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COMPLEX HADAMARD MATRICES AND APPLICATIONS

TEO BANICA

Abstract. A complex Hadamard matrix is a square matrix H ∈MN (C) whose entries
are on the unit circle, |Hij | = 1, and whose rows and pairwise orthogonal. The main

example is the Fourier matrix, FN = (wij) with w = e2πi/N . We discuss here the basic
theory of such matrices, with emphasis on geometric and analytic aspects.
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Introduction

A complex Hadamard matrix is a square matrix H ∈ MN(C) whose entries are the
unit circle, |Hij| = 1, and whose rows are pairwise orthogonal with respect to the usual
scalar product of CN . These matrices appear in connection with many questions, the
basic example being the Fourier matrix, which is as follows, with w = e2πi/N :

FN = (wij)ij

In standard matrix form, and with the standard discrete Fourier analysis convention
that the indices vary as i, j = 0, 1, . . . , N − 1, this matrix is as follows:

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
...

1 wN−1 w2(N−1) . . . w(N−1)2


Observe that this matrix is indeed Hadamard, with the orthogonality formulae between

rows coming from the fact that the barycenter of any centered regular polygon is 0. This
matrix is the matrix of the discrete Fourier transform over ZN , and the arbitrary complex
Hadamard matrices can be thought of as being “generalized Fourier matrices”.

As an illustration, the complex Hadamard matrices cover in fact all the classical discrete
Fourier transforms. Consider indeed the Fourier coupling of an arbitrary finite abelian

group G, regarded via the isomorphism G ' Ĝ as a square matrix, FG ∈MG(C):

FG =< i, j >i∈G,j∈Ĝ

For the cyclic group G = ZN we obtain in this way the above matrix FN . In gen-
eral, we can write G = ZN1 × . . . × ZNk , and modulo some standard identifications, the
corresponding Fourier matrix decomposes then over components, as follows:

FG = FN1 ⊗ . . .⊗ FNk
Now since the tensor product of complex Hadamard matrices is Hadamard, we conclude

that this generalized Fourier matrix FG is a complex Hadamard matrix.

The above generalization is particularly interesting when taking as input the groups
G = Zn2 . Indeed, for such groups the corresponding Fourier matrices are real. As a first
example here, at n = 1 we obtain the Fourier matrix F2, which is as follows:

F2 =

(
1 1
1 −1

)
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This matrix is also denoted W2, and called first Walsh matrix. At n = 2 now, we obtain
the second Walsh matrix, W4 = W2 ⊗W2, which is given by:

W4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


In general, we obtain in this way the tensor powers W2n = F⊗n2 of the Fourier matrix

F2, having size N = 2n, called Walsh matrices, and having many applications.

The world of the real Hadamard matrices, H ∈ MN(±1), is quite fascinating, hav-
ing deep ties with combinatorics, coding, and design theory. Due to the orthogonality
conditions between the first 3 rows, the size of such a matrix must satisfy:

N ∈ {2} ∪ 4N

The celebrated Hadamard Conjecture (HC), which is more than 100 years old, and is
one of the most beautiful problems in combinatorics, and mathematics in general, states
that real Hadamard matrices should exist at any N ∈ 4N. Famous as well is the Circulant
Hadamard Conjecture (CHC), which is more than 50 years old, stating that the following
“conjugate” of the above matrix W4, and its other conjugates, are the unique circulant
real Hadamard matrices, and this regardless of the value of N ∈ N:

K4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


There are many other interesting questions regarding the real Hadamard matrices,

mostly of algebraic nature, but with some subtle analytic aspects as well.

Getting back now to the general complex case, H ∈ MN(T), the situation here is
quite different. We know that at any N ∈ N we have the Fourier matrix FN , so the HC
dissapears. The CHC dissapears in fact as well, because the Fourier matrix FN can be
put in circulant form, up to some simple operations on the rows and columns. As an
example, consider the Fourier matrix F3, which is as follows, with w = e2πi/3:

F3 =

1 1 1
1 w w2

1 w2 w


By doing some suitable manipulations on the rows and columns, namely permuting

them, or multiplying them by numbers w ∈ T, which are operations which preserve the
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class of complex Hadamard matrices, we can put F3 in circulant form, as follows:

F ′3 =

w 1 1
1 w 1
1 1 w


The situation at general N ∈ N is similar, and as a conclusion, both the HC and CHC

dissapear, in the general complex setting H ∈ MN(T). It is possible however to recover
these conjectures, in a more complicated form, by looking at the Hadamard matrices
H ∈MN(Zs) having as entries roots of unity of a given order s ∈ N.

In the purely complex case, where H ∈MN(T) is allowed to have non-roots of unity as
entries, the whole subject rather belongs to geometry. Indeed, for a matrix H ∈MN(T),

the orthogonality condition between the rows tells us that the rescaled matrix U = H/
√
N

must be unitary. Thus, the N × N complex Hadamard matrices form a real algebraic
manifold, appearing as an intersection of smooth manifolds, as follows:

XN = MN(T) ∩
√
NUN

This intersection is far from being smooth, and generally speaking, the study of the
complex Hadamard matrices belongs to real algebraic geometry, and more specifically to
a real algebraic geometry of rather arithmetic type, related to Fourier analysis.

As an illustration for the various phenomena that might appear, let us briefly discuss
now the classification of the complex Hadamard matrices, at small values of N ∈ N.
At N = 2, 3 the situation is elementary, with F2, F3 being the unique matrices, up to
equivalence. At N = 4 now, the solutions are the affine deformations of the Walsh matrix
W4, depending on complex number of modulus one q ∈ T, as follows:

W q
4 =


1 1 1 1
1 −1 1 −1
1 q −1 −q
1 −q −1 q


At N = 5 now, the situation becomes quite complicated, but Haagerup was able to

prove in [69] that, up to equivalence as usual, the unique complex Hadamard matrix is
the Fourier matrix F5, which is as follows, with w = e2πi/5:

F5 =


1 1 1 1 1
1 w w2 w3 w4

1 w2 w4 w w3

1 w3 w w4 w2

1 w4 w3 w2 w


At N = 6 the complex Hadamard matrices are not classified yet, but there are many

known interesting examples. First, since 6 = 2 × 3 is a composite number, the Fourier
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matrix F6 admits certain affine deformations, which are well understood. Next, we have
the following matrix from [69], depending on a parameter on the unit circle, q ∈ T:

Hq
6 =


1 1 1 1 1 1
1 −1 i i −i −i
1 i −1 −i q −q
1 i −i −1 −q q
1 −i q̄ −q̄ i −1
1 −i −q̄ q̄ −1 i


We have as well the following matrix discovered and used by Tao in [131], with w =

e2πi/3, which has the property of being “isolated”, in an appropriate sense:

T6 =


1 1 1 1 1 1
1 1 w w w2 w2

1 w 1 w2 w2 w
1 w w2 1 w w2

1 w2 w2 w 1 w
1 w2 w w2 w 1


As explained in [17], up to the Hadamard equivalence relation, the above-mentioned

matrices are the only ones at N = 6, whose combinatorics is based on the roots of unity.
Finally, at N = 7, even the matrices whose combinatorics is based on the roots of unity
are not classified yet. Conjecturally, there are only 2 such matrices, namely the Fourier
matrix F7, and a parametric matrix P q

7 , constructed by Petrescu in [111] by using a
computer, and which was later put in a design theory framework by Szöllősi [127].

Passed these difficult structure and classification problems, the complex Hadamard ma-
trices remain however something very nice, and constructive. From an abstract viewpoint
these matrices can be thought of as being “generalized Fourier matrices”, and due to this
fact, they appear in a wide array of questions in mathematics and physics:

(1) Operator algebras. One important concept in the theory of von Neumann algebras
[99], [100], [101], [141] is that of a maximal abelian subalgebra (MASA). In the “finite”
case, where the algebra has a trace, one can talk about pairs of orthogonal MASA. And
in the simplest such case, that of the matrix algebra MN(C), the orthogonal MASA are,
up to conjugation, A = ∆, B = H∆H∗, where ∆ ⊂ MN(C) are the diagonal matrices,
and H ∈MN(C) is Hadamard, as discovered by Popa some 30 years ago [113].

(2) Subfactor theory. Along the same lines, but at a more advanced level, associated
to any Hadamard matrix H ∈ MN(C) is the square diagram C ⊂ ∆, H∆H∗ ⊂ MN(C)
formed by the associated MASA, which is a commuting square in the sense of subfactor
theory. The Jones basic construction produces, out of this diagram, an index N subfactor
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of the Murray-von Neumann hyperfinite II1 factor R, whose study a key problem. The
corresponding planar algebra was computed by Jones in [81].

(3) Quantum groups. Associated to any complex Hadamard matrix H ∈ MN(C) is a
certain quantum permutation group G ⊂ S+

N , obtained by factorizing the flat representa-
tion π : C(S+

N) → MN(C) associated to H, with this construction heavily relying on the
work of Woronowicz [149], [150] and Wang [142]. As a basic example, the Fourier matrix
FG produces the group G itself. In general, as explained in [7], the above-mentioned
subfactor can be recovered from G, whose computation is a key problem.

(4) Lattice models. According to the work of Jones [78], [79], [80], [81], the combina-
torics of the subfactor associated to a complex Hadamard matrix H ∈ MN(C) can be
thought of as being the combinatorics of a certain “spin model”, in the context of statisti-
cal mechanics, taken in an abstract sense. By the above this spin model combinatorics can
be recovered from the representation theory of the associated quantum group G ⊂ S+

N , a
bit in the spirit of [65], although this still remains to be worked out.

Our aim here is to survey this material, theory and applications of the complex Ha-
damard matrices, with emphasis on geometric and analytic aspects. Organizing all this
was not easy, and we have chosen an algebra/geometry/analysis/physics lineup for our
presentation, vaguely coming from the amount of background which is needed:

(1) Sections 1-4 discuss the basic theory in the real case.

(2) Sections 5-8 deal with various algebraic and geometric aspects.

(3) Sections 9-12 are concerned with various analytic considerations.

(4) Sections 13-16 deal with various mathematical physics aspects.
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Finally, many thanks go to my cats, for advice with hunting techniques, martial arts,
and more. When doing linear algebra, all this knowledge is very useful.



HADAMARD MATRICES 7

1. Hadamard matrices

We will be mainly interested in this book in the complex Hadamard matrices, but we
will start with some beautiful pure mathematics, regarding the real case. The definition
that we need, going back to 19th century work of Sylvester [124], on topics such as
tessellated pavements and ornamental tile-work, is as follows:

Definition 1.1. An Hadamard matrix is a square binary matrix,

H ∈MN(±1)

whose rows are pairwise orthogonal, with respect to the scalar product on RN .

There are many examples of such matrices, and we will discuss this, in what follows.
To start with, here is an example, which is a particularly beautiful one:

K4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


As a first observation, we do not really need real numbers in order to talk about the

Hadamard matrices, because we have:

Proposition 1.2. A binary matrix H ∈ MN(±1) is Hadamard when its rows have the
property that, when comparing any two of them

e1 . . . eN
f1 . . . fN

the number of matchings (ei = fi) equals the number of mismatchings (ei 6= fi).

Proof. This is clear from definitions. Indeed, the scalar product on RN is given by:

< x, y >=
∑
i

xiyi

Thus, when computing the scalar product between two rows, the matchings contribute
with 1 factors, and the mismatchings with −1 factors, and this gives the result. �

Thus, we can replace if we want the 1,−1 entries of our matrix by any two symbols, of
our choice. Here is an example of an Hadamard matrix, written with this convention:

♥ ♥ ♥ ♥
♥ ♣ ♥ ♣
♥ ♥ ♣ ♣
♥ ♣ ♣ ♥

However, it is probably better to run away from this, and use real numbers instead,
as in Definition 1.1, with the idea in mind of connecting the Hadamard matrices to the
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foundations of modern mathematics, namely Calculus 1 and Calculus 2. So, getting back
now to the real numbers, here is our first result:

Theorem 1.3. For a square matrix H ∈MN(±1), the following are equivalent:

(1) The rows of H are pairwise orthogonal, and so H is Hadamard.
(2) The columns of H are pairwise orthogonal, and so H t is Hadamard.

(3) The rescaled matrix U = H/
√
N is orthogonal, U ∈ ON .

Proof. The idea here is that the equivalence between (1) and (2) is not exactly obvious,
but both these conditions can be shown to be equivalent to (3), as follows:

(1) ⇐⇒ (3) Since the rows of U = H/
√
N have norm 1, this matrix is orthogonal

precisely when its rows are pairwise orthogonal. But this latter condition is equivalent to
the fact that the rows of H =

√
NU are pairwise orthogonal, as desired.

(2) ⇐⇒ (3) The same argument as above shows that H t is Hadamard precisely when

its rescaling U t = H t/
√
N is orthogonal. But since a matrix U ∈ MN(R) is orthogonal

precisely when its transpose U t ∈MN(R) is orthogonal, this gives the result. �

As an abstract consequence of the above result, let us record:

Theorem 1.4. The set of the N ×N Hadamard matrices is

YN = MN(±1) ∩
√
NON

where ON is the orthogonal group, the intersection being taken inside MN(R).

Proof. This follows from the equivalence (1) ⇐⇒ (3) in Theorem 1.3, which tells us that

an arbitrary H ∈MN(±1) belongs to YN if and only if it belongs to
√
NON . �

Summarizing, the set YN that we are interested in appears as a kind of set of “special
rational points” of the real algebraic manifold

√
NON . In the simplest case, N = 2, the

set Y2 consists precisely of the rational points of
√

2O2, as follows:

Theorem 1.5. The binary matrices H ∈M2(±1) are split 50-50 between Hadamard and
non-Hadamard, the Hadamard ones being as follows,(

1 1
1 −1

) (
1 1
−1 1

) (
1 −1
1 1

) (
−1 1
1 1

)
(

1 −1
−1 −1

) (
−1 1
−1 −1

) (
−1 −1
1 −1

) (
−1 −1
−1 1

)
and the non-Hadamard ones being the remaining ones. Also, we have Y2 = M2(Q)∩

√
2O2,

with the intersection being taken inside MN(R).
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Proof. There are two assertions to be proved, which are both elementary:

(1) In what regards the classification, this is best done by using the Hadamard matrix
criterion from Proposition 1.2, which at N = 2 simply tells us that, once the first row
is chosen, the choices for the second row, as for our matrix to be Hadamard, are exactly
50%. The solutions are those in the statement, listed according to the lexicographic order,
with respect to the standard way of reading, left to right, and top to bottom.

(2) In order to prove the second assertion, we use the fact that O2 consists of 2 types
of matrices, namely rotations Rt and symmetries St. To be more precise, we first have
the rotation of angle t ∈ R, which is given by the following formula:

Rt =

(
cos t − sin t
sin t cos t

)
We also have the symmetry with respect to the Ox axis rotated by t/2 ∈ R:

St =

(
cos t sin t
sin t − cos t

)
Now by multiplying everything by

√
2, we are led to the following formula:

√
2O2 =

{(
c −s
s c

)
,

(
c s
s −c

) ∣∣∣c2 + s2 = 2

}
In order to find now the matrices from

√
2O2 having rational entries, we must solve the

equation x2 +y2 = 2z2, over the integers. But this is equivalent to y2−z2 = z2−x2, which
is impossible, unless when x2 = y2 = z2. Thus, the rational points come from c2 = s2 = 1,
and so we have 2× 2× 2 = 8 rational points, which can only be the points of Y2. �

At higher values of N , we cannot expect YN to consist of the rational points of
√
NON .

As a basic counterexample, we have the following matrix, which is not Hadamard:
2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 ∈ 2O4

Summarizing, it is quite unclear what YN is, geometrically speaking. We can, however,
solve this question by using complex numbers, in the following way:

Theorem 1.6. The Hadamard matrices appear as the real points,

YN = MN(R) ∩XN

of the complex Hadamard matrix manifold, which is given by:

XN = MN(T) ∩
√
NUN

Thus, YN is the real part of an intersection of smooth real algebraic manifolds.
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Proof. This is a version of Theorem 1.4, which can be established in two ways:

(1) We can either define a complex Hadamard matrix to be a matrix H ∈MN(T) whose
rows are pairwise orthogonal, with respect to the scalar product of CN , then work out a
straightforward complex analogue of Theorem 1.3, which gives the formula of XN in the
statement, and then observe that the real points of XN are the Hadamard matrices.

(2) Or, we can directly use Theorem 1.4, which formally gives the result, as follows:

YN = MN(±1) ∩
√
NON

=
[
MN(R) ∩MN(T)

]
∩
[
MN(R) ∩

√
NUN

]
= MN(R) ∩

[
MN(T) ∩

√
NUN

]
= MN(R) ∩XN

We will be back to this, and more precisely with full details regarding (1), starting from
section 5 below, when studying the complex Hadamard matrices. �

Summarizing, the Hadamard matrices do belong to real algebraic geometry, but in
a quite subtle way. Let us discuss now the examples of Hadamard matrices, with a
systematic study at N = 4, 6, 8, 10 and so on, continuing the study from Theorem 1.5. In
order to cut a bit from complexity, we can use the following notion:

Definition 1.7. Two Hadamard matrices are called equivalent, and we write H ∼ K,
when it is possible to pass from H to K via the following operations:

(1) Permuting the rows, or the columns.
(2) Multiplying the rows or columns by −1.

Given an Hadamard matrix H ∈ MN(±1), we can use the above two operations in
order to put H in a “nice” form. Although there is no clear definition for what “nice”
should mean, for the Hadamard matrices, with this being actually a quite subtle problem,
that we will discuss later on, here are two things that we can look for:

Definition 1.8. An Hadamard matrix is called dephased when it is of the form

H =

1 . . . 1
... ∗
1


that is, when the first row and the first column consist of 1 entries only.

Here the terminology comes from physics, or rather from the complex Hadamard ma-
trices. Indeed, when regarding H ∈ MN(±1) as a complex matrix, H ∈ MN(T), the −1
entries have “phases”, equal to π, and assuming that H is dephased means to assume
that we have no phases, on the first row and the first column.
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Observe that, up to the equivalence relation, any Hadamard matrix H ∈MN(±1) can
be put in dephased form. Moreover, the dephasing operation is unique, if we use only the
operations (2) in Definition 1.7, namely row and column multiplications by −1.

With the above notions in hand, we can formulate a nice classification result:

Theorem 1.9. There is only one Hadamard matrix at N = 2, namely

W2 =

(
1 1
1 −1

)
up to the above equivalence relation for such matrices.

Proof. The matrix in the statement W2, called Walsh matrix, is clearly Hadamard. Con-
versely, given H ∈MN(±1) Hadamard, we can dephase it, as follows:(

a b
c d

)
→
(

1 1
ac bd

)
→
(

1 1
1 abcd

)
Now since the dephasing operation preserves the class of the Hadamard matrices, we

must have abcd = −1, and so we obtain by dephasing the matrix W2. �

At N = 3 we cannot have examples, due to the orthogonality condition between the
rows, which forces N to be even, for obvious reasons. At N = 4 now, we have several
examples. In order to discuss them, let us start with:

Proposition 1.10. If H ∈ MM(±1) and K ∈ MN(±1) are Hadamard matrices, then so
is their tensor product, constructed in double index notation as follows:

H ⊗K ∈MMN(±1)

(H ⊗K)ia,jb = HijKab

In particular the Walsh matrices, WN = W⊗n
2 with N = 2n, are all Hadamard.

Proof. The matrix in the statement H ⊗K has indeed ±1 entries, and its rows Ria are
pairwise orthogonal, as shown by the following computation:

< Ria, Rkc > =
∑
jb

HijKab ·HkjKcb

=
∑
j

HijHkj

∑
b

KabKcb

= Mδik ·Nδac
= MNδia,kc

As for the second assertion, this follows from this, W2 being Hadamard. �
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Before going further, we should clarify a bit our tensor product notations. In order to
write H ∈MN(±1) the indices of H must belong to {1, . . . , N}, or at least to an ordered
set {I1, . . . , IN}. But with double indices we are indeed in this latter situation, because
we can use the lexicographic order on these indices. To be more precise, by using the
lexicographic order on the double indices, we have the following result:

Proposition 1.11. Given H ∈MM(±1) and K ∈MN(±1), we have

H ⊗K =

H11K . . . H1MK
...

...
HM1K . . . HMMK


with respect to the lexicographic order on the double indices.

Proof. We recall that the tensor product is given by (H⊗K)ia,jb = HijKab. Now by using
the lexicographic order on the double indices, we obtain:

H ⊗K =


(H ⊗K)11,11 (H ⊗K)11,12 . . . (H ⊗K)11,MN

(H ⊗K)12,11 (H ⊗K)12,12 . . . (H ⊗K)12,MN
...

...
...

...
...

...
(H ⊗K)MN,11 (H ⊗K)MN,12 . . . (H ⊗K)MN,MN



=


H11K11 H11K12 . . . H1MKMN

H11K21 H11K22 . . . H1MK2N
...

...
...

...
...

...
HM1KN1 HM1KN2 . . . HMMKNN


Thus, by making blocks, we are led to the formula in the statement. �

As a basic example for the tensor product construction, the matrix W4, obtained by
tensoring the matrix W2 with itself, is given by:

W4 =

(
W2 W2

W2 −W2

)
=


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


Getting back now to our classification work, here is the result at N = 4:

Theorem 1.12. There is only one Hadamard matrix at N = 4, namely

W4 = W2 ⊗W2

up to the standard equivalence relation for such matrices.
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Proof. Consider an Hadamard matrix H ∈M4(±1), assumed to be dephased:

H =


1 1 1 1
1 a b c
1 d e f
1 g h i


By orthogonality of the first 2 rows, we must have {a, b, c} = {−1,−1, 1}. Thus by

permuting the last 3 columns, we can assume that our matrix is as follows:

H =


1 1 1 1
1 −1 1 −1
1 m n o
1 p q r


Now by orthogonality of the first 2 columns, we must have {m, p} = {−1, 1}. Thus by

permuting the last 2 rows, we can further that our matrix is as follows:

H =


1 1 1 1
1 −1 1 −1
1 1 x y
1 −1 z t


But this gives the result, because the orthogonality of the rows gives x = y = −1.

Indeed, with these values of x, y plugged in, our matrix becomes:

H =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 z t


Now from the orthogonality of the columns we obtain z = −1, t = 1. Thus, up to

equivalence we have H = W4, as claimed. �

The case N = 5 is excluded, because the orthogonality condition between the rows
forces N ∈ 2N. The point now is that N = 6 is excluded as well, because we have:

Theorem 1.13. The size of an Hadamard matrix H ∈MN(±1) must satisfy

N ∈ {2} ∪ 4N

with this coming from the orthogonality condition between the first 3 rows.
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Proof. By permuting the rows and columns or by multiplying them by −1, as to rearrange
the first 3 rows, we can always assume that our matrix looks as follows:

H =


1 . . . . . . 1 1 . . . . . . 1 1 . . . . . . 1 1 . . . . . . 1
1 . . . . . . 1 1 . . . . . . 1 −1 . . .− 1 −1 . . .− 1
1 . . . . . . 1 −1 . . .− 1 1 . . . . . . 1 −1 . . .− 1
. . . . . . . . .︸ ︷︷ ︸

x

. . . . . . . . .︸ ︷︷ ︸
y

. . . . . . . . .︸ ︷︷ ︸
z

. . . . . . . . .︸ ︷︷ ︸
t


Now if we denote by x, y, z, t the sizes of the 4 block columns, as indicated, the orthog-

onality conditions between the first 3 rows give the following system of equations:

(1 ⊥ 2) : x+ y = z + t

(1 ⊥ 3) : x+ z = y + t

(2 ⊥ 3) : x+ t = y + z

The numbers x, y, z, t being such that the average of any two equals the average of the
other two, and so equals the global average, the solution of our system is:

x = y = z = t

We therefore conclude that the size of our Hadamard matrix, which is the number
N = x+ y + z + t, must be a multiple of 4, as claimed. �

Now back to our small N study, the case N = 6 being excluded, we have to discuss the
case N = 8. We will use here the 3×N matrix analysis from the proof of Theorem 1.13.
Let us start by giving a name to the rectangular matrices that we are interested in:

Definition 1.14. A partial Hadamard matrix (PHM) is a rectangular matrix

H ∈MM×N(±1)

whose rows are pairwise orthogonal, with respect to the scalar product of RN .

We refer to [72], [76], [119], [137] for a number of results regarding the PHM. In what
follows we will just develop some basic theory, useful in connection with our N = 8
questions, but we will be back to the PHM, on several occasions. We first have:

Definition 1.15. Two PHM are called equivalent when we can pass from one to the other
by permuting the rows or columns, or multiplying the rows or columns by −1. Also:

(1) We say that a PHM is in dephased form when its first row and its first column
consist of 1 entries.

(2) We say that a PHM is in standard form when it is dephased, with the 1 entries
moved to the left as much as possible, by proceeding from top to bottom.

With these notions in hand, let us go back now to the proof of Theorem 1.13. The
study there concerns the 3×N case, and we can improve this, as follows:
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Theorem 1.16. The standard form of the dephased PHM at M = 2, 3, 4 is as follows,
with ± standing respectively for various horizontal vectors filled with ±1,

H =

 + +
+︸︷︷︸
N/2

−︸︷︷︸
N/2



H =


+ + + +
+ + − −
+︸︷︷︸
N/4

−︸︷︷︸
N/4

+︸︷︷︸
N/4

−︸︷︷︸
N/4



H =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
a

−︸︷︷︸
b


and with a, b ∈ N being subject to the condition a+ b = N/4.

Proof. Here the 2 × N assertion is clear, and the 3 × N assertion is something that we
already know. Let us pick now an arbitrary partial Hadamard matrix H ∈ M4×N(±1),
assumed to be in standard form, as in Definition 1.15 (2). According to the 3×N result,
applied to the upper 3×N part of our matrix, our matrix must look as follows:

H =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+︸︷︷︸
x

−︸︷︷︸
x′

+︸︷︷︸
y′

−︸︷︷︸
y

+︸︷︷︸
z′

−︸︷︷︸
z

+︸︷︷︸
t

−︸︷︷︸
t′


To be more precise, our matrix must be indeed of the above form, with x, y, z, t and

x′, y′, z′, t′ being certain integers, subject to the following relations:

x+ x′ = y + y′ = z + z′ = t+ t′ =
N

4
In terms of these parameters, the missing orthogonality conditions are:

(1 ⊥ 4) : x+ y′ + z′ + t = x′ + y + z + t′

(2 ⊥ 4) : x+ y′ + z + t′ = x′ + y + z′ + t

(3 ⊥ 4) : x+ y + z′ + t′ = x′ + y′ + z + t

Now observe that these orthogonality conditions can be written as follows:

(x− x′)− (y − y′)− (z − z′) + (t− t′) = 0

(x− x′)− (y − y′) + (z − z′)− (t− t′) = 0

(x− x′) + (y − y′)− (z − z′)− (t− t′) = 0
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Thus x−x′ = y− y′ = z− z′ = t− t′, and so the conditions to be satisfied by the block
lengths are x = y = z = t = a and x′ = y′ = z′ = t′ = b, with a, b ∈ N being subject to
the condition a+ b = N/4. Thus, we are led to the conclusion in the statement. �

In the case N = 8, we have the following more precise result:

Proposition 1.17. There are exactly two 4× 8 partial Hadamard matrices, namely

I = (W4 W4) , J = (W4 K4)

us to the standard equivalence relation for such matrices.

Proof. We use the last assertion in Theorem 1.16, regarding the 4×N partial Hadamard
matrices, at N = 8. In the case a = 2, b = 0, the solution is:

P =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+ + − − − − + +


In the case a = 1, b = 1, the solution is:

Q =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+ − + − + − + −


Finally, in the case a = 0, b = 2, the solution is:

R =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
− − + + + + − −


Now observe that, by permuting the columns of P , we can obtain the following matrix,

which is precisely the matrix I = (W4 W4) from the statement:

I =


+ + + + + + + +
+ − + − + − + −
+ + − − + + − −
+ − − + + − − +


Also, by permuting the columns of Q, we can obtain the following matrix, which is

equivalent to the matrix J = (W4 K4) from the statement:

J ′ =


+ + + + + + + +
+ − + − − − + +
+ + − − − + − +
+ − − + − + + −


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Finally, regarding the last solution, R, by switching the sign on the last row we obtain
R ∼ P , and so we have R ∼ P ∼ I, which finishes the proof. �

We can now go back to the usual, square Hadamard matrices, and we have:

Theorem 1.18. The third Walsh matrix, namely

W8 =

(
W4 W4

W4 −W4

)
is the unique Hadamard matrix at N = 8, up to equivalence.

Proof. We use Proposition 1.17, which splits the discussion into two cases:

Case 1. We must look here for completions of the following matrix I:

I =


1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1


Let us first try to complete this partial 4 × 8 Hadamard matrix into a partial 5 × 8

Hadamard matrix. The completion must look as follows:

I ′ =


1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
a b c d a′ b′ c′ d′


The system of equations for the orthogonality conditions is as follows:

(1 ⊥ 5) : a+ b+ c+ d+ a′ + b′ + c′ + d′ = 0

(2 ⊥ 5) : a− b+ c− d+ a′ − b′ + c′ − d′ = 0

(3 ⊥ 5) : a+ b− c− d+ a′ + b′ − c′ − d′ = 0

(4 ⊥ 5) : a− b− c+ d+ a′ − b′ − c′ + d′ = 0

Now observe that this system of equations can be written as follows:

(a+ a′) + (b+ b′) + (c+ c′) + (d+ d′) = 0

(a+ a′)− (b+ b′) + (c+ c′)− (d+ d′) = 0

(a+ a′) + (b+ b′)− (c+ c′)− (d+ d′) = 0

(a+ a′)− (b+ b′)− (c+ c′) + (d+ d′) = 0

Since the matrix of this latter system is the Walsh W4, which is Hadamard, and so
rescaled orthogonal, and in particular invertible, the solution is:

(a′, b′, c′, d′) = −(a, b, c, d)
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Thus, in order to complete I into a partial 5 × 8 Hadamard matrix, we can pick any
vector (a, b, c, d) ∈ (±1)4, and then set (a′, b′, c′, d′) = −(a, b, c, d).

Now let us try to complete I into a full Hadamard matrix H ∈ M8(±1). By using the
above observation, applied to each of the 4 lower rows of H, we conclude that H must be
of the following special form, with L ∈M4(±1) being a certain matrix:

H =

(
W4 W4

L −L

)
Now observe that, in order for H to be Hadamard, L must be Hadamard. Thus, the

solutions are those above, with L ∈M4(±1) being Hadamard.

As a third step now, let us recall from Theorem 1.12 that we must have L ∼ W4.
However, in relation with our problem, we cannot really use this in order to conclude
directly that we have H ∼ W8. To be more precise, in order not to mess up the structure
of I = (W4 W4), we are allowed now to use only operations on the rows. And the
conclusion here is that, up to equivalence, we have 2 solutions, as follows:

P =

(
W4 W4

W4 −W4

)
, Q =

(
W4 W4

K4 −K4

)
We will see in moment that these two solutions are actually equivalent, but let us pause

now our study of Case 1, after all this work done, and discuss Case 2.

Case 2. Here we must look for completions of the following matrix J :

J =


1 1 1 1 −1 1 1 1
1 −1 1 −1 1 −1 1 1
1 1 −1 −1 1 1 −1 1
1 −1 −1 1 1 1 1 −1


Let us first try to complete this partial 4 × 8 Hadamard matrix into a partial 5 × 8

Hadamard matrix. The completion must look as follows:

J ′ =


1 1 1 1 −1 1 1 1
1 −1 1 −1 1 −1 1 1
1 1 −1 −1 1 1 −1 1
1 −1 −1 1 1 1 1 −1
a b c d x y z t


The system of equations for the orthogonality conditions is as follows:

(1 ⊥ 5) : a+ b+ c+ d− x+ y + z + t = 0

(2 ⊥ 5) : a− b+ c− d+ x− y + z + t = 0

(3 ⊥ 5) : a+ b− c− d+ x+ y − z + t = 0

(4 ⊥ 5) : a− b− c+ d+ x+ y + z − t = 0
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When regarded as a system in x, y, z, t, the matrix of the system is K4, which is invert-
ible. Thus, the vector (x, y, z, t) is uniquely determined by the vector (a, b, c, d):

(a, b, c, d)→ (x, y, z, t)

We have 16 vectors (a, b, c, d) ∈ (±1)4 to be tried, and the first case, covering 8 of them,
is that of the row vectors of ±W4. Here we have an obvious solution, with (x, y, z, t)
appearing at right of (a, b, c, d) inside the following matrices, which are Hadamard:

R =

(
W4 K4

W4 −K4

)
, S =

(
W4 K4

−W4 K4

)
As for the second situation, this is that of the 8 vectors (a, b, c, d) ∈ (±1)4 which are

not row vectors of ±W4. But this is the same as saying that, up to permutations, we have
(a, b, c, d) = ±(−1, 1, 1, 1). In this case, and with + sign, the system of equations is:

−x+ y + z + t = −2

x− y + z + t = 2

x+ y − z + t = 2

x+ y + z − t = 2

By summing the first equation with the other ones we obtain:

y + z = y + t = z + t = 0

Thus y = z = t = 0, and this solution does not correspond to an Hadamard matrix.

