,u,v), (b, uw,vw*), (¢, uw*,vw) and (ab, ac,bc,w) have entries
which pairwise commute. We first show that uwv is central. Indeed, we have:

buv = buvww”
= b(uw)(vw®)
(uw) (vw*)b

= uvb

Similarly, cuv = uvc. It follows that we may in fact suppose that uv is a scalar. But
since our relations are homogeneous, we may assume in fact that u = v*.
Let us now show that [abc, vw*] = 0. Indeed, we have:

abc = a(bc)ww*
= aw(bc)w*
= av(wv*)bcw”
= avb(wv*)cw*
= v(ab)wv*cw*
= ovw(ab)v*cw”

= vw(ab)w(w v*)cw*

= vw?(ab)c(w*v*)w

= vw*abcv*w
We know also that [b,vw*] = 0. Hence [ac,vw*] = 0. But [ac,w*] = 0. Hence
[ac,v] = 0. But [a,v] = 0. Hence [¢,v] = 0. But [c,ow] = 0. So [¢c,w] = 0. But
[be,w] = 0. So [b,w] = 0. But [b,v*w] = 0 and [ab, w] = 0, so respectively [b,v] = 0 and
[a, w] = 0. Thus all operators a, b, ¢, v, w pairwise commute, and we are done. Il

At N = 4 now, the classification work for the usual complex Hadamard matrices uses
the fact that an equation of type a + b+ ¢+ d = 0 with |a| = |b| = |¢| = |d| = 1 must be,
up to a permutation of the terms, a “trivial” equation of the following form:

a—a+b—-0=0
In our setting, however, we have for instance:
a 0 —a 0 b 0 -b 0
(62 () )+ (0 5) =

It is probably possible to further complicate this kind of identity, and this makes the
N = 4 classification a quite difficult task.
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15b. Quantum groups

The generalized Hadamard matrices produce quantum groups, as follows:

THEOREM 15.15. If H € My(A) is Hadamard, the following matrices P;; € My(A)
form altogether a magic matriz P = (P;;), over the algebra My(A):

1 * *
(Pri)as = ~ Hia, o H

Thus, we can let © : C(S};) — My (A) be the representation associated to P, mapping
u;; — P;j, and then factorize this representation as follows,

7:C(SY) = C(G) = My(A)

with the closed subgroup G C S3; chosen minimal.

PrROOF. The magic condition can be checked in three steps, as follows:

(1) Let us first check that each P is a projection, i.e. that we have P;; = P} = Py.
Regarding the first condition, namely Pj; = P}, this simply follows from:

* 1 * k O\ k
(‘Pij)ba = N(HinijjaHia)
1 * *
- NHiaHjaHijib

- (Pij)ab

As for the second condition, P;; = PZ, this follows from the fact that all the entries
H;; are assumed to be unitaries, i.e. follows from axiom (1) in Definition 15.1:

(R?)ab - Z(Rj)ac(-Pij)cb

a

]‘ * * * *
= > Hi,H;,H H}.Hi H;,HH;,

1 * *
- NHiaHjaHijib

= (Pij)ab
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(2) Let us check now that fact that the entries of P sum up to 1 on each row. For this
purpose we use the equality H*H = N1y, coming from the axiom (3), which gives:

O - Pja = ZHmH* Hj,Hy,
7

1 * *
= NHM(H H)ap ib
= 5asz'a
= 5ab
(3) Finally, let us check that the entries of P sum up to 1 on each column. This is the
tricky check, because it involves, besides axiom (1) and the formula H'H = N1y coming
from axiom (3), the commutation on the columns of H, coming from axiom (2):

(Zpij)ab = ZHmH* z*b
- NZH* H; H} Hy,

- NH* (HtH)aijb
= 5bH Hjy,
= 6&1)

Thus P is indeed a magic matrix in the above sense, and we are done. U

As an illustration, consider a usual Hadamard matrix H € My(C). If we denote its
rows by Hy,..., Hy and we consider the vectors §;; = H;/H;, then we have:

Hi Hin
71 iN

Thus the orthogonal projection on this vector §;; is given by:

1
(Pej)av = 115 (&ig)alis)o
1€
1 * *
= HiaH, il
= (Pij)ab

We conclude that we have P;; = P, for any i, j, so our construction from Theorem
15.15 is compatible with the construction for the usual complex Hadamard matrices.

Let us discuss now the computation of the quantum permutation groups associated to
the deformed tensor products of Hadamard matrices. This is actually something that we
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have not discussed in chapter 14 above, when talking about the usual Hadamard models,
so the results below are relevant even in the case of these usual models.

Let us begin with a study of the associated magic unitary. We have:

PROPOSITION 15.16. The magic unitary associated to H ®q K is given by

1 * * * *
Piajb = Rij; ® N(Qic@jcdeQid Koo K3 Kpa K ) ca

where R;; s the magic unitary matriz associated to H.

Proor. With standard conventions for deformed tensor products and for double in-
dices, the entries of L = H ®g K are by definition the following elements:

Liajb = QinHij Kap

Thus the projections P, j, constructed in Theorem 15.15 are given by:

(Pia,jb)ke,d
1
= gz LiekeLipueliialiaa
1
= W(QicHikKac)(Qchijbc)*(deHlebd)(Qide‘lKad)*
1 * * * * * *
= W(QiCQjcdeQid>(HikijHﬂHil)(KaCKchbdKad)
In terms now of the standard matrix units ey, e.q, we have:
Pia,jb
1 * * * * * *
= YN 2o 6 ® e ® (QueQ5eQsaQia) (HinHjy HjHy ) (Kae Ko KoK o)
keld
1
= U~ (em ® 1@ HypH3 HjHy) (1® eeq ® Qic@5.Q;aQ5y - Kok KpakS}y)
keld

Since the quantities on the right commute, this gives the formula in the statement. [J

In order to investigate the Dita deformations, we use:

DEFINITION 15.17. Let C(S};) — A and C(S};) — B be Hopf algebra quotients, with
fundamental corepresentations denoted u,v. We let

A*wB:A*N*B/<[u(i) v] =0>

ab’

with the Hopf algebra structure making wjq ji, = ufjb)vij a corepresentation.
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The fact that we have indeed a Hopf algebra follows from the fact that w is magic. In
terms of quantum groups, if A = C(G), B = C(H), we write Ax*, B=C(Gl H):

C(G) % C(H) = C(G 1, H)

The 1, operation is the free analogue of ?, the usual wreath product. See [30]. With
this convention, we have the following result:

THEOREM 15.18. The representation associated to L = H ®¢g K factorizes as

C(S¥u) - My (C)

\/

(St Gr)

and so the quantum group associated to L appears as a subgroup G, C Sy, 4 Gy

PrROOF. We use the formula in Proposition 15.16. For simplifying the writing we agree
to use fractions of type % instead of expressions of type H;,H;,H;,Hj, by keeping in
mind that the variables are only subject to the commutation relations in Definition 15.1.
Our claim is that the factorization can be indeed constructed, as follows:

U =D Piags + Vig=p_ Pags
j a

Indeed, we have three verifications to be made, as follows:

(1) We must prove that the elements V;; = > P, j» do not depend on b, and generate
a copy of C(Gp). But if we denote by (R;;) the magic matrix for H, we have indeed:

Vv, = 1 (Qicde HyHj '50d>
keld

N QiaQjc HyHj
((Rij)kt0cd)keyid
= Rz‘j®1

(2) We prove now that for any 4, the elements U (EZ) => j Piajo form a magic matrix.

Since P = (P4 ) is magic, the elements Uc%) => ; Pq jp are self-adjoint, and we have
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> U éz) = >4 Piajb = 1. The fact that each U éz) is an idempotent follows from:

(U )keia
_ 1 Z QicQje . szHJm . Kache . QieQnd ) HzmHnl ) KaeKbd
N2M?2 i Qierc Hzmij KooKy QiqQne HuH, KaqKpe

1 Z QicQje@nd Hianl& KacKpa
NM? 4~ Q;.QiaQne HjHy " KpKag
B 1 Z QicQjeQja  HiHj Kackpa

NM? ej Qjchdee ijHil Kchad

_ 1 QicQja HirHji Kackpq
NM r QicQia HjrHy KpckKoq
= (U

Finally, the condition ) U, CEZ) = 1 can be checked as follows:

ZU(i) _ 1 ZQicde.HikHjl'écd
Y N\GQuQie HaHy )

1 H;Hj
= — .4,
N (Z H’LZHJIC d>k 1

J

Il
—_

(3) It remains to prove that we have UCEZ)Vij = ‘/;;jUa(j)) = P, jp. First, we have:

i 1 iclgn Hz Hnm KaCK HzmH
(ULS’IL)) ‘/;]>kc = . Z Q Q d . k X bd . ]l
7 NM mn Qidan Hzman Kadec HilHjm

1 Z Qic@nd Hz‘kHjl5 - KacKpg
NM n Qidan anHzl " Kadec
1 . Qicde . HikHjl . Kachd
NM Qid@jc ijHil Kadec

= (Pia,jb)kc,ld
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The remaining computation is similar, as follows:

1 Z szH]m . Qichd . HzmHnl . Kachd
NQM HzmH]k Qidan HilHnm Kadec
_ 1 Z Qic@nd Hz’anld - KacKpa
NM n Qid@nc ijHil " Kadec
1 . Qicde . HikHjl . Kachd
NM Qid@jc ijHil Kadec

= (Ha,jb)kc,ld

(VigUS kea

mn

Thus we have checked all the relations, and we are done. O

In general, the problem of further factorizing the above representation is a quite diffi-
cult one, even in the classical case. For a number of results here, which are however quite
specialized, we refer to [12], [31] and related papers.

15c. Partial permutations

Let us discuss now another generalization of the construction H — G, which is in-
dependent from the one above. The idea, following [24], will be that of looking at the
partial Hadamard matrices (PHM), and their connection with the partial permutations.

Let us start with the following standard definition:

DEFINITION 15.19. A partial permutation of {1 ..., N} is a bijection

oc: X~Y
between two subsets of the index set, as follows:
X, Y c{l,...,N}

We denote by Sy the set formed by such partial permutations.

We have Sy C Sy, and the embedding u : Sy C My(0,1) given by the standard

permutation matrices can be extended to an embedding u : Sy C My(0,1), as follows:

wi (o) = {1 if o(j) =i

0 otherwise

By looking at the image of this embedding, we see that Sy is in bijection with the
matrices M € My(0,1) having at most one 1 entry on each row and column.

In analogy with Wang’s theory in [95], we have the following definition:
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DEFINITION 15.20. A submagic matriz is a matriz v € My(A) whose entries are

projections, which are pairwise orthogonal on rows and columns. We let C’(§;\;) be the
universal C*-algebra generated by the entries of a N x N submagic matriz.

Here the fact that the algebra C (§]f,) is indeed well-defined is clear. As a first obser-
vation, this algebra has a comultiplication, given by the following formula:

Alug) = Z Uik & Ugg
k

This algebra has as well a counit, given by the following formula:
e(uij) = bi

Thus §]\L, is a quantum semigroup, and we have maps as follows, with the bialgebras
at left corresponding to the quantum semigroups at right:

C(S%) — C(S%) S o sk
+ i : U U
C(gN) — C(SN) §N O Sy

The relation of all this with the PHM is immediate, appearing as follows:

THEOREM 15.21. If H € My« n(T) is a PHM, with rows denoted Hy, ..., Hy € TV,
then the following matriz of rank one projections is submagic:

H;
Py = Proj (F)
J

Thus H produces a representation g : C’(gj’\}) — Mn(C), given by u;; — Pj;, that we
can factorize through C(G), with the quantum semigroup G C Sy, chosen minimal.

ProOF. We have indeed the following computation, for the rows:

<Hi Hi> . ZHz' Hiyy
H;" H,/ H; Hy

1 J

1
~ Hi
< Hk,Hj >
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The verification for the columns is similar, as follows:

<Hi Hk> H; Hjy

H;' H; Hy Hy

l

H;
- zl: Hy,
= N

Regarding now the last assertion, we can indeed factorize our representation as in-
dicated, with the existence and uniqueness of the bialgebra C'(G), with the minimality

property as above, being obtained by dividing C (:9/]@) by a suitable ideal. See [24]. O

Summarizing, we have a generalization of the H — G construction from chapter 14.

The very first problem is that of deciding under which exact assumptions our con-
struction is in fact “classical”. In order to explain the answer here, we will need:

DEFINITION 15.22. A pre-Latin square is a square matrizc
Le My(l,...,N)
having the property that its entries are distinct, on each row and each column.

Given such a pre-Latin square L, to any x € {1,..., N} we can associate the partial
permutation o, € Sy, given by:

With this construction in hand, we denote by G C Sy the semigroup generated
by these partial permutations oy,...,oy, and call it semigroup associated to L. Also,
given an orthogonal basis ¢ = (&;,...,&y) of CV, we can construct a submagic matrix
P € My (My(C)), according to the following formula:

P = Proj(&w,;)
With these notations, we have the following result, from [24]:

THEOREM 15.23. If H € My (C) is a PHM, the following are equivalent:

(1) The semigroup G C St, is classical, i.e. G C Sy.

(2) The projections P;; = Proj(H;/H;) pairwise commute.

(3) The vectors H;/H; € TV are pairwise proportional, or orthogonal.
(4) The submagic matriz P = (P;;) comes for a pre-Latin square L.

In addition, if so is the case, G is the semigroup associated to L.
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ProoFr. This is something standard, as follows:
(1) < (2) is clear.

(2) < (3) comes from the fact that two rank 1 projections commute precisely when
their images coincide, or are orthogonal.

(3) <= (4) is clear again.