Summarizing, we are done with the 5× 8 completion problem in Case 2, the solutions
coming from the rows of the matrices R, S given above. Now when using this, as for
getting up to full 8× 8 completions, the R, S cases obviously cannot mix, and so we are
left with the Hadamard matrices R, S above, as being the only solutions.

In order to conclude now, observe that we have R = Qt and R ∼ S. Also, it is
elementary to check that we have P ∼ Q, and this finishes the proof. �

At N = 12 now, we can use a construction due to Paley [109]. Let q = pr be an odd
prime power, and consider the quadratic character χ : Fq → {−1, 0, 1}, given by:

χ(a) =


0 if a = 0

1 if a = b2, b 6= 0

−1 otherwise

We can construct then the following matrix, with indices in Fq:

Qab = χ(b− a)

With these conventions, the Paley construction is as follows:
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Theorem 1.19. Given an odd prime power q = pr, construct Qab = χ(b − a) as above.
We have then constructions of Hadamard matrices, as follows:

(1) Paley 1: if q = 3(4) we have a matrix of size N = q + 1, as follows:

P 1
N = 1 +


0 1 . . . 1
−1
... Q
−1


(2) Paley 2: if q = 1(4) we have a matrix of size N = 2q + 2, as follows:

P 2
N =


0 1 . . . 1
1
... Q
1

 : 0→
(

1 −1
−1 −1

)
, ±1→ ±

(
1 1
1 −1

)

These matrices are skew-symmetric (H +H t = 2), respectively symmetric (H = H t).

Proof. In order to simplify the presentation, we will denote by 1 all the identity matrices,
of any size, and by I all the rectangular all-one matrices, of any size as well.

It is elementary to check that the matrix Qab = χ(a− b) has the following properties:

QQt = q1− I

QI = IQ = 0

In addition, we have the following formulae, which are elementary as well, coming from
the fact that −1 is a square in Fq precisely when q = 1(4):

q = 1(4) =⇒ Q = Qt

q = 3(4) =⇒ Q = −Qt

With these observations in hand, the proof goes as follows:

(1) With our conventions for the symbols 1 and I, explained above, the matrix in the
statement is as follows:

P 1
N =

(
1 I
−I 1 +Q

)
With this formula in hand, the Hadamard matrix condition follows from:

P 1
N(P 1

N)t =

(
1 I
−I 1 +Q

)(
1 −I
I 1−Q

)
=

(
N 0
0 I + 1−Q2

)
=

(
N 0
0 N

)
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(2) If we denote by G,F the matrices in the statement, which replace respectively the
0, 1 entries, then we have the following formula for our matrix:

P 2
N =

(
0 I
I Q

)
⊗ F + 1⊗G

With this formula in hand, the Hadamard matrix condition follows from:

(P 2
N)2 =

(
0 I
I Q

)2

⊗ F 2 +

(
1 0
0 1

)
⊗G2 +

(
0 I
I Q

)
⊗ (FG+GF )

=

(
q 0
0 q

)
⊗ 2 +

(
1 0
0 1

)
⊗ 2 +

(
0 I
I Q

)
⊗ 0

=

(
N 0
0 N

)
Finally, the last assertion is clear, from the above formulae relating Q,Qt. �

As an illustration for the above result, we have:

Theorem 1.20. We have Paley 1 and 2 matrices at N = 12, which are equivalent:

P 1
12 ∼ P 2

12

In fact, this matrix is the unique Hadamard one at N = 12, up to equivalence.

Proof. This is a mixture of elementary and difficult results, the idea being as follows:

(1) We have 12 = 11 + 1, with 11 = 3(4) being prime, so the Paley 1 construction
applies indeed, with the first row vector of Q being (0 +−+ + +−−−+−).

(2) Also, we have 12 = 2×5+2, with 5 = 1(4) being prime, so the Paley 2 construction
applies as well, with the first row vector of Q being (0 +−−+).

(3) It is routine to check that we have P 1
12 ∼ P 2

12, by some computations in the spirit
of those from the end of the proof of Theorem 1.18 above.

(4) As for the last assertion, regarding the global uniqueness, this is something quite
technical, requiring some clever block decomposition techniques. �

At N = 16 now, the situation becomes fairly complicated, as follows:

Theorem 1.21. The Hadamard matrices at N = 16 are as follows:

(1) We have the Walsh matrix W16.
(2) There are no Paley matrices.
(3) Besides W16, we have 4 more matrices, up to equivalence.



22 TEO BANICA

Proof. Once again, this is a mixture of elementary and more advanced results:

(1) This is clear.

(2) This comes from the fact that we have 16 = 15 + 1, with 15 not being a prime
power, and from the fact that we have 16 = 2× 7 + 2, with 7 6= 1(4).

(3) This is something very technical, basically requiring a computer. �

At N = 20 and bigger, the situation becomes extremely complicated, and the study is
usually done with a mix of advanced algebraic methods, and computer techniques. The
overall conclusion is the number of Hadamard matrices of size N ∈ 4N grows with N , and
in a rather exponential fashion. In particular, we are led in this way into:

Conjecture 1.22 (Hadamard Conjecture (HC)). There is at least one Hadamard matrix

H ∈MN(±1)

for any integer N ∈ 4N.

This conjecture, going back to the 19th century, is one of the most beautiful statements
in combinatorics, linear algebra, and mathematics in general. Quite remarkably, the
numeric verification so far goes up to the number of the beast:

N = 666

Our purpose now will be that of gathering some evidence for this conjecture. By using
the Walsh construction, we have examples at each N = 2n. We can add various examples
coming from the Paley 1 and Paley 2 constructions, and we are led to:

Theorem 1.23. The HC is verified at least up to N = 88, as follows:

(1) At N = 4, 8, 16, 32, 64 we have Walsh matrices.
(2) At N = 12, 20, 24, 28, 44, 48, 60, 68, 72, 80, 84, 88 we have Paley 1 matrices.
(3) At N = 36, 52, 76 we have Paley 2 matrices.
(4) At N = 40, 56 we have Paley 1 matrices tensored with W2.

However, at N = 92 these constructions (Walsh, Paley, tensoring) don’t work.

Proof. First of all, the numbers in (1-4) are indeed all the multiples of 4, up to 88. As for
the various assertions, the proof here goes as follows:

(1) This is clear.

(2) Here the number N − 1 takes the following values:

q = 11, 19, 23, 27, 43, 47, 59, 67, 71, 79, 83, 87

These are all prime powers, so we can apply the Paley 1 construction, in all these cases.

(3) Since N = 4(8) here, and N/2− 1 takes the values q = 17, 25, 37, all prime powers,
we can indeed apply the Paley 2 construction, in these cases.
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(4) At N = 40 we have indeed P 1
20 ⊗W2, and at N = 56 we have P 1

28 ⊗W2.

Finally, we have 92 − 1 = 7 × 13, so the Paley 1 construction does not work, and
92/2 = 46, so the Paley 2 construction, or tensoring with W2, does not work either. �

At N = 92 now, the situation is considerably more complicated, and we have:

Theorem 1.24. Assuming that A,B,C,D ∈MK(±1) are circulant, symmetric, pairwise
commute and satisfy the condition

A2 +B2 + C2 +D2 = 4K

the following 4K × 4K matrix

H =


A B C D
−B A −D C
−C D A −B
−D −C B A


is Hadamard, called of Williamson type. Moreover, such a matrix exists at K = 23.

Proof. We use the same method as for the Paley theorem, namely tensor calculus.
Consider the following matrices 1, i, j, k ∈M4(0, 1), called the quaternion units:

1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , i =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0



j =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , k =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


These matrices describe the positions of the A,B,C,D entries in the matrix H from

the statement, and so this matrix can be written as follows:

H = A⊗ 1 +B ⊗ i+ C ⊗ j +D ⊗ k
Assuming now that A,B,C,D are symmetric, we have:

HH t = (A⊗ 1 +B ⊗ i+ C ⊗ j +D ⊗ k)

(A⊗ 1−B ⊗ i− C ⊗ j −D ⊗ k)

= (A2 +B2 + C2 +D2)⊗ 1− ([A,B]− [C,D])⊗ i
−([A,C]− [B,D])⊗ j − ([A,D]− [B,C])⊗ k

Now assume that our matrices A,B,C,D pairwise commute, and satisfy as well the
condition in the statement, namely A2 +B2 +C2 +D2 = 4K. In this case, it follows from
the above formula that we have HH t = 4K, so we obtain indeed an Hadamard matrix.
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In general, finding such matrices is a difficult task, and this is where Williamson’s extra
assumption that A,B,C,D should be taken circulant comes from. Regarding now the
K = 23 construction, which produces an Hadamard matrix of order N = 92, this comes
via a computer search. We refer here to [34], [147]. �

Things get even worse at higher values of N , where more and more complicated con-
structions are needed. The whole subject is quite technical, and, as already mentioned,
human knowledge here stops so far at N = 666. See [1], [55], [57], [74], [86], [119].

As a conceptual finding on the subject, however, we have the recent theory of the
cocyclic Hadamard matrices, which is based on the following notion:

Definition 1.25. A cocycle on a finite group G is a matrix H ∈MG(±1) satisfying:

HghHgh,k = Hg,hkHhk

H11 = 1

If the rows of H are pairwise orthogonal, we say that H is a cocyclic Hadamard matrix.

Here the definition of the cocycles is the usual one, with the equations coming from the
fact that F = Z2 ×G must be a group, with multiplication as follows:

(u, g)(v, h) = (Hgh · uv, gh)

As a basic example here, the Walsh matrix H = W2n is cocyclic, coming from the group
G = Zn2 , with cocycle as follows:

Hgh = (−1)<g,h>

As explained in [56], and in other papers, many other known examples of Hadamard
matrices are cocyclic, and this leads to the following conjecture:

Conjecture 1.26 (Cocyclic Hadamard Conjecture). There is at least one cocyclic Hada-
mard matrix H ∈MN(±1), for any N ∈ 4N.

Having such a statement formulated is certainly a big advance with respect to the HC,
and this is probably the main achievement of modern Hadamard matrix theory. However,
in what regards a potential proof, there is no clear strategy here, at least so far.

We will be back to these questions in sections 13-16 below, with the remark that the
construction Zn2 → W2n can be extended as to cover all the Hadamard matrices, by
replacing Zn2 with a suitable quantum permutation group. However, in what regards the
potential applications to the HC, there is no clear strategy here either.
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2. Analytic aspects

We have seen so far that the algebraic theory of the Hadamard matrices, while very nice
at the elementary level, ultimately leads into some difficult questions. So, let us step now
into analytic questions. The first result here, found in 1893 by Hadamard [71], about 25
years after Sylvester’s 1867 founding paper [124], and which actually led to such matrices
being called Hadamard, is a determinant bound, as follows:

Theorem 2.1. Given a matrix H ∈MN(±1), we have

| detH| ≤ NN/2

with equality precisely when H is Hadamard.

Proof. We use here the fact, which often tends to be forgotten, that the determinant of a
system of N vectors in RN is the signed volume of the associated parallelepiped:

det(H1, . . . , HN) = ±vol < H1, . . . , HN >

This is actually the definition of the determinant, in case you have forgotten the basics
(!), with the need for the sign coming for having good additivity properties.

In the case where our vectors take their entries in ±1, we therefore have the following
inequality, with equality precisely when our vectors are pairwise orthogonal:

| det(H1, . . . , HN)| ≤ ||H1|| × . . .× ||HN || = (
√
N)N

Thus, we have obtained the result, straight from the definition of det. �

The above result suggests doing several analytic things, as for instance looking at the
maximizers H ∈MN(±1) of the quantity | detH|, at values N ∈ N which are not multiples
of 4. As a basic result here, at N = 3 the situation is as follows:

Proposition 2.2. For a matrix H ∈ M3(±1) we have | detH| ≤ 4, and this estimate is
sharp, with the equality case being attained by the matrix

Q3 =

1 1 1
1 1 −1
1 −1 1


and its conjugates, via the Hadamard equivalence relation.

Proof. In order to get started, observe that Theorem 2.1 above provides us with the
following bound, which is of course not sharp, detH being an integer:

| detH| ≤ 3
√

3 = 5.1961..

Now observe that, detH being a sum of six ±1 terms, it must be en even number. Thus,
we obtain | detH| ≤ 4. Our claim now is that the following happens, with the nonzero
situation appearing precisely for the matrix Q3 in the statement, and its conjugates:

detH ∈ {−4, 0, 4}
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Indeed, let us try to find the matrices H ∈ M3(±1) having the property detH 6= 0.
Up to equivalence, we can assume that the first row is (1, 1, 1). Then, once again up to
equivalence, we can assume that the second row is (1, 1,−1). And then, once again up to
equivalence, we can assume that the third row is (1,−1, 1). Thus, we must have:

H =

1 1 1
1 1 −1
1 −1 1


The determinant of this matrix being −4, we have proved our claim, and the last

assertion in the statement too, as a consequence of our study. �

In general, all this suggests the following definition:

Definition 2.3. A quasi-Hadamard matrix is a square binary matrix

H ∈MN(±1)

which maximizes the quantity | detH|.

We know from Theorem 2.1 that at N ∈ 4N such matrices are precisely the Hada-
mard matrices, provided that the Hadamard Conjecture holds at N . At values N /∈ 4N,
what we have are certain matrices which can be thought of as being “generalized Hada-
mard matrices”, the simplest examples being the matrix Q3 from Proposition 2.2, and its
Hadamard conjugates. For more on all this, we refer to [110].

As a comment, however, Proposition 2.2 might look a bit dissapointing, because it is
hard to imagine that the matrix Q3 there, which is not a very interesting matrix, can
really play the role of a “generalized Hadamard matrix” at N = 3. We will come later
with more interesting solutions to this problem, a first solution being as follows:

K3 =
1√
3

−1 2 2
2 −1 2
2 2 −1


To be more precise, this matrix is of course not binary, but it is definitely an interesting

matrix, that we will see to be sharing many properties with the Hadamard matrices. We
have as well another solution to the N = 3 problem, which uses complex numbers, and
more specifically the number w = e2πi/3, which is as follows:

F3 =

1 1 1
1 w w2

1 w2 w


Once again, this matrix is not binary, and not even real, but it is an interesting matrix,

that we will see to be sharing as well many properties with the Hadamard matrices.
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As a conclusion, looking at the maximizers H ∈MN(±1) of the quantity | detH| is not
exactly an ideal method, when looking for analogues of the Hadamard matrices at the
forbidden size values N /∈ 4N, at least when N is small. The situation changes, however,
when looking at such questions at big values of N ∈ N. We have here:

Theorem 2.4. We have estimates of type

max
H∈MN (±1)

| detH| ' NN/2

which are valid in the N →∞ limit, modulo the Hadamard Conjectuere.

Proof. As already mentioned, this is just an informal statement, which is there as an
introduction to the subject, in the lack of something more precise, and elementary. There
are basically two ways of dealing with such questions, namely:

(1) A first idea is that of using the existence of an Hadamard matrix HN ∈ MN(±1),
at values N ∈ 4N, modulo the Hadamard Conjecture of course, and then completing it
into binary matrices HN+k of size N + 1, 2, 3, for instance in the following way:

HN+k =



1 . . . 1
HN

1 . . . 1
1 1 −1 1
...

...
. . .

1 1 1 −1


The determinant estimates for such matrices are however quite technical, and we refer

here to the literature on the subject [110].

(2) A second method is by using probability theory. The set of binary matrices MN(±1)
is of course a probability space, when endowed with the counting measure rescaled by
1/2N

2
, and the determinant can be regarded as a random variable on this space:

det : MN(±1)→ Z

The point now is that the distribution of this variable can be computed, in the N →∞
limit, and as a consequence, we can investigate the maximizers of | detH|. Once again,
all this is quite technical, and we refer here to the literature [133], [134]. �

From a “dual” point of view, the question of locating YN inside
√
NON , once again via

analytic methods, makes sense as well. The result here, from [19], is as follows:

Theorem 2.5. Given a matrix U ∈ ON we have

||U ||1 ≤ N
√
N

with equality precisely when H =
√
NU is Hadamard.
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Proof. We have indeed the following estimate, for any U ∈ ON , which uses the Cauchy-
Schwarz inequality, and the trivial fact that we have ||U ||2 =

√
N :

||U ||1 =
∑
ij

|Uij| ≤ N

(∑
ij

|Uij|2
)1/2

= N
√
N

The equality case holds when we have |Uij| = 1√
N

, for any i, j. But this amounts in

saying that H =
√
NU must satisfy H ∈MN(±1), as desired. �

We will need more general norms as well, so let record the following result:

Proposition 2.6. If ψ : [0,∞)→ R is strictly concave/convex, the quantity

F (U) =
∑
ij

ψ(U2
ij)

over UN is maximized/minimized by the rescaled Hadamard matrices, U = H/
√
N .

Proof. We recall that the Jensen inequality states that for ψ convex we have:

ψ

(
x1 + . . .+ xn

n

)
≤ ψ(x1) + . . .+ ψ(xn)

n

In our case, let us take n = N2 and:

{x1, . . . , xn} =
{
U2
ij

∣∣∣i, j = 1, . . . , N
}

We obtain that for any convex function ψ, the following holds:

ψ

(
1

N

)
≤ F (U)

N2

Thus we have the folloowing estimate:

F (U) ≥ N2ψ

(
1

N

)
Now by assuming as in the statement that ψ is strictly convex, the equality case holds

precisely when the numbers U2
ij are all equal, so when H =

√
NU is Hadamard.

The proof for concave functions is similar. �

Of particular interest for our considerations are the power functions ψ(x) = xp/2, which
are concave at p ∈ [1, 2), and convex at p ∈ (2,∞). These functions lead to:

Theorem 2.7. The rescaled versions U = H/
√
N of the Hadamard matrices H ∈

MN(±1) can be characterized as being:

(1) The maximizers of the p-norm on ON , at any p ∈ [1, 2).
(2) The minimizers of the p-norm on ON , at any p ∈ (2,∞].
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Proof. Consider indeed the p-norm on ON , which at p ∈ [1,∞) is given by:

||U ||p =

(∑
ij

|Uij|p
)1/p

By the above discussion, involving the functions ψ(x) = xp/2, Proposition 2.6 applies
and gives the results at p ∈ [1,∞), the precise estimates being as follows:

||U ||p =


≤ N2/p−1/2 if p < 2

= N1/2 if p = 2

≥ N2/p−1/2 if p > 2

As for the case p =∞, this follows with p→∞, or directly via Cauchy-Schwarz. �

As it was the case with the Hadamard determinant bound, all this suggests doing some
further geometry and analysis, this time on the Lie group ON , with a notion of “almost
Hadamard matrix” at stake. Let us formulate indeed, in analogy with Definition 2.3:

Definition 2.8. An optimal almost Hadamard matrix is a rescaled orthogonal matrix

H ∈
√
NON

which maximizes the 1-norm.

Here the adjective “optimal” comes from the fact that, in contrast with what happens
over MN(±1), in connection with the determinant bound, here over

√
NON we have more

flexibility, and we can talk if we want about the local maximizers of the 1-norm. These
latter matrices are called “almost Hadamard”, and we will investigate them in the next
section. Also, we will talk there about more general p-norms as well.

We know from Theorem 2.6 that at N ∈ 4N the absolute almost Hadamard matrices
are precisely the Hadamard matrices, provided that the Hadamard Conjecture holds at
N . At values N /∈ 4N, what we have are certain matrices which can be thought of as
being “generalized Hadamard matrices”, and are waiting to be investigated. Let us begin
with a preliminary study, at N = 3. The result here, from [19], is as follows:

Theorem 2.9. For any matrix U ∈ O3 we have the estimate

||U ||1 ≤ 5

and this is sharp, with the equality case being attained by the matrix

U =
1

3

−1 2 2
2 −1 2
2 2 −1


and its conjugates, via the Hadamard equivalence relation.
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Proof. By dividing by detU , we can assume that we have U ∈ SO3. We use the Euler-
Rodrigues parametrization for the elements of SO3, namely:

U =

x2 + y2 − z2 − t2 2(yz − xt) 2(xz + yt)
2(xt+ yz) x2 + z2 − y2 − t2 2(zt− xy)
2(yt− xz) 2(xy + zt) x2 + t2 − y2 − z2


Here (x, y, z, t) ∈ S3 come from the map SU2 → SO3. Now in order to obtain the

estimate, we linearize. We must prove that for any numbers x, y, z, t ∈ R we have:

|x2 + y2 − z2 − t2|+ |x2 + z2 − y2 − t2|+ |x2 + t2 − y2 − z2|
+2 (|yz − xt|+ |xz + yt|+ |xt+ yz|+ |zt− xy|+ |yt− xz|+ |xy + zt|)
≤ 5(x2 + y2 + z2 + t2)

The problem being symmetric in x, y, z, t, and invariant under sign changes, we may
assume that we have:

x ≥ y ≥ z ≥ t ≥ 0

Now if we look at the 9 absolute values in the above formula, in 7 of them the sign is
known, and in the remaining 2 ones the sign is undetermined.

More precisely, the inequality to be proved is:

(x2 + y2 − z2 − t2) + (x2 + z2 − y2 − t2) + |x2 + t2 − y2 − z2|
+2 (|yz − xt|+ (xz + yt) + (xt+ yz) + (xy − zt) + (xz − yt) + (xy + zt))

≤ 5(x2 + y2 + z2 + t2)

After simplification and rearrangement of the terms, this inequality reads:

|x2 + t2 − y2 − z2|+ 2|xt− yz|
≤ 3x2 + 5y2 + 5z2 + 7t2 − 4xy − 4xz − 2xt− 2yz

In principle we have now 4 cases to discuss, depending on the possible signs appearing
at left. It is, however, easier to proceed simply by searching for the optimal case.

First, by writing y = α + ε, z = α − ε and by making ε vary over the real line, we see
that the optimal case is when ε = 0, hence when y = z.

The case y = z = 0 or y = z = ∞ being clear, and not sharp, we can assume that we
have y = z = 1. Thus we must prove that for x ≥ 1 ≥ t ≥ 0 we have:

|x2 + t2 − 2|+ 2|xt− 1| ≤ 3x2 + 8 + 7t2 − 8x− 2xt

In the case xt ≥ 1 we have x2 + t2 ≥ 2, and the inequality becomes:

2xt+ 4x ≤ x2 + 3t2 + 6

In the case xt ≤ 1, x2 + t2 ≤ 2 we get:

x2 + 1 + 2t2 ≥ 2x
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In the remaining case xt ≤ 1, x2 + t2 ≥ 2 we get:

x2 + 4 + 3t2 ≥ 4x

But these inequalities are all true, and this finishes the proof of the estimate.
Now regarding the maximum, according to the above discussion this is attained at

(xyzt) = (1110) or at (xyzt) = (2110), plus permutations.
The corresponding matrix is, modulo permutations:

V =
1

3

 1 2 2
2 1 −2
−2 2 −1


For this matrix we have indeed ||V ||1 = 5, and we are done. �

In terms of Definition 2.8, the conclusion is as follows:

Theorem 2.10. The optimal almost Hadamard matrices at N = 3 are

K3 =
1√
3

−1 2 2
2 −1 2
2 2 −1


and its conjugates, via the Hadamard equivalence relation.

Proof. This is indeed a reformulation of Theorem 2.9, using Definition 2.8. �

The above result and the matrix K3 appearing there are quite interesting, because they
remind the Hadamard matrix K4 studied in section 1 above, given by:

K4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


To be more precise, all this suggests looking at the following matrices KN ∈

√
NON ,

having arbitrary size N ∈ N:

KN =
1√
N

2−N 2
. . .

2 2−N


These matrices are in general not optimal almost Hadamard, in the sense of Definition

2.8 above, for instance because at N = 2 or N = 8, 12, 16, . . . they are not Hadamard.
We will see in the next section that these matrices are however “almost Hadamard”, in
the sense that they locally maximize the 1-norm on

√
NON .

To summarize, the computation of the maximizers of the 1-norm on ON is a difficult
question, a bit like the computation of the maximizers of | det | on MN(±1) was, and
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looking instead at the local maximizers of the 1-norm on ON is the way to be followed,
with some interesting examples and combinatorics at stake. We will be back to this.

Let us discuss now, as a continuation of all this, an analytic reformulation of the
Hadamard Conjecture. Following [19], the starting statement here is:

Proposition 2.11. We have the following estimate,

sup
U∈ON

||U ||1 ≤ N
√
N

with equality if and only if there exists an Hadamard matrix of order N .

Proof. This follows indeed from the inequality ||U ||1 ≤ N
√
N , with equality in the rescaled

Hadamard matrix case, U = H/
√
N , from Theorem 2.5 above. �

We begin our study with the following observation:

Proposition 2.12. If the Hadamard conjecture holds, then

sup
U∈ON

||U ||1 ≥ (N − 4.5)
√
N

for any N ∈ N.

Proof. If N is a multiple of 4 we can use an Hadamard matrix, and we are done. In
general, we can write N = M + k with 4|M and 0 ≤ k ≤ 3, and use an Hadamard matrix
of order N , completed with an identity matrix of order k. This gives:

sup
U∈ON

||U ||1 ≥ M
√
M + k

≥ (N − 3)
√
N − 3 + 3

≥ (N − 4.5)
√
N + 3

Here the last inequality, proved by taking squares, is valid for any N ≥ 5. �

We would like to understand now which estimates on the quantity in Proposition 2.12
imply the Hadamard conjecture. We first have the following result:

Proposition 2.13. For any norm one vector U ∈ RN we have the formula

||U ||1 =
√
N

(
1− ||U −H||

2

2

)
where H ∈ RN is the vector given by:

Hi =
sgn(Ui)√

N
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Proof. We indeed have the following computation:

||U −H||2 =
∑
i

(
Ui −

sgn(Ui)√
N

)2

=
∑
i

U2
i −

2|Ui|√
N

+
1

N

= ||U ||2 − 2||U ||1√
N

+ 1

= 2− 2||U ||1√
N

But this gives the formula in the statement. �

Next, we have the following estimate, also from [19]:

Proposition 2.14. Let N be even, and let U ∈ ON be a matrix such that

H =
S√
N

is not Hadamard, where Sij = sgn(Uij). We have then the following estimate:

||U ||1 ≤ N
√
N − 1

N
√
N

Proof. Since H is not Hadamard, this matrix has two distinct rows H1, H2 which are not
orthogonal. Since N is even, we must have:

| < H1, H2 > | ≥
2

N

We obtain from this the following estimate:

||U1 −H1||+ ||U2 −H2|| ≥ | < U1 −H1, H2 > |+ | < U2 −H2, U1 > |
≥ | < U1 −H1, H2 > + < U2 −H2, U1 > |
= | < U2, U1 > − < H1, H2 > |
= | < H1, H2 > |

≥ 2

N
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Now by applying the estimate in Proposition 2.13 to U1, U2, we obtain:

||U1||1 + ||U2||1 =
√
N

(
2− ||U1 −H1||2 + ||U2 −H2||2

2

)
≤
√
N

(
2−

(
||U1 −H1||+ ||U2 −H2||

2

)2
)

≤
√
N

(
2− 1

N2

)
= 2

√
N − 1

N
√
N

By adding to this inequality the 1-norms of the remaining N − 2 rows, all bounded
from above by

√
N , we obtain the result. �

We can now answer the question raised above, as follows:

Theorem 2.15. If N is even and the following holds,

sup
U∈ON

||U ||1 ≥ N
√
N − 1

N
√
N

then the Hadamard conjecture holds at N .

Proof. Indeed, if the Hadamard conjecture does not hold at N , then the assumption of
Proposition 2.14 is satisfied for any U ∈ ON , and this gives the result. �

As a related result now, let us compute the average of the 1-norm on ON . We have
here the following estimate, from [19]:

Theorem 2.16. We have the following estimate,∫
ON

||U ||1 dU '
√

2

π
·N
√
N

valid in the N →∞ limit.

Proof. We use the well-known fact that the row slices of ON are all isomorphic to the
sphere SN−1, with the restriction of the Haar measure of ON corresponding in this way to
the uniform measure on SN−1. Together with a standard symmetry argument, this shows
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that the average of the 1-norm on ON is given by:∫
ON

||U ||1 dU =
∑
ij

∫
ON

|Uij| dU

= N2

∫
ON

|U11| dU

= N2

∫
SN−1

|x1| dx

We denote by I the integral on the right. By standard calculus, we obtain:

I =


2

π
· 2 · 4 · 6 . . . (N − 2)

3 · 5 · 7 . . . (N − 1)
(N even)

1 · 3 · 5 · 7 . . . (N − 2)

2 · 4 · 6 . . . (N − 1)
(N odd)

=


4M

πM

(
2M

M

)−1

(N = 2M)

4−M

(
2M

M

)
(N = 2M + 1)

Now by using the Stirling formula, we get:

I '


4M

πM
·
√
πM

4M
(N = 2M)

4−M · 4M√
πM

(N = 2M + 1)

=


1√
πM

(N = 2M)

1√
πM

(N = 2M + 1)

'
√

2

πN

Thus, we are led to the conclusion in the statement. �

The above result gives in particular the following estimate, in the N →∞ limit:

sup
U∈ON

||U ||1 ≥
√

2

π
·N
√
N
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In order to find better estimates, the problem is to compute the higher moments of the
1-norm, which are the following integrals, depending on a parameter k ∈ N:

Ik =

∫
ON

||U ||k1 dU

The computation of these integrals is however a difficult problem, and no concrete
applications to the Hadamard Conjecture have been found so far. See [19], [20].

Let us discuss now a third and final analytic topic, in connection with the bistochastic
Hadamard matrices. The motivation here comes from the fact that the bistochastic
matrices look better than their non-bistochastic counterparts. As an illustration here,
the Walsh matrix W4 looks better in its bistochastic form, which is the matrix K4:

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ∼

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


We have the following algebraic result on the subject, which shows in particular that

we cannot put any Hadamard matrix in bistochastic form:

Theorem 2.17. For an Hadamard matrix H ∈MN(C), the following are equivalent:

(1) H is bistochastic, with sums λ.
(2) H is row-stochastic, with sums λ, and λ2 = N .

In particular, is such a matrix exists, then N ∈ 4N must be a square.

Proof. Both the implications are elementary, as follows:

(1) =⇒ (2) If we denote by H1, . . . , HN ∈ (±1)N the rows of H, we have indeed:

N =
∑
i

< H1, Hi >

=
∑
j

H1j

∑
i

Hij

=
∑
j

H1j · λ

= λ2

(2) =⇒ (1) Consider the all-one vector ξ = (1)i ∈ RN . The fact that H is row-
stochastic with sums λ reads:∑

j

Hij = λ,∀i ⇐⇒
∑
j

Hijξj = λξi,∀i

⇐⇒ Hξ = λξ



HADAMARD MATRICES 37

Also, the fact that H is column-stochastic with sums λ reads:∑
i

Hij = λ,∀j ⇐⇒
∑
j

Hijξi = λξj,∀j

⇐⇒ H tξ = λξ

We must prove that the first condition implies the second one, provided that the row
sum λ satisfies λ2 = N . But this follows from the following computation:

Hξ = λξ =⇒ H tHξ = λH tξ

=⇒ Nξ = λH tξ

=⇒ H tξ = λξ

Thus, we have proved both the implications, and we are done. �

In practice now, the even Walsh matrices, having size N = 4n, which is a square as
required above, can be put in bistochastic form, as follows:

W4n ∼ K⊗n4

As for the odd Walsh matrices, having size N = 2 × 4n, these cannot be put in bis-
tochastic form. However, we can do this over the complex numbers, with the equivalence
being as follows at N = 2, and then by tensoring with K⊗n4 in general:(

1 1
1 −1

)
∼
(
i 1
1 i

)
This is quite interesting, and in general now, it is known from [75] that any complex

Hadamard matrix can be put in bistochastic form, by a certain non-explicit method.
Thus, we have here some theory to be developed. We will be back to this.

There is as well an analytic approach to these questions, based on:

Theorem 2.18. For an Hadamard matrix H ∈MN(±1), the excess,

E(H) =
∑
ij

Hij

satisfies |E(H)| ≤ N
√
N , with equality if and only if H is bistochastic.