As for the last assertion, this is something standard, coming from Gelfand duality,
which allows us to compute the Hopf image, in combinatorial terms. See [24]. O

We call “classical” the matrices in Theorem 15.23, that we will study now.
Let us begin with a study at M = 2. We make the following convention, where 7 is
the transposition, 77 is the partial permutation ¢ — j, and () is the null map:
Sy = {id, 7,11,12,21, 22, 0}
With this convention, we have the following result:

PROPOSITION 15.24. A partial Hadamard matric H € My n(T), in dephased form

11
H:<A1 )\N>

is of classical type when one of the following happens:
(1) Either \; = w, for some w € T, in which case G = {id, T}.
(2) Or >, M2 =0, in which case G = {id,11,12,21,22,0}

PrOOF. With 1 = (1,...,1) and A = (A, ..., Ay), the matrix formed by the vectors
H;/H; is (5 7). Since 1 L X, X we just have to compare A, A, and we have two cases:

(1) Case A ~ \. This means that we have A\?> ~ 1, and so \; = fw, for some complex
number w € T. In this case the associated pre-Latin square is L = (3 %), and the partial
permutations o, associated to L, as above, are as follows:

o1 = id
Oy =T
We obtain from this that we have, as claimed:
G =<id, 7 >= {id, 7}

(2) Case A L A. This means >, A? = 0. In this case the associated pre-Latin square
is L = (1 %), the associated partial permutations o, are given by:

Ulz’id
0'2:21
0'3:12
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The semigroup generated by these partial permutations is:
G =<1id, 21,12 >= {id, 11,12,21,22,0}
Thus, we are led to the conclusion in the statement. O

The matrices in (1) are, modulo equivalence, those which are real. As for the matrices
in (2), these are parametrized by the solutions A € T of the following equations:

dDa=> XN=0

In general, it is quite unclear on how to deal with these equations. Observe that, as a
basic example here, we have the upper 2 x N submatrix of Fl, with N > 3.

15d. Fourier matrices

Let us discuss now in detail the truncated Fourier matrix case. First, we have the
following result, that we already know from chapter 14, but that we will present here
with a complete proof, as an illustration for Theorem 15.23 above:

PROPOSITION 15.25. The Fourier matriz, Fy = (w"”) with w = e*/N s of classical
type, and the associated group G' C Sy is the cyclic group Zy .

PROOF. Since H = Fy is a square matrix, the associated semigroup G C S}, must be
a quantum group, G C Sj;. We must prove that this quantum group is G = Zy.

With p = (1,w,w?,...,w"N"1) the rows of H are given by H; = p’, and so we have
H;/H; = p"~7. We conclude that H is indeed of classical type, coming from the Latin
square L;; = j — 4 and from the following orthogonal basis:

E=(Lp e %0
We have G =< 01,...,0xn >, where 0, € Sy is given by:
0,(j) =1 <= L =x
Now from L;; = j — i we obtain 0,(j) = j — z, and so:
G={o1,...,0N} 27N
Thus, we are led to the conclusion in the statement. Il

We will be interested here in the truncated Fourier matrices. Let [, x be the upper
M x N submatrix of Fiy, and Gy n C Sy be the associated semigroup.

The simplest case is that when M is small, and here we have:
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THEOREM 15.26. In the N > 2M — 2 regime, Gy C Sy is formed by the maps

O @) O @) O ) @)

that is, o : [~ J, 0(j) =7 —x, with I,J C {1,..., M} intervals, independently of N.

PROOF. Since for H = F v the associated Latin square is circulant, L-j = j —1, the
pre-Latin square that we are interested in is:

0 1 2 M—-1

N -1 0 1 M -2

L= N =2 N -1 0 M—-3
N-M+1 N-M+2 N-M+3 ... 0

Observe that, due to our N > 2M — 2 assumption, we have N — M +1 > M — 1, and
so the entries above the diagonal are distinct from those below the diagonal.

Let us compute now the partial permutations o, € S v given by:
We have og = id, and then oy, 09,...,0)/_1 are as follows:

o O O O O

o=/ ///

O o O O O

O O O O O

n=

o O O O O

o O O O _o

O-Mf].: /

o O O O O

Observe that we have the following formulae, for these maps:

0'2:0'%
0'3:0'?
M—-1

OpM—1 =07
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As for the remaining partial permutations, these are given by:
ON_—1 =07 !

_ -1

-1
ON-M+1 =0z
The corresponding diagrams are as follows:

o O O O o

ova= AN\

o O O O o©

o _o0 O o O

ON-M+1 = \

O O O O O

Thus Gy =< 01 >. Now if we denote by G,  the semigroup in the statement, we
have o1 € Gy v, 80 Gy n C Gy . The reverse inclusion can be proved as follows:

1) Assume first that o € Gy, v, 0 : I >~ J has the property M € I, J:
M,N

Then we can write 0 = oy_g0oy, with k = M — |I], so we have o € G/ .

2) Assume now that o € G'; n, 0 : I ~ J has just the property M € I or M € J:
M,N
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In this case we have as well 0 € Gy v, because o appears from one of the maps in (1)
by adding a “slope”, which can be obtained by composing with a suitable map oy.

(3) Assume now that o € Gy, v, 0 : [ =~ J is arbitrary:

Then we can write 0 = ¢'0” with ¢’ : L ~ J, ¢” : I ~ L, where L is an interval
satisfying |L| = |I| = |J| and M € L, and since o’,0” € Gy by (2), we are done. [

Summarizing, we have so far complete results at N = M, and at N > 2M — 2.

In the remaining regime, M < N < 2M — 2, the semigroup Gy,n C S v looks quite
hard to compute, and for the moment we only have some partial results regarding it.

For a partial permutation o : I ~ J with |I| = |[J| =k, set k(o) = k. We have:
THEOREM 15.27. The following semigroup components, with k > 2M — N,
G%?N = {0 € GMJV‘K,(O') = kz}
are in the M < N < 2M — 2 regime the same as those in the N > 2M — 2 regime.

PROOF. In the M < N < 2M — 2 regime the pre-Latin square that we are interested
in has as usual 0 on the diagonal, and then takes its entries from the following set, in a
uniform way from each of the 3 components:

S={1l,.... N—M}U{N-M+1,.... M —1}U{M,...,N—1}
Here is an illustrating example, at M =6, N = &:

01 2 3 45

701 2 3 4

I_ 6 701 2 3

5 6 7 0 1 2

4 5 6 701

3456 70
The point now is that oy,...,0n_p are given by the same formulae as those in the
proof of Theorem 15.26, then on_pr41,...,00-1 all satisfy k(o) = 2M — N, and finally

oM, --.,0N_1 are once again given by the formulae in the proof of Theorem 15.26.

Now since we have k(op) < min(k(0),k(p)), adding the maps on_pr41,...,0m-1 tO

the semigroup Gy C Sy computed in the proof of Theorem 15.26 won’t change the
Gg\’fl) ~ components of this semigroup at k£ > 2M — N, and this gives the result. O
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15e. Exercises

We have seen in this chapter two recent generalizations of the construction H — G
from chapter 14, and going beyond the results presented here, even with some simple
exercises, is no easy task. As a first exercise, however, we have:

EXERCISE 15.28. Write down a complete, simplified proof for the factorization
C(Sxu) = My (C)
C(Si % Gn)

found above, for L = H ®¢g K, in the scalar matriz case.

To be more precise, the problem is that of reviewing the proof of the above factoriza-
tion, checking what simplifies in the scalar matrix case, and writing this down.

In relation now with the partial Hadamard matrix theory, we first have:

EXERCISE 15.29. Prove that the number of partial permutations is given by

N 2
~ N
ENEDIN ( ,C)
k=0
that is, 1,2,7,34,209, ..., and that with N — oo we have:

1Sy| ~ N!\/exp(él\/ﬁ— D

477\/N

Here the first assertion is easy, and the second one is difficult.

Here is as well an instructive exercise, regarding the free case:
EXERCISE 15.30. Prove that we have an isomorphism
C(85) = {(2,9) € O (D) & C*(D)|o(2) = (1)}
where € : C*(Dw,) — C1 the usual counit map.

As a first step here, we would need a structure result for the 2 x 2 submagic matrices.

Finally, here is a theoretical exercise, in relation with the quantum groups:

EXERCISE 15.31. Dewvelop a theory of partial Hadamard matrices with noncommutative
entries, and of the associated quantum permutation semigroups.

The statement here is of course quite loose, as is always the case with research-grade
exercises, and anything is welcome, the more the better.



CHAPTER 16

Fourier models

16a. Deformations

We have seen that associated to any complex Hadamard matrix H € My(C) is a
quantum permutation group G C S¥. The construction H — G is something very
simple. Consider indeed the rows of H, regarded as elements of the group T*:

Hy,...,HyeTV

We can form the quotients H;/H; € TV inside this group, and the corresponding rank
one projections Proj(H;/H;) form a magic matrix, in the sense that the sums on each
row and each column equal 1. Thus, we have a representation as follows:

7: C(SY) = My(C)

H.
uy; — Proj | —
’ ’ (H)
Now by factorizing this representation in a “minimal” way, we obtain a certain quotient
Hopf algebra C(S};) — C(G), with the corresponding closed subgroup G C S5 being by

definition the quantum permutation group associated to H. As a basic example, the
Fourier matrix H = F; produces in this way the group G itself, acting on itself.

Following [12], we discuss here the computation of the quantum permutation groups
associated to the Dita deformations of the tensor products of Fourier matrices. Let us
begin by recalling the construction of the Fourier matrix models:

DEFINITION 16.1. Associated to a finite abelian group G is the matriz model
m:C(G) = Mg(C)
coming from the following magic matriz,

1
(Uij)e = NFifj,kfl

where F' = Fg 1s the Fourier matrix of G.

Let us recall as well the construction of the deformed Fourier models:

369
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DEFINITION 16.2. Given two finite abelian groups G, H, we consider the corresponding
deformed Fourier matrix, given by the formula

(FG RKqg FH)ia,jb = Qib(FG)ij(FH)ab

and we factorize the associated representation wg of the algebra C(S. 5),

MGXH

with C(Gq) being the Hopf image of this representation mg.

Explicitely computing the above quantum permutation group Gg C Sg, 7, as function
of the parameter matrix Q € Mgy (T), will be our main purpose, in what follows. In
order to do so, we will need the following elementary result:

PROPOSITION 16.3. If G is a finite abelian group then
0@ = 0(55)/ <u] — Vi — =k — z>
with all the indices taken inside G.

PROOF. As a first observation, the quotient algebra in the statement is commutative,
because we have the following relations:

Ui Ukl = Ui Ul —k+i = Of1—k+iUij

Uk U5 = Ug|—k+iUij = O 1—k44iUij
Thus if we denote the algebra in the statement by C'(H), we have H C Sg. Now since
u;j(0) = 6i0(j) for any o € H, we obtain:

i—j=k—1 = (0(j)=1i < o(l)=k)

But this condition tells us precisely that o(i) — ¢ must be independent on ¢, and so,
for some g € G, we have o(i) =i + g. Thus we have 0 € G, as desired. 0

In order to factorize the representation in Definition 16.2, we will need:
DEFINITION 16.4. Gives two Hopf algebra quotients, as follows,
c(Sy)—A , C(S%)— B
with fundamental corepresentations denoted u,v, we let

AxyB=AN«B/ < [ul) v;] =0>

with the Hopf algebra structure making wjq j, = ugb)vij a corepresentation.
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The fact that we have indeed a Hopf algebra follows from the fact that w is magic. In
terms of quantum groups, let us write:

A=C(G)

B=C(H)

We can write then the Hopf algebra constructed above as follows:

Ax, B=C(G H)
In other words, we make the following convention:

C(G)*,C(H)=C(GWw H)
The 2, operation is then the free analogue of ¢, the usual wreath product. For details
regarding this construction, we refer to [12].

We can now factorize representation g in Definition 16.2, as follows:

THEOREM 16.5. We have a factorization as follows,

C(SEwn) = Mexu(C)

N

C(H . Q)

given on the standard generators by the formulae

UCEZ) = Z Wian 5 V;j = Z Wia,jb

J

independently of b, where W is the magic matriz producing mq.

Proor. With K = Fg, L = Fyg and M = |G|, N = |H|, the formula of the magic
matrix W € Mgy (Maxu(C)) associated to H = K ®¢ L is as follows:

1 . Qicde . KikKjl . LacLbd
MN Qidec KilKjk LadLbc
1 Qicde

- . K i1 La—p e
MN QuQ. e

(‘/Via,jb>kc,ld
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Our claim now is that the representation mg constructed in Definition 16.2 can be
factorized in three steps, up to the factorization in the statement, as follows:

C (S = Mexu(C)

T T A

C(SH 1. S%)

C(SH1. G) C(H 1. G)
Indeed, these factorizations can be constructed as follows:

(1) The construction of the map on the left is standard, by checking the relations for
the free wreath product, and this produces the first factorization.

(2) Regarding the second factorization, the one in the middle, this comes from the
fact that since the elements V;; depend on i — j, they satisfy the defining relations for the
quotient algebra C(Sg,) — C(G), coming from Proposition 16.3.

(3) Finally, regarding the third factorization, the one on the right, observe that the
above matrix W, j depends only on 7, j and on a —b. By summing over j we obtain that

the elements U UEZ) depend only on a — b, and we are done. O
Summarizing, we already have some advances on our problem, the quantum group
that we want to compute appearing as a subgroup of a certain free wreath product.
In order to further factorize the above representation, we use:

DEFINITION 16.6. If H ~ T is a finite group acting by automorphisms on a discrete
group, the corresponding crossed coproduct Hopf algebra is

C*T)yxCH)=C*"T")®C(H)
with comultiplication given by the following formula,

Alr@d) = (red) @ (™ re i)

heH
forrel and k € H.

Observe that C'(H) is a subcoalgebra, and that C*(I") is not a subcoalgebra. The
quantum group corresponding to C*(I") x C(H) is denoted I" x H.

Now back to the factorization in Theorem 16.5, the point is that we have:
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PROPOSITION 16.7. With L = Fy, N = |H| we have an isomorphism
C(H, G) ~ C*(H)*® x C(G)

gien by v;; — 1 @ v;; and by

() _ i (%)
uab — N Z Lb—a,cc & 1

on the standard generators.