Proof. In terms of the all-one vector ξ = (1)i ∈ RN , we have:

E(H) =
∑
ij

Hij =
∑
ij

Hijξjξi =
∑
i

(Hξ)iξi =< Hξ, ξ >

Now by using the Cauchy-Schwarz inequality, along with the fact that U = H/
√
N is

orthogonal, and hence of norm 1, we obtain, as claimed:

|E(H)| ≤ ||Hξ|| · ||ξ|| ≤ ||H|| · ||ξ||2 = N
√
N
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Regarding now the equality case, this requires the vectors Hξ, ξ to be proportional, and
so our matrix H to be row-stochastic. But since U = H/

√
N is orthogonal, we have:

Hξ ∼ ξ ⇐⇒ H tξ ∼ ξ

Thus our matrix H must be bistochastic, as claimed. �

One interesting question, that we would like to discuss now, is that of computing the
law of the excess over the equivalence class of H. Following [11], let us start with:

Definition 2.19. The glow of H ∈MN(±1) is the distribution of the excess,

E =
∑
ij

Hij

over the Hadamard equivalence class of H.

Since the excess is invariant under permutations of rows and columns, we can restrict

the attention to the matrices H̃ ' H obtained by switching signs on rows and columns.
More precisely, let (a, b) ∈ ZN2 × ZN2 , and consider the following matrix:

H̃ij = aibjHij

We can regard the sum of entries of H̃ as a random variable, over the group ZN2 × ZN2 ,
and we have the following equivalent description of the glow:

Proposition 2.20. Given a matrix H ∈ MN(±1), if we define ϕ : ZN2 × ZN2 → Z as the
excess of the corresponding Hadamard equivalent of H,

ϕ(a, b) =
∑
ij

aibjHij

then the glow is the probability measure on Z given by µ({k}) = P (ϕ = k).

Proof. The function ϕ in the statement can indeed be regarded as a random variable over
the group ZN2 × ZN2 , with this latter group being endowed with its uniform probability
measure P . The distribution µ of this variable ϕ is then given by:

µ({k}) =
1

4N
#
{

(a, b) ∈ ZN2 × ZN2
∣∣∣ϕ(a, b) = k

}
By the above discussion, this distribution is exactly the glow. �

The terminology in Definition 2.19 comes from the following picture. Assume that we
have a square city, with N horizontal streets and N vertical streets, and with street lights
at each crossroads. When evening comes the lights are switched on at the positions (i, j)
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where Hij = 1, and then, all night long, they are randomly switched on and off, with the
help of 2N master switches, one at the end of each street:

→ ♦ ♦ ♦ ♦
→ ♦ × ♦ ×
→ ♦ ♦ × ×
→ ♦ × × ♦

↑ ↑ ↑ ↑
With this picture in mind, µ describes indeed the glow of the city. At a more advanced

level now, all this is related to the Gale-Berlekamp game [67], [116]. In order to compute
the glow, it is useful to have in mind the following picture:

b1 . . . bN
↓ ↓

(a1) → H11 . . . H1N ⇒ S1
...

...
...

...
(aN) → HN1 . . . HNN ⇒ SN

Here the columns of H have been multiplied by the entries of the horizontal switching
vector b, the resulting sums on rows are denoted S1, . . . , SN , and the vertical switching
vector a still has to act on these sums, and produce the glow component at b. With this
picture in mind, we first have the following result, from [11]:

Proposition 2.21. The glow of a matrix H ∈MN(±1) is given by

µ =
1

2N

∑
b∈ZN2

β1(c1) ∗ . . . ∗ βN(cN)

where the measures on the right are convolution powers of Bernoulli laws,

βr(c) =

(
δr + δ−r

2

)∗c
and where cr = #{r ∈ |S1|, . . . , |SN |}, with S = Hb.

Proof. We use the interpretation of the glow explained above. So, consider the decompo-
sition of the glow over b components:

µ =
1

2N

∑
b∈ZN2

µb

With the notation S = Hb, as in the statement, the numbers S1, . . . , SN are the row

sums of H̃ij = Hijaibj. Thus the glow components are given by:

µb = law (±S1 ± S2 . . .± SN)
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By permuting now the sums on the right, we have the following formula:

µb = law
(
±0 . . .± 0︸ ︷︷ ︸

c0

±1 . . .± 1︸ ︷︷ ︸
c1

. . . . . . ±N . . .±N︸ ︷︷ ︸
cN

)
Now since the ± variables each follow a Bernoulli law, and these Bernoulli laws are

independent, we obtain a convolution product as in the statement. �

We will need the following elementary fact:

Proposition 2.22. Let H ∈MN(±1) be an Hadamard matrix of order N ≥ 4.

(1) The sums of entries on rows S1, . . . , SN are even, and equal modulo 4.
(2) If the sums on the rows S1, . . . , SN are all 0 modulo 4, then the number of rows

whose sum is 4 modulo 8 is odd for N = 4(8), and even for N = 0(8).

Proof. This is something elementary, the proof being as follows:

(1) Let us pick two rows of our matrix, and then permute the columns such that these
two rows look as follows:1 . . . . . . 1 1 . . . . . . 1 −1 . . .− 1 −1 . . .− 1

1 . . . . . . 1︸ ︷︷ ︸
a

−1 . . .− 1︸ ︷︷ ︸
b

1 . . . . . . 1︸ ︷︷ ︸
c

−1 . . .− 1︸ ︷︷ ︸
d


We have a + b + c + d = N , and by orthogonality we obtain a + d = b + c. Thus

a+ d = b+ c = N/2, and since N/2 is even we have b = c(2), which gives the result.

(2) In the case where H is “row-dephased”, in the sense that its first row consists of
1 entries only, the row sums are N, 0, . . . , 0, and so the result holds. In general now, by
permuting the columns we can assume that our matrix looks as follows:

H =

1 . . . . . . 1 −1 . . .− 1
...︸︷︷︸
x

...︸︷︷︸
y


We have x+ y = N = 0(4), and since the first row sum S1 = x− y is by assumption 0

modulo 4, we conclude that x, y are even. In particular, since y is even, the passage from

H to its row-dephased version H̃ can be done via y/2 double sign switches.
Now, in view of the above, it is enough to prove that the conclusion in the statement is

stable under a double sign switch. So, let H ∈MN(±1) be Hadamard, and let us perform
to it a double sign switch, say on the first two columns. Depending on the values of the
entries on these first two columns, the total sums on the rows change as follows:(

+ + . . . . . .
)

: S → S − 4(
+ − . . . . . .

)
: S → S(

− + . . . . . .
)

: S → S(
− − . . . . . .

)
: S → S + 4
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We can see that the changes modulo 8 of the row sum S occur precisely in the first
and in the fourth case. But, since the first two columns of our matrix H ∈ MN(±1) are
orthogonal, the total number of these cases is even, and this finishes the proof. �

Observe that Proposition 2.21 and Proposition 2.22 (1) show that the glow of an Ha-
damard matrix of order N ≥ 4 is supported by 4Z. With this in hand, we have:

Theorem 2.23. Let H ∈ MN(±1) be an Hadamard matrix of order N ≥ 4, and denote
by µeven, µodd the mass one-rescaled restrictions of µ ∈ P(4Z) to 8Z, 8Z + 4.

(1) At N = 0(8) we have µ = 3
4
µeven + 1

4
µodd.

(2) At N = 4(8) we have µ = 1
4
µeven + 3

4
µodd.

Proof. We use the glow decomposition over b components, from Proposition 2.21:

µ =
1

2N

∑
b∈ZN2

µb

The idea is that the decomposition formula in the statement will occur over averages
of the following type, over truncated sign vectors c ∈ ZN−1

2 :

µ′c =
1

2
(µ+c + µ−c)

Indeed, we know from Proposition 2.22 (1) that modulo 4, the sums on rows are either
0, . . . , 0 or 2, . . . , 2. Now since these two cases are complementary when pairing switch
vectors (+c,−c), we can assume that we are in the case 0, . . . , 0 modulo 4.

Now by looking at this sequence modulo 8, and letting x be the number of 4 components,
so that the number of 0 components is N − x, we have:

1

2
(µ+c + µ−c) =

1

2

law(±0 . . .± 0︸ ︷︷ ︸
N−x

±4 . . .± 4︸ ︷︷ ︸
x

) + law(±2 . . .± 2︸ ︷︷ ︸
N

)


Now by using Proposition 2.22 (2), the first summand splits 1−0 or 0−1 on 8Z, 8Z+4,

depending on the class of N modulo 8. As for the second summand, since N is even this
always splits 1

2
− 1

2
on 8Z, 8Z + 4. Thus, by making the average we obtain either a 3

4
− 1

4

or a 1
4
− 3

4
splitting on 8Z, 8Z+ 4, depending on the class of N modulo 8, as claimed. �

Various computer simulations suggest that the above measures µeven, µodd don’t have
further general algebraic properties. Analytically speaking now, we have:

Theorem 2.24. The glow moments of H ∈MN(±1) are given by:∫
ZN2 ×ZN2

(
E

N

)2p

= (2p)!! +O(N−1)

In particular the normalized variable F = E/N becomes Gaussian with N →∞.
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Proof. Consider the variable in the statement, written as before, as a function of two
vectors a, b, belonging to the group ZN2 × ZN2 :

E =
∑
ij

aibjHij

Let Peven(r) ⊂ P (r) be the set of partitions of {1, . . . , r} having all blocks of even size.
The moments of E are then given by:∫

ZN2 ×ZN2
Er

∫
ZN2 ×ZN2

∑
ix

ai1 . . . airbx1 . . . bxrHi1x1 . . . Hirxr

=
∑
ix

Hi1x1 . . . Hirxr

∫
ZN2
ai1 . . . air

∫
ZN2
bx1 . . . bxr

=
∑

π,σ∈Peven(r)

∑
ker i=π,kerx=σ

Hi1x1 . . . Hirxr

Thus the moments decompose over partitions π ∈ Peven(r), with the contributions being
obtained by integrating the following quantities:

C(σ) =
∑

kerx=σ

∑
i

Hi1x1 . . . Hirxr · ai1 . . . air

Now by Möbius inversion, we obtain a formula as follows:∫
ZN2 ×ZN2

Er =
∑

π∈Peven(r)

K(π)N |π|I(π)

To be more precise, here the coefficients on the right are as follows, where µ is the
Möbius function of Peven(r):

K(π) =
∑

σ∈Peven(r)

µ(π, σ)

As for the contributions on the right, with the convention that H1, . . . , HN ∈ ZN2 are
the rows of our matrix H, these are as follows:

I(π) =
∑
i

∏
b∈π

1

N

〈∏
r∈b

Hir , 1

〉
With this formula in hand, the first assertion follows, because the biggest elements of

the lattice Peven(2p) are the (2p)!! partitions consisting of p copies of a 2-block:∫
ZN2 ×ZN2

(
E

N

)2p

= (2p)!! +O(N−1)

As for the second assertion, this follows from the moment formula, and from the fact
that the glow of H ∈MN(±1) is real, and symmetric with respect to 0. See [11]. �
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3. Norm maximizers

We have seen in the previous section that the set YN = MN(±1) ∩
√
NON formed by

the N×N Hadamard matrices can be located inside
√
NON by using analytic techniques,

and more precisely variations of the following result:

Theorem 3.1. Given a matrix H ∈
√
NON we have:

(1) ||H||1 ≤ N2/p for p ∈ [1, 2), with equality precisely when H is Hadamard.
(2) ||H||1 ≥ N2/p for p ∈ (2,∞], with equality precisely when H is Hadamard.

Proof. This is something that we know from section 2, the idea being that for H ∈
√
NON

we have ||H||2 = N , and by using this, together with the Jensen inequality for ψ(x) = xp/2,
or simply the Hölder inequality for the norms, we obtain the results. As for the case
p =∞, this follows with p→∞, or directly via Cauchy-Schwarz. �

In general, computing the maximizers of the 1-norm on
√
NON remains a difficult

question. So, based on the above, let us formulate the following definition:

Definition 3.2. A matrix H ∈
√
NON is called:

(1) Almost Hadamard, if it locally maximizes the 1-norm on
√
NON .

(2) Optimal almost Hadamard, if it maximizes the 1-norm on
√
NON .

More generally, we can talk about p-almost Hadamard matrices, at any p ∈ [1,∞]−{2},
exactly in the same way, by using the results in Theorem 3.1. When a matrix H ∈

√
NON

is almost Hadamard at any p, we call it “absolute almost Hadamard”.

In order to get started, let us study the local mazimizers of the 1-norm on
√
NON . It

is technically convenient here to rescale by 1
√
N , and work instead over the orthogonal

group ON , by using the avaliable tools here. Following [19], we first have:

Theorem 3.3. If U ∈ ON locally maximizes the 1-norm, then

Uij 6= 0

must hold for any i, j.

Proof. Assume that U has a 0 entry. By permuting the rows we can assume that this 0
entry is in the first row, having under it a nonzero entry in the second row.

We denote by U1, . . . , UN the rows of U . By permuting the columns we can assume
that we have a block decomposition of the following type:(

U1

U2

)
=

(
0 0 Y A B
0 X 0 C D

)
Here X, Y,A,B,C,D are certain vectors with nonzero entries, with A,B,C,D chosen

such that each entry of A has the same sign as the corresponding entry of C, and each
entry of B has sign opposite to the sign of the corresponding entry of D.
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Our above assumption states that X is not the null vector.
For t > 0 small consider the matrix U t obtained by rotating by t the first two rows of

U . In row notation, this matrix is given by:

U t =


cos t sin t
− sin t cos t

1
. . .

1



U1

U2

U3
...
UN

 =


cos t · U1 + sin t · U2

− sin t · U1 + cos t · U2

U3
...
UN


We make the convention that the lower-case letters denote the 1-norms of the corre-

sponding upper-case vectors. According to the above sign conventions, we have:

||U t||1 = || cos t · U1 + sin t · U2||1 + || − sin t · U1 + cos t · U2||1 +
N∑
i=3

ui

= (cos t+ sin t)(x+ y + b+ c) + (cos t− sin t)(a+ d) +
N∑
i=3

ui

= ||U ||1 + (cos t+ sin t− 1)(x+ y + b+ c) + (cos t− sin t− 1)(a+ d)

By using sin t = t+O(t2) and cos t = 1 +O(t2) we obtain:

||U t||1 = ||U ||1 + t(x+ y + b+ c)− t(a+ d) +O(t2)

= ||U ||1 + t(x+ y + b+ c− a− d) +O(t2)

In order to conclude, we have to prove that U cannot be a local maximizer of the
1-norm. This will basically follow by comparing the norm of U to the norm of U t, with
t > 0 small or t < 0 big. However, since in the above computation it was technically
convenient to assume t > 0, we actually have three cases:

Case 1: b + c > a + d. Here for t > 0 small enough the above formula shows that we
have ||U t||1 > ||U ||1, and we are done.

Case 2: b+ c = a+ d. Here we use the fact that X is not null, which gives x > 0. Once
again for t > 0 small enough we have ||U t||1 > ||U ||1, and we are done.

Case 3: b + c < a + d. In this case we can interchange the first two rows of U and
restart the whole procedure: we fall in Case 1, and we are done again. �

Let us study now the critical points. It is convenient here to talk about more general
p-norms, or even more general functions of the quantities |Uij|, because this will lead to
some interesting combinatorics. Following [19], [25], we have the following result:
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Theorem 3.4. Consider a differentiable function ϕ : [0,∞) → R. A matrix U ∈ O∗N is
then a critical point of the quantity

F (U) =
∑
ij

ϕ(|Uij|)

precisely when the matrix WU t is symmetric, where:

Wij = sgn(Uij)ϕ
′(|Uij|)

In particular, for F (U) = ||U ||1 we need SU t to be symmetric, where Sij = sgn(Uij).

Proof. We regard ON as a real algebraic manifold, with coordinates Uij. This manifold
consists by definition of the zeroes of the following polynomials:

Aij =
∑
k

UikUjk − δij

Since ON is smooth, and so is a differential manifold in the usual sense, it follows from
the general theory of Lagrange multipliers that a given matrix U ∈ ON is a critical point
of F precisely when the following condition is satisfied:

dF ∈ span(dAij)

Regarding the space span(dAij), this consists of the following quantities:∑
ij

MijdAij =
∑
ijk

Mij(UikdUjk + UjkdUik)

=
∑
jk

(M tU)jkdUjk +
∑
ik

(MU)ikdUik

=
∑
ij

(M tU)ijdUij +
∑
ij

(MU)ijdUij

In order to compute dF , observe first that, with Sij = sgn(Uij), we have:

d|Uij| = d
√
U2
ij =

UijdUij
|Uij|

= SijdUij

Now let us set, as in the statement:

Wij = sgn(Uij)ϕ
′(|Uij|)

In terms of these variables, we obtain:

dF =
∑
ij

d (ϕ(|Uij|)) =
∑
ij

ϕ′(|Uij|)d|Uij| =
∑
ij

WijdUij

We conclude that U ∈ ON is a critical point of F if and only if there exists a matrix
M ∈MN(R) such that the following two conditions are satisfied:

W = M tU , W = MU
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Now observe that these two equations can be written as follows:

M t = WU t , M = WU t

Thus, the matrix WU t must be symmetric, as claimed. �

In order to process the above result, we can use the following notion:

Definition 3.5. Given U ∈ ON , we consider its “color decomposition”

U =
∑
r>0

rUr

with Ur ∈MN(−1, 0, 1) containing the sign components at r > 0, and we call U :

(1) Semi-balanced, if UrU
t and U tUr, with r > 0, are all symmetric.

(2) Balanced, if UrU
t
s and U t

rUs, with r, s > 0, are all symmetric.

These conditions are quite natural, because for an orthogonal matrix U ∈ ON , the
relations UU t = U tU = 1 translate as follows, in terms of the color decomposition:∑

r>0

rUrU
t =

∑
r>0

rU tUr = 1

∑
r,s>0

rsUrU
t
s =

∑
r,s>0

rsU t
rUs = 1

Thus, our balancing conditions express the fact that the various components of the
above sums are all symmetric. Now back to our critical point questions, we have:

Theorem 3.6. For a matrix U ∈ O∗N , the following are equivalent:

(1) U is a critical point of F (U) =
∑

ij ϕ(|Uij|), for any ϕ : [0,∞)→ R.

(2) U is a critical point of all the p-norms, with p ∈ [1,∞).
(3) U is semi-balanced, in the above sense.

Proof. We use the critical point criterion found in Theorem 3.4 above. In terms of the
color decomposition, the matrix constructed there is given by:

(WU t)ij =
∑
k

sgn(Uik)ϕ
′(|Uik|)Ujk

=
∑
r>0

ϕ′(r)
∑

k,|Uik|=r

sgn(Uik)Ujk

=
∑
r>0

ϕ′(r)
∑
k

(Ur)ikUjk

=
∑
r>0

ϕ′(r)(UrU
t)ij
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Thus we have the following formula:

WU t =
∑
r>0

ϕ′(r)UrU
t

Now when the function ϕ : [0,∞) → R varies, either as an arbitrary differentiable
function, or as a power function ϕ(x) = xp with p ∈ [1,∞), the individual components of
this sum must be all self-adjoint, and this leads to the conclusion in the statement. �

In practice now, most of the known examples of semi-balanced matrices are actually
balanced, so we will investigate instead this latter class of matrices. Following [25], we
have the following collection of simple facts, regarding such matrices:

Theorem 3.7. The class of balanced matrices is as follows:

(1) It contains the matrices U = H/
√
N , with H ∈MN(±1) Hadamard.

(2) It is stable under transposition.
(3) It is stable under taking tensor products.
(4) It is stable under Hadamard equivalence.
(5) It contains the matrix VN = 1

N
(2IN −N1N), where IN is the all-1 matrix.

Proof. All these results are elementary, the proof being as follows:

(1) Here U ∈ ON follows from the Hadamard condition, and since there is only one
color component, namely U1/

√
N = H, the balancing condition is satisfied as well.

(2) Assuming that U =
∑

r>0 rUr is the color decomposition of a given matrix U ∈ ON ,
the color decomposition of the transposed matrix U t is as follows:

U t =
∑
r>0

rU t
r

It follows that if U is balanced, so is the transposed matrix U t.

(3) Assuming that U =
∑

r>0 rUr and V =
∑

s>0 sVs are the color decompositions of
two given orthogonal matrices U, V , we have:

U ⊗ V =
∑
r,s>0

rs · Ur ⊗ Vs =
∑
p>0

p
∑
p=rs

Ur ⊗ Vs

Thus the color components of W = U ⊗ V are the following matrices:

Wp =
∑
p=rs

Ur ⊗ Vs

It follows that if U, V are both balanced, then so is W = U ⊗ V .

(4) We recall that the Hadamard equivalence consists in permuting rows and columns,
and switching signs on rows and columns. Since all these operations correspond to certain
conjugations at the level of the matrices UrU

t
s, U

t
rUs, we obtain the result.
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(5) The matrix in the statement, which goes back to [28], is as follows:

VN =
1

N


2−N 2 . . . 2

2 2−N . . . 2
. . . . . . . . . . . .
2 2 . . . 2−N


Observe that this matrix is indeed orthogonal, its rows being of norm one, and pairwise

orthogonal. The color components of this matrix being V2/N−1 = 1N and V2/N = IN − 1N ,
it follows that this matrix is balanced as well, as claimed. �

Let us look now more in detail at the matrix VN from the above statement, and at the
matrices having similar properties. Following [28], let us start our study with:

Definition 3.8. An (a, b, c) pattern is a matrix M ∈MN(0, 1), with N = a+ 2b+ c, such
that any two rows look as follows,

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0︸ ︷︷ ︸

a

1 . . . 1︸ ︷︷ ︸
b

0 . . . 0︸ ︷︷ ︸
b

1 . . . 1︸ ︷︷ ︸
c

up to a permutation of the columns.

As explained in [28], there are many interesting examples of (a, b, c) patterns, coming
from the balanced incomplete block designs (BIBD), and all these examples can produce
two-entry unitary matrices, by replacing the 0, 1 entries with suitable numbers x, y. Now
back to the matrix VN from Theorem 3.7 (5), observe that this matrix comes from a
(0, 1, N − 2) pattern. And also, independently of this, this matrix has the remarkable
property of being at the same time circulant and self-adjoint. We have in fact:

Theorem 3.9. The following matrices are balanced:

(1) The orthogonal matrices coming from (a, b, c) patterns.
(2) The orthogonal matrices which are circulant and symmetric.

Proof. These observations basically go back to [28], the proofs being as follows:

(1) If we denote by P,Q ∈ MN(0, 1) the matrices describing the positions of the 0, 1
entries inside the pattern, then we have the following formulae:

PP t = P tP = aIN + b1N

QQt = QtQ = cIN + b1N

PQt = P tQ = QP t = QtP = bIN − b1N
Since all these matrices are symmetric, U is balanced, as claimed.

(2) Assume that U ∈ ON is circulant, Uij = γj−i, and in addition symmetric, which
means γi = γ−i. Consider the following sets, which must satisfy Dr = −Dr:

Dr = {k : |γr| = k}
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In terms of these sets, we have the following formula:

(UrU
t
s)ij =

∑
k

(Ur)ik(Us)jk

=
∑
k

δ|γk−i|,r sgn(γk−i) · δ|γk−j |,s sgn(γk−j)

=
∑

k∈(Dr+i)∩(Ds+j)

sgn(γk−i) sgn(γk−j)

With k = i+ j −m we obtain, by using Dr = −Dr, and then γi = γ−i:

(UrU
t
s)ij =

∑
m∈(−Dr+j)∩(−Ds+i)

sgn(γj−m) sgn(γi−m)

=
∑

m∈(Dr+i)∩(Dr+j)

sgn(γj−m) sgn(γi−m)

=
∑

m∈(Dr+i)∩(Dr+j)

sgn(γm−j) sgn(γm−i)

Now by interchanging i↔ j, and with m→ k, this formula becomes:

(UrU
t
s)ji =

∑
k∈(Dr+i)∩(Dr+j)

sgn(γk−i) sgn(γk−j)

By comparing with the previous formula, we deduce that the matrix UrU
t
s is symmetric,

as claimed. The proof for U t
rUs is similar. �

Let us get now into analytic questions. As in Theorem 3.4, it is convenient to do the
computations in a general framework, with a function as follows:

F (U) =
∑
ij

ψ(U2
ij)

Consider the following function, depending on t > 0 small:

f(t) = F (UetA) =
∑
ij

ψ((UetA)2
ij)

Here U ∈ ON is an arbitrary orthogonal matrix, and A ∈ MN(R) is assumed to be
antisymmetric, At = −A, with this latter assumption needed for having eA ∈ ON . Let us
first compute the derivative of f . Following [25], we have the following result:

Proposition 3.10. We have the following formula,

f ′(t) = 2
∑
ij

ψ′((UetA)2
ij)(UAe

tA)ij(Ue
tA)ij

valid for any U ∈ ON , and any A ∈MN(R) antisymmetric.
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Proof. The matrices U, etA being both orthogonal, we have:

(UetA)2
ij = (UetA)ij((Ue

tA)t)ji

= (UetA)ij(e
tAtU t)ji

= (UetA)ij(e
−tAU t)ji

We can now differentiate our function f , and by using once again the orthogonality of
the matrices U, etA, along with the formula At = −A, we obtain:

f ′(t) =
∑
ij

ψ′((UetA)2
ij)
[
(UAetA)ij(e

−tAU t)ji − (UetA)ij(e
−tAAU t)ji

]
=

∑
ij

ψ′((UetA)2
ij)
[
(UAetA)ij((e

−tAU t)t)ij − (UetA)ij((e
−tAAU t)t)ij

]
=

∑
ij

ψ′((UetA)2
ij)
[
(UAetA)ij(Ue

tA)ij + (UetA)ij(UAe
tA)ij

]
But this gives the formula in the statement, and we are done. �

Before computing the second derivative, let us evaluate f ′(0). In terms of the color
decomposition U =

∑
r>0 rUr of our matrix, the result is:

Proposition 3.11. We have the following formula,

f ′(0) = 2
∑
r>0

rψ′(r2)Tr(U t
rUA)

where the matrices Ur ∈MN(−1, 0, 1) are the color components of U .

Proof. We use the formula in Proposition 3.10 above. At t = 0, we obtain:

f ′(0) = 2
∑
ij

ψ′(U2
ij)(UA)ijUij

Consider now the color decomposition of U . We have the following formulae:

Uij =
∑
r>0

r(Ur)ij =⇒ U2
ij =

∑
r>0

r2|(Ur)ij|

=⇒ ψ′(U2
ij) =

∑
r>0

ψ′(r2)|(Ur)ij|

Now by getting back to the above formula of f ′(0), we obtain:

f ′(0) = 2
∑
r>0

ψ′(r2)
∑
ij

(UA)ijUij|(Ur)ij|

Our claim now is that we have:

Uij|(Ur)ij| = r(Ur)ij
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Indeed, in the case |Uij| 6= r this formula reads Uij · 0 = r · 0, which is true, and in the
case |Uij| = r this formula reads rSij · 1 = r · Sij, which is once again true. Thus:

f ′(0) = 2
∑
r>0

rψ′(r2)
∑
ij

(UA)ij(Ur)ij

But this gives the formula in the statement, and we are done. �

Let us compute now the second derivative. The result here is as follows:

Proposition 3.12. We have the following formula,

f ′′(0) = 4
∑
ij

ψ′′(U2
ij) [(UA)ijUij]

2

+2
∑
ij

ψ′(U2
ij)
[
(UA2)ijUij

]
+2
∑
ij

ψ′(U2
ij)(UA)2

ij

valid for any U ∈ ON , and any A ∈MN(R) antisymmetric.

Proof. We use the formula in Proposition 3.10 above, namely:

f ′(t) = 2
∑
ij

ψ′((UetA)2
ij)(UAe

tA)ij(Ue
tA)ij

Since the term on the right, or rather its double, appears as the derivative of the
quantity (UetA)2

ij, when differentiating a second time, we obtain:

f ′′(t) = 4
∑
ij

ψ′′((UetA)2
ij)
[
(UAetA)ij(Ue

tA)ij
]2

+2
∑
ij

ψ′((UetA)2
ij)
[
(UAetA)ij(Ue

tA)ij
]′

In order to compute now the missing derivative, observe that we have:[
(UAetA)ij(Ue

tA)ij
]′

= (UA2etA)ij(Ue
tA)ij + (UAetA)2

ij

Summing up, we have obtained the following formula:

f ′′(t) = 4
∑
ij

ψ′′((UetA)2
ij)
[
(UAetA)ij(Ue

tA)ij
]2

+2
∑
ij

ψ′((UetA)2
ij)
[
(UA2etA)ij(Ue

tA)ij
]

+2
∑
ij

ψ′((UetA)2
ij)(UAe

tA)2
ij

But at t = 0 this gives the formula in the statement, and we are done. �
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For the function ψ(x) =
√
x, corresponding to the functional F (U) = ||U ||1, there are

some simplifications, that we will work out now in detail. First, we have:

Proposition 3.13. For the function F (U) = ||U ||1 we have the formula

f ′′(0) = Tr(StUA2)

valid for any antisymmetric matrix A, where Sij = sgn(Uij).

Proof. We use the formula in Proposition 3.12 above, with ψ(x) =
√
x. We ibtain:

f ′′(0) = −
∑
ij

[(UA)ijUij]
2

|Uij|3
+
∑
ij

(UA2)ijUij
|Uij|

+
∑
ij

(UA)2
ij

|Uij|

= −
∑
ij

(UA)2
ij

|Uij|
+
∑
ij

(UA2)ijSij +
∑
ij

(UA)2
ij

|Uij|

=
∑
ij

(UA2)ijSij

But this gives the formula in the statement, and we are done. �

We are therefore led to the following result, from [25], regarding the 1-norm:

Theorem 3.14. A matrix U ∈ ON locally maximizes the 1-norm on ON precisely when
the following conditions are satisfied:

(1) The matrix U has nonzero entries, U ∈ O∗N .
(2) The matrix X = StU is symmetric, where Sij = sgn(Uij).
(3) We have Tr(XA2) ≤ 0, for any antisymmetric matrix A ∈MN(R).

Proof. This follows the results that we have, with (1,2,3) coming respectively from The-
orem 3.3, Theorem 3.4 and Proposition 3.13. �

In order to further improve the above result, we will need:

Proposition 3.15. For a symmetric matrix X ∈MN(R), the following are equivalent:

(1) Tr(XA2) ≤ 0, for any antisymmetric matrix A.
(2) The sum of the two smallest eigenvalues of X is positive.

Proof. In terms of the vector a =
∑

ij Aijei ⊗ ej, we have the following formula:

Tr(XA2) = < X,A2 >

= − < AX,A >

= − < a, (1⊗X)a >

Thus the condition (1) is equivalent to P (1 ⊗ X)P being positive, with P being the
orthogonal projection on the antisymmetric subspace in RN ⊗ RN .



HADAMARD MATRICES 53

For any two eigenvectors xi ⊥ xj of X, with eigenvalues λi, λj, we have:

P (1⊗X)P (xi ⊗ xj − xj ⊗ xi) = P (λjxi ⊗ xj − λixj ⊗ xi)

=
λi + λj

2
(xi ⊗ xj − xj ⊗ xi)

Thus, we obtain the conclusion in the statement. �

Following [25], we can now formulate a final result on the subject, which improves some
previous findings from [19], and from [28], as follows:

Theorem 3.16. A matrix U ∈ ON locally maximizes the 1-norm on ON precisely when
it has nonzero entries, and when the following matrix, with Sij = sgn(Uij),

X = StU

is symmetric, and the sum of its two smallest eigenvalues is positive.

Proof. This follows indeed from our main result so far, Theorem 3.14 above, by taking
into account the positivity criterion from Proposition 3.15. �

In terms of the almost Hadamard matrices, as introduced in Definition 3.2 above, as
rescaled versions of the above matrices, the above result reformulates as follows:

Theorem 3.17. The almost Hadamard matrices are the matrices H ∈
√
NON having

nonzero entries, and which are such that the following matrix, with Sij = sgn(Hij),

X = StH

is symmetric, and the sum of its two smallest eigenvalues is positive.

Proof. This is a reformulation of Theorem 3.16, by rescaling everything by
√
N , as to

reach to the objects axiomatized in Definition 3.2 above. �

We can now state and prove the following theoretical result, from [19], [28]:

Theorem 3.18. The class of almost Hadamard matrices has the following properties:

(1) It contains all the Hadamard matrices.
(2) It is stable under transposition.
(3) It is stable under taking tensor products.
(4) It is stable under Hadamard equivalence.
(5) It contains the matrix KN = 1√

N
(2IN −N1N).

Proof. All the assertions are clear from what we have, as follows:

(1) This follows either from Theorem 3.1, which shows that Hadamard implies almost
Hadamard, without any need for further computations, or from the fact that if H is
Hadamard then U = H/

√
N is orthogonal, and SU t = HU t =

√
N1N is positive.
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(2) This follows either from definitions, because the transposition operation preserves
the local maximizers of the 1-norm, or from Theorem 3.17 above.