PROOF. We know that the algebra C'(H . G), constructed according to our above
conventions, is the quotient of C'(H)*“ x C(G) by the following relations:

[uly vis] = 0
Now since v;; depends only on j — 7, we obtain:
[USIJ)WM] = [u((zib)’ Vig—k+i] = 0
Thus, we are in a usual tensor product situation, and we have:
C(H . G)=C(H) ®C(G)
Consider now the Fourier transform over H, which is a map as follows:
¢:C(H)— C*(H)
We can compose the above identification with the following map:
U =9"“wid

Thus, we obtain an isomorphism as in the statement.
Now observe that we have the following formula:

1
CI)(Uab) = N Z Lb—a,cc

Thus the formula for the image of u((fb) is indeed the one in the statement. O

Here is now our key result, which will lead to further factorizations:

PROPOSITION 16.8. With ¢ = > Lacugg and epe = Y . Kige;e we have:

7 Qi,e—ch— e
ﬂ-(c( ))<€k€) = Q Q & k7 glc,efc

In particular if ¢y + ...+ ¢cs = 0 then the matrix
W(cgil) el

s

is diagonal, for any choice of the indices iy, ..., 1.
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ProoF. With ¢ as in the statement, we have the following formula:

() = Z Lacﬂ(u( )
= Z LacWia,jO
aj
On the other hand, in terms of the basis in the statement, we have:

deQ]e
Wm,jb(é?ke = 0i— ]kz Qzngd Lo b,d—e€kd

We therefore obtain, as desired:

71-(C(i))(gke> = 37 Z Lac gldgl :ZLa,d—egkd

Qiin—k,e
— —Z—edeLa,d_m
N 4~ QicQika -
Qiinfk,eE 5
= N kdVYd,e—
QieQi—k,d e
Qi,echifk,eg
e
QieQifk,efc e

Regarding now the last assertion, this follows from the fact that each matrix of type
W(ciz’”)) acts on the standard basis elements ;. by preserving the left index k, and by
rotating by ¢, the right index e. Thus when we assume ¢; +. ..+ cs = 0 all these rotations

compose up to the identity, and we obtain indeed a diagonal matrix. U
We have now all needed ingredients for refining Theorem 16.5, as follows:

THEOREM 16.9. We have a factorization as follows,

C(S&n) ~ Mgy (C)

C*(Ten) x C(G)

where the group on the bottom is given by:

Pen= H*G/ <[c§m el gir) i) = 1‘ ZC’“ = Zd” = ()>
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PROOF. Assume that we have a representation, as follows:
m:C*(T) x C(G) = M(C)

Let A be a G-stable normal subgroup of T, so that G acts on I'/A, and we can form
the product C*(I'/A) x C(G), and assume that 7 is trivial on A. Then 7 factorizes as:

C*(D) % C(G) G M,(C)

C*(T'/A) x C(G)
With I' = H*%, and by using the above results, this gives the result. Il

In what follows we will restrict attention to the case where the parameter matrix @)
is generic, and we prove that the representation in Theorem 16.9 is the minimal one.

Our starting point is the group I'¢ i found above:

DEFINITION 16.10. Associated to two finite abelian groups G, H is the discrete group

FG7H = H*G/ <|:C§’Ll) . ‘Cgis),dgjl) . dg]s)] — 1‘ ZCT — Zdr — 0>

where the superscripts refer to the G copies of H, inside the free product.

We will need a more convenient description of this group. The idea here is that the
above commutation relations can be realized inside a suitable semidirect product.

Given a group acting on another group, H ~ GG, we denote as usual by G x H the
semidirect product of G by H, which is the set G x H, with multiplication:

(a,5)(b,£) = (as(b), st)
Now given a group G, and a finite abelian group H, we can make H act on G| and
form the following crossed product:

K=G"'xH

Since the elements of type (g,...,¢g) are invariant under the action of H, we can form
as well the following crossed product:

K =(G")G)~x H
We can identify G /G ~ GH|=1 via the following map:
(17917 ce 7g\H|71) — (gla s 7g|H|71)

Thus, we obtain a crossed product G#1=1 x H.
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With these notations, we have the following result:

PROPOSITION 16.11. The group I'c. g has the following properties:
(1) We have an isomorphism as follows:

Ton =~ 7(GI-D(H|-1) o 1
(2) We have as well an isomorphism as follows,
Ton C 7(GI=DIH] o [
given on the standard generators by the formulae
9 = (0,¢)
D = (big — bie, ), (1 #0)

where b;. are the standard generators of ZUGI=DIHI

Proor. We prove these assertions at the same time. We must prove that we have
group morphisms, given by the formulae in the statement, as follows:

~ CI-D(HI-1) o ff
c 7GI-DIH| o
Our first claim is that the formula in (2) defines a morphism as follows:

Cog — ZUGIEDHE o |

|NeRzs

Indeed, we know that the elements (0, ¢) produce a copy of H. Also, we have a group
embedding as follows:
HczM xH
¢ — (by — be, ©)
Thus the elements C® = (by — by, ¢) produce a copy of H, for any i # 0. In order to
check now the commutation relations, observe that we have:

ool

s

= <bi10 - bi1€1 + bi201 - bi2701+02 +...+ bis,61+---+csf1 - bis,01+---+csv E c?")

T

Thus ), ¢, = 0 implies the following condition:
Cfil) ... ClU) ¢ ZlGI=DiH]

Since we are now inside an abelian group, we have the commutation relations, and our
claim is proved. By using the general crossed product considerations before the statement,
it is routine to construct an embedding as follows:

Z(G-DUHI-Y) o [  7(G-DIH| o
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To be more precise, we would like this embedding to be such that we have group
morphisms whose composition is the group morphism just constructed, as follows:

Tey — ZUG-DIHIED o
c G-V o

It remains to prove that the map on the left is injective. For this purpose, consider

the following morphism:
FG7 H — H
D = e

The kernel T' of this morphism is formed by the elements of type cgil) e cgs), with

>, ¢ = 0. We therefore obtain an exact sequence, as follows:
1T —=Tgu —H—1
This sequence splits by ¢ — (9, so we have:
Fep~TxH

Now by the definition of I' i, the subgroup 7' constructed above is abelian, and is
moreover generated by the following elements:

() | cz0
Finally, the fact that T is freely generated by these elements follows from the compu-
tation in the proof of Proposition 16.13 below. U
16b. Generic parameters

As already mentioned, we will be interested in what follows in the case where the
deformation matrix @) is generic. Our genericity assumptions are as follows:

DEFINITION 16.12. We use the following notions:
(1) We call p,...,pm € T root independent if for any ri,...,rm € Z we have:

pit..pm=1 = nr=...=7r,=0
(2) A matriz Q € Mayu(T), taken to be dephased,
Qoc = Qio =1

is called generic if the elements Q;., with i,c # 0, are root independent.

In what follows we will do the computation for such matrices. Our main result will
show that the associated quantum group does not depend in fact of the matrix.

In order to do the computation, we will need:
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PROPOSITION 16.13. Assume that Q € Mgy (T) is generic, and set:

91;@ _ Qi,echifk,e
* QieQi—l@e—c
For every k € G, we have a representation 7 : Tg g — Ui, gwen by:
7rk(c(i))ose = cheee_c

The family of representations (7%)req is projectively faithful, in the sense that if for some
t € Tg.m we have that () is a scalar matriz for any k, then t = 1.
PROOF. The representations 7" arise as above. With ' i = T x H, as in the proof
of Proposition 16.11, we see that for ¢ € I'¢ g such that 7%(¢) is a scalar matrix for any k,
then t € T, since the elements of T" are the only ones having their image by 7* formed by
diagonal matrices. Now write ¢ as follows, with the generators of T" being as in the proof
of Proposition 16.11 above, and with R;. € Z being certain integers:

t= I (=)™
i£0,c£0

Consider now the following quantities:

Ak,e) = HH gke(gke) ) Hie

_ gg (61) e (ghe) e
- Tt T e
e

J#0 c#0

We have then the following formula, valid for any k, e:
7 (t)(e.) = A(k, e)e,
Our assumption is that for any k, and for any e, f, we have:
A(k,e) = A(k, f)

By using now the root independence of the elements );., with 7,c¢ # 0, we see that
this implies R;. = 0 for any i, ¢, and this proves our assertion. O

We will need as well the following technical result:
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PRrROPOSITION 16.14. Consider a surjective Hopf algebra map
7:C*(T)xC(H)— L
such that mcomy s injective, and such that for r € ' and f € C(H), we have:
Trel)=r1lef) = r=1
Then m is an isomorphism.

PRrROOF. We use here various standard Hopf algebra tools. Consider the following
algebra:

A= C*T) % C(H)

We start with the following standard Hopf algebra exact sequence, where i(f) = 1® f,
and where p = e ® 1:

CoCH)S AL )= C

Since 7 o i is injective, and the Hopf subalgebra 7 o i(C'(H)) is central in L, we can
form the following quotient Hopf algebra:

L=1L/(roi(C(H)"L

We obtain in this way another exact sequence, as follows:

Tot,

C—CcH) =L ST —cC

Note that this sequence is indeed exact, e.g. by centrality. Thus, we get the following
diagram with exact rows, with the Hopf algebra map on the right being surjective:

C

Since a quotient of a group algebra is still a group algebra, we get a commutative
diagram with exact rows as follows:
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Here the Hopf algebra map on the right is induced by a surjective group morphism,
as follows:

w:I' =T
g—49
By the five lemma we just have to show that u is injective. So, let g € I' be such that
u(g) = 1. We have then:

(r(g®1)=up(g®1)=u(g) =g=1

For g € T, let us set:

gA:{aEA‘p(al)Q?ag:g@a}

L= {z eL ‘ q’(l1)®l2:§®l}
The commutativity of the square on the right ensures that we have:
m(gA) C 5L
Then with the previous g, we have, by exactness of the sequence:
m(g®1) € 1L = mi(C(H))
Thus, for some f € C(H), we must have:
T(g®1)=r(l® f)
We conclude by our assumption that g = 1. U
We have now all the needed ingredients for proving a main result, as follows:

THEOREM 16.15. When @) is generic, the minimal factorization for mg is

O(ngH) ~ MGxH((C)

C*(Ten) x C(G)

where on the bottom
Ty o ZUG-DUHSD o

18 the discrete group constructed above.
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PrROOF. We want to apply Proposition 16.13 to the following morphism, arising from
the factorization in Theorem 16.9, where L denotes the Hopf image of m¢:

0:C*(Tan) % C(G) — L

To be more precise, this morphism produces the following commutative diagram:

C(Sérr) ~ M (C)

L
A
|
Lo
|
|

O*(FG,H) X C(G)

The first observation is that the injectivity assumption on C'(G) holds by construction,
and that for f € C(G), the matrix 7(f) is “block scalar”, the blocks corresponding to the
indices k in the basis ¢, in the basis from Proposition 16.13.

Now for r € I'g g with O(r ® 1) = 0(1 ® f) for some f € C(G), we see, using the
commutative diagram, that we will have that 7(r®1) is block scalar. By Proposition 16.11,
the family of representations (7*) of I'q g, corresponding to the blocks k, is projectively
faithful, so »r = 1. We can apply indeed Proposition 16.13, and we are done. U

Summarizing, we have computed the quantum permutation groups associated to the
Dita deformations of the tensor products of Fourier matrices, in the case where the de-
formation matrix () is generic. For some further computations, in the case where the
deformation matrix @ is no longer generic, we refer to [12] and follow-up papers.

16c. Kesten measures

Let us compute now the Kesten measure p = law(x), in the case where the deformation
matrix is generic, as before. Our results here will be a combinatorial moment formula, a
geometric interpretation of it, and an asymptotic result.

Let us begin with the moment formula, which is as follows:

THEOREM 16.16. We have the moment formula

/Vz 1 iy iy € G | [(i1, 1), (i, o), ., (i, )]
|G| . |H| d17 cee 7dp € H = [(Zlvdp)v (Z2>d1)7 ety (Zpadp—l)]

where the sets between square brackets are by definition sets with repetition.



382 16. FOURIER MODELS

PROOF. According to the various formulae above, the factorization found in Theorem
16.15 is, at the level of standard generators, as follows:

C(S§XH> - O*(FG,H) ® C(G) — MGXH<C)
Uiq,jb — ‘—i” > Fb—a,cC(Z) R vy — Wiaib

Thus, the main character of the quantum permutation group that we found in Theorem
16.15 is given by the following formula:

1 .
_ (%)
X = E c’ Qv
|H|

iac

= Z D @ vy
= (Z C@)) ® 51

Now since the Haar functional of C*(I') x C(H) is the tensor product of the Haar
functionals of C*(I"), C'(H), this gives the following formula, valid for any p > 1:

p
1 .
o= — @
/ Gl Jogu (Z )

Consider the elements S; = > c®. By using the embedding in Proposition 16.11 (2),
with the notations there we have:

S; = Z(bz‘o — bic, C)

C

Now observe that these elements multiply as follows:

bi10 - bi181 + bi2c1 - bi2161+62
Sil oo SZ = E +bi3761+62 - bi3751+52+53 + . , C1 + ...+ Cp
Cl...Cp \+vrnnn + bip,cl—&-...—‘rcpfl — bip,cl—i—...—‘rcp

In terms of the new indices d, = ¢; + ... + ¢,, this formula becomes:

bilo - bhdl + bizdl - bizdz
S Sy = > | Abigas = bigay - . d,
di..dp \ --.... + bipdpfl — bipdp

Now by integrating, we must have d,, = 0 on one hand, and on the other hand:
[(ila O)’ (iQa dl)a ) (ipa dpfl)] = [(ilﬁ d1)7 (in d2)7 SRR (im dp)]

Equivalently, we must have d, = 0 on one hand, and on the other hand:

[(ib dp)? (i27 dl): S (ip7 dpfl)} = [(ilv dl)a (i27 d2)7 T (ip’ dp)]
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Thus, by translation invariance with respect to d,, we obtain:

fo 5o 8e =t A < TR )

INeN:s
It follows that we have the following moment formula:
p
/ Y5 = L# { ity sty € G | (i1, dh), (2, da), -, (i, d)] }
fG,H - ’H| dl,...,dpEH: [(Zl,dp),(ZQ,dl),...,(Zp,dp,1>]

Now by dividing by |G|, we obtain the formula in the statement. O

The formula in Theorem 16.16 can be interpreted as follows:
THEOREM 16.17. With M = |G|, N = |H| we have the formula

law(y) = (1 - %) 5o+ %law(A)

where the matrix
A e C(TYN, My (C))
is given by A(q) = Gram matriz of the rows of q.