(3) For a tensor product of almost Hadamard matrices H = H ′ ⊗ H ′′ we have U =
U ′ ⊗ U ′′ and S = S ′ ⊗ S ′′, so that U is unitary and SU t is symmetric, with the sum of
the two smallest eigenvalues being positive, as claimed.

(4) This follows either from definitions, because the Hadamard equivalence preserves
the local maximizers of the 1-norm, or from Theorem 3.17 above.

(5) We know from Theorem 3.7 that the matrix U = KN/
√
N is orthogonal. Also, we

have S = IN − 21N , and so SU t is positive, because with JN = IN/N we have:

SU t = (NJN − 21N)(2JN − 1N)

= (N − 2)JN + 2(1N − JN)

Thus, we are led to the conclusion in the statement. �

In the above statement the main result is (5), and we will discuss now various general-
izations of it, first concerning the circulant matrices, and then the 2-entry matrices. Let
us first discuss the circulant case. Let F ∈ UN be the normalized Fourier matrix, given by
Fij = wij/

√
N , where w = e2πi/N . Given a vector α ∈ Cn, we associate to it the diagonal

matrix α′ = diag(α0, . . . , αN−1). We will need the following well-known result:

Proposition 3.19. For a matrix H ∈MN(C), the following are equivalent:

(1) H is circulant, i.e. Hij = γj−i, for a certain vector γ ∈ CN .
(2) H is Fourier-diagonal, i.e. H = FDF ∗, with D ∈MN(C) diagonal.

In addition, if so is the case, then with D =
√
Nα′ we have γ = Fα.

Proof. (1) =⇒ (2) The matrix D = F ∗HF is indeed diagonal, given by:

Dij =
1

N

∑
kl

wjl−ikγl−k = δij
∑
r

wjrγr

(2) =⇒ (1) The matrix H = FDF ∗ is indeed circulant, given by:

Hij =
∑
k

FikDkkF̄jk =
1

N

∑
k

w(i−j)kDkk

Finally, the last assertion is clear from the above formula of Hij. �

Let us investigate now the circulant orthogonal matrices. We have:

Proposition 3.20. For a matrix U ∈MN(C), the following are equivalent:

(1) U is orthogonal and circulant.
(2) U = Fα′F ∗ with α ∈ TN satisfying ᾱi = α−i for any i.
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Proof. We will use many times the fact that given α ∈ CN , the vector γ = Fα is real if
and only if ᾱi = α−i for any i. This follows indeed from Fα = Fα̃, with α̃i = ᾱ−i.

(1) =⇒ (2) Write Hij = γj−i with γ ∈ RN . By using Proposition 3.19 we obtain

H = FDF ∗ with D =
√
Nα′ and γ = Fα. Now since U = Fα′F ∗ is unitary, so is α′, so

we must have α ∈ TN . Finally, since γ is real we have ᾱi = α−i, and we are done.

(2) =⇒ (1) We know from Proposition 3.19 that U is circulant. Also, from α ∈ TN we
obtain that α′ is unitary, and so must be U . Finally, since we have ᾱi = α−i, the vector
γ = Fα is real, and hence we have U ∈MN(R), which finishes the proof. �

Let us discuss now the almost Hadamard case. First, in the usual Hadamard case, the
known examples and the corresponding α-vectors are as follows:

Proposition 3.21. The known circulant Hadamard matrices, namely

±


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 , ±


1 −1 1 1
1 1 −1 1
1 1 1 −1
−1 1 1 1



±


1 1 −1 1
1 1 1 −1
−1 1 1 1
1 −1 1 1

 , ±


1 1 1 −1
−1 1 1 1
1 −1 1 1
1 1 −1 1


come respectively from the following α vectors, via the above construction:

±(1,−1,−1,−1) , ±(1,−i, 1, i)

±(1, 1,−1, 1) , ±(1, i, 1,−i)

Proof. At N = 4 the conjugate of the Fourier matrix is given by:

F ∗ =
1

2


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i


Thus the vectors α = F ∗γ are indeed those in the statement. �

Following [28], we have the following generalization of the above matrices:

Proposition 3.22. If qN = 1 then the vector

α = ±(1,−q,−q2, . . . ,−qN−1)

produces an almost Hadamard matrix, equivalent to KN = 1√
N

(2IN −N1N).
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Proof. Observe first that these matrices generalize those in Proposition 3.21. Indeed, at
N = 4 the choices for q are 1, i,−1,−i, and this gives the above α-vectors.

Assume that the ± sign in the statement is +. With q = wr, we have:

√
Nγi =

N−1∑
k=0

wikαk = 2−
N−1∑
k=0

w(i+r)k = 2− δi,−rN

In terms of the standard long cycle (CN)ij = δi+1,j, we obtain:

H =
1√
N

(2IN −NC−rN )

Thus H is equivalent to KN , and by Theorem 3.18, it is almost Hadamard. �

In general, the construction of circulant almost Hadamard matrices is quite a tricky
problem. At the abstract level, we have the following result, from [28]:

Proposition 3.23. A circulant matrix H ∈ MN(R∗), written Hij = γj−i, is almost
Hadamard provided that the following conditions are satisfied:

(1) The vector α = F ∗γ satisfies α ∈ TN .
(2) With ε = sgn(γ), ρi =

∑
r εrγi+r and ν = F ∗ρ, we have ν > 0.

In addition, if so is the case, then ᾱi = α−i, ρi = ρ−i and νi = ν−i for any i.

Proof. We know from Theorem 3.17 our matrix H is almost Hadamard if the matrix
U = H/

√
N is orthogonal and SU t > 0, where Sij = sgn(Uij). By Proposition 3.19

the orthogonality of U is equivalent to the condition (1). Regarding now the condition
SU t > 0, this is equivalent to StU > 0. But, with k = i− r, we have:

(StH)ij =
∑
k

SkiHkj =
∑
k

εi−kγj−k =
∑
r

εrγj−i+r = ρj−i

Thus StU is circulant, with ρ/
√
N as first row. From Proposition 3.19 we get StU =

FLF ∗ with L = ν ′ and ν = F ∗ρ, so StU > 0 iff ν > 0, which is the condition (2).
Finally, the assertions about α, ν follow from the fact that Fα, Fν are real. As for the

assertion about ρ, this follows from the fact that StU is symmetric. �

Here are now the main examples of such matrices, once again following [28]:

Theorem 3.24. For N odd the following matrix is almost Hadamard,

LN =
1√
N


1 − cos−1 π

N
cos−1 2π

N
. . . . . . cos−1 (N−1)π

N

cos−1 (N−1)π
N

1 − cos−1 π
N

. . . . . . − cos−1 (N−2)π
N

...
...

...
...

...
...

...
...

− cos−1 π
N

cos−1 2π
N

− cos−1 3π
N

. . . . . . 1


and comes from an α-vector having all entries equal to 1 or −1.
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Proof. Write N = 2n+ 1, and consider the following vector:

αi =

{
(−1)n+i for i = 0, 1, . . . , n

(−1)n+i+1 for i = n+ 1, . . . , 2n

Let us first prove that (LN)ij = γj−i, where γ = Fα. With w = e2πi/N we have:

√
Nγi =

n∑
j=0

(−1)n+jwij +
n∑
j=1

(−1)n+(N−j)+1wi(N−j)

Now since N is odd, and since wN = 1, we obtain:

√
Nγi =

n∑
j=−n

(−1)n+jwij

By computing the sum on the right, with ξ = eπi/N we get, as claimed:

√
Nγi =

2w−ni

1 + wi
=

2ξ−2ni

1 + ξ2i
=

2ξ−Ni

ξ−i + ξi
= (−1)i cos−1 iπ

N

In order to prove now that LN is almost Hadamard, we use Proposition 3.23. Since the
sign vector is simply ε = (−1)nα, the vector ρi =

∑
r εrγi+r is given by:

√
Nρi =

n∑
j=−n

(−1)jwij
2n∑
r=0

αrw
rj

Now since the last sum on the right is (
√
NFα)j =

√
Nγj, we obtain:

ρi =
1√
N

n∑
j=−n

(−1)jwij
n∑

k=−n

(−1)n+kwjk

Thus we have the following formula:

ρi =
(−1)n√
N

n∑
j=−n

n∑
k=−n

(−1)j+kw(i+k)j

Let us compute now the vector ν = F ∗ρ. We have:

νl =
(−1)n

N

n∑
j=−n

n∑
k=−n

(−1)j+kwjk
2n∑
i=0

wi(j−l)

The sum on the right is Nδjl, with both j, l taken modulo N , so it is equal to NδjL,
where L = l for l ≤ n, and L = l −N for l > n. We obtain:

νl = (−1)n+L

n∑
k=−n

(−wL)k
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With ξ = eπi/N as before, this gives the following formula:

νl = (−1)L
2w−nL

1 + wL

In terms of the variable ξ = eπi/N , we obtain the following formula:

νl = (−1)L
2ξ−2nL

1 + ξ2L
= (−1)L

2ξ−NL

ξ−L + ξL
= cos−1 Lπ

N

Now since L ∈ [−n, n], all the entries of ν are positive, and we are done. �

Let us study now the almost Hadamard matrices having only two entries, H ∈MN(x, y),
with x, y ∈ R. Following [25], [28], we have the following definition:

Definition 3.25. An (a, b, c) pattern is a matrix M ∈ MN(x, y), with N = a + 2b + c,
such that, in any two rows, the number of x/y/x/y sitting below x/x/y/y is a/b/b/c.

In other words, given any two rows of our matrix, we are asking for the existence of a
permutation of the columns such that these two rows become:

x . . . x x . . . x y . . . y y . . . y
x . . . x︸ ︷︷ ︸

a

y . . . y︸ ︷︷ ︸
b

x . . . x︸ ︷︷ ︸
b

y . . . y︸ ︷︷ ︸
c

The Hadamard matrices do not come in general from such patterns. However, there
are many interesting examples of patterns coming from block designs [49], [123]:

Definition 3.26. A (v, k, λ) symmetric balanced incomplete block design is a collection
B of subsets of a set X, called blocks, with the following properties:

(1) |X| = |B| = v.
(2) Each block contains exactly k points from X.
(3) Each pair of distinct points is contained in exactly λ blocks of B.

The incidence matrix of a such block design is the v × v matrix defined by:

Mbx =

{
1 if x ∈ b
0 if x /∈ b

The connection between designs and patterns comes from:

Proposition 3.27. If N = a + 2b + c then the adjacency matrix of any (N, a + b, a)
symmetric balanced incomplete block design is an (a, b, c) pattern.

Proof. Indeed, let us replace the 0−1 values in the adjacency matrix M by abstract x−y
values. Then each row of M contains a+b copies of x and b+c copies of y, and since every
pair of distinct blocks intersect in exactly a points, cf. [123], we see that every pair of
rows has exactly a variables x in matching positions, so that M is an (a, b, c) pattern. �
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As a basic application of the above, we have:

Proposition 3.28. Assume that q = pk is a prime power. Then the point-line incidence
matrix of the projective plane over Fq is a (1, q, q2 − q) pattern.

Proof. The sets X,B of points and lines of the projective plane over Fq are known to form
a (q2 + q + 1, q + 1, 1) block design, and this gives the result. �

We consider now the problem of associating real values to the symbols x, y in an (a, b, c)
pattern such that the resulting matrix U(x, y) is orthogonal. We have:

Proposition 3.29. Given a, b, c ∈ N, there exists an orthogonal matrix having pattern
(a, b, c) iff b2 ≥ ac. In this case the solutions are U(x, y) and −U(x, y), where

x = − t√
b(t+ 1)

, y =
1√

b(t+ 1)

with t = (b±
√
b2 − ac)/a being one of the solutions of at2 − 2bt+ c = 0.

Proof. In order for U to be orthogonal, the following conditions must be satisfied:

ax2 + 2bxy + cy2 = 0

(a+ b)x2 + (b+ c)y2 = 1

But this gives the formulae in the statement. �

Following [25], [28], we have the following result:

Proposition 3.30. Let U = U(x, y) be orthogonal, corresponding to an (a, b, c) pattern.

Then H =
√
NU is almost Hadamard if:

(N(a− b) + 2b)|x|+ (N(c− b) + 2b)|y| ≥ 0

Proof. Let Sij = sgn(Uij). Since any row of U consists of a+ b copies of x and b+ c copies
of y, we have:

(SU t)ii =
∑
k

sgn(Uik)Uik = (a+ b)|x|+ (b+ c)|y|

Regarding now (SU t)ij with i 6= j, we can assume in the computation that the i-th and
j-th row of U are exactly those pictured after Definition 3.25 above. Thus:

(SU t)ij =
∑
k

sgn(Uik)Ujk

= a sgn(x)x+ b sgn(x)y + b sgn(y)x+ c sgn(y)y

= a|x| − b|y| − b|x|+ c|y|
= (a− b)|x|+ (c− b)|y|
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We obtain the following formula for the matrix SU t itself, with JN = IN/N :

SU t = 2b(|x|+ |y|)1N + ((a− b)|x|+ (c− b)|y|)NJN
= 2b(|x|+ |y|)(1N − JN) + ((N(a− b) + 2b)|x|+ (N(c− b) + 2b)|y|))JN

Now since the matrices 1N −JN , JN are orthogonal projections, we have SU t > 0 if and
only if the coefficients of these matrices in the above expression are both positive. Since
the coefficient of 1N − JN is clearly positive, the condition left is:

(N(a− b) + 2b)|x|+ (N(c− b) + 2b)|y| ≥ 0

So, we have obtained the condition in the statement, and we are done. �

Once again following [25], [28], we have the following result:

Proposition 3.31. Assume that a, b, c ∈ N satisfy c ≥ a and b(b− 1) = ac, and consider
the (a, b, c) pattern U = U(x, y), where:

x =
a+ (1− a− b)

√
b

Na
, y =

b+ (a+ b)
√
b

Nb

Then H =
√
NU is an almost Hadamard matrix.

Proof. We have b2−ac = b, so Proposition 3.30 applies, and shows that with t = (b−
√
b)/a

we have an orthogonal matrix U = U(x, y). But this gives the result. �

We have the following result, from [25], [28]:

Theorem 3.32. Assume that q = pk is a prime power. Then the matrix IN ∈MN(x, y),
where N = q2 + q + 1 and

x =
1− q√q
√
N

, y =
q + (q + 1)

√
q

q
√
N

having (1, q, q2 − q) pattern coming from the point-line incidence of the projective plane
over Fq is an almost Hadamard matrix.

Proof. Indeed, the conditions c ≥ a and b(b− 1) = ac which are needed are satisfied, and

the variables constructed there are x′ = x/
√
N and y′ = y/

√
N . �

We refer to [25], [28] for more on such matrices, and we will be back to this.
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4. Partial matrices

In this section we discuss a number of more specialized questions in the real case,
regarding the square or rectangular submatrices of the Hadamard matrices H ∈MN(±1),
and some related classes of square or rectangular real matrices.

We have already met an interesting class of such matrices in section 1 above, namely
the partial Hadamard matrices (PHM), which naturally appear when classifying the Ha-
damard matrices H ∈ MN(±1) at small values of N . So, let us start by reviewing the
material there. The definition of these matrices is as follows:

Definition 4.1. A partial Hadamard matrix (PHM) is a rectangular matrix

H ∈MM×N(±1)

whose rows are pairwise orthogonal, with respect to the scalar product of RN .

The motivating examples are the usual Hadamard matrices H ∈ MN(±1), and their
various M × N submatrices, with M ≤ N . See [52], [59], [72], [76], [137]. However,
there are as well many examples which are not of this form, and the PHM are interesting
combinatorial objects, on their own. We will discuss this in what follows.

Following the study from the square case, we first have:

Proposition 4.2. The set YM,N formed by the M ×N partial Hadamard matrices is

YM,N = MM×N(±1) ∩
√
NOM,N

where OM,N is the following space of rectangular matrices:

OM,N =
{
U ∈MM×N(R)

∣∣∣UU t = 1M

}
Proof. This follows exactly as in the square case, the idea being that for a rectangular
matrix U ∈MM×N(R) having rows U1, . . . , UM ∈ RN of norm 1, the condition UU t = 1M
expresses the fact that these row vectors are pairwise orthogonal. �

The space OM,N appearing above has several interpretations, as follows:

Theorem 4.3. The space OM,N has the following properties:

(1) It is the space of surjective partial isometries f : RN → RM .
(2) It is the space of vectors U1, . . . , UM ∈ SN−1 which are pairwise orthogonal.
(3) It is also an homogeneous space, given by OM,N ' ON/ON−M .
(4) It is also the space determined by the first M rows of coordinates on ON .

Proof. All this is standard algebra and geometry, the idea being as follows:

(1) This follows from the condition UU t = 1 defining OM,N .

(2) This follows again from the condition UU t = 1 defining OM,N .
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(3) We have indeed an action ON y OM,N , and the stabilizer is ON−M .

(4) This follows from some basic functional analysis, or algebraic geometry. �

As already mentioned, there are matrices in YM,N which do not complete into matrices
of YN , and we will give some explicit counterexamples in a moment. This is in contrast
with the fact that any matrix from OM,N can be completed, for instance via the Gram-
Schmidt procedure, into a matrix of ON . We will be back later to this phenomenon.

Let us discuss as well, as a continuation of the study from the real case, some basic
analytic aspects. In what regards the 1-norm bound, we have the following result:

Theorem 4.4. Given a matrix U ∈ OM,N we have

||U ||1 ≤M
√
N

with equality precisely when H =
√
NU is partial Hadamard.

Proof. We have indeed the following estimate, valid for any U ∈ OM,N :

||U ||1 =
∑
ij

|Uij|

≤
√
MN

(∑
ij

|Uij|2
)1/2

= M
√
N

In this estimate the equality case holds when we have, for any i, j:

|Uij| =
1√
N

But this amounts in saying that the rescaled matrix H =
√
NU must satisfy H ∈

MM×N(±1), and so must be a partial Hadamard matrix, as claimed. �

Similar estimates hold for the p-norms, with p 6= 2. Thus, we have a subsequent notion
of “almost PHM matrix”. This subject is largely unexplored.

Following the study from the square case, let us formulate now:

Definition 4.5. Two PHM are called equivalent when we can pass from one to the other
by permuting the rows or columns, or multiplying the rows or columns by −1. Also:

(1) We say that a PHM is in dephased form when its first row and its first column
consist of 1 entries.

(2) We say that a PHM is in standard form when it is dephased, with the 1 entries
moved to the left as much as possible, by proceeding from top to bottom.
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Unlike in the square case, where the standard form is generally not used, putting a
rectangular matrix in standard form is something quite useful.

As an illustration here, here is a result that we already know, regarding the partial
Hadamard matrices put in standard form, at small values of M :

Proposition 4.6. The standard form of dephased PHM at M = 2, 3, 4 is

H =

 + +
+︸︷︷︸
N/2

−︸︷︷︸
N/2



H =


+ + + +
+ + − −
+︸︷︷︸
N/4

−︸︷︷︸
N/4

+︸︷︷︸
N/4

−︸︷︷︸
N/4



H =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
a

−︸︷︷︸
b


where the numbers a, b ∈ N satisfy a+ b = N/4.

Proof. This is something that we already know, from section 1 above, the idea being that
the M = 2 result is obvious, the M = 3 result follows from the orthogonality conditions
between the rows, and the M = 4 result follows from the M = 3 result, by writing down
and then solving the supplementary equations coming from the 4th row. �

The above result and its proof might suggest that the standard form of the PHM can be
worked out by recurrence. However, this is not exactly true, the combinatorics becoming
quite complicated starting from M = 5. We will be back to this, later on.

We can fine-tune the M = 4 result, by using the equivalence relation, as follows:

Theorem 4.7. The 4×N partial Hadamard matrices are of the form

H = (W4 . . . W4︸ ︷︷ ︸
a

K4 . . . K4︸ ︷︷ ︸
b

)

with a+ b = N/4. Moreover, we can assume a ≥ b.
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Proof. Let H ∈ M4×N(±1) be as in Proposition 4.6. The matrix formed by the a type
columns, one from each block, is equivalent to W4, via a permutation of the columns:

+ + + +
+ + − −
+ − + −
+ − − +

 ∼ W4

Also, the matrix formed by the b type columns, one from each block, is equivalent to
K4, via a first column sign switch, plus a certain permutation of the columns:

+ + + +
+ + − −
+ − + −
− + + −

 ∼ K4

Thus, just by performing operations on the columns, we are led to the conclusion in
the statement, namely:

H ∼ (W4 . . . W4︸ ︷︷ ︸
a

K4 . . . K4︸ ︷︷ ︸
b

)

In order to prove now the last assertion, we must prove that we have:

(W4 . . . W4︸ ︷︷ ︸
a

K4 . . . K4︸ ︷︷ ︸
b

) ∼ (K4 . . . K4︸ ︷︷ ︸
a

W4 . . . W4︸ ︷︷ ︸
b

)

But this can be seen by performing a sign switch on the last row, and then permuting
the columns. Equivalently, we can start with the original matrix, in standard form, and
perform a sign switch on the last row. The matrix becomes:

H ∼


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
−︸︷︷︸
a

+︸︷︷︸
b

−︸︷︷︸
b

+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
a

−︸︷︷︸
a

+︸︷︷︸
b


Now by putting this matrix in standard form, we obtain:

H =


+ + + + + + + +
+ + + + − − − −
+ + − − + + − −
+︸︷︷︸
b

−︸︷︷︸
a

+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
a

−︸︷︷︸
b

+︸︷︷︸
b

−︸︷︷︸
a


Thus a, b got interchanged, and this gives the result. �

At M = 5 now, as already mentioned above, the combinatorics becomes quite compli-
cated, and we will see in a moment that there are 5×N partial Hadamard matrices which
do not complete into Hadamard matrices. We first have the following result:
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Proposition 4.8. The 5×N partial Hadamard matrices are of the form

H =

(
W4 . . . W4 K4 . . . K4

v1 . . . va x1 . . . xb

)
with a ≥ b, a+ b = N/4 and with vi, xj ∈ (±1)4 satisfying

W4


r1

r2

r3

r4

 = −K4


s1

s2

s3

s4


where rt =

∑
i(vi)t and st =

∑
j(vj)t.

Proof. This is something that we already worked out at N = 8, in section 1 above, in both
of the cases that can appear, namely a = 2, b = 0 and a = 1, b = 1. The proof in general
is similar, with the equations in the statement coming by processing the orthogonality
conditions between the 5th row and the first 4 rows. �

As a first observation, the equations in the above statement can be written in the
following more convenient form:

K−1
4 W4


r1

r2

r3

r4

 = −


s1

s2

s3

s4


Now observe that the matrix of this system is as follows:

K−1
4 W4 =

1

2


− + + +
− − + −
− + − −
− − − +


Thus, the system can be written as follows:

− + + +
− − + −
− + − −
− − − +



r1

r2

r3

r4

 = −2


s1

s2

s3

s4


We can see that we are led into parity and positivity questions, regarding the vectors

rt =
∑

i(vi)t and st =
∑

j(vj)t. It is possible to further go along these lines, but the
structure of the 5×N partial Hadamard matrices remains something quite complicated.
As an explicit consequence, however, of all this, we have the following result:
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Theorem 4.9. Consider an arbitrary 4×N partial Hadamard matrix, written as

H = (W4 . . . W4︸ ︷︷ ︸
a

K4 . . . K4︸ ︷︷ ︸
b

)

with a ≥ b, a + b = N/4, up to equivalence. In order for this matrix to complete into a
5×N partial Hadamard matrix, the following condition must be satisfied:

ab = 0 =⇒ N = 0(8)

In particular, the following 4×N partial Hadamard matrix does not complete into a 5×N
partial Hadamard matrix:

Z = (W4 W4 W4)

Proof. This follows from Proposition 4.8, because with the notations there, b = 0 implies
that the system there is simply:

W4


r1

r2

r3

r4

 = 0

Since the Walsh matrix W4 is invertible, the solution of this system is r = 0. Now
observe that, by definition of the numbers ri, as sums a quantities of type ±1, we have
ri = a(2) for any i. Thus, we must have a = 0(2), and since we have a = N/4, this gives
N = 0(8), as desired. The proof in the case a = 0 is similar. �

In general, the full classification of all the possible 5× 8 completions of a given 4×N
partial Hadamard matrix are quite difficult, and we have already seen this at N = 8,
where a careful study is needed, the result being as follows:

Theorem 4.10. The 4× 8 partial Hadamard matrices, namely

A = (W4 W4)

B = (W4 K4)

both complete into 5×8 partial Hadamard matrices, with the solutions being those coming
from the lower rows of the following matrices, which are Hadamard:(

W4 W4

W4 −W4

)
,

(
W4 W4

K4 −K4

)
(
W4 K4

W4 −K4

)
,

(
W4 K4

K4 −W4

)
This gives as well the higher completions, M × 8 with M = 6, 7, 8.

Proof. This is something that we aready know, from section 1 above. �
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At N = 12 now, we have only one matrix to be studied, namely:

P = (W4 W4 K4)

Observe that we have at least 8 solutions to the completion problem, coming from the
Paley matrix, which can be written as:

P12 =



+ + + + − + + + − + + +
+ − + − + − + + + − + +
+ + − − + + − + + + − +
+ − − + + + + − + + + −

− + − − + − + + − + + −
− + + + + + − + + − + −
− − − + + + + + − − − +
+ + + − + + + − − − − −

− + + + + − + − + + − +
+ + − + + − − − − − + +
+ − + + + − − + − + − −
− − + − + + − − − + + +


In general, all this leads to quite complicated algebra and combinatorics. We refer to

[52], [59], [72], [76], [137] for more on the combinatorics of the PHM.

Let us try now to count the partial Hadamard matrices H ∈ MM×N(±1). This is an
easy task at M = 2, 3, 4, where the answer is as follows:

Proposition 4.11. The number of PHM at M = 2, 3, 4 is

#PHM2×N = 2N
(
N

N/2

)
#PHM3×N = 2N

(
N

N/4, N/4, N/4, N/4

)
#PHM4×N = 2N

∑
a+b=N/4

(
N

a, b, b, a, b, a, a, b

)
where the quantities on the right are multinomial coefficients.

Proof. Indeed, the multinomial coefficients at right count the matrices having the first
row consisting of 1 entries only, and the 2N factor comes from this. �

In order to convert the above result into N →∞ estimates, we will need the following
technical result regarding the multinomial coefficients, from [115]:
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Theorem 4.12. We have the estimate∑
a1+...+as=N

(
N

a1, . . . , as

)p
' spN

√
ss(p−1)

ps−1(2πN)(s−1)(p−1)

in the N →∞ limit.

Proof. This is proved by Richmond and Shallit in [115] at p = 2, and the proof in the
general case, p ∈ N, is similar. More precisely, let us denote by csp the sum on the left:

csp =
∑

a1+...+as=N

(
N

a1, . . . , as

)p
Let us set now:

ai =
N

s
+ xi
√
N

By using the various formulae in [115], we obtain:

csp

' spN(2πN)
(1−s)p

2 s
sp
2 exp

(
−sp

2

s∑
i=1

x2
i

)

' spN(2πN)
(1−s)p

2 s
sp
2

∫ N

0

. . .

∫ N

0︸ ︷︷ ︸
s−1

exp

(
−sp

2

s∑
i=1

x2
i

)
da1 . . . das−1

= spN(2πN)
(1−s)p

2 s
sp
2 N

s−1
2

∫ N

0

. . .

∫ N

0︸ ︷︷ ︸
s−1

exp

−sp
2

s−1∑
i=1

x2
i −

sp

2

(
s−1∑
i=1

xi

)2
 dx1 . . . dxs−1

= spN(2πN)
(1−s)p

2 s
sp
2 N

s−1
2 × π

s−1
2 s−

1
2

(sp
2

) 1−s
2

= spN(2πN)
(1−s)p

2 s
sp
2
− 1

2
+ 1−s

2

( p

2πN

) 1−s
2

= spN(2πN)
(1−s)(p−1)

2 s
sp−s

2 p
1−s
2

= spN

√
ss(p−1)

ps−1(2πN)(s−1)(p−1)

Thus we have obtained the formula in the statement, and we are done. �

The above formula is something very useful, that we will heavily use in what follows.
Getting back now to the PHM, we have the following result:
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Theorem 4.13. The probability for a random H ∈MM×N(±1) to be a PHM is

P2 '
2√

2πN

P3 '
16√

(2πN)3

P4 '
512

(2πN)3

in the N ∈ 4N, N →∞ limit.

Proof. Since there are exactly 2MN sign matrices of size N ×M , the probability PM for
a random H ∈MM×N(±1) to be a PHM is given by:

PM =
1

2MN
#PHMM×N

With this formula in hand, the result follows from Proposition 4.11, by using the stan-
dard estimates for multinomial coefficients from Theorem 4.12. �

In their remarkable paper [59], de Launey and Levin were able to count the PHM, in
the asymptotic limit N ∈ 4N, N →∞. Their method is based on:

Proposition 4.14. The probability for a random H ∈MM×N(±1) to be partial Hadamard
equals the probability for a length N random walk with increments drawn from

E =
{

(eiēj)i<j

∣∣∣e ∈ ZM2
}

regarded as a subset of Z(M2 )
2 to return at the origin.

Proof. Indeed, with T (e) = (eiēj)i<j, a matrix X = [e1, . . . , eN ] ∈ MM×N(Z2) is partial
Hadamard if and only if:

T (e1) + . . .+ T (eN) = 0

But this gives the result. �

As explained in [59] the above probability can be indeed computed, and we have:

Theorem 4.15. The probability for a random H ∈MM×N(±1) to be PHM is

PM '
2(M−1)2√
(2πN)(

M
2 )

in the N ∈ 4N, N →∞ limit.



70 TEO BANICA

Proof. According to Proposition 4.14 above, we have:

PM =
1

q(M−1)N
#

{
ξ1, . . . , ξN ∈ E

∣∣∣∑
i

ξi = 0

}
=

1

q(M−1)N

∑
ξ1,...,ξN∈E

δΣξi,0

By using the Fourier inversion formula we have, with D =
(
M
2

)
:

δΣξi,0 =
1

(2π)D

∫
[−π,π]D

ei<λ,Σξi>dλ

After many non-trivial computations, this leads to the result. See [59]. �

Let us mention as well that for the general matrices H ∈ MM×N(±1), which are not
necessarily PHM, such statistics can be deduced from the work of Tau-Vu [133]. All this
is quite interesting, because it provides an alternative to the HC problematics.

Following now [27], and some previous work from [88], [89], let us discuss now another
topic, namely the square submatrices of the Hadamard matrices. We will see that all this
is related to the notion of almost Hadamard matrix (AHM), discussed in section 3 above.
We will be actually interested in the sign matrices of the AHM:

Definition 4.16. A matrix S ∈ MN(±1) is called an almost Hadamard sign pattern
(AHP) if there exists an almost Hadamard matrix H ∈MN(R) such that:

Sij = sgn(Hij)

Note that if a sign matrix S is an AHP, then there exists a unique almost Hadamard
matrix H such that Sij = sgn(Hij), namely:

H =
√
NPol(S)

Since the polar part is not uniquely defined for singular sign matrices, in what follows,
we will mostly be concerned with invertible AHP and AHM. We start analyzing square
the submatrices of Hadamard matrices. By permuting rows and columns, we can always
reduce the problem to the following situation:

Definition 4.17. D ∈Md(±1) is called a submatrix of H ∈MN(±1) if we have

H =

[
A B
C D

]
up to a permutation of the rows and columns of H. We set r = size(A) = N − d.

Observe that any D ∈M2(±1) having distinct columns appears as a submatrix of W4,
and that any D ∈M2(±1) appears as a submatrix of W8. In fact, we have:



HADAMARD MATRICES 71

Proposition 4.18. Let D ∈Md(±1) be an arbitrary sign matrix.

(1) If D has distinct columns, then D is as submatrix of WN , with N = 2d.
(2) In general, D appears as submatrix of WM , with M = 2d+dlog2 de.

Proof. This is elementary, as follows:

(1) Set N = 2d. If we use length d bit strings x, y ∈ {0, 1}d as indices, then:

(WN)xy = (−1)
∑
xiyi

Let W̃N ∈Md×N(±1) be the submatrix of WN having as row indices the strings of type:

xi = (0 . . . 0︸ ︷︷ ︸
i

1 0 . . . 0︸ ︷︷ ︸
N−i−1

)

Then for i ∈ {1, . . . , d} and y ∈ {0, 1}d, we have:

(W̃N)iy = (−1)yi

Thus the columns of W̃N are the N elements of {±1}d, which gives the result.

(2) Set R = 2dlog2 de ≥ d. Since the first row of WR contains only ones, WR ⊗ WN

contains as a submatrix R copies of W̃N , in which D can be embedded, as desired. �

Let us go back now to Definition 4.17, and try to relate the matrices A,D appearing
there. The following result, due to Szöllősi [127], is a first one in this direction:

Theorem 4.19. If U =

[
A B
C D

]
is unitary, with A ∈Mr(C), D ∈Md(C), then:

(1) The singular values of A,D are identical, up to |r − d| values of 1.
(2) detA = detU · detD, so in particular, | detA| = | detD|.

Proof. Here is a simplified proof. From the unitarity of U , we get:

A∗A+ C∗C = Ir

CC∗ +DD∗ = Id

AC∗ +BD∗ = 0r×d

(1) This follows from the first two equations, and from the well-known fact that the
matrices CC∗, C∗C have the same eigenvalues, up to |r − d| values of 0.

(2) By using the above unitarity equations, we have:[
A 0
C I

]
=

[
A B
C D

] [
I C∗

0 D∗

]
The result follows by taking determinants. �

We state and prove now our main results on the submatrices of Hadamard matrices.
Our first goal is to find a formula for the polar decomposition of D. Let us introduce:
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Definition 4.20. Associated to any A ∈Mr(±1) are the matrices

XA = (
√
NIr +

√
AtA)−1Pol(A)t

YA = (
√
NIr +

√
AAt)−1

depending on a parameter N .

Observe that, in terms of the polar decomposition A = V P , we have:

XA = (
√
N + P )−1V t

YA = V (
√
N + P )−1V t

The idea now is that, under the assumptions of Theorem 4.19, the polar parts of A,D
are related by a simple formula, with the passage Pol(A)→ Pol(D) involving the above
matrices XA, YA. In what follows we will focus on the case where U ∈ UN is replaced by
U =

√
NH with H ∈MN(±1) Hadamard. In the non-singular case, we have:

Proposition 4.21. Assuming that a matrix

H =

[
A B
C D

]
∈MN(±1)

is Hadamard, with A ∈ Mr(±1) invertible, D ∈ Md(±1), and ||A|| <
√
N , the polar

decomposition D = UT is given by

U =
1√
N

(D − E)

T =
√
NId − S

with E = CXAB and S = BtYAB.

Proof. Since H is Hadamard, we can use the formulae coming from:[
A B
C D

] [
At Ct

Bt Dt

]
=

[
At Ct

Bt Dt

] [
A B
C D

]
=

[
N 0
0 N

]
We start from the singular value decomposition of A:

A = V diag(si)X
t

Here V,X ∈ O(r), si ∈ (0, ||A||]. From AAt +BBt = NIr we get:

BBt = V diag(N − s2
i )V

t

Thus, the singular value decomposition of B is as follows, with Y ∈ Od:

B = V
[
diag(

√
N − s2

i ) 0r×(d−r)
]
Y t
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Similarly, from AtA + CtC = Ir, we infer the singular value decomposition for C, the

result being that there exists an orthogonal matrix Z̃ ∈ O(d) such that:

C = −Z̃
[
diag(

√
N − s2

i )
0(d−r)×r

]
X t

From BtB +DtD = NId, we obtain:

DtD = Y (diag(s2
i )⊕NI(d−r))Y

t

Tus the polar decomposition of D reads:

D = UY (diag(si)⊕
√
NI(d−r))Y

t

Let Z = UY and use the orthogonality relation CAt +DBt = 0d×r to obtain:

Z̃

[
diag(si

√
N − s2

i )
0(d−r)×r

]
= Z

[
diag(si

√
N − s2

i )
0(d−r)×r

]
From the hypothesis, we have si

√
N − s2

i > 0 and thus ZtZ̃ = Ir ⊕ Q, for some

orthogonal matrix Q ∈ Od. Plugging Z̃ = Z(Ir ⊕Q) in the singular value decomposition
formula for C, we obtain:

C = −Z(Ir ⊕Q)

[
diag(

√
N − s2

i )
0(d−r)×r

]
X t = −Z

[
diag(

√
N − s2

i )
0(d−r)×r

]
X t

To summarize, we have found V,X ∈ Or and Y, Z ∈ Od such that:

A = V diag(si)X
t

B = V
[
diag(

√
N − s2

i ) 0r×(d−r)
]
Y t

C = −Z
[
diag(

√
N − s2

i )
0(d−r)×r

]
X t

D = Z(diag(si)⊕
√
NI(d−r))Y

t

Now with U, T,E, S defined as in the statement, we obtain:

U = ZY t

E = Z(diag(
√
N − si)⊕ 0d−r)Y

t

√
AtA = Xdiag(si)X

t

(
√
NIr +

√
AtA)−1 = Xdiag(1/(

√
N + si))X

t

XA = Xdiag(1/(
√
N + si))V

t

CXAB = Z(diag(
√
N − si)⊕ 0d−r)Y

t
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Thus we have E = CXAB, as claimed. Also, we have:

T = Y (diag(si)⊕
√
NId−r)Y

t

S = Y (diag(
√
N − si)⊕ 0d−r)Y

t

√
AAt = V diag(si)V

t

YA = V diag(1/(
√
N + si))V

t

BtYAB = Y (diag(
√
N − si)⊕ 0d−r)Y

t

Hence, S = BtYAB, as claimed, and we are done. �

Observe that, in the above statement, in the case where the size of the upper left block
satisfies r <

√
N , the condition ||A|| <

√
N is automatically satisfied.

As a first application, let us try to find out when D is AHP, in the sense of Definition
4.16. For this purpose, we must estimate the quantity ||E||∞ = maxij |Eij|:

Proposition 4.22. Assuming that

H =

[
A B
C D

]
∈MN(±1)

is an Hadamard matrix, with A ∈Mr(±1), D ∈Md(±1) and r ≤ d. Then,

Pol(D) =
1√
N

(D − E)

with E satisfying:

(1) ||E||∞ ≤ r
√
r√

r+
√
N

when A is Hadamard.

(2) ||E||∞ ≤ r2c
√
N

N−r2 if r2 < N , with c = ||Pol(A)− A√
N
||∞.

(3) ||E||∞ ≤ r2(1+
√
N)

N−r2 if r2 < N .

Proof. We use the basic fact that for two matrices X ∈Mp×r(C), Y ∈Mr×q(C) we have:

||XY ||∞ ≤ r||X||∞||Y ||∞

Thus, according to Proposition 4.21, we have:

||E||∞ = ||CXAB||∞
≤ r2||C||∞||XA||∞||B||∞
= r2||XA||∞



HADAMARD MATRICES 75

(1) If A is Hadamard, AAt = rIr, Pol(A) = A/
√
r and thus:

XA = (
√
NIr +

√
rIr)

−1 A
t

√
r

=
At

r +
√
rN

Thus ||XA||∞ = 1
r+
√
rN

, which gives the result.

(2) According to the definition of XA, we have:

XA = (
√
NIr +

√
AtA)−1Pol(A)t

= (NIr − AtA)−1(
√
NIr −

√
AtA)Pol(A)t

= (NIr − AtA)−1(
√
NPol(A)− A)t

We therefore obtain:

||XA||∞ ≤ r||(NIr − AtA)−1||∞||
√
NPol(A)− A||∞

=
rc√
N

∣∣∣∣∣∣ (Ir − AtA

N

)−1 ∣∣∣∣∣∣
∞

Now by using ||AtA||∞ ≤ r, we obtain:∣∣∣∣∣∣ (Ir − AtA

N

)−1 ∣∣∣∣∣∣
∞
≤

∞∑
k=0

||(AtA)k||∞
Nk

≤
∞∑
k=0

r2k−1

Nk

=
1

r
· 1

1− r2/N

=
N

rN − r3

Thus we have the following estimate:

||XA||∞ ≤
rc√
N
· N

rN − r3
=

c
√
N

N − r2

But this gives the result.

(3) This follows from (2), because:

c ≤ ||Pol(A)||∞ + ||A/
√
N ||∞ ≤ 1 +

1√
N

The proof is now complete. �

Following [27], we can now state and prove a main result, as follows:
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Theorem 4.23. Assume that

H =

[
A B
C D

]
is Hadamard, with A ∈Mr(±1), H ∈MN(±1).

(1) If A is Hadamard, and N > r(r − 1)2, then D is AHP.

(2) If N > r2

4
(x+

√
x2 + 4)2, where x = r||Pol(A)− A√

N
||∞, then D is AHP.

(3) If N > r2

4
(r +

√
r2 + 8)2, then D is AHP.

Proof. This basically follows from the various estimates that we have, as follows:

(1) This follows from Proposition 4.22 (1), because:

r
√
r

√
r +
√
N
< 1 ⇐⇒ r < 1 +

√
N/r

⇐⇒ r(r − 1)2 < N

(2) This follows from Proposition 4.22 (2), because:

r2c
√
N

N − r2
< 1 ⇐⇒ N − r2c

√
N > r2

⇐⇒ (2
√
N − r2c)2 > r4c2 + 4r2

Indeed, this is equivalent to:

2
√
N > r2c+ r

√
r2c2 + 4 = r(x+

√
x2 + 4)

Here the value of x is as follows:

x = rc = r

∣∣∣∣∣∣∣∣Pol(A)− A√
N

∣∣∣∣∣∣∣∣
∞

(3) This follows from Proposition 4.22 (3), because:

r2(1 +
√
N)

N − r2
< 1 ⇐⇒ N − r2

√
N > 2r2

⇐⇒ (2
√
N − r2)2 > r4 + 8r2

Indeed, this is equivalent to:

2
√
N > r2 + r

√
r2 + 8

But this gives the result. �
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As a technical comment, for A ∈Mr(±1) Hadamard, Proposition 4.22 (2) gives:

||E||∞ ≤ r2
√
N

N − r2

(
1√
r
− 1√

N

)
=

r
√
rN − r2

N − r2

Thus ||E||∞ < 1 for N > r3, which is slightly weaker than Theorem 4.23 (1).

In view of the results above, it is convenient to make the following convention:

Definition 4.24. We denote by {x}m×n ∈Mm×n(R) the all-x, m× n matrix, and byx11 . . . x1l

. . . . . . . . .
xk1 . . . xkl


(m1,...,mk)×(n1,...,nl)

the matrix having all-xij rectangular blocks Xij = {xij}mi×nj ∈ Mmi×nj(R), of prescribed
size. In the case of square diagonal blocks, we simply write {x}n = {x}n×n andx11 . . . x1k

. . . . . . . . .
xkk . . . xkk


n1,...nk

=

x11 . . . x1k

. . . . . . . . .
xk1 . . . xkk


(n1,...,nk)×(n1,...,nk)

Modulo equivalence, the ±1 matrices of size r = 1, 2 are as follows:[
+
]

(1)
,

[
+ +
+ −

]
(2)

,

[
+ +
+ +

]
(2′)

In the cases (1) and (2) above, where the matrix A is invertible, the spectral properties
of their complementary matrices are as follows:

Theorem 4.25. For the N ×N Hadamard matrices of type

[
+ +
+ D

]
(1)

,


+ + + +
+ − + −
+ + D00 D01

+ − D10 D11


(2)

the polar decomposition D = UT with U = 1√
N

(D − E), T =
√
NI − S is given by:

E(1) =
{ 1

1+
√
N

}
N−1

, E(2) =
2

2 +
√

2N

{
1 1
1 −1

}
N/2−1,N/2−1

S(1) =
{ 1

1+
√
N

}
N−1

, S(2) =
2√

2 +
√
N

{
1 0
0 1

}
N/2−1,N/2−1

In particular, all the matrices D above are AHP.
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Proof. For A ∈Mr(±1) Hadamard, the quantities in Definition 4.20 are:

XA =
At

r +
√
rN

, YA =
Ir√

r +
√
N

These formulae follow indeed from AAt = AtA = rIr and Pol(A) = A/
√
r.

(1) Using the notation introduced in Definition 4.20, we have here B(1) = {1}1×N−1 and
C(1) = Bt

(1). Since A(1) = [+] is Hadamard we have XA(1)
= YA(1)

= 1
1+
√
N

, and so:

E(1) =
1

1 +
√
N
{1}N−1×1[1]{1}1×N−1 =

1

1 +
√
N
{1}N−1

S(1) =
1

1 +
√
N
{1}N−1×1{1}1×N−1 =

1

1 +
√
N
{1}N−1

(2) Using the orthogonality of the first two rows of H(2), we find that the matrices D00

and D11 have size N/2 − 1. Since since the matrix A(2) = [++
+
−] is Hadamard we have

XA(2)
= A

2+
√

2N
and YA(2)

= I2√
2+
√
N

, and this gives the following formulae:

E(2) =
1

2 +
√

2N

{
1 1
1 −1

}
(N/2−1,N/2−1)×(1,1)

[
1 1
1 −1

]{
1 1
1 −1

}
(1,1)×(N/2−1,N/2−1)

=
2

2 +
√

2N

{
1 1
1 −1

}
N/2−1,N/2−1

S(2) =
1√

2 +
√
N

{
1 1
1 −1

}
(N/2−1,N/2−1)×(1,1)

{
1 1
1 −1

}
(1,1)×(N/2−1,N/2−1)

=
2√

2 +
√
N

{
1 0
0 1

}
N/2−1,N/2−1

Thus, we obtain the formulae in the statement. �

We refer to [27] for a complete discussion in relation with the above.
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5. Complex matrices

We have seen that the Hadamard matrices H ∈ MN(±1) are very interesting objects.
In what follows, we will be interested in their complex versions:

Definition 5.1. A complex Hadamard matrix is a square matrix whose entries belong to
the unit circle in the complex plane,

H ∈MN(T)

and whose rows are pairwise orthogonal, with respect to the scalar product of CN .

Here, and in what follows, the scalar product is the usual one on CN , taken to be linear
in the first variable and antilinear in the second one:

< x, y >=
∑
i

xiȳi

As basic examples of complex Hamadard matrices, we have of course the real Hadamard
matrices, H ∈ MN(±1), which have sizes N ∈ {2} ∪ 4N. Here is now a new example,
with w = e2πi/3, which appears at the forbidden size value N = 3:

F3 =

1 1 1
1 w w2

1 w2 w


We will see that there are many other examples, and in particular that there are such

matrices at any N ∈ N, which in addition can be chosen to be circulant. Thus, the HC
and CHC problematics will dissapear in the general complex setting.

Let us start our study of the complex Hadamard matrices by extending some basic
results from the real case, from section 1 above. First, we have:

Proposition 5.2. The set formed by the N ×N complex Hadamard matrices is the real
algebraic manifold

XN = MN(T) ∩
√
NUN

where UN is the unitary group, the intersection being taken inside MN(C).

Proof. Let H ∈ MN(T). Then H is Hadamard if and only if its rescaling U = H/
√
N

belongs to the unitary group UN , and so when H ∈ XN , as claimed. �

We should mention that the above manifold XN , while appearing by definition as an
intersection of smooth manifolds, is very far from being smooth. We will be back to this,
later on. As a basic consequence now of the above result, we have:

Proposition 5.3. Let H ∈MN(C) be an Hadamard matrix.

(1) The columns of H must be pairwise orthogonal.
(2) The matrices H t, H̄,H∗ ∈MN(C) are Hadamard as well.
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Proof. We use the well-known fact that if a matrix is unitary, U ∈ UN , then so is its
complex conjugate Ū = (Ūij), the inversion formulae being as follows:

U∗ = U−1 , U t = Ū−1

Thus the unitary group UN is stable under the following operations:

U → U t , U → Ū , U → U∗

It follows that the algebraic manifold XN constructed in Proposition 5.2 is stable as
well under these operations. But this gives all the assertions. �

Let us introduce now the following equivalence notion for the complex Hadamard ma-
trices, taking into account some basic operations which can be performed:

Definition 5.4. Two complex Hadamard matrices are called equivalent, and we write
H ∼ K, when it is possible to pass from H to K via the following operations:

(1) Permuting the rows, or permuting the columns.
(2) Multiplying the rows or columns by numbers in T.

Also, we say that H is dephased when its first row and column consist of 1 entries.

Observe that, up to the above equivalence relation, any complex Hadamard matrix
H ∈MN(T) can be put in dephased form. Moreover, the dephasing operation is unique, if
we allow only the operations (2) in Definition 5.4, namely row and column multiplications
by numbers in T. In what follows, “dephasing the matrix” will have precisely this meaning,
namely dephasing by using the operations (2) in Definition 5.4.

Regarding analytic aspects, once again in analogy with the study from the real case,
we can locate the complex Hadamard matrices inside MN(T), as follows:

Theorem 5.5. Given a matrix H ∈MN(T), we have

| det(H)| ≤ NN/2

with equality precisely when H is Hadamard.

Proof. By using the basic properties of the determinant, we have indeed the following
estimate, valid for any vectors H1, . . . , HN ∈ TN :

| det(H1, . . . , HN)| ≤ ||H1|| × . . .× ||HN || = (
√
N)N

The equality case appears precisely when our vectors H1, . . . , HN ∈ TN are pairwise
orthogonal, and this gives the result. �

From a “dual” point of view, the question of locating XN inside
√
NUN , once again via

analytic methods, makes sense as well, and we have here the following result:
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Theorem 5.6. Given a matrix U ∈ UN we have

||U ||1 ≤ N
√
N

with equality precisely when H =
√
NU is Hadamard.

Proof. We have indeed the following estimate, valid for any U ∈ UN :

||U ||1 =
∑
ij

|Uij| ≤ N

(∑
ij

|Uij|2
)1/2

= N
√
N

The equality case holds when |Uij| =
√
N , for any i, j. But this amounts in saying that

the rescaled matrix H =
√
NU must satisfy H ∈MN(T), as desired. �

At the level of the examples now, we have the following basic construction, which works
at any N ∈ N, in stark contrast with what happens in the real case:

Theorem 5.7. The Fourier matrix, FN = (wij) with w = e2πi/N , which in standard
matrix form, with indices i, j = 0, 1, . . . , N − 1, is as follows,

FN =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

...
...

...
...

1 wN−1 w2(N−1) . . . w(N−1)2


is a complex Hadamard matrix, in dephased form.

Proof. By using the standard fact that the averages of complex numbers correspond to
barycenters, we conclude that the scalar products between the rows of FN are:

< Ra, Rb >=
∑
j

wajw−bj =
∑
j

w(a−b)j = Nδab

Thus FN is indeed a complex Hadamard matrix. As for the fact that FN is dephased,
this follows from our convention i, j = 0, 1, . . . , N − 1, which is there for this. �

As a first classification result now, in the complex case, we have:

Proposition 5.8. The Fourier matrices F2, F3, which are given by

F2 =

(
1 1
1 −1

)
, F3 =

1 1 1
1 w w2

1 w2 w


with w = e2πi/3 are the only Hadamard matrices at N = 2, 3, up to equivalence.
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Proof. The proof at N = 2 is similar to the proof from the real case. Indeed, given
H ∈MN(T) Hadamard, we can dephase it, as follows:(

a b
c d

)
→
(

1 1
āc b̄d

)
→
(

1 1
1 ab̄c̄d

)
Now since the dephasing operation preserves the class of the Hadamard matrices, we

have ab̄c̄d = −1, and so we obtain by dephasing the matrix F2. Regarding now the case
N = 3, consider an Hadamard matrix H ∈M3(T), assumed to be in dephased form:

H =

1 1 1
1 x y
1 z t


The orthogonality conditions between the rows of this matrix read:

(1 ⊥ 2) : x+ y = −1

(1 ⊥ 3) : z + t = −1

(2 ⊥ 3) : xz̄ + yt̄ = −1

In order to process these conditions, which are all of the same nature, consider an
arbitrary equation of the following type:

p+ q = −1 , p, q ∈ T

This equation tells us that the triangle having vertices at 1, p, q must be equilateral,
and so that we must have {p, q} = {w,w2}, with w = e2πi/3. By using this fact, for the
first two equations, we conclude that we must have:

{x, y} = {w,w2} , {z, t} = {w,w2}

As for the third equation, this tells us that we must have x 6= z.
Thus, our Hadamard matrix H is either the Fourier matrix F3, or the matrix obtained

from F3 by permuting the last two columns, and we are done. �

In order to deal now with the case N = 4, we already know, from our study in the real
case, that we will need tensor products. So, let us formulate:

Definition 5.9. The tensor product of complex Hadamard matrices is given, in double
indices, by (H ⊗K)ia,jb = HijKab. In other words, we have the formula

H ⊗K =

H11K . . . H1MK
...

...
HM1K . . . HMMK


by using the lexicographic order on the double indices.
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Here the fact that H ⊗ K is indeed Hadamard comes from the fact that its rows Ria

are pairwise orthogonal, as shown by the following computation:

< Ria, Rkc > =
∑
jb

HijKab · H̄kjK̄cb

=
∑
j

HijH̄kj

∑
b

KabK̄cb

= Mδik ·Nδac
= MNδia,kc

In order to advance now, our first task will be that of tensoring the Fourier matrices.
We have here the following statement, refining and generalizing Theorem 5.7:

Theorem 5.10. Given a finite abelian group G, with dual group Ĝ = {χ : G → T},
consider the Fourier coupling FG : G× Ĝ→ T, given by (i, χ)→ χ(i).

(1) Via the standard isomorphism G ' Ĝ, this Fourier coupling can be regarded as a
square matrix, FG ∈MG(T), which is a complex Hadamard matrix.

(2) In the case of the cyclic group G = ZN we obtain in this way, via the standard
identification ZN = {1, . . . , N}, the Fourier matrix FN .

(3) In general, when using a decomposition G = ZN1 × . . . × ZNk , the corresponding
Fourier matrix is given by FG = FN1 ⊗ . . .⊗ FNk .

Proof. This follows indeed from some basic facts from group theory:

(1) With the identification G ' Ĝ made our matrix is given by (FG)iχ = χ(i), and the
scalar products between the rows are computed as follows:

< Ri, Rj >=
∑
χ

χ(i)χ(j) =
∑
χ

χ(i− j) = |G| · δij

Thus, we obtain indeed a complex Hadamard matrix.

(2) This follows from the well-known and elementary fact that, via the identifications

ZN = ẐN = {1, . . . , N}, the Fourier coupling here is as follows, with w = e2πi/N :

(i, j)→ wij

(3) We use here the following well-known formula, for the duals of products:

Ĥ ×K = Ĥ × K̂
At the level of the corresponding Fourier couplings, we obtain from this:

FH×K = FH ⊗ FK
Now by decomposing G into cyclic groups, as in the statement, and by using (2) for

the cyclic components, we obtain the formula in the statement. �
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As a first application of the above result, we have:

Proposition 5.11. The Walsh matrix, WN with N = 2n, which is given by

WN =

(
1 1
1 −1

)⊗n
is the Fourier matrix of the finite abelian group KN = Zn2 .

Proof. We know that the first Walsh matrix is a Fourier matrix, W2 = F2 = FK2 . Now
by taking tensor powers we obtain from this that we have, for any N = 2n:

WN = W⊗n
2 = F⊗nK2

= FKn
2

= FKN

Thus, we are led to the conclusion in the statement. �

By getting back now to classification, we will need the following result, from [62]:

Theorem 5.12. If H ∈MM(T) and K ∈MN(T) are Hadamard, then so are the following
two matrices, for any choice of a parameter matrix Q ∈MM×N(T):

(1) H ⊗Q K ∈MMN(T), given by (H ⊗Q K)ia,jb = QibHijKab.
(2) HQ⊗K ∈MMN(T), given by (HQ⊗K)ia,jb = QjaHijKab.

These are called right and left Diţă deformations of H ⊗K, with parameter Q.

Proof. These results follow from the same computations as in the usual tensor product
case, the idea being that the Q parameters will cancel:

(1) The rows Ria of the matrix H ⊗Q K are indeed pairwise orthogonal, because:

< Ria, Rkc > =
∑
jb

QibHijKab · Q̄kbH̄kjK̄cb

= Mδik
∑
b

KabK̄cb

= Mδik ·Nδac
= MNδik,ac

(2) The rows Lia of the matrix HQ⊗K are orthogonal as well, because:

< Lia, Lkc > =
∑
jb

QjaHijKab · Q̄jcH̄kjK̄cb

= Nδac
∑
j

HijH̄kj

= Nδac ·Mδik

= MNδik,ac

Thus, both the matrices in the statement are Hadamard, as claimed. �
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As a first observation, when the parameter matrix is the all-one matrix I ∈MM×N(T),
we obtain in this way the usual tensor product of our matrices:

H ⊗I K = HI⊗K = H ⊗K
As a non-trivial example now, let us compute the right deformations of the Walsh

matrix W4 = F2 ⊗ F2, with arbitrary parameter matrix Q = (pr
q
s):

F2 ⊗Q F2 =

(
1 1
1 −1

)
⊗p q

r s


(

1 1
1 −1

)

=


p q p q
p −q p −q
r s −r −s
r −s −r s


This follows indeed by carefully working out what happens, by using the lexicographic

order on the double indices, as explained in section 1 above. To be more precise, the usual
tensor product W4 = F2 ⊗ F2 appears as follows:

W4 =


ia\jb 00 01 10 11

00 1 1 1 1
01 1 −1 1 −1
10 1 1 −1 −1
11 1 −1 −1 1


The corresponding values of the parameters Qib to be inserted are as follows:

(Qib) =


ia\jb 00 01 10 11

00 Q00 Q01 Q00 Q01

01 Q00 Q01 Q00 Q01

10 Q10 Q11 Q10 Q11

11 Q10 Q11 Q10 Q11


With the notation Q = (pr

q
s), this latter matrix becomes:

(Qib) =


ia\jb 00 01 10 11

00 p q p q
01 p q p q
10 r s r s
11 r s r s


Now by pointwise multiplying this latter matrix with the matrix W4 given above, we

obtain the announced formula for the deformed tensor product F2 ⊗Q F2.
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As for the left deformations of W4 = F2 ⊗ F2, once again with arbitrary parameter
matrix Q = (pr

q
s), these are given by a similar formula, as follows:

F2Q⊗ F2 =

(
1 1
1 −1

) p q
r s

⊗
(

1 1
1 −1

)

=


p p r r
q −q s −s
p p −r −r
q −q −s s


Observe that this latter matrix is transpose to F2 ⊗Q F2. However, this is something

accidental, coming from the fact that F2, and so W4 as well, are self-transpose.

With the above constructions in hand, we have the following result:

Theorem 5.13. The only complex Hadamard matrices at N = 4 are, up to the standard
equivalence relation, the matrices

F s
4 =


1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s


with s ∈ T, which appear as right Diţă deformations of W4 = F2 ⊗ F2.

Proof. First of all, the matrix F s
4 is indeed Hadamard, appearing from the construction

in Theorem 5.12, assuming that the parameter matrix there Q ∈M2(T) is dephased:

Q =

(
1 1
1 s

)
Observe also that, conversely, any right Diţă deformation of W4 = F2 ⊗ F2 is of this

form. Indeed, if we consider such a deformation, with general parameter matrix Q = (pr
q
s)

as above, by dephasing we obtain an equivalence with F s′
4 , where s′ = ps/qr:

p q p q
p −q p −q
r s −r −s
r −s −r s

 →


1 1 1 1
1 −1 1 −1
r/p s/q −r/p −s/q
r/p −s/q −r/p s/q



→


1 1 1 1
1 −1 1 −1
1 ps/qr −1 −ps/qr
1 −ps/qr −1 ps/qr


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It remains to prove that the matrices F s
4 are non-equivalent, and that any complex

Hadamard matrix H ∈M4(T) is equivalent to one of these matrices F s
4 .

But this follows by using the same kind of arguments as in the proof from the real case,
and from the proof of Proposition 5.8. Indeed, let us first dephase our matrix:

H =


1 1 1 1
1 a b c
1 d e f
1 g h i


We use now the fact, coming from plane geometry, that the solutions x, y, z, t ∈ T of

the equation x+ y + z + t = 0 are as follows, with p, q ∈ T:

{x, y, z, t} = {p, q,−p,−q}
In our case, we have 1 + a+ d+ g = 0, and so up to a permutation of the last 3 rows,

our matrix must look at follows, for a certain s ∈ T:

H =


1 1 1 1
1 −1 b c
1 s e f
1 −s h i


In the case s = ±1 we can permute the middle two columns, then repeat the same

reasoning, and we end up with the matrix in the statement.
In the case s 6= ±1 we have 1 + s+ e+ f = 0, and so −1 ∈ {e, f}. Up to a permutation

of the last columns, we can assume e = −1, and our matrix becomes:

H =


1 1 1 1
1 −1 b c
1 s −1 −s
1 −s h i


Similarly, from 1− s + h + i = 0 we deduce that −1 ∈ {h, i}. In the case h = −1 our

matrix must look as follows, and we are led to the matrix in the statement:

H =


1 1 1 1
1 −1 b c
1 s −1 −s
1 −s −1 i


As for the remaining case i = −1, here our matrix must look as follows:

H =


1 1 1 1
1 −1 b c
1 s −1 −s
1 −s h −1


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We obtain from the last column c = s, then from the second row b = −s, then from
the third column h = s, and so our matrix must be as follows:

H =


1 1 1 1
1 −1 −s s
1 s −1 −s
1 −s s −1


But, in order for the second and third row to be orthogonal, we must have s ∈ R, and

so s = ±1, which contradicts our above assumption s 6= ±1.
Thus, we are done with the proof of the main assertion. As for the fact that the matrices

in the statement are indeed not equivalent, this is standard as well. See [129]. �

At N = 5 now, the situation is considerably more complicated, with F5 being the only
matrix. The key technical result here, due to Haagerup [69], is as follows:

Proposition 5.14. Given an Hadamard matrix H ∈M5(T), chosen dephased,

H =


1 1 1 1 1
1 a x ∗ ∗
1 y b ∗ ∗
1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗


the numbers a, b, x, y must satisfy the following equation:

(x− y)(x− ab)(y − ab) = 0

Proof. This is something quite surprising, and tricky, the proof in [69] being as follows.
Let us look at the upper 3-row truncation of H, which is of the following form:

H ′ =

1 1 1 1 1
1 a x p q
1 y b r s


By using the orthogonality of the rows, we have:

(1 + a+ x)(1 + b̄+ ȳ)(1 + āy + bx̄) = −(p+ q)(r + s)(p̄r + q̄s)

On the other hand, by using p, q, r, s ∈ T, we have:

(p+ q)(r + s)(p̄r + q̄s) = (r + pq̄s+ p̄qr + s)(r̄ + s̄)

= 1 + pq̄r̄s+ p̄q + r̄s+ rs̄+ pq̄ + p̄qrs̄+ 1

= 2Re(1 + pq̄ + rs̄+ pq̄rs̄)

= 2Re[(1 + pq̄)(1 + rs̄)]

We conclude that we have the following formula, involving a, b, x, y only:

(1 + a+ x)(1 + b̄+ ȳ)(1 + āy + bx̄) ∈ R
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Now this is a product of type (1+α)(1+β)(1+γ), with the first summand being 1, and
with the last summand, namely αβγ, being real as well, as shown by the above general
p, q, r, s ∈ T computation. Thus, when expanding, and we are left with:

(a+ x) + (b̄+ ȳ) + (āy + bx̄) + (a+ x)(b̄+ ȳ)

+ (a+ x)(āy + bx̄) + (b̄+ ȳ)(āy + bx̄) ∈ R

By expanding all the products, our formula looks as follows:

a+ x+ b̄+ ȳ + āy + bx̄+ ab̄+ aȳ + b̄x+ xȳ

+ 1 + abx̄+ āxy + b+ āb̄y + x̄+ ā+ bx̄ȳ ∈ R

By removing from this all terms of type z + z̄, we are left with:

ab̄+ xȳ + abx̄+ āb̄y + āxy + bx̄ȳ ∈ R

Now by getting back to our Hadamard matrix, all this remains true when transposing
it, which amounts in interchanging x↔ y. Thus, we have as well:

ab̄+ x̄y + abȳ + āb̄x+ āxy + bx̄ȳ ∈ R

By substracting now the two equations that we have, we obtain:

xȳ − x̄y + ab(x̄− ȳ) + āb̄(y − x) ∈ R

Now observe that this number, say Z, is purely imaginary, because Z̄ = −Z. Thus our
equation reads Z = 0. On the other hand, we have the following formula:

abxyZ = abx2 − aby2 + a2b2(y − x) + xy(y − x)

= (y − x)(a2b2 + xy − ab(x+ y))

= (y − x)(ab− x)(ab− y)

Thus, our equation Z = 0 corresponds to the formula in the statement. �

By using the above result, we are led to the following theorem, also from [69]:

Theorem 5.15. The only Hadamard matrix at N = 5 is the Fourier matrix,

F5 =


1 1 1 1 1
1 w w2 w3 w4

1 w2 w4 w w3

1 w3 w w4 w2

1 w4 w3 w2 w


with w = e2πi/5, up to the standard equivalence relation for such matrices.
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Proof. Assume that have an Hadamard matrix H ∈M5(T), chosen dephased, and written
as in Proposition 5.14, with emphasis on the upper left 2× 2 subcorner:

H =


1 1 1 1 1
1 a x ∗ ∗
1 y b ∗ ∗
1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗


We know from Proposition 5.14, applied to H itself, and to its transpose H t as well,

that the entries a, b, x, y must satisfy the following equations:

(a− b)(a− xy)(b− xy) = 0

(x− y)(x− ab)(y − ab) = 0

Our first claim is that, by doing some combinatorics, we can actually obtain from this
a = b and x = y, up to the equivalence relation for the Hadamard matrices:

H ∼


1 1 1 1 1
1 a x ∗ ∗
1 x a ∗ ∗
1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗


Indeed, the above two equations lead to 9 possible cases, the first of which is, as desired,

a = b and x = y. As for the remaining 8 cases, here once again things are determined
by 2 parameters, and in practice, we can always permute the first 3 rows and 3 columns,
and then dephase our matrix, as for our matrix to take the above special form.