PRrROOF. According to Theorem 16.16, we have the following formula:

1
/Xp =~ MN Z Z Ofirdy,... ipdp),[i1dp,e.eyipdp—1]

i1eip di...dyp

1 / Qirdy - - - Qipdy
= — ——dq
MN Jrun i;p d;p Qirdy - - - Qipd, o
1 / i1 dy Qiydy 4ipd,
= — — — | ... —2 | dqg
MN TMN i1y (dzl Qiady % Qizds % qi1dp
Consider now the Gram matrix in the statement, namely:
A<Q)U =< R;, Rj >
Here Ry, ..., Ry are the rows of the following matrix:

q € TN ~ Myrn(T)
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We have then the following computation:

1
P _ ) . . )
/X N TMN<R“,R12 >< Ry, Ryy > ... < Ry, Ry >

1

= A A iris AQinis - - - AQDiyin
MN TMN ((:Z> 172 (q) 213 ((:Z) P
1

= — T A pd
MN Joun 1A

1
—_ p
¥ | (A

But this gives the formula in the statement, and we are done. O

In general, the moments of the Gram matrix A are given by a quite complicated
formula, and we cannot expect to have a refinement of Theorem 16.17, with A replaced
by a plain, non-matricial random variable, say over a compact abelian group.

However, this kind of simplification does appear at M = 2, and since phenomenon
this is quite interesting, we will explain this now.

As a first remark, at M = 2 we have the following formula:

PROPOSITION 16.18. For Fy ®¢g Fg, with Q € Mayn(T) generic, we have

- L2 (@)

where the integral on the right is with respect to the uniform measure on TY.

2k
a1+ ... +an

N da

PROOF. In order to prove the result, consider the following quantity, which appeared
in the proof of Theorem 16.17 above:

Z Z Qivdy - QZP »

i1...0p d1...dp Tirdy - - - Gipd p—1
We can “half-dephase” the matrix ¢ € My, v (T) if we want to, as follows:
(1.1
1= a; ... ay

Let us compute now the above quantity ®(g), in terms of the numbers aq, ...,ay. Our
claim is that we have the following formula:

o[ P
d(q _2ZNP (21:)

k>0

2k

a;

Indeed, the idea is that:
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(1) The 2N* contribution will come from i = (1...1) and i = (2...2).

(2) Then we will have a p(p—1)N*72| >~ a;|* contribution coming from indices of type
.1), up to cyclic permutations.

(2..
(3) Then we will have a 2(¥) NP~*| 3, a;|* contribution coming from indices of type
=(2.. 12...21...1).

(4) And so on.

In practice now, in order to prove our claim, in order to find the NP=2*| 3" a;|*

contribution, we have to count the circular configurations consisting of p numbers 1,2,
such that the 1 values are arranged into k£ non-empty intervals, and the 2 values are
arranged into k£ non-empty intervals as well. Now by looking at the endpoints of these 2k
intervals, we have 2(2’;) choices, and this gives the above formula.

Now by integrating, this gives the formula in the statement. U

Observe now that the integrals in Proposition 16.18 can be computed as follows:

/ lay + ...+ an|**da

iy - QG
- /ENZZCLJI... P

1. J1---Jk

= #{lelm]ljk"[ll)alk] = []177]16}}

-y ()

k:E T

We obtain in this way the following “blowup” result, for our measure:

PROPOSITION 16.19. For Fy, ®¢g Fg, with Q) € Mayn(T) generic, we have

,u:(l ]17)(50—{—%(\11*54—\11 £)

where € is the uniform measure on TV, and where the blowup function is:

2
i

PRrROOF. We use the formula found in Proposition 16.18 above, along with the following
standard identity, coming from the Taylor formula:

Z(fl{;)x%: (l-l—m)p;(l—x)p

k>0

=N+
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By using this identity, Proposition 16.18 reformulates as follows:

G5 e B (B

Now by multiplying by NP~!, we obtain the following formula:
p
> da

p
/Xk:% (N%—Zai)—ir(N—Zai
™ i i

But this gives the formula in the statement, and we are done. U

We can further improve the above result, by reducing the maps ¥+ appearing there
to a single one, and we are led to the following statement:

THEOREM 16.20. For Fy ®¢q Fy, with Q € Maun(T) generic, we have

1 1
=(1——)§¢ — o,
ol < N) 0+N €

where € is the uniform measure on Zs x TV, and where the blowup map is:

S

i

d(e,a) =N +e

PRroOF. This is clear indeed from Proposition 16.19 above. U

As already mentioned, the above results at M = 2 are something quite special. In the
general case, M € N, it is not clear how to construct a nice blowup of the measure.

16d. Poisson laws

Let us go back now to the general case, where M, N € N are arbitrary. The problem
that we would like to solve is that of finding the good regime, of the following type, where
the measure in Theorem 16.16 converges, after some suitable manipulations:

M = f(K)
N = g(K)
K — >

In order to to so, we have to do some combinatorics. We denote by NC(p) the set of
noncrossing partitions of {1,...,p}, and for 7 € P(p) we denote by |7| € {1,...,p} the
number of blocks. With these conventions, we have the following result:
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ProrosITION 16.21. With M = aK,N = K, K — oo we have:

Cp

K1 i # {7r € NC(p)MW\ _ T} g
r=1

In particular, with o = 3 we have:

1 2p _
~ — K)r!
& pﬂ(p)(a )

PRrROOF. We use the combinatorial formula in Theorem 16.16 above. Our claim is

that, with m = ker(iy,...,i,), the corresponding contribution to ¢, is:
_ Jalt=gemim kel i r e NC(p)
"1 O(KP?) if m¢ NC(p)
As a first observation, the number of choices for a multi-index (i1, ...,7,) € X? satis-

fying keri = 7 is:
MM —1)...(M —|r| +1) =~ MI™
Thus, we have the following estimate:
oz MPIN T ddy, o dy € Y |[dala € 8] = [dasla € 8], Vb € 7}
Consider now the following partition:
o =kerd

The contribution of ¢ to the above quantity C is then given by:

A(m,0)N(N =1)...(N — |o| 4+ 1) ~ A(w, o) N
Here the quantities on the right are as follows:

Alr.0) = {1 it [prel=|(b—1) el vbenVeeo
0 otherwise
We use now the standard fact that for 7,0 € P(p) satisfying A(m,0) = 1 we have:
|| +]o] <p+1

In addition, the equality case is well-known to happen when 7,0 € NC(p) are inverse
to each other, via Kreweras complementation. This shows that for 7 ¢ NC(p) we have:

Cr = O(KP?)
Also, this shows that for 7 € NC(p) we have:
Cr ~ M=t N=1Npin=1
alml=1 gp=iml op=1
Thus, we have obtained the result. U
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We denote by D the dilation operation, given by:
D, (law(X)) = law(rX)
With this convention, we have the following result:

THEOREM 16.22. With M = aK, N = fK, K — 0o we have:

1 1
=(1l——— |0+ —=D
2 ( oBK? > 0+ oprz D (Mass)
In particular with o = 8 we have:

1 1
w= (1= o) o+ gl

PROOF. At o = 3, this follows from Proposition 16.21. In general now, we have:

c
P~ [w|=1 gp—|n]|
~ E o™
Kr—1

TeNC(p

0]

TeNC(p)

= —/xpdﬂa/g

When o > 3, where dr,/5(x) = @a/s(x)dz is continuous, we obtain:

1
o = i [BKePewaorts

1
= _— fL‘p d$
B / rer (5K)
But this gives the formula in the statement. When o < 3 the computation is similar,
with a Dirac mass as 0 dissapearing and reappearing, and gives the same result. Il

Let us state as well an explicit result, regarding densities:

THEOREM 16.23. With M = aK, N = fK, K — oo we have:

B 1 1 VA4aBK? — (z — aK — BK)?
H= <1 B aﬂ—K> % afK? ' 2 du

In particular with o = 8 we have:

1 1 ek 1
=(1-—=]6 S A
a ( a2K2) 0+a2K2 27
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PROOF. According to the formula for the density of the free Poisson law, the density
of the continuous part D i (mayp) is indeed given by:

V4 - Gr ~1-5P  /IapR? = (= aK = BKP
2 -

X
R 2mx

With a = § now, we obtain the second formula in the statement, and we are done. [
Observe that at « = =1, where M = N = K — oo, the above measure is:

1 1
n = <1_ﬁ) 50+FD%(7T1)

This measure is supported by [0,4K]. On the other hand, since the groups I'y; v are
all amenable, the corresponding measures are supported on [0, M N], and so on [0, K*] in
the M = N = K situation. The fact that we do not have a convergence of supports is
not surprising, because our convergence is in moments.

We have as well the following result, which includes computations from [9]:
THEOREM 16.24. Given two finite abelian groups G, H, having cardinalities
Gl =M

|H| =N

consider the main character x of the quantum group associated to Faxm. We have then

X ) 1 1
AN (12— il
law(N ( M)50+M7rt
in moments, with M =tN — oo, where m; is the free Poisson law of parametert > 0. In
addition, this formula holds for any generic fiber of Faxp-

Proor. We already know that the second assertion holds, as explained above.

Regarding now the first assertion, which is from [9], our first claim is that for the
representation coming from the parametric matrix Foxgy we have the following formula,
where M = |G|, N = |H|, and the sets between brackets are sets with repetitions:

il,...,ir,al,...,ape {0,,M—1},
1 bi,....b,€{0,...,N—1},
[(Zx + aya by)7 (ix-i-l + a’y7by+1)|y = 1a s >p]
== [(zx + ay7by+l)7 (2.93-1-1 _I_ ay>by>‘y = 17 s 7p]7vx



390 16. FOURIER MODELS

Indeed, by using the general moment formula with K = Fg, L = Fy, we have:

o
1
- / Z Z anin @y Ui Qi Qi @i
= 7 T AT e a
M N " Q 1le 2b1 ilbl Qigb}, Qf{bg erb{ Qfgb{ Q%bg

rbl

1 Z Kzlj%Kz Kayp Kzt Kigjp Kaygy - Kagp Ky
— T
M7 e Ky Ky Ko Koy Kyl Koy Ko
gt
1 3 Lot Lazey  Lazpr Lazpt Layoy Latey  Larer Latey a0
- et ;U L
N o Loy Lazer  Latpt Liazey Latog Laty;  Larpy Latpy

Since we are in the Fourier matrix case, K = Fg, L = Fy, we can perform the sums
over j,a. To be more precise, the last two averages appearing above are respectively:

A(i) = HH5 ity )
Ay = ] H S(b2 + BT b b7 ))
Ty

We therefore obtain the following formula for the truncated moments of the main
character, where A is the product of Kronecker symbols constructed above:

r

Cp
1 1 T r T r
B / Q 1b1Q 2b1 Q'lbl Qi261 Qi{b’l’Qz}bg by i;})b’l“ dQ
= E T A1 e o - Y .
MN " AG)=Ab)=1 Q; ilb} 2b1 lle 1203 iTby L pr inbl < ilby

Now by integrating with respect to @ € (T¢*#)", we are led to counting the multi-
indices i, b satisfying several conditions. First, we have the following condition:

A(i) =A) =1
We have as well the following conditions, where the sets between brackets are by

definition sets with repetitions:

171 Ap1 271 2117 _ 511 171 271 271
[21b1 oo by by L zpbl]_[zlbz oo apby agby zpbp]

p-p

NN rpr slpr pr] . [srhr rpr slpr 1pr
[zlbl coooubl oAbl L zpbl] = [zle coe b7 by zpbp}

p°p
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In a more compact notation, the moment formula that we obtain in this way is there-
fore as follows:

r 1 . . LT ;T -z
= et {1 H]A0 = A0 = 1 5857

Now observe that the above Kronecker type conditions A(z) = A(b) = 1 tell us that
the arrays of indices i = (4y), b = (by) must be of the following special form:

it i3], v |

Yy y+

Zi Z; i1+a1 i1+ap
@}n z'; tar ... i ta
by ... b, Ji+tb ... j1tb
bl b, Jrtbi oo gt by

Here all the new indices i, j,, a,, b, are uniquely determined, up to a choice of iy, j;.
Now by replacing 7, b with these new indices i, j;, ay,b,, with a M N factor added,

Yy
which accounts for the choice of i, j;, we obtain the following formula:
o= 1 # i ] a b’ [(Zx + ayajx + by)7 (Zz-i—l + ayajx._l' by-i-l)]
P~ (MN)+ "= (i + ay, Je + bys1), (feg1 + ay, Ju + by)], Va

Now observe that we can delete if we want the j, indices, which are irrelevant. Thus,
we obtain the announced formula. The continuation is via combinatorics, see [9]. U

There are many interesting questions that are still open, regarding the computation
of the spectral measure in the case where the parameter matrix () is not generic, and
also regarding the computation for the deformations of the generalized Fourier matrices,
which are not necessarily of Dita type.

We refer here to [9], [12], [31] and related papers.

16e. Exercises

To start with, we have the following exercise from the previous chapter, which is
related to the above, and that we reproduce here, in case you have not solved it yet:

EXERCISE 16.25. Write down a complete, simplified proof for the factorization

C(Sxu) My (C)

\/

C(Si b Gu)

L

found in the previous chapter, for L = H ®¢ K, in the scalar matriz case.
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This exercise is important, because it is related to the first factorization performed in
this chapter, in the context of the Fourier models.

As a second exercise now, which is considerably more difficult, in relation with the
more advanced theory developed in the above, we have:

EXERCISE 16.26. Work out the combinatorial details of the computation for the generic
fibers, as outlined in the proof of Theorem 15.24 above.

This is actually quite unobvious, but finding the relevant literature and writing up a
concise account of what is done there would do.

In the same spirit, as a third and final exercise, we have:

EXERCISE 16.27. Do some computations for the deformations of Fy, at non generic
values of the parameter, and write down what you found.

Here there are a few basic things to be done, at certain special values of the parameter,
by using the theory developed in the previous chapters. For more advanced results,
however, the thing to do is, as for the previous exercise, to find the relevant literature,
and write down a concise account of what is done there.
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