With this result in hand, the combinatorics of the scalar products between the first 3
rows, and between the first 3 columns as well, becomes something which is quite simple
to investigate. By doing a routine study here, and then completing it with a study of the
lower right 2× 2 corner as well, we are led to 2 possible cases, as follows:

H ∼


1 1 1 1 1
1 a b c d
1 b a d c
1 c d a b
1 d c b a

 , H ∼


1 1 1 1 1
1 a b c d
1 b a d c
1 c d b a
1 d c a b


Our claim now is that the first case is in fact not possible. Indeed, we must have:

a+ b+ c+ d = −1

2Re(ab̄) + 2Re(cd̄) = −1

2Re(ac̄) + 2Re(bd̄) = −1

2Re(ad̄) + 2Re(bc̄) = −1
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Now since |Re(x)| ≤ 1 for any x ∈ T, we deduce from the second equation that:

Re(ab̄) ≤ 1/2

In other words, the arc length between a, b satisfies θ(a, b) ≥ π/3. The same argument
applies to c, d, and to the other pairs of numbers in the last 2 equations. Now since our
equations are invariant under permutations of a, b, c, d, we can assume that our numbers
a, b, c, d are ordered on the unit circle, and by the above, separated by ≥ π/3 arc lengths.
But this tells us that we have the following inequalities:

θ(a, c) ≥ 2π/3 , θ(b, d) ≥ 2π/3

These two inequalities give the following estimates:

Re(ac̄) ≤ −1/2 , Re(bd̄) ≤ −1/2

But these estimates contradict the third equation. Thus, our claim is proved.

Summarizing, we have proved so far that our matrix must be as follows:

H ∼


1 1 1 1 1
1 a b c d
1 b a d c
1 c d b a
1 d c a b


We are now in position of finishing. The orthogonality equations are as follows:

a+ b+ c+ d = −1

2Re(ab̄) + 2Re(cd̄) = −1

ac̄+ cb̄+ bd̄+ dā = −1

The third equation can be written in the following equivalent form:

Re[(a+ b)(c̄+ d̄)] = −1

Im[(a− b)(c̄− d̄)] = 0

By using now a, b, c, d ∈ T, we obtain from this:

a+ b

a− b
∈ iR ,

c+ d

c− d
∈ iR

Thus we can find s, t ∈ R such that:

a+ b = is(a− b) , c+ d = it(c− d)

By plugging in these values, our system of equations simplifies, as follows:

(a+ b) + (c+ d) = −1

|a+ b|2 + |c+ d|2 = 3

(a+ b)(c̄+ d̄) = −1
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Now observe that the last equation implies in particular that we have:

|a+ b|2 · |c+ d|2 = 1

Thus |a+ b|2, |c+ d|2 must be roots of the following polynomial:

X2 − 3X + 1 = 0

But this gives the following equality of sets:{
|a+ b| , |c+ d|

}
=

{√
5 + 1

2
,

√
5− 1

2

}
This is good news, because we are now into 5-th roots of unity. To be more precise, we

have 2 cases to be considered, the first one being as follows, with z ∈ T:

a+ b =

√
5 + 1

2
z , c+ d = −

√
5− 1

2
z

From a+ b+ c+ d = −1 we obtain z = −1, and by using this we obtain:

b = ā , d = c̄

Thus we have the following formulae:

Re(a) = cos(2π/5) , Re(c) = cos(π/5)

We conclude that we have H ∼ F5, as claimed. As for the second case, with a, b and
c, d interchanged, this leads to H ∼ F5 as well. �

At N = 6 now, the situation becomes complicated, with lots of “exotic” solutions. The
simplest examples of Hadamard matrices at N = 6 are as follows:

Theorem 5.16. We have the following basic Hadamard matrices, at N = 6:

(1) The Fourier matrix F6.
(2) The Diţă deformations of F2 ⊗ F3 and of F3 ⊗ F2.
(3) The Haagerup matrix Hq

6 .
(4) The Tao matrix T6.

Proof. All this is elementary, the idea, and formulae of the matrices, being as follows:

(1) This is something that we know well.

(2) Consider indeed the dephased Diţă deformations of F2 ⊗ F3 and F3 ⊗ F2:

F
(rs)
6 = F2 ⊗1 1 1

1 r s

 F3 , F
(rs)
6 = F3 ⊗

1 1
1 r
1 s


F2
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Here r, s are two parameters on the unit circle, r, s ∈ T. In matrix form:

F
(rs)
6 =



1 1 1 1 1 1
1 w w2 1 w w2

1 w2 w 1 w2 w

1 r s −1 −r −s
1 wr w2s −1 −wr −w2s
1 w2r ws −1 −w2r −ws


As for the other deformation, this is given by:

F
(rs)
6 =



1 1 1 1 1 1
1 −1 1 −1 1 −1

1 r w wr w2 w2r
1 −r w −wr w2 −w2r

1 s w2 w2s w ws
1 −s w2 −w2s w −ws


(3) The matrix here, from [69], is as follows, with q ∈ T:

Hq
6 =


1 1 1 1 1 1
1 −1 i i −i −i
1 i −1 −i q −q
1 i −i −1 −q q
1 −i q̄ −q̄ i −1
1 −i −q̄ q̄ −1 i


(4) The matrix here, from [131], is as follows, with w = e2πi/3:

T6 =


1 1 1 1 1 1
1 1 w w w2 w2

1 w 1 w2 w2 w
1 w w2 1 w w2

1 w2 w2 w 1 w
1 w2 w w2 w 1


Observe that both Hq

6 and T6 are indeed complex Hadamard matrices. �

The matrices in Theorem 5.16 are “regular”, in the sense that the scalar products
between rows appear in the simplest possible way, namely from vanishing sums of roots
of unity, possibly rotated by a scalar. We will be back to this in section 6 below, with a
result stating that these matrices are the only regular ones, at N = 6.
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In the non-regular case now, there are many known constructions at N = 6. Here is
one such construction, found by Björck and Fröberg in [44]:

Proposition 5.17. The following is a complex Hadamard matrix,

BF6 =


1 ia −a −i −ā iā
iā 1 ia −a −i −ā
−ā iā 1 ia −a −i
−i −ā iā 1 ia −a
−a −i −ā iā 1 ia
ia −a −i −ā iā 1


where a ∈ T is one of the roots of a2 + (

√
3− 1)a+ 1 = 0.

Proof. Observe that the matrix in the statement is circulant, in the sense the rows appear
by cyclically permuting the first row. Thus, we only have to check that the first row is
orthogonal to the other 5 rows. But this follows from a2 + (

√
3− 1)a+ 1 = 0. �

Let us discuss now the case N = 7. We will restrict the attention to case where the
combinatorics comes from roots of unity. We use the following result, from [127]:

Theorem 5.18. If H ∈MN(±1) with N ≥ 8 is dephased symmetric Hadamard, and

w =
(1± i

√
N − 5)2

N − 4

then the following procedure yields a complex Hadamard matrix M ∈MN−1(T):

(1) Erase the first row and column of H.
(2) Replace all diagonal 1 entries with −w.
(3) Replace all off-diagonal −1 entries with w.

Proof. We know that the scalar product between any two rows of H, normalized as there,
appears as follows:

P =
N

4
· 1 · 1 +

N

4
· 1 · (−1) +

N

4
· (−1) · 1 +

N

4
· (−1) · (−1) = 0

Let us peform now the above operations (1,2,3), in reverse order. When replacing
−1→ w, all across the matrix, the above scalar product becomes:

P ′ =
N

4
· 1 · 1 +

N

4
· 1 · w̄ +

N

4
· w · 1 +

N

4
· (−1) · (−1) =

N

2
(1 +Re(w))

Now when adjusting the diagonal via w → −1 back, and 1 → −w, this amounts in
adding the quantity −2(1 +Re(w)) to our product. Thus, our product becomes:

P ′′ =

(
N

2
− 2

)
(1 +Re(w)) =

N − 4

2

(
1 +

6−N
N − 4

)
= 1

Finally, erasing the first row and column amounts in substracting 1 from our scalar
product. Thus, our scalar product becomes P ′′′ = 1− 1 = 0, and we are done. �
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Observe that the number w in the above statement is a root of unity precisely at N = 8,
where the only matrix satisfying the conditions in the statement is the Walsh matrix W8.
So, let us apply, as in [127], the above construction to this matrix, namely:

W8 =



1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1


We obtain in this way the following matrix:

W ′
8 =



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ −1 1 w 1 w 1 w
∗ 1 −1 w 1 1 w w
∗ w w −w 1 w w 1
∗ 1 1 1 −1 w w w
∗ w 1 w w −w w 1
∗ 1 w w w w −w 1
∗ w w 1 w 1 1 −1


The Hadamard matrix obtained in this way, by deleting the ∗ entries, is the Petrescu

matrix P7, found in [111]. Thus, we have the following result:

Theorem 5.19. P7 is the unique matrix formed by roots of unity that can be obtained by
the Szöllősi construction. It appears at N = 8, from H = W8. Its formula is

(P7)ijk,abc =


−w if (ijk) = (abc), ia+ jb+ kc = 0(2)

w if (ijk) 6= (abc), ia+ jb+ kc 6= 0(2)

(−1)ia+jb+kc otherwise

where w = e2πi/3, and with the indices belonging to the set {0, 1}3 − {(0, 0, 0)}.

Proof. We know that the Szöllősi construction maps W8 → P7. Since the formula of the
second Fourier matrix is (F2)ij = (−1)ij, the formula of the Walsh matrix W8 is:

(W8)ijk,abc = (−1)ia+jb+kc

But this gives the formula in the statement. �

Now observe that we are in the quite special situation H = F2 ⊗ K, with K being
dephased and symmetric. Thus, we can search for a one-parameter affine deformation
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K(q) which is dephased and symmetric, and then build the following matrix:

H(q) =

(
K(q) K
K −K(q̄)

)
In our case, such a deformation K(q) = W4(q) can be obtained by putting the q

parameters in the 2× 2 middle block. Now by performing the Szöllősi construction, with
the parameters q, q̄ left untouched, we obtain the parametric Petrescu matrix [111]:

Theorem 5.20. The following is a complex Hadamard matrix,

P q
7 =



−q q w 1 w 1 w
q −q w 1 1 w w
w w −w 1 w w 1
1 1 1 −1 w w w
w 1 w w −q̄w q̄w 1
1 w w w q̄w −q̄w 1
w w 1 w 1 1 −1


where w = e2πi/3, and q ∈ T.

Proof. This follows from the above considerations, or from a direct verification of the
orthogonality of the rows, which uses either 1− 1 = 0, or 1 + w + w2 = 0. �

Observe that the above matrix P q
7 has the property of being “regular”, in the sense that

the scalar products between rows appear from vanishing sums of roots of unity, possibly
rotated by a scalar. We will be back to this in the next section, with the conjectural
statement that F7, P

q
7 are the only regular Hadamard matrices at N = 7.
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6. Roots of unity

Many interesting examples of complex Hadamard matrices H ∈ MN(T), including the
real ones H ∈ MN(±1), have as entries roots of unity, of finite order. We discuss here
this case, and more generally the “regular” case, where the combinatorics of the scalar
products between the rows comes from vanishing sums of roots of unity. Let us begin
with the following definition, going back to the work in [47]:

Definition 6.1. An Hadamard matrix is called of Butson type if its entries are roots of
unity of finite order. The Butson class HN(l) consists of the Hadamard matrices

H ∈MN(Zl)

where Zl is the group of the l-th roots of unity. The level of a Butson matrix H ∈MN(T)
is the smallest integer l ∈ N such that H ∈ HN(l).

As basic examples, we have the real Hadamard matrices, which form the Butson class
HN(2). The Fourier matrices are Butson matrices as well, because we have FN ∈ HN(N),
and more generally FG ∈ HN(l), with N = |G|, and with l ∈ N being the smallest
common order of the elements of G. There are many other examples of such matrices, as
for instance those as N = 6 discussed in section 5, at 1 values of the parameters.

Generally speaking, the main question regarding the Butson matrices is that of under-
standing when HN(l) 6= 0, via a theorem providing obstructions, and then a result or
conjecture stating that these obstructions are the only ones. Let us begin with:

Proposition 6.2 (Sylvester obstruction). The following holds,

HN(2) 6= ∅ =⇒ N ∈ {2} ∪ 4N

due to the orthogonality of the first 3 rows.

Proof. This is something that we know from section 1, with the obstruction, going back
to Sylvester’s paper [124], being explained there. �

The above obstruction is fully satisfactory, because according to the Hadamard Con-
jecture, its converse should hold. Thus, we are fully done with the case l = 2. Our
purpose now will be that of finding analogous statements at l ≥ 3, theorem plus conjec-
ture. At very small values of l this is certainly possible, and in what regards the needed
obstructions, we can get away with the following simple fact, from [47], [148]:

Proposition 6.3. For a prime power l = pa, the vanishing sums of l-th roots of unity

λ1 + . . .+ λN = 0 , λi ∈ Zl

appear as formal sums of rotated full sums of p-th roots of unity.
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Proof. This is something elementary, coming from basic number theory. Consider indeed
the full sum of p-th roots of unity, taken in a formal sense:

S =

p∑
k=1

(e2πi/p)k

Let also w = e2πi/l, and for r ∈ {1, 2, . . . , l/p} let us denote by Srp = wr · S the above
formal sum of roots of unity, rotated by wr:

Srp =

p∑
k=1

wr(e2πi/p)k

We must show that any vanishing sum of l-th roots of unity appears as a sum of such
quantities Srp , with all this taken of course in a formal sense.

For this purpose, consider the following map, which assigns to the abstract elements of
the group ring Z[Zl] their precise numeric values, inside Z(w) ⊂ C:

Φ : Z[Zl]→ Z(w)

Our claim is that the elements {Srp} form a basis of ker Φ. In order to prove this claim,
observe first that Srp ∈ ker Φ. Also, these elements Srp are linearly independent, because

the support of Srp contains a unique element of the subset {1, 2, . . . , pa−1} ⊂ Zl, namely
the element r ∈ Zl, so all the coefficients of a vanishing linear combination of such sums
Srp must vanish. Thus, we are left with proving that ker Φ is spanned by {Srp}. For this
purpose, let us recall that the minimal polynomial of w is as follows:

Xpa − 1

Xpa−1 − 1
= 1 +Xpa−1

+X2pa−1

+ . . .+X(p−1)pa−1

We conclude that the dimension of ker Φ is given by:

dim(ker Φ) = pa − (pa − pa−1) = pa−1

Now since this is exactly the number of the sums Srp , this finishes the proof of our claim.
Thus, any vanishing sum of l-th roots of unity must be of the form

∑
±Srp , and the above

support considerations show the coefficients must be positive, as desired. �

We can now formulate a result in the spirit of Proposition 6.2, as follows:

Proposition 6.4 (Butson obstruction). The following holds,

HN(pa) 6= ∅ =⇒ N ∈ pN
due to the orthogonality of the first 2 rows.

Proof. This follows indeed from Proposition 6.3, because the scalar product between the
first 2 rows of our matrix is a vanishing sum of l-th roots of unity. �

WIth these obstructions in hand, we can discuss the case l ≤ 5, as follows:
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Theorem 6.5. We have the following results,

(1) HN(2) 6= ∅ =⇒ N ∈ {2} ∪ 4N,
(2) HN(3) 6= ∅ =⇒ N ∈ 3N,
(3) HN(4) 6= ∅ =⇒ N ∈ 2N,
(4) HN(5) 6= ∅ =⇒ N ∈ 5N,

with in cases (1, 3), a conjecture stating that the converse should hold as well.

Proof. In this statement (1) is the Sylvester obstruction, and (2,3,4) are particular cases
of the Butson obstruction. As for the last assertion, which is of course something rather
informal, but which is important for our purposes, the situation is as follows:

(1) Here, as already mentioned, we have the Hadamard Conjecture, which comes with
solid evidence, as explained in section 1 above.

(2) Here we have an old conjecture, dealing with complex Hadamard matrices over
{±1,±i}, going back to the work in [136], and called Turyn Conjecture. �

At l = 3 the situation is quite complicated, due to the following result, from [54]:

Proposition 6.6 (de Launey obstruction). The following holds,

HN(l) 6= ∅ =⇒ ∃ d ∈ Z[e2πi/l], |d|2 = NN

due to the orthogonality of all N rows. In particular, we have

5|N =⇒ HN(6) = ∅

so in particular H15(3) = ∅, showing that the Butson obstruction is too weak at l = 3.

Proof. The obstruction follows from the unitarity condition HH∗ = N for the complex
Hadamard matrices, by applying the determinant, which gives:

|det(H)|2 = NN

Regarding the second assertion, let w = e2πi/3, and assume that d = a+ bw+ cw2 with
a, b, c ∈ Z satisfies |d|2 = 0(5). We have the following computation:

|d|2 = (a+ bw + cw2)(a+ bw2 + cw)

= a2 + b2 + c2 − ab− bc− ac

=
1

2
[(a− b)2 + (b− c)2 + (c− a)2]

Thus our condition |d|2 = 0(5) leads to the following system, modulo 5:

x+ y + z = 0

x2 + y2 + z2 = 0

But this system has no solutions. Indeed, let us look at x2 + y2 + z2 = 0:
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(1) If this equality appears as 0 + 0 + 0 = 0 we can divide x, y, z by 5 and redo the
computation.

(2) Otherwise, this equality can only appear as 0 + 1 + (−1) = 0.

Thus, modulo permutations, we must have x = 0, y = ±1, z = ±2, which contradicts
x+ y + z = 0. Finally, the last assertion follows from H15(3) ⊂ H15(6) = ∅. �

At l = 5 now, things are a bit unclear, with the converse of Theorem 6.5 (4) being
something viable, at the conjectural level, at least to our knowledge. At l = 6 the
situation becomes again complicated, as follows:

Proposition 6.7 (Haagerup obstruction). The following holds, due to Haagerup’s N = 5
classification result, involving the orthogonality of all 5 rows of the matrix:

H5(l) 6= ∅ =⇒ 5|l
In particular we have H5(6) = ∅, which follows by the way from the de Launey obstruction
as well, in contrast with the fact that we generally have HN(6) 6= ∅.

Proof. In this statement the obstruction H5(l) = ∅ =⇒ 5|l comes indeed from Haagerup’s
classification result, explained in Theorem 5.15 above. As for the last assertion, this is
something very informal, the situation at small values of N being as follows:

– At N = 2, 3, 4 we have the matrices F2, F3,W4.

– At N = 6, 7, 8, 9 we have the matrices F6, P
1
7 ,W8, F3 ⊗ F3.

– At N = 10 we have the following matrix, found in [17] by using a computer, and
written in logarithmic form, with k standing for ekπi/3:

X6
10 =



0 0 0 0 0 0 0 0 0 0
0 4 1 5 3 1 3 3 5 1
0 1 2 3 5 5 1 3 5 3
0 5 3 2 1 5 3 5 3 1
0 3 5 1 4 1 1 5 3 3
0 3 3 3 3 3 0 0 0 0
0 1 1 5 3 4 3 0 2 4
0 1 5 3 5 2 4 3 2 0
0 5 3 5 1 2 0 2 3 4
0 3 5 1 1 4 4 2 0 3


We refer to [17] for more details on this topic. �

All this is not good news. Indeed, there is no hope of conjecturally solving ourHN(l) 6= ∅
problem in general, because this would have to take into account, and in a simple and
conceptual way, both the subtle arithmetic consequences of the de Launey obstruction,
and the Haagerup classification result at N = 5, and this does not seem feasible.
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In order to further comment on these difficulties, let us discuss now a generalization of
Proposition 6.3 above, and of the related Butson obstruction from Proposition 6.4, which
has been our main source of obstructions, so far. Let us start with:

Definition 6.8. A cycle is a full sum of roots of unity, possibly rotated by a scalar,

C = q

l∑
k=1

wk , w = e2πi/l , q ∈ T

and taken in a formal sense. A sum of cycles is a formal sum of cycles.

The actual sum of a cycle, or of a sum of cycles, is of course 0. This is why the word
“formal” is there, for reminding us that we are working with formal sums. As an example,
here is a sum of cycles, with w = e2πi/6, and with |q| = 1:

1 + w2 + w4 + qw + qw4 = 0

We know from Proposition 6.3 above that any vanishing sum of l-th roots of unity must
be a sum of cycles, at least when l = pa is a prime power. However, this is not the case
in general, the simplest counterexample being as follows, with w = e2πi/30:

w5 + w6 + w12 + w18 + w24 + w25 = 0

The following deep result on the subject is due to Lam and Leung [90]:

Theorem 6.9. Let l = pa11 . . . pakk , and assume that λi ∈ Zl satisfy:

λ1 + . . .+ λN = 0

(1)
∑
λi is a sum of cycles, with Z coefficients.

(2) If k ≤ 2 then
∑
λi is a sum of cycles (with N coefficients).

(3) If k ≥ 3 then
∑
λi might not decompose as a sum of cycles.

(4)
∑
λi has the same length as a sum of cycles: N ∈ p1N + . . .+ pkN.

Proof. This is something that we will not really need in what follows, but that we included
here, in view of its importance. The idea of the proof is as follows:

(1) This is a well-known result, which follows from basic number theory, by using
arguments in the spirit of those in the proof of Proposition 6.3 above.

(2) This is something that we already know at k = 1, from Proposition 6.3. At k = 2
the proof is more technical, along the same lines. See [90].

(3) The smallest possible l potentially producing a counterexample is l = 2 · 3 · 5 = 30,
and we have here indeed the sum given above, with w = e2πi/30.

(4) This is a deep result, due to Lam and Leung, relying on advanced number theory
knowledge. We refer to their paper [90] for the proof. �

As a consequence of the above result, we have the following generalization of the Butson
obstruction, which is something final and optimal on this subject:
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Theorem 6.10 (Lam-Leung obstruction). Assuming the we have

l = pa11 . . . pakk

the following must hold, due to the orthogonality of the first 2 rows:

HN(l) 6= ∅ =⇒ N ∈ p1N + . . .+ pkN
In the case k ≥ 2, the latter condition is automatically satisfied at N >> 0.

Proof. Here the first assertion, which generalizes the l = pa obstruction from Proposition
6.4 above, comes from Theorem 6.9 (4), applied to the vanishing sum of l-th roots of unity
coming from the scalar product between the first 2 rows. As for the second assertion, this
is something well-known, coming from basic number theory. �

Summarizing, our study so far of the condition HN(l) 6= ∅ has led us into an optimal
obstruction coming from the first 2 rows, namely the Lam-Leung one, then an obstruction
coming from the first 3 rows, namely the Sylvester one, and then two subtle obstructions
coming from all N rows, namely the de Launey one, and the Haagerup one.

As an overall conclusion, by contemplating all these obstructions, nothing good in
relation with our problem HN(l) 6= ∅ is going on at small N . So, as a natural and more
modest objective, we should perhaps try instead to solve this problem at N >> 0.

The point indeed is that everything simplifies at N >> 0, with some of the above
obstructions dissapearing, and with some other known obstructions, not to be discussed
here, dissapearing as well. We are therefore led to the following statement:

Conjecture 6.11 (Asymptotic Butson Conjecture (ABC)). The following equivalences
should hold, in an asymptotic sense, at N >> 0,

(1) HN(2) 6= ∅ ⇐⇒ 4|N ,
(2) HN(pa) 6= ∅ ⇐⇒ p|N , for pa ≥ 3 prime power,
(3) HN(l) 6= ∅ ⇐⇒ ∅, for l ∈ N not a prime power,

modulo the de Launey obstruction, |d|2 = NN for some d ∈ Z[e2πi/l].

In short, our belief is that when imposing the condition N >> 0, only the Sylvester,
Butson and de Launey obstructions survive. This is of course something quite nice, but in
what regards a possible proof, this looks difficult. Indeed, our above conjecture generalizes
the HC in the N >> 0 regime, which is so far something beyond reach.

One idea, however, in dealing with such questions, coming from the de Launey-Levin
result from [59], is that of looking at the partial Butson matrices, at N >> 0. Observe
in particular that restricting the attention to the rectangular case, and this not even in
the N >> 0 regime, would make dissapear the de Launey obstruction from the ABC,
which uses the orthogonality of all N rows. We will discuss this later on. For a number
of related considerations, we refer as well to the papers [54], [57].
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Getting away now from all these arithmetic difficulties, let us discuss now, following
[17], the classification of the regular complex Hadamard matrices of small order. The
definition here, which already appeared in the above, is as follows:

Definition 6.12. A complex Hadamard matrix H ∈MN(T) is called regular if the scalar
products between rows decompose as sums of cycles.

Our purpose in what follows will be that of showing that the notion of regularity can
lead to full classification results at N ≤ 6, and perhaps at N = 7 too, and all this while
covering most of the interesting complex Hadamard matrices that we met, so far. As a
first observation, supporting this last claim, we have the following result:

Proposition 6.13. The following complex Hadamard matrices are regular:

(1) The matrices at N ≤ 5, namely F2, F3, F
s
4 , F5.

(2) The main examples at N = 6, namely F
(rs)
6 , F

(rs)
6 , Hq

6 , T6.
(3) The main examples at N = 7, namely F7, P

q
7 .

Proof. The Fourier matrices FN are all regular, with the scalar products between rows
appearing as certain sums of full sums of l-th roots of unity, with l|N . As for the other
matrices appearing in the statement, with the convention that “cycle structure” means
the lengths of the cycles in the regularity property, the situation is as follows:

(1) F s
4 has cycle structure 2 + 2, and this because the verification of the Hadamard

condition is always based on the formula 1 + (−1) = 0, rotated by scalars.

(2) F
(rs)
6 , F

(rs)
6 have mixed cycle structure 2 + 2 + 2/3 + 3, in the sense that both cases

appear, Hq
6 has cycle structure 2 + 2 + 2, and T6 has cycle structure 3 + 3.

(3) P q
7 has cycle structure 3+2+2, its Hadamard property coming from 1+w+w2 = 0,

with w = e2πi/3, and from 1 + (−1) = 0, applied twice, rotated by scalars. �

Let us discuss now the classification of regular matrices. We first have:

Theorem 6.14. The regular Hadamard matrices at N ≤ 5 are

F2, F3, F
s
4 , F5

up to the equivalence relation for the complex Hadamard matrices.

Proof. This is something that we already know, coming from the classification results from
section 5, and from Proposition 6.13 (1). However, and here comes our point, proving
this result does not need in fact all this, the situation being as follows:

(1) At N = 2 the cycle structure can be only 2, and we obtain F2.

(2) At N = 3 the cycle structure can be only 3, and we obtain F3.

(3) At N = 4 the cycle structure can be only 2 + 2, and we obtain F s
4 .
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(4) At N = 5 some elementary combinatorics shows that the cycle structure 3 + 2 is
excluded. Thus we are left with the cycle structure 5, and we obtain F5. �

Let us discuss now the classification at N = 6. The result here, from [17], states that the

matrices F
(rs)
6 , F

(rs)
6 , Hq

6 , T6 are the only solutions. The proof is quite long and technical,
but we will present here its main ideas. Let us start with:

Proposition 6.15. The regular Hadamard matrices at N = 6 fall into 3 classes:

(1) Cycle structure 3 + 3, with T6 being an example.
(2) Cycle structure 2 + 2 + 2, with Hq

6 being an example.

(3) Mixed cycle structure 3 + 3/2 + 2 + 2, with F
(rs)
6 , F

(rs)
6 being examples.

Proof. This is a bit of an empty statement, with the above (1,2,3) possibilities being the
only ones, and with the various examples coming from Proposition 6.13 (2). �

In order to do the classification, we must prove that the examples in (1,2,3) are the
only ones. Let us start with the Tao matrix. The result here is as follows:

Proposition 6.16. The Tao matrix, namely

T6 =


1 1 1 1 1 1
1 1 w w w2 w2

1 w 1 w2 w2 w
1 w w2 1 w w2

1 w2 w2 w 1 w
1 w2 w w2 w 1


with w = e2πi/3 is the only one with cycle structure 3 + 3.

Proof. The proof of this fact, from [17], is quite long and technical, the idea being that of
studying first the 3× 6 case, then the 4× 6 case, and finally the 6× 6 case.

So, consider first a partial Hadamard matrix A ∈ M3×6(T), with the scalar products
between rows assumed to be all of type 3 + 3.

By doing some elementary combinatorics, one can show that, modulo equivalence, either
all the entries of A belong to Z3 = {1, w, w2}, or A has the following special form, for
certain parameters r, s ∈ T:

A =

1 1 1 1 1 1
1 w w2 r wr w2r
1 w2 w s w2s ws


With this result in hand, we can now investigate the 4× 6 case.
Assume indeed that we have a partial Hadamard matrix B ∈M4×6(T), with the scalar

products between rows assumed to be all of type 3 + 3.
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By looking at the 4 submatrices A(1), A(2), A(3), A(4) obtained from B by deleting one
row, and applying the above 3× 6 result, we are led, after doing some combinatorics, to
the conclusion that all the possible parameters dissapear.

Thus, our matrix must be of the following type:

B ∈M4×6(Z3)

With this result in hand, we can now go for the general case. Indeed, an Hadamard
matrix M ∈M6(T) having cycle structure 3 + 3 must be as follows:

M ∈M6(Z3)

But the study here is elementary, with T6 as the only solution. See [17]. �

Regarding now the Haagerup matrix, the result is similar, as follows:

Proposition 6.17. The Haagerup matrix, namely

Hq
6 =


1 1 1 1 1 1
1 −1 i i −i −i
1 i −1 −i q −q
1 i −i −1 −q q
1 −i q̄ −q̄ i −1
1 −i −q̄ q̄ −1 i


with q ∈ T is the only one with cycle structure 2 + 2 + 2.

Proof. The proof here, from [17], uses the same idea as in the proof of Proposition 6.16,
namely a detailed combinatorial study, by increasing the number of rows.

First of all, the study of the 3×6 partial Hadamard matrices with cycle structure 2+2+2
leads, up to equivalence, to the following 4 solutions, with q ∈ T being a parameter:

A1 =

1 1 1 1 1 1
1 −i 1 i −1 −1
1 −1 i −i q −q


A2 =

1 1 1 1 1 1
1 1 −1 i −1 −i
1 −1 q −q iq −iq


A3 =

1 1 1 1 1 1
1 −1 i −i q −q
1 −i i −1 −q q


A4 =

1 1 1 1 1 1
1 −i −1 i q −q
1 −1 −q −iq iq q


With this result in hand, we can go directly for the 6× 6 case.
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Indeed, a careful examination of the 3 × 6 submatrices, and of the way that differ-
ent parameters can overlap vertically, shows that our matrix must have a 3 × 3 block
decomposition as follows:

M =

A B C
D xE yF
G zH tI


Here A, . . . , I are 2 × 2 matrices over {±1,±i}, and x, y, z, t are in {1, q}. A more

careful examination shows that the solution must be of the following form:

M =

A B C
D E qF
G qH qI


More precisely, the matrix must be as follows:

M =


1 1 1 1 1 1
1 1 −i i −1 −1
1 i −1 −i −q q
1 −i i −1 −iq iq
1 −1 q −iq iq −q
1 −1 −q iq q −iq


But this matrix is equivalent to Hq

6 , and we are done. See [17]. �

Regarding now the mixed case, where both 2+2+2 and 3+3 situations can appear, this
is a bit more complicated. We can associate to any mixed Hadamard matrix M ∈M6(C)
its “row graph”, having the 6 rows as vertices, and with each edge being called “binary”
or “ternary”, depending on whether the corresponding scalar product is of type 2 + 2 + 2
or 3 + 3. With this convention, we have the following result:

Proposition 6.18. The row graph of a mixed matrix M ∈M6(C) can be:

(1) Either the bipartite graph having 3 binary edges.
(2) Or the bipartite graph having 2 ternary triangles.

Proof. This is once again something a bit technical, from [17], the idea being as follows.
Let X be the row graph in the statement. By doing some combinatorics, of rather
elementary type, we are led to the following conclusions about X:

– X has no binary triangle.
– X has no ternary square.
– X has at least one ternary triangle.

With these results in hand, we see that there are only two types of squares in our graph
X, namely those having 1 binary edge and 5 ternary edges, and those consisting of a
ternary triangle, connected to the 4-th point with 3 binary edges.
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By looking at pentagons, then hexagons that can be built with these squares, we see
that the above two types of squares cannot appear at the same time, at that at the level
of hexagons, we have the two solutions in the statement. See [17]. �

We can now complete our classification at N = 6, as follows:

Proposition 6.19. The deformed Fourier matrices, namely

F
(rs)
6 =



1 1 1 1 1 1
1 w w2 1 w w2

1 w2 w 1 w2 w

1 r s −1 −r −s
1 wr w2s −1 −wr −w2s
1 w2r ws −1 −w2r −ws



F
(rs)
6 =



1 1 1 1 1 1
1 −1 1 −1 1 −1

1 r w wr w2 w2r
1 −r w −wr w2 −w2r

1 s w2 w2s w ws
1 −s w2 −w2s w −ws


with r, s ∈ T are the only ones with mixed cycle structure.

Proof. According to Proposition 6.18, we have two cases:

(1) Assume first that the row graph is the bipartite one with 3 binary edges. By
permuting the rows, the upper 4× 6 submatrix of our matrix must be as follows:

B =


1 1 1 1 1 1
1 w w2 r wr w2r
1 w2 w s w2s ws
1 1 1 t t t


Now since the scalar product between the first and the fourth row is binary, we must

have t = −1, so the solution is:

B =


1 1 1 1 1 1
1 w w2 r wr w2r
1 w2 w s w2s ws
1 1 1 −1 −1 −1


We can use the same argument for finding the fifth and sixth row, by arranging the

matrix formed by the first three rows such as the second, respectively third row consist
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only of 1’s. This will make appear some parameters of the form w,w2, r, s in the extra

row, and we obtain in this way a matrix which is equivalent to F
(rs)
6 . See [17].

(2) Assume now that the row graph is the bipartite one with 2 ternary triangles. By
permuting the rows, the upper 4× 6 submatrix of our matrix must be as follows:

B =


1 1 1 1 1 1
1 1 w w w2 w2

1 1 w2 w2 w w
1 −1 r −r s −s


We can use the same argument for finding the fifth and sixth row, and we conclude

that the matrix is of the following type:

M =


1 1 1 1 1 1
1 1 w w w2 w2

1 1 w2 w2 w w
1 −1 r −r s −s
1 −1 a −a b −b
1 −1 c −c d −d


Now since the last three rows must form a ternary triangle, we conclude that the matrix

must be of the following form:

M =


1 1 1 1 1 1
1 1 w w w2 w2

1 1 w2 w2 w w
1 −1 r −r s −s
1 −1 wr −wr w2s −w2s
1 −1 w2r −w2r ws −ws


But this matrix is equivalent to F

(rs)
6 , and we are done. See [17]. �

Summing up all the above, we have proved the following theorem, from [17]:

Theorem 6.20. The regular complex Hadamard matrices at N = 6 are:

(1) The deformations F
(rs)
6 , F

(rs)
6 of the Fourier matrix F6.

(2) The Haagerup matrix Hq
6 .

(3) The Tao matrix T6.

Proof. This follows indeed from the trichotomy from Proposition 6.15, and from the results
in Proposition 6.16, Proposition 6.17 and Proposition 6.19. See [17]. �

All this is quite nice, and our belief is that the N = 7 classification is doable as well.
Here we have 3 possible cycle structures, namely 3 + 2 + 2, 5 + 2, 7, and some elementary
number theory shows that 5 + 2 is excluded, and that 3 + 2 + 2 and 7 cannot interact.
Thus we have a dichotomy, and our conjecture is as follows:
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Conjecture 6.21. The regular complex Hadamard matrices at N = 7 are:

(1) The Fourier matrix F7.
(2) The Petrescu matrix P q

7 .

Regarding (1), one can show indeed that F7 is the only matrix having cycle structure 7,
with this being related to more general results from [73]. As for (2), the problem is that
of proving that P q

7 is the only matrix having cycle structure 3 + 2 + 2. The computations
here are unfortunately far more involved than those at N = 6, briefly presented above,
and finishing the classification work here is not an easy question.

Besides the classification questions, there are as well a number of theoretical questions
in relation with the notion of regularity, that we believe to be very interesting. We have
for instance the following conjecture, going back to [17], and then to [30]:

Conjecture 6.22 (Regularity Conjecture). The following hold:

(1) Any Butson matrix H ∈MN(C) is regular.
(2) Any regular matrix H ∈MN(C) is an affine deformation of a Butson matrix.

We refer to [17] and [30] for more on these topics.

As already mentioned above, after Conjecture 6.11, one way of getting away from these
algebraic difficulties is by doing N >> 0 analysis for the partial Hadamard matrices, with
counting results in the spirit of [59]. Following [10], let us start with:

Definition 6.23. A partial Butson matrix (PBM) is a matrix

H ∈MM×N(Zq)

having its rows pairwise orthogonal, where Zq ⊂ C× is the group of q-roots of unity.

Two PBM are called equivalent if one can pass from one to the other by permuting the
rows and columns, or by multiplying the rows and columns by numbers in Zq. Up to this
equivalence, we can assume that H is dephased, in the sense that its first row consists of
1 entries only. We can also put H in “standard form”, as follows:

Definition 6.24. We say that H ∈MM×N(Zq) is in standard form if the low powers of

w = e2πi/q

are moved to the left as much as possible, by proceeding from top to bottom.

Let us first try to understand the case M = 2. Here a dephased partial Butson matrix
H ∈M2×N(Zq) must look as follows, with λi ∈ Zq satisfying λ1 + . . .+ λN = 0:

H =

(
1 . . . 1
λ1 . . . λN

)
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With q = pk11 . . . pkss , we must have, according to Lam and Leung [90]:

N ∈ p1N + . . .+ psN

Observe however that at s ≥ 2 this obstruction dissapears at N ≥ p1p2.

Let us discuss now the prime power case. We have:

Proposition 6.25. When q = pk is a prime power, the standard form of the dephased
partial Butson matrices at M = 2 is

H =

 1 1 . . . 1 . . . . . . 1 1 . . . 1

1︸︷︷︸
a1

w︸︷︷︸
a2

. . . wq/p−1︸ ︷︷ ︸
aq/p

. . . . . . wq−q/p︸ ︷︷ ︸
a1

wq−q/p+1︸ ︷︷ ︸
a2

. . . wq−1︸︷︷︸
aq/p


where w = e2πi/q and where a1, . . . , aq/p ∈ N are multiplicities, summing up to N/p.

Proof. Indeed, it is well-known that for q = pk the solutions of λ1 + . . . + λN = 0 with
λi ∈ Zq are, up to permutations of the terms, exactly those in the statement. �

Now with Proposition 6.25 in hand, we can prove:

Theorem 6.26. When q = pk is a prime power, the probability for a randomly chosen
M ∈M2×N(Zq), with N ∈ pN, N →∞, to be partial Butson is:

P2 '

√
p2− q

p qq−
q
p

(2πN)q−
q
p

Proof. According to Proposition 6.25, we have the following formula:

P2 =
1

qN

∑
a1+...+aq/p=N/p

(
N

a1 . . . a1︸ ︷︷ ︸
p

. . . . . . aq/p . . . aq/p︸ ︷︷ ︸
p

)

=
1

qN

(
N

N/p . . . N/p︸ ︷︷ ︸
p

) ∑
a1+...+aq/p=N/p

(
N/p

a1 . . . aq/p

)p

=
1

pN

(
N

N/p . . . N/p︸ ︷︷ ︸
p

)
× 1

(q/p)N

∑
a1+...+aq/p=N/p

(
N/p

a1 . . . aq/p

)p

By using the standard estimate for multinomial coefficients from [115], explained in
section 4 above, we obtain the formula in the statement. �

Let us discuss now the case where M = 2 and q = pk11 p
k2
2 has two prime factors. We

first examine the simplest such case, namely q = p1p2, with p1, p2 primes:
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Proposition 6.27. When q = p1p2 is a product of distinct primes, the standard form of
the dephased partial Butson matrices at M = 2 is

H =

 1 1 . . . 1 . . . . . . 1 1 . . . 1
1︸︷︷︸
A11

w︸︷︷︸
A12

. . . wp2−1︸ ︷︷ ︸
A1p2

. . . . . . wq−p2︸ ︷︷ ︸
Ap11

wq−p2+1︸ ︷︷ ︸
Ap12

. . . wq−1︸︷︷︸
Ap1p2


where w = e2πi/q, and A ∈Mp1×p2(N) is of the form Aij = Bi + Cj, with Bi, Cj ∈ N.

Proof. We use the fact that for q = p1p2 any vanishing sum of q-roots of unity decomposes
as a sum of cycles. Now if we denote by Bi, Cj ∈ N the multiplicities of the various p2-
cycles and p1-cycles, then we must have Aij = Bi + Cj, as claimed. �

Regarding now the matrices of type Aij = Bi + Cj, when taking them over integers,
Bi, Cj ∈ Z, these form a vector space of dimension d = p1 +p2−1. Given A ∈Mp1×p2(Z),
the “test” for deciding if we have Aij = Bi + Cj or not is:

Aij + Akl = Ail + Ajk

The problem comes of course from the assumption Bi, Cj ≥ 0, which is quite a subtle
one. In what follows we restrict the attention to the case p1 = 2. Here we have:

Theorem 6.28. For q = 2p with p ≥ 3 prime, P2 equals the probability for a random
walk on Zp to end up on the diagonal, i.e. at a position of type (t, . . . , t), with t ∈ Z.

Proof. According to Proposition 6.27, we must understand the matrices A ∈ M2×p(N)
which decompose as Aij = Bi + Cj, with Bi, Cj ≥ 0. But this is an easy task, because
depending on A11 vs A21 we have 3 types of solutions, as follows:(

a1 . . . ap
a1 . . . ap

)
,

(
a1 . . . ap

a1 + t . . . ap + t

)
,

(
a1 + t . . . ap + t
a1 . . . ap

)
Here ai ≥ 0 and t ≥ 1. Now since cases 2,3 contribute in the same way, we obtain:

P2 =
1

(2p)N

∑
2Σai=N

(
N

a1, a1, . . . , ap, ap

)
+

2

(2p)N

∑
t≥1

∑
2Σai+pt=N

(
N

a1, a1 + t, . . . , ap, ap + t

)
We can write this formula in a more compact way, as follows:

P2 =
1

(2p)N

∑
t∈Z

∑
2Σai+p|t|=N

(
N

a1, a1 + |t|, . . . , ap, ap + |t|

)
Now since the sum on the right, when rescaled by 1

(2p)N
, is exactly the probability for

a random walk on Zp to end up at (t, . . . , t), this gives the result. �
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Let us discuss now the exponents q = 3p. The same method as in the proof of Theorem
6.28 works, with the “generic” solution for A being as follows:

A =

 a1 . . . ap
a1 + t . . . ap + t

a1 + s+ t . . . ap + s+ t


Finally, regarding arbitrary exponents with two prime factors, we have:

Proposition 6.29. When q = pk11 p
k2
2 has exactly two prime factors, the dephased partial

Butson matrices at M = 2 are indexed by the solutions of

Aij,xy = Bijy + Cjxy

with Bijy, Cjxy ∈ N, with i ∈ Zp1, j ∈ Z
p
k1−1
1

, x ∈ Zp2, y ∈ Z
p
k2−1
2

.

Proof. We follow the method in the proof of Proposition 6.27. First, according to [90],
for q = pk11 p

k2
2 any vanishing sum of q-roots of unity decomposes as a sum of cycles.

Let us first work out a simple particular case, namely q = 4p. Here the multiplicity
matrices A ∈M4×p(N) appear as follows:

A =


B1 . . . B1

B2 . . . B2

B3 . . . B3

B4 . . . B4

+


C1 . . . Cp
D1 . . . Dp

C1 . . . Cp
D1 . . . Dp


Thus, if we use double binary indices for the elements of {1, 2, 3, 4}, the condition is:

Aij,x = Bij + Cjx

The same method works for any exponent of type q = pk11 p
k2
2 , the formula being:

Ai1...ik1 ,x1...xk2 = Bi1...ik1 ,x2...xk2
+ Ci2...ik1 ,x1...xk2

But this gives the formula in the statement, and we are done. �

At M = 3 now, we first restrict attention to the case where q = p is prime. In this
case, the general result in Proposition 6.29 becomes simply:

H =

(
1 1 . . . 1
1︸︷︷︸
a

w︸︷︷︸
a

. . . wp−1︸︷︷︸
a

)
We call a matrix A ∈ Mp(N) “tristochastic” if the sums on its rows, columns and

diagonals are all equal. Here, and in what follows, we call “diagonals” the main diagonal,
and its p − 1 translates to the right, obtained by using modulo p indices. With this
convention, here is now the result at M = 3:
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Proposition 6.30. For p prime, the standard form of the dephased PBM at M = 3 is

H =


1 1 . . . 1 . . . . . . 1 1 . . . 1
1 1 . . . 1 . . . . . . wp−1 wp−1 . . . wp−1

1︸︷︷︸
A11

w︸︷︷︸
A12

. . . wp−1︸︷︷︸
A1p

. . . . . . 1︸︷︷︸
Ap1

w︸︷︷︸
Ap2

. . . wp−1︸︷︷︸
App


where w = e2πi/p and where A ∈Mp(N) is tristochastic, with sums N/p.

Proof. Consider a dephased matrix H ∈ M3×N(Zp), written in standard form as in the
statement. Then the orthogonality conditions between the rows are as follows:

1 ⊥ 2 means A11 + . . .+ A1p = A21 + . . .+ A2p = . . . . . . = Ap1 + . . .+ App.

1 ⊥ 3 means A11 + . . .+ Ap1 = A12 + . . .+ Ap2 = . . . . . . = A1p + . . .+ App.

2 ⊥ 3 means A11 + . . .+ App = A12 + . . .+ Ap1 = . . . . . . = A1p + . . .+ Ap,p−1.

Thus A must have constant sums on rows, columns and diagonals, as claimed. �

It is quite unobvious on how to deal with the tristochastic matrices with bare hands.
For the moment, let us just record a few elementary results:

Proposition 6.31. For p = 2, 3, the standard form of the dephased PBM at M = 3 is
respectively as follows, with w = e2πi/3 and a+ b+ c = N/3 at p = 3:

H =


+ + + +
+ + − −
+︸︷︷︸
N/4

−︸︷︷︸
N/4

+︸︷︷︸
N/4

−︸︷︷︸
N/4



H =

 1 1 1 1 1 1 1 1 1
1 1 1 w w w w2 w2 w2

1︸︷︷︸
a

w︸︷︷︸
b

w2︸︷︷︸
c

1︸︷︷︸
b

w︸︷︷︸
c

w2︸︷︷︸
a

1︸︷︷︸
c

w︸︷︷︸
a

w2︸︷︷︸
b


Also, for p ≥ 3 prime and N ∈ pN, there is at least one Butson matrix H ∈M3×N(Zp).

Proof. The idea is that the p = 2 assertion follows from Proposition 6.30, and from the
fact that the 2× 2 tristochastic matrices are as follows:

A =

(
a a
a a

)
As for the p = 3 assertion, once again the idea is that this follows from Proposition

6.30, and from the fact that the 3× 3 tristochastic matrices are as follows:

A =

a b c
b c a
c a b


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Indeed, the p = 2 assertion is clear. Regarding now the p = 3 assertion, consider an
arbitary 3× 3 bistochastic matrix, written as follows:

A =

 a b n− a− b
d c n− c− d

n− a− d n− b− c ∗


Here ∗ = a+ b+ c+ d− n, but we won’t use this value, because one of the 3 diagonal

equations is redundant anyway. With these notations in hand, the conditions are:

b+ (n− c− d) + (n− a− d) = n

(n− a− b) + d+ (n− b− c) = n

Now since substracting these equations gives b = d, we obtain the result.
Regarding now the last assertion, consider the following p× p permutation matrix:

A =


1

1
1

. . .
1


Since this matrix is tristochastic, for any p ≥ 3 odd, this gives the result. �

Regarding now the asymptotic count, we have here:

Theorem 6.32. For p = 2, 3, the probability for a randomly chosen

M ∈M3×N(Zp)
with N ∈ pN, N →∞, to be partial Butson is respectively given by

P
(2)
3 '

{
16√

(2πN)3
if N ∈ 4N

0 if N /∈ 4N
at p = 2, and

P
(3)
3 ' 243

√
3

(2πN)3

at p = 3. In addition, we have P
(p)
3 > 0 for any N ∈ pN, for any p ≥ 3 prime.

Proof. According to Proposition 6.31, and then to the Stirling formula, we have:

P
(2)
3 =

1

4N

(
N

N/4, N/4, N/4, N/4

)
' 16√

(2πN)3

The proof of the other assertions is standard as well. �

It is possible to establish a few more results in this direction. See [10]. However, the
main question remains that of adapting the methods in [90] to the root of unity case.
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7. Geometry, defect

In this section and in the next one we discuss various geometric aspects of the complex
Hadamard matrices. Let us recall that the complex Hadamard manifold appears as an
intersection of smooth real algebraic manifolds, as follows:

XN = MN(T) ∩
√
NUN

We denote by Xp an unspecified neighborhood of a point in a manifold, p ∈ X. Also,
for q ∈ T1, meaning that q ∈ T is close to 1, we define qr with r ∈ R by (eit)r = eitr.
With these conventions, we have the following result:

Proposition 7.1. For H ∈ XN and A ∈MN(R), the following are equivalent:

(1) The following is an Hadamard matrix, for any q ∈ T1:

Hq
ij = Hijq

Aij

(2) The following equations hold, for any i 6= j and any q ∈ T1:∑
k

HikH̄jkq
Aik−Ajk = 0

(3) The following equations hold, for any i 6= j and any ϕ : R→ C:∑
k

HikH̄jkϕ(Aik − Ajk) = 0

(4) For any i 6= j and any r ∈ R, with Er
ij = {k|Aik − Ajk = r}, we have:∑

k∈Erij

HikH̄jk = 0

Proof. These equivalences are all elementary, and can be proved as follows:

(1) ⇐⇒ (2) Indeed, the scalar products between the rows of Hq are:

< Hq
i , H

q
j >=

∑
k

Hikq
AikH̄jkq̄

Ajk =
∑
k

HikH̄jkq
Aik−Ajk

(2) =⇒ (4) This follows from the following formula, and from the fact that the power
functions {qr|r ∈ R} over the unit circle T are linearly independent:∑

k

HikH̄jkq
Aik−Ajk =

∑
r∈R

qr
∑
k∈Erij

HikH̄jk

(4) =⇒ (3) This follows from the following formula:∑
k

HikH̄jkϕ(Aik − Ajk) =
∑
r∈R

ϕ(r)
∑
k∈Erij

HikH̄jk

(3) =⇒ (2) This simply follows by taking ϕ(r) = qr. �
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In order to understand the above deformations, which are “affine” in a certain sense,
it is convenient to enlarge the attention to all types of deformations. We keep using the
neighborhood notation Xp introduced above, and we consider functions of type f : Xp →
Yq, which by definition satisfy f(p) = q. With these conventions, we have:

Definition 7.2. Let H ∈MN(C) be a complex Hadamard matrix.

(1) A deformation of H is a smooth function f : T1 → (XN)H .
(2) The deformation is called “affine” if fij(q) = Hijq

Aij , with A ∈MN(R).
(3) We call “trivial” the deformations of type fij(q) = Hijq

ai+bj , with a, b ∈ RN .

Here the adjective “affine” comes from fij(e
it) = Hije

iAijt, because the function t→ Aijt
which produces the exponent is indeed affine. As for the adjective “trivial”, this comes
from the fact that f(q) = (Hijq

ai+bj)ij is obtained from H by multiplying the rows and
columns by certain numbers in T, so it is automatically Hadamard.

The basic example of an affine deformation comes from the Diţă deformations H⊗QK,
by taking all parameters qij ∈ T to be powers of q ∈ T. As an example, here are the
exponent matrices coming from the left and right Diţă deformations of F2 ⊗ F2:

Al =


a a b b
c c d d
a a b b
c c d d

 , Ar =


a b a b
a b a b
c d c d
c d c d


In order to investigate the above types of deformations, we will use the corresponding

tangent vectors. So, let us recall that the manifold XN is given by:

XN = MN(T) ∩
√
NUN

This observation leads to the following definition, where in the first part we denote by
TpX the tangent space to a point in a smooth manifold, p ∈ X:

Definition 7.3. Associated to a point H ∈ XN are the following objects:

(1) The enveloping tangent space: T̃HXN = THMN(T) ∩ TH
√
NUN .

(2) The tangent cone THXN : the set of tangent vectors to the deformations of H.
(3) The affine tangent cone T ◦HXN : same as above, using affine deformations only.
(4) The trivial tangent cone T×HXN : as above, using trivial deformations only.

Observe that T̃HXN , T
×
HXN are real linear spaces, and that THXN , T

◦
HXN are two-sided

cones, in the sense that they satisfy the following condition:

λ ∈ R, A ∈ T =⇒ λA ∈ T
Observe also that we have inclusions of cones, as follows:

T×HXN ⊂ T ◦HXN ⊂ THXN ⊂ T̃HXN
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In more algebraic terms now, these various tangent cones are best described by the
corresponding matrices, and we have here the following result:

Theorem 7.4. The cones T×HXN ⊂ T ◦HXN ⊂ THXN ⊂ T̃HXN are as follows:

(1) T̃HXN can be identified with the linear space formed by the matrices A ∈ MN(R)
satisfying: ∑

k

HikH̄jk(Aik − Ajk) = 0

.
(2) THXN consists of those matrices A ∈ MN(R) appearing as Aij = g′ij(0), where

g : MN(R)0 →MN(R)0 satisfies:∑
k

HikH̄jke
i(gik(t)−gjk(t)) = 0

(3) T ◦HXN is formed by the matrices A ∈ MN(R) satisfying the following condition,
for any i 6= j and any q ∈ T:∑

k

HikH̄jkq
Aik−Ajk = 0

(4) T×HXN is formed by the matrices A ∈MN(R) which are of the form Aij = ai + bj,
for certain vectors a, b ∈ RN .

Proof. All these assertions can be deduced by using basic differential geometry:

(1) This result is well-known, the idea being as follows. First, MN(T) is defined by the
algebraic relations |Hij|2 = 1, and with Hij = Xij + iYij we have:

d|Hij|2 = d(X2
ij + Y 2

ij) = 2(XijẊij + YijẎij)

Consider now an arbitrary vector ξ ∈ THMN(C), written as follows:

ξ =
∑
ij

αijẊij + βijẎij

This vector belongs then to THMN(T) if and only if we have < ξ, d|Hij|2 >= 0. We
therefore obtain the following formula, for the tangent cone:

THMN(T) =

{∑
ij

Aij(YijẊij −XijẎij)
∣∣∣Aij ∈ R

}

We also know that the rescaled unitary group
√
NUN is defined by the following alge-

braic relations, where H1, . . . , HN are the rows of H:

< Hi, Hj >= Nδij
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The relations < Hi, Hi >= N being automatic for the matrices H ∈MN(T), if for i 6= j
we let Lij =< Hi, Hj >, then we have:

T̃HCN =
{
ξ ∈ THMN(T)

∣∣∣ < ξ, L̇ij >= 0, ∀i 6= j
}

On the other hand, differentiating the formula of Lij gives:

L̇ij =
∑
k

(Xik + iYik)(Ẋjk − iẎjk) + (Xjk − iYjk)(Ẋik + iẎik)

Now if we pick ξ ∈ THMN(T), written as above in terms of A ∈MN(R), we obtain:

< ξ, L̇ij >= i
∑
k

H̄ikHjk(Aik − Ajk)

Thus we have reached to the description of T̃HXN in the statement.

(2) We pick an arbitrary deformation, and write it as fij(e
it) = Hije

igij(t). Observe first
that the Hadamard condition corresponds to the equations in the statement, namely:∑

k

HikH̄jke
i(gik(t)−gjk(t)) = 0

Observe also that by differentiating this formula at t = 0, we obtain:∑
k

HikH̄jk(g
′
ik(0)− g′jk(0)) = 0

Thus the matrix Aij = g′ij(0) belongs indeed to T̃HXN , so we obtain in this way a
certain map, as follows:

THXN → T̃HXN

In order to check that this map is indeed the correct one, we have to verify that, for
any i, j, the tangent vector to our deformation is given by:

ξij = g′ij(0)(YijẊij −XijẎij)

But this latter verification is just a one-variable problem. So, by dropping all i, j indices,
which is the same as assuming N = 1, we have to check that for any point H ∈ T, written
H = X + iY , the tangent vector to the deformation f(eit) = Heig(t) is:

ξ = g′(0)(Y Ẋ −XẎ )

But this is clear, because the unit tangent vector at H ∈ T is η = −i(Y Ẋ −XẎ ), and
its coefficient coming from the deformation is:

(eig(t))′|t=0 = −ig′(0)
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(3) Observe first that by taking the derivative at q = 1 of the condition (2) in Propo-
sition 7.1, of just by using the condition (3) there with the function ϕ(r) = r, we get:∑

k

HikH̄jkϕ(Aik − Ajk) = 0

Thus we have a map T ◦HXN → T̃HXN , and the fact that is map is indeed the correct
one comes for instance from the computation in (2), with gij(t) = Aijt.

(4) Observe first that the Hadamard matrix condition is satisfied, because:∑
k

HikH̄jkq
Aik−Ajk = qai−aj

∑
k

HikH̄jk = δij

As for the fact that T×HXN is indeed the space in the statement, this is clear. �

Let ZN ⊂ XN be the real algebraic manifold formed by all the dephased N × N
complex Hadamard matrices. Observe that we have a quotient map XN → ZN , obtained
by dephasing. With this notation, we have the following refinement of (4) above:

Proposition 7.5. We have a direct sum decomposition of cones

T ◦HXN = T×HXN ⊕ T ◦HZN
where at right we have the affine tangent cone to the dephased manifold XN → ZN .

Proof. If we denote by M◦
N(R) the set of matrices having 0 outside the first row and

column, we have a direct sum decomposition, as follows:

T̃ ◦HXN = M◦
N(R)⊕ T̃ ◦HZN

Now by looking at the affine cones, and using Theorem 7.4, this gives the result. �

As a concrete numerical invariant arising from all this, which can be effectively com-
puted in many cases of interest, we have, following [129]:

Definition 7.6. The real dimension d(H) of the enveloping tangent space

T̃HXN = THMN(T) ∩ TH
√
NUN

is called undephased defect of a complex Hadamard matrix H ∈ XN .

In view of Proposition 7.5, it is sometimes convenient to replace d(H) by the related
quantity d′(H) = d(H)− 2N + 1, called dephased defect of H. See [129]. In what follows
we will rather use the quantity d(H) defined above, which behaves better with respect to
a number of operations, and simply call it “defect” of H.

We already know, from Theorem 7.4, what is the precise geometric meaning of the
defect, and how to compute it. Let us record again these results, that we will use many
times in what follows, in a slightly different form, closer to the spirit of [129]:
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Theorem 7.7. The defect d(H) is the real dimension of the linear space

T̃HXN =

{
A ∈MN(R)

∣∣∣∑
k

HikH̄jk(Aik − Ajk) = 0, ∀i, j

}
and the elements of this space are those making Hq

ij = Hijq
Aij Hadamard at order 1.

Proof. Here the first assertion is something that we already know, from Theorem 7.4 (1),
and the second assertion follows either from Theorem 7.4 and its proof, or directly from

the definition of the enveloping tangent space T̃HXN , as used in Definition 7.6. �

Here are a few basic properties of the defect:

Proposition 7.8. Let H ∈ XN be a complex Hadamard matrix.

(1) If H ' H̃ then d(H) = d(H̃).
(2) We have 2N − 1 ≤ d(H) ≤ N2.
(3) If d(H) = 2N −1, the image of H in the dephased manifold XN → ZN is isolated.

Proof. All these results are elementary, the proof being as follows:

(1) If we let Kij = aibjHij with |ai| = |bj| = 1 be a trivial deformation of our matrix
H, the equations for the enveloping tangent space for K are:∑

k

aibkHikāj b̄kH̄jk(Aik − Ajk) = 0

By simplifying we obtain the equations for H, so d(H) is invariant under trivial defor-
mations. Since d(H) is invariant as well by permuting rows or columns, we are done.

(2) Consider the inclusions T×HXN ⊂ THXN ⊂ T̃HXN . Since dim(T×HXN) = 2N − 1,
the inequality at left holds indeed. As for the inequality at right, this is clear.

(3) If d(H) = 2N − 1 then THXN = T×HXN , so any deformation of H is trivial. Thus
the image of H in the quotient manifold XN → ZN is indeed isolated, as stated. �

In order to deal with the real case, it is convenient to modify the general formula from
Theorem 7.7, via a change of variables, as follows:

Proposition 7.9. We have a linear space isomorphism as follows,

T̃HXN '
{
E ∈MN(C)

∣∣∣E = E∗, (EH)ijH̄ij ∈ R, ∀i, j
}

the correspondences A→ E and E → A being given by the formulae

Eij =
∑
k

HikH̄jkAik , Aij = (EH)ijH̄ij

with A ∈ T̃HXN being the usual components, from Theorem 7.7 above.
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Proof. Given a matrix A ∈MN(C), if we set Rij = AijHij and E = RH∗, the correspon-
dence A→ R→ E is then bijective onto MN(C), and we have:

Eij =
∑
k

HikH̄jkAik

In terms of these new variables, the equations in Theorem 7.7 become Eij = Ēji. Thus,
when taking into account these conditions, we are simply left with the conditions Aij ∈ R.
But these correspond to the conditions (EH)ijH̄ij ∈ R, as claimed. �

With the above result in hand, we can now compute the defect of the real Hadamard
matrices. The result here, from [125], is as follows:

Theorem 7.10. For any real Hadamard matrix H ∈MN(±1) we have

T̃HXN 'MN(R)symm

and so the corresponding defect is d(H) = N(N + 1)/2.

Proof. We use Proposition 7.9. Since H is now real the condition (EH)ijH̄ij ∈ R there
simply tells us that E must be real, and this gives the result. �

As another computation now, let us discuss the case N = 4. Here we know from
section 5 above that the only complex Hadamard matrices are, up to equivalence, the
Diţă deformations of F4. To be more precise, we have the following result:

Proposition 7.11. The complex Hadamard matrices at N = 4 are, up to equivalence,
the following matrices, appearing as Diţă deformations of F4:

F q
2,2 =

(
1 1
1 −1

)
⊗1 1

1 q


(

1 1
1 −1

)
=


1 1 1 1
1 −1 q −q
1 1 −1 −1
1 −1 −q q


At q ∈ {1, i,−1,−i} we obtain tensor products of Fourier matrices, as follows:

(1) At q = 1 we have F q
2,2 = F2 ⊗ F2.

(2) At q = −1 we have F q
2,2 ' F2 ⊗ F2.

(3) At q = ±i we have F q
2,2 ' F4.

Proof. The first assertion is something that we already know, from section 5 above. Re-
garding now the q = 1, i,−1,−i specializations, the situation here is as follows:

(1) This is clear from definitions.

(2) This follows from (1), by permuting the third and the fourth columns:

F−1
2,2 =


1 1 1 1
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1

 ∼


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 = F 1
2,2
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(3) This follows from the following computation:

F±i2,2 =


1 1 1 1
1 −1 ±i ∓i
1 1 −1 −1
1 −1 ∓i ±i

 ∼


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 = F4

Here we have interchanged the second column with the third one in the case q = i, and
we have used a cyclic permutation of the last 3 columns in the case q = −i. �

Let us compute now the defect of the above matrices. We will work out everything in
detail, as an illustration for how the equations in Theorem 7.7 work. The result is:

Theorem 7.12. The defect of the 4× 4 complex Hadamard matrices is given by

d(F q
2,2) =

{
10 (q = ±1)

8 (q 6= ±1)

with F q
2,2, depending on q ∈ T, being the matrix in Proposition 7.11.

Proof. Our starting point are the equations in Theorem 7.7, namely:∑
h

HikH̄jk(Aik − Ajk) = 0

Since the i > j equations are equivalent to the i < j ones, and the i = j equations are
trivial, we just have to write down the equations corresponding to indices i < j. And,
with ij = 01, 02, 03, 12, 13, 23, these equations are:

(A00 − A10)− (A01 − A11) + q̄(A02 − A12)− q̄(A03 − A13) = 0

(A00 − A20) + (A01 − A21)− (A02 − A22)− (A03 − A23) = 0

(A00 − A30)− (A01 − A31)− q̄(A02 − A32) + q̄(A03 − A33) = 0

(A10 − A20)− (A11 − A21)− q(A12 − A22) + q(A13 − A23) = 0

(A10 − A30) + (A11 − A31)− (A12 − A32)− (A13 − A33) = 0

(A20 − A30)− (A21 − A31) + q̄(A22 − A32)− q̄(A23 − A33) = 0

Assume first q 6= ±1. Then q is not real, and appears in 4 of the above equations. But
these 4 equations can be written in the following way:

(A00 − A01)− (A10 − A11) + q̄((A02 − A03)− (A12 − A13)) = 0

(A00 − A01)− (A30 − A31)− q̄((A02 − A03)− (A32 − A33)) = 0

(A10 − A11)− (A20 − A21)− q((A12 − A13)− (A22 − A23)) = 0

(A20 − A21)− (A30 − A31) + q̄((A22 − A23)− (A32 − A33)) = 0
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Now since the unknowns are real, and q is not, we conclude that the terms between
braces in the left part must be all equal, and that the same must happen at right:

A00 − A01 = A10 − A11 = A20 − A21 = A30 − A31

A02 − A03 = A12 − A13 = A22 − A23 = A32 − A33

Thus, the equations involving q tell us that A must be of the following form:

A =


a a+ x e+ y e
b b+ x f + y f
c c+ x g + y g
d d+ x h+ y h


Let us plug now these values in the remaining 2 equations. We obtain:

a− c+ a+ x− c− x− e− y + g + y − e+ g = 0

b− d+ b+ x− d− x− f − y + h+ y − f + h = 0

Thus we must have a+ g = c+ e and b+ h = d+ f , which are independent conditions.
We conclude that the dimension of the space of solutions is 10− 2 = 8, as claimed.

Assume now q = ±1. For simplicity we set q = 1, and we compute the dephased defect.
The dephased equations, obtained by setting Ai0 = A0j = 0 in our system, are:

A11 − A12 + A13 = 0

−A21 + A22 + A23 = 0

A31 + A32 − A33 = 0

−A11 + A21 − A12 + A22 + A13 − A23 = 0

A11 − A31 − A12 + A32 − A13 + A33 = 0

−A21 + A31 + A22 − A32 − A23 + A33 = 0

The first three equations tell us that our matrix must be of the following form:

A =

 a a+ b b
c+ d c d
e f e+ f


Now by plugging these values in the last three equations, these become:

−a+ c+ d− a− b+ c+ b− d = 0

a− e− a− b+ f − b+ e+ f = 0

−c− d+ e+ c− f − d+ e+ f = 0

Thus we must have a = c, b = f , d = e, and since these conditions are independent,
the dephased defect is 3, and so the undephased defect is 3 + 7 = 10, as claimed. �

Let us discuss now, following [8], [83], [104], [105], [129] the computation of the defect
of the Fourier matrix FG. As a first result on this subject, we have, following [129]:
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Theorem 7.13. For a Fourier matrix F = FG, the matrices A ∈ T̃FXN with N = |G|,
are those of the form A = PF ∗, with P ∈MN(C) satisfying

Pij = Pi+j,j = P̄i,−j

where the indices i, j are by definition taken in the group G.

Proof. We use Theorem 7.7. By decomposing our group as G = ZN1 × . . .× ZNr we can
assume F = FN1 ⊗ . . .⊗ FNr . Thus with wk = e2πi/k we have:

Fi1...ir,j1...jr = (wN1)
i1j1 . . . (wNr)

irjr

With N = N1 . . . Nr and w = e2πi/N , we obtain:

Fi1...ir,j1...jr = w

(
i1j1
N1

+...+ irjr
Nr

)
N

Thus the matrix of our system is given by:

Fi1...ir,k1...kr F̄j1...jr,k1...kr = w

(
(i1−j1)k1

N1
+...+

(ir−jr)kr
Nr

)
N

Now by plugging in a multi-indexed matrix A, our system becomes:∑
k1...kr

w

(
(i1−j1)k1

N1
+...+

(ir−jr)kr
Nr

)
N

(Ai1...ir,k1...kr − Aj1...jr,k1...kr) = 0

Now observe that in the above formula we have in fact two matrix multiplications, so
our system can be simply written as:

(AF )i1...ir,i1−j1...ir−jr − (AF )j1...jr,i1−j1...ir−jr = 0

Now recall that our indices have a “cyclic” meaning, so they belong in fact to the group
G. So, with P = AF , and by using multi-indices, our system is simply:

Pi,i−j = Pj,i−j

With i = I + J, j = I we obtain the condition PI+J,J = PIJ in the statement. In

addition, A = PF ∗ must be a real matrix. But, if we set P̃ij = P̄i,−j, we have:

(PF ∗)i1...ir,j1...jr =
∑
k1...kr

P̄i1...ir,k1...krFj1...jr,k1...kr

=
∑
k1...kr

P̃i1...ir,−k1...−kr(F
∗)−k1...−kr,j1...jr

= (P̃F ∗)i1...ir,j1...jr

Thus we have PF ∗ = P̃F ∗, so the fact that the matrix PF ∗ is real, which means by
definition that we have PF ∗ = PF ∗, can be reformulated as P̃F ∗ = PF ∗, and hence as
P̃ = P . So, we obtain the conditions Pij = P̄i,−j in the statement. �

We can now compute the defect, and we are led to the following formula:
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Theorem 7.14. The defect of a Fourier matrix FG is given by

d(FG) =
∑
g∈G

|G|
ord(g)

and equals as well the number of 1 entries of the matrix FG.

Proof. According to the formula A = PF ∗ from Theorem 7.13, the defect d(FG) is the
dimension of the real vector space formed by the matrices P ∈MN(C) satisfying:

Pij = Pi+j,j = P̄i,−j

Here, and in what follows, the various indices i, j, . . . will be taken in G. Now the point
is that, in terms of the columns of our matrix P , the above conditions are:

(1) The entries of the j-th column of P , say C, must satisfy Ci = Ci+j.

(2) The (−j)-th column of P must be conjugate to the j-th column of P .

Thus, in order to count the above matrices P , we can basically fill the columns one by
one, by taking into account the above conditions. In order to do so, consider the subgroup
G2 = {j ∈ G|2j = 0}, and then write G as a disjoint union, as follows:

G = G2 tX t (−X)

With this notation, the algorithm is as follows. First, for any j ∈ G2 we must fill the
j-th column of P with real numbers, according to the periodicity rule:

Ci = Ci+j

Then, for any j ∈ X we must fill the j-th column of P with complex numbers, according
to the same periodicity rule Ci = Ci+j. And finally, once this is done, for any j ∈ X we
just have to set the (−j)-th column of P to be the conjugate of the j-th column.

So, let us compute the number of choices for filling these columns. Our claim is that,
when uniformly distributing the choices for the j-th and (−j)-th columns, for j /∈ G2,
there are exactly [G :< j >] choices for the j-th column, for any j. Indeed:

(1) For the j-th column with j ∈ G2 we must simply pick N real numbers subject to
the condition Ci = Ci+j for any i, so we have indeed [G :< j >] such choices.

(2) For filling the j-th and (−j)-th column, with j /∈ G2, we must pick N complex
numbers subject to the condition Ci = Ci+j for any i. Now since there are [G :< j >]
choices for these numbers, so a total of 2[G :< j >] choices for their real and imaginary
parts, on average over j,−j we have [G :< j >] choices, and we are done again.

Summarizing, the dimension of the vector space formed by the matrices P , which is
equal to the number of choices for the real and imaginary parts of the entries of P , is:

d(FG) =
∑
j∈G

[G :< j >]
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But this is exactly the number in the statement. Regarding now the second assertion,
according to the definition of FG, the number of 1 entries of FG is given by:

#(1 ∈ FG) = #
{

(g, χ) ∈ G× Ĝ
∣∣∣χ(g) = 1

}
=

∑
g∈G

#
{
χ ∈ Ĝ

∣∣∣χ(g) = 1
}

=
∑
g∈G

|G|
ord(g)

Thus, the second assertion follows from the first one. �

Let us finish now the work, and explicitely compute the defect of FG. It is convenient
to consider the following quantity, which behaves better:

δ(G) =
∑
g∈G

1

ord(g)

As a first example, consider a cyclic group G = ZN , with N = pa power of a prime.
The count here is very simple, over sets of elements having a given order:

δ(Zpa) = 1 + (p− 1)p−1 + (p2 − p)p−2 + . . .+ (pa − pa−1)p−1 = 1 + a− a

p

In order to extend this kind of count to the general abelian case, we use two ingredients.
First is the following result, which splits the computation over isotypic components:

Proposition 7.15. For any finite groups G,H we have:

δ(G×H) ≥ δ(G)δ(H)

In addition, if (|G|, |H|) = 1, we have equality.

Proof. Indeed, we have the following estimate:

δ(G×H) =
∑
gh

1

[ord(g), ord(h)]
≥
∑
gh

1

ord(g) · ord(h)
= δ(G)δ(H)

In the case (|G|, |H|) = 1 the least common multiple appearing on the right becomes a
product, [ord(g), ord(h)] = ord(g) · ord(h), so we have equality, as desired. �

We deduce from this that we have the following result:

Proposition 7.16. For a finite abelian group G we have

δ(G) =
∏
p

δ(Gp)

where Gp with G = ×pGp are the isotypic components of G.

Proof. This is clear from Proposition 7.15, the order of Gp being a power of p. �
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As an illustration for the above results, we can recover in this way the following key
defect computation, from [130]:

Theorem 7.17. The defect of a usual Fourier matrix FN is given by

d(FN) = N
s∏
i=1

(
1 + ai −

ai
pi

)
where N = pa11 . . . pass is the decomposition of N into prime factors.

Proof. The underlying group here is the cyclic group G = ZN , whose isotypic components
are the following cyclic groups:

Gpi = Zpaii
By applying now Proposition 7.16, and by using the computation for cyclic p-groups

performed before Proposition 7.15, we obtain:

d(FN) = N
s∏
i=1

(
1 + p−1

i (pi − 1)ai
)

But this is exactly the formula in the statement. �

Now back to the general case, where we have an arbitrary Fourier matrix FG, we will
need, as a second ingredient for our computation, the following result:

Proposition 7.18. For the p-groups, the quantities

ck = #
{
g ∈ G

∣∣∣ord(g) ≤ pk
}

are multiplicative, in the sense that ck(G×H) = ck(G)ck(H).

Proof. Indeed, for a product of p-groups we have:

ck(G×H) = #
{

(g, h)
∣∣∣ord(g, h) ≤ pk

}
= #

{
(g, h)

∣∣∣ord(g) ≤ pk, ord(h) ≤ pk
}

= #
{
g
∣∣∣ord(g) ≤ pk

}
#
{
h
∣∣∣ord(h) ≤ pk

}
We recognize at right ck(G)ck(H), and we are done. �

Let us compute now δ in the general isotypic case:

Proposition 7.19. For G = Zpa1 × . . .× Zpar with a1 ≤ a2 ≤ . . . ≤ ar we have

δ(G) = 1 +
r∑

k=1

p(r−k)ak−1+(a1+...+ak−1)−1(pr−k+1 − 1)[ak − ak−1]pr−k

with the convention a0 = 0, and with the notation [a]q = 1 + q + q2 + . . .+ qa−1.
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Proof. First, in terms of the numbers ck, we have:

δ(G) = 1 +
∑
k≥1

ck − ck−1

pk

In the case of a cyclic group G = Zpa we have ck = pmin(k,a). Thus, in the general
isotypic case G = Zpa1 × . . .× Zpar we have:

ck = pmin(k,a1) . . . pmin(k,ar) = pmin(k,a1)+...+min(k,ar)

Now observe that the exponent on the right is a piecewise linear function of k. More
precisely, by assuming a1 ≤ a2 ≤ . . . ≤ ar as in the statement, the exponent is linear on
each of the intervals [0, a1], [a1, a2], . . . , [ar−1, ar]. So, the quantity δ(G) to be computed
will be 1 plus the sum of 2r geometric progressions, 2 for each interval.

In practice now, the numbers ck are as follows:

c0 = 1, c1 = pr, c2 = p2r, . . . , ca1 = pra1 ,

ca1+1 = pa1+(r−1)(a1+1), ca1+2 = pa1+(r−1)(a1+2), . . . , ca2 = pa1+(r−1)a2 ,

ca2+1 = pa1+a2+(r−2)(a2+1), ca2+2 = pa1+a2+(r−2)(a2+2), . . . , ca3 = pa1+a2+(r−2)a3 ,

...

car−1+1 = pa1+...+ar−1+(ar−1+1), car−1+2 = pa1+...+ar−1+(ar−1+2), . . . , car = pa1+...+ar

Now by separating the positive and negative terms in the above formula of δ(G), we
have indeed 2r geometric progressions to be summed, as follows:

δ(G) = 1 + (pr−1 + p2r−2 + p3r−3 + . . .+ pa1r−a1)

−(p−1 + pr−2 + p2r−3 + . . .+ p(a1−1)r−a1)

+(p(r−1)(a1+1)−1 + p(r−1)(a1+2)−2 + . . .+ pa1+(r−2)a2)

−(pa1r−a1−1 + p(r−1)(a1+1)−2 + . . .+ pa1+(r−1)(a2−1)−a2)
...

+(pa1+...+ar−1 + pa1+...+ar−1 + . . .+ pa1+...+ar−1)

−(pa1+...+ar−1−1 + pa1+...+ar−1−1 + . . .+ pa1+...+ar−1−1)
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Now by performing all the sums, we obtain:

δ(G) = 1 + p−1(pr − 1)
p(r−1)a1 − 1

pr−1 − 1

+p(r−2)a1+(a1−1)(pr−1 − 1)
p(r−2)(a2−a1) − 1

pr−2 − 1

+p(r−3)a2+(a1+a2−1)(pr−2 − 1)
p(r−3)(a3−a2) − 1

pr−3 − 1
...

+pa1+...+ar−1−1(p− 1)(ar − ar−1)

By looking now at the general term, we get the formula in the statement. �

Let us go back now to the general defect formula in Theorem 7.14. By putting it
together with the various results above, we obtain:

Theorem 7.20. For a finite abelian group G, decomposed as G = ×pGp, we have

d(FG) = |G|
∏
p

(
1 +

r∑
k=1

p(r−k)ak−1+(a1+...+ak−1)−1(pr−k+1 − 1)[ak − ak−1]pr−k

)
where a0 = 0 and a1 ≤ a2 ≤ . . . ≤ ar are such that Gp = Zpa1 × . . .× Zpar .

Proof. Indeed, we know from Theorem 7.14 that we have:

d(FG) = |G|δ(G)

The result follows then from Proposition 7.16 and Proposition 7.19. �

Let us prove now, following the paper of Nicoara and White [105], that for the Fourier
matrices the defect is “attained”, in the sense that the deformations at order 0 are true
deformations, at order ∞. This is something quite surprising, and non-trivial.

Let us begin with some generalities. We first recall that we have:

Proposition 7.21. The unitary matrices U ∈ UN around 1 are of the form

U = eA

with A being an antihermitian matrix, A = −A∗, around 0.

Proof. This is something well-known. Indeed, assuming that a matrix A is antihermitian,
A = −A∗, the matrix U = eA follows to be unitary:

UU∗ = eA(eA)∗ = eAeA
∗

= eAe−A = 1

As for the converse, this follows either by using a dimension argument, which shows
that the space of antihermitian matrices is the correct one, or by diagonalizing U . �
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Now back to the Hadamard matrices, we will need to rewrite a part of the basic theory
of the defect, using deformations of type t→ UtH. First, we have:

Theorem 7.22. Assume that H ∈MN(C) is Hadamard, let A ∈MN(C) be antihermitian,
and consider the matrix UH, where U = etA, with t ∈ R.

(1) UH is Hadamard when, for any p, q:

|
∑
rs

HrqH̄sq(e
tA)pr(e

−tA)sp| = 1

(2) UH is Hadamard at order 0 when, for any p, q:

|(AH)pq| = 1

Proof. We already know that UH is unitary, so we must find the conditions which guar-
antee that we have UH ∈MN(T), in general, and then at order 0.

(1) We have the following computation, valid for any unitary U :

|(UH)pq|2 = (UH)pq(UH)pq

= (UH)pq(H
∗U∗)qp

=
∑
rs

UprHrq(H
∗)qs(U

∗)sp

=
∑
rs

HrqH̄sqUprŪps

Now with U = etA as in the statement, we obtain:

|(etAH)pq|2 =
∑
rs

HrqH̄sq(e
tA)pr(e

−tA)sp

Thus, we are led to the conclusion in the statement.

(2) The derivative of the function computed above, taken at 0, is as follows:

∂|(etAH)pq|2

∂t |t=0
=

∑
rs

HrqH̄sq(e
tAA)pr(−etAA)sp |t=0

=
∑
rs

HrqH̄sqApr(−A)sp

=
∑
r

AprHrq

∑
s

(H∗)qs(A
∗)sp

= (AH)pq(H
∗A∗)qp

= |(AH)pq|2

Thus, we are led to the conclusion in the statement. �

In the Fourier matrix case we can go beyond this, and we have:
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Proposition 7.23. Given a Fourier matrix FG ∈ MG(C), and an antihermitian matrix
A ∈MG(C), the matrix H = UFG, where U = etA with t ∈ R, is Hadamard when∣∣∣∣∣∑

s

∑
m

tm

m!

∑
k+l=m

(
m

l

)∑
s

Akp,s+n(−A)lsp

∣∣∣∣∣ = δn0

for any p, with the indices being k, l,m ∈ N, and n, p, s ∈ G.

Proof. According to the formula in the proof of Theorem 7.22 (1), we have:

|(UFG)pq|2 =
∑
rs

(FG)rq(FG)sq(e
tA)pr(e

−tA)sp

=
∑
rs

< r, q >< −s, q > (etA)pr(e
−tA)sp

=
∑
rs

< r − s, q > (etA)pr(e
−tA)sp

By setting n = r − s, can write this formula in the following way:

|(UFG)pq|2 =
∑
ns

< n, q > (etA)p,s+n(e−tA)sp

=
∑
n

< n, q >
∑
s

(etA)p,s+n(e−tA)sp

Since this quantity must be 1 for any q, we must have:∑
s

(etA)p,s+n(e−tA)sp = δn0

On the other hand, we have the following computation:∑
s

(etA)p,s+n(e−tA)sp =
∑
s

∑
kl

(tA)kp,s+n
k!

·
(−tA)lsp

l!

=
∑
s

∑
kl

1

k!l!

∑
s

(tA)kp,s+n(−tA)lsp

=
∑
s

∑
kl

tk+l

k!l!

∑
s

Akp,s+n(−A)lsp

=
∑
s

∑
m

tm
∑
k+l=m

1

k!l!

∑
s

Akp,s+n(−A)lsp

=
∑
s

∑
m

tm

m!

∑
k+l=m

(
m

l

)∑
s

Akp,s+n(−A)lsp

Thus, we are led to the conclusion in the statement. �



132 TEO BANICA

Following [105], let us construct now the deformations. The result here is something
quite surprising, which came a long time after the original defect paper [129], and even
more time after the early computations in [83]:

Theorem 7.24. Let G be a finite abelian group, and for any g, h ∈ G, let us set:

Bpq =

{
1 if ∃k ∈ N, p = hkg, q = hk+1g

0 otherwise

When (g, h) ∈ G2 range in suitable cosets, the unitary matrices

eit(B+Bt)FG , et(B−B
t)FG

are both Hadamard, and make the defect of FG to be attained.

Proof. The proof of this result, from [105], is quite long and technical, based on the Fourier
computation from Proposition 7.23 above, the idea being as follows:

(1) First of all, an elementary algebraic study shows that when (g, h) ∈ G2 range
in some suitable cosets, coming from the proof of Theorem 7.14, the various matrices
B = Bgh constructed above are distinct, the matrices A = i(B + Bt) and A′ = B − Bt

are linearly independent, and the number of such matrices equals the defect of FG.

(2) It is also standard to check that each B = (Bpq) is a partial isometry, and that
Bk, B∗k are given by simple formulae. With this ingredients in hand, the Hadamard
property follows from the Fourier computation from the proof of Proposition 7.23. Indeed,
we can compute the exponentials there, and eventually use the binomial formula.

(3) Finally, the matrices in the statement can be shown to be non-equivalent, and this
is something more technical, for which we refer to [105]. With this last ingredient in hand,
a comparison with Theorem 7.14 shows that the defect of FG is indeed attained, in the
sense that all order 0 deformations are actually true deformations. See [105]. �

Finally, let us mention that [105] was written in terms of subfactor-theoretic commuting
squares, with a larger class of squares actually under investigation. We will discuss the
relation between Hadamard matrices and commuting squares in sections 12-16 below.
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8. Special matrices

We have seen in the previous section that the defect theory from [129] can be successfully
applied to the real Hadamard matrices, and to the generalized Fourier matrices. Following
[4], [8], [9], [30], [97], [129], [130], we discuss here a number of more specialized questions,
once again in relation with the defect, regarding the following types of matrices:

(1) The tensor products.

(2) The Diţă deformations of such tensor products.

(3) The Butson and the regular matrices.

(4) The master Hadamard matrices.

(5) The McNulty-Weigert matrices.

(6) The partial Hadamard matrices.

Let us begin with the tensor products. We have here the following result:

Proposition 8.1. For a tensor product L = H ⊗K we have

d(L) ≥ d(H)d(K)

coming from an inclusion of linear spaces, as follows:

T̃HXM ⊗ T̃KXN ⊂ T̃LXMN

Proof. For a tensor product A = B ⊗ C, we have the following formula:∑
kc

(H ⊗K)ia,kc(H ⊗K)jb,kcAia,kc

=
∑
k

HikH̄jkBik

∑
c

KacK̄bcCac

We have as well the following formula:∑
kc

(H ⊗K)ia,kc(H ⊗K)jb,kcAjb,kc

=
∑
k

HikH̄jkBjk

∑
c

KacK̄bcCbc

Now by assuming B ∈ T̃HXM and C ∈ T̃KXN , the two quantities on the right are

equal. Thus we have indeed A ∈ T̃LXMN , and we are done. �

Observe that we do not have equality in the tensor product estimate, even in very
simple cases. For instance if we consider two Fourier matrices F2, we obtain:

d(F2 ⊗ F2) = 10 > 9 = d(F2)2
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In fact, besides the isotypic decomposition results from section 7 above, valid for the
Fourier matrices, there does not seem to be anything conceptual on this subject. We will
be back to this, however, in Theorem 8.3 below, with a slight advance on all this.

In general, the computation of the defect for the Diţă deformations is a difficult question.
Our only result here concerns the case when the deformation matrix is generic:

Definition 8.2. A rectangular matrix Q ∈ MM×N(T) is called “dephased and elsewhere
generic” if the entries on its first row and column are all equal to 1, and the remaining
(M − 1)(N − 1) entries are algebrically independent over Q.

Here the last condition takes of course into account the fact that the entries of Q
themselves have modulus 1, the independence assumption being modulo this fact. With
this convention made, we have the following result, from [9]:

Theorem 8.3. Assume that H ∈ XM , K ∈ XN are dephased, of Butson type, and that
Q ∈MM×N(T) is dephased and elsewhere generic. We have then

A = (Aia,kc) ∈ T̃H⊗QKXMN

when the following equations are satisfied,

Aijac = Aijbc

Aijac = Ajiac

(Aiixy)xy ∈ T̃KXN

for any a, b, c and i 6= j, where:

Aijac =
∑
k

HikH̄jkAia,kc

Proof. Consider the standard system of equations for the enveloping tangent space in the
statement, namely:∑

kc

(H ⊗Q K)ia,kc(H ⊗Q K)jb,kc(Aia,kc − Ajb,kc) = 0

We have the following formula:

(H ⊗Q K)ia,jb = qibHijKab

Thus, our system of equations is:∑
c

qicq̄jcKacK̄bc

∑
k

HikH̄jk(Aia,kc − Ajb,kc) = 0

Consider now the variables in the statement, namely:

Aijac =
∑
k

HikH̄jkAia,kc
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The conjugates of these variables are given by:

Aijac =
∑
k

H̄ikHjkAia,kc

=
∑
k

HjkH̄ikAia,kc

Thus, in terms of these variables, our system becomes simply:∑
c

qicq̄jcKacK̄bc(A
ij
ac − A

ji
bc) = 0

More precisely, the above equations must hold for any i, j, a, b. By distinguishing now
two cases, depending on whether i, j are equal or not, the situation is as follows:

(1) Case i 6= j. In this case, let us look at the row vector of parameters, namely:

(qicq̄jc)c = (1, qi1q̄j1, . . . , qiM q̄jM)

Now since Q was assumed to be dephased and elsewhere generic, and because of our
assumption i 6= j, the entries of the above vector are linearly independent over Q̄. But,
since by linear algebra we can restrict attention to the computation of the solutions over
Q̄, the i 6= j part of our system simply becomes:

Aijac = Ajibc , ∀a, b, c, ∀i 6= j

Now by making now a, b, c vary, we are led to the following equations:

Aijac = Aijbc, Aijac = Ajiac, ∀a, b, c, i 6= j

(2) Case i = j. In this case the q parameters from our equations cancel, and our
equations become: ∑

c

KacK̄bc(A
ii
ac − Aiibc) = 0, ∀a, b, c, i

Now observe that we have:
Aiiac =

∑
k

Aia,kc

Thus, our equations become:∑
c

KacK̄bc(A
ii
ac − Aiibc) = 0, ∀a, b, c, i

But these are precisely the equations for the space T̃KXN , and we are done. �

Let us go back now to the usual tensor product situation, and look at the affine cones.
The problem here is that of finding the biggest subcone of T ◦H⊗KXMN , obtained by gluing
T ◦HXM , T

◦
KXN . Our answer here, which takes into account the two “semi-trivial” cones

coming from the left and right Diţă deformations, is as follows:
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Theorem 8.4. The cones T ◦HXM = {B} and T ◦KXN = {C} glue via the formulae

Aia,jb = λBij + ψjCab +Xia + Yjb + Faj

Aia,jb = φbBij + µCab +Xia + Yjb + Eib

producing in this way two subcones of the affine cone T ◦H⊗KXMN = {A}.

Proof. Indeed, the idea is that Xia, Yjb are the trivial parameters, and that Eib, Faj are
the Diţă parameters. Given a matrix A = (Aia,jb), consider the following quantity:

P =
∑
kc

HikH̄jkKacK̄bcq
Aia,kc−Ajb,kc

Let us prove now the first statement, namely that for any choice of matrices B ∈
T ◦HXM , C ∈ T ◦HXN and of parameters λ, ψj, Xia, Yjb, Faj, the first matrix A = (Aia,jb)
constructed in the statement belongs indeed to T ◦H⊗KXMN . We have:

Aia,kc = λBik + ψkCac +Xia + Ykc + Fak

Ajb,kc = λBjk + ψkCbc +Xjb + Ykc + Fbk

Now by substracting these equations, we obtain:

Aia,kc − Ajb,kc = λ(Bik −Bjk) + ψk(Cac − Cbc) + (Xia −Xjb) + (Fak − Fbk)

It follows that the above quantity P is given by:

P =
∑
kc

HikH̄jkKacK̄bcq
λ(Bik−Bjk)+ψk(Cac−Cbc)+(Xia−Xjb)+(Fak−Fbk)

= qXia−Xjb
∑
k

HikH̄jkq
Fak−Fbkqλ(Bik−Bjk)

∑
c

KacK̄bc(q
ψk)Cac−Cbc

= δabq
Xia−Xja

∑
k

HikH̄jk(q
λ)Bik−Bjk

= δabδij

We conclude that we have, as claimed:

A ∈ T ◦H⊗KXMN

In the second case now, the proof is similar. First, we have:

Aia,kc = φcBik + µCac +Xia + Ykc + Eic

Ajb,kc = φcBjk + µCbc +Xjb + Ykc + Ejc

Thus by substracting, we obtain:

Aia,kc − Ajb,kc = φc(Bik −Bjk) + µ(Cac − Cbc) + (Xia −Xjb) + (Eic − Ejc)
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It follows that the above quantity P is given by:

P =
∑
kc

HikH̄jkKacK̄bcq
φc(Bik−Bjk)+µ(Cac−Cbc)+(Xia−Xjb)+(Eic−Ejc)

= qXia−Xjb
∑
c

KacK̄bcq
Eic−Ejcqµ(Cac−Cbc)

∑
k

HikH̄jk(q
φc)Bik−Bjk

= δijq
Xia−Xib

∑
c

KacK̄bc(q
µ)Cac−Cbc

= δijδab

Thus, we are led to the conclusion in the statement. �

We believe Theorem 8.4 above to be “optimal”, in the sense that nothing more can be
said about the affine tangent space T ◦H⊗KXMN , in the general case. See [9].

Let us discuss now some rationality questions, in relation with:

Definition 8.5. The rational defect of H ∈ XN is the following number:

dQ(H) = dimQ(T̃HCN ∩MN(Q))

The vector space on the right will be called rational enveloping tangent space at H.

As a first observation, this notion can be extended to all the tangent cones at H, and
by using an arbitrary field K ⊂ C instead of Q. Indeed, we can set:

T ∗HXN(K) = T ∗HXN ∩MN(K)

However, in what follows we will be interested only in the objects constructed in Defi-
nition 8.5. It follows from definitions that dQ(H) ≤ d(H), and we have:

Conjecture 8.6 (Rationality). For the Butson matrices we have:

dQ(H) = d(H)

That is, for such matrices, the defect equals the rational defect.

More generally, we believe that the above equality should hold in the regular case.
However, since the regular case is not known to fully cover the Butson matrix case, as
explained in section 6, we prefer to state our conjecture as above. As a first piece of
evidence now, we have the following elementary result:

Theorem 8.7. The rationality conjecture holds for H ∈ HN(l) with l = 2, 3, 4, 6.

Proof. Let us recall that the equations for the enveloping tangent space are:∑
k

HikH̄jk(Aik − Ajk) = 0

With these equations in hand, the proof goes as follows:



138 TEO BANICA

Case l = 2. Here the above equations are all real, and have ±1 coefficients, so in
particular, have rational coefficients.

Case l = 3. Here we can use the fact that, with w = e2πi/3, the real solutions of
x+wy+w2z = 0 are those satisfying x = y = z. We conclude that once again our system,
after some manipulations, is equivalent to a real system having rational coefficients.

Case l = 4. Here the coefficients are 1, i,−1,−i, so by taking the real and imaginary
parts, we reach once again to system with rational coefficients.

Case l = 6. Here the study is similar to the study at l = 3.

Thus, in all cases under investigation, l = 2, 3, 4, 6, we have a real system with rational
coefficients, and the result follows from standard linear algebra. �

Observe that the method in the above proof cannot work at l = 5, where the equation
a+wb+w2c+w3d+w4e = 0 with w = e2πi/5 and a, b, c, d, e ∈ R can have “exotic” solutions.
We refer to [9] for more on these topics, including more evidence for Conjecture 8.6.

Let us discuss now defect computations for an interesting class of Hadamard matrices,
namely the “master” ones, introduced in [4]:

Definition 8.8. A master Hadamard matrix is an Hadamard matrix of the form

Hij = λ
nj
i

with λi ∈ T, nj ∈ R. The associated “master function” is:

f(z) =
∑
j

znj

Observe that with λi = eimi we have Hij = eiminj . The basic example of such a matrix
is the Fourier matrix FN , having master function as follows:

f(z) =
zN − 1

z − 1

Observe that, in terms of f , the Hadamard condition on H is simply:

f

(
λi
λj

)
= Nδij

These matrices were introduced in [4], the motivating remark there being the fact that
the following operator defines a representation of the Temperley-Lieb algebra [135]:

R =
∑
ij

eij ⊗ Λni−nj

At the level of examples, the first observation, from [4], is that the standard 4 × 4
complex Hadamard matrices are, with 2 exceptions, master Hadamard matrices:
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Proposition 8.9. The following complex Hadamard matrix, with |q| = 1,

F q
2,2 =


1 1 1 1
1 −1 1 −1
1 q −1 −q
1 −q −1 q


is a master Hadamard matrix, for any q 6= ±1.

Proof. We use the exponentiation convention (eit)r = eitr, for t ∈ [0, 2π) and r ∈ R. Since
we have q2 6= 1, we can find k ∈ R such that:

q2k = −1

In terms of this parameter k ∈ R, our matrix becomes:

F q
2,2 =


10 11 12k 12k+1

(−1)0 (−1)1 (−1)2k (−1)2k+1

q0 q1 q2k q2k+1

(−q)0 (−q)1 (−q)2k (−q)2k+1


Now let us pick λ 6= 1 and write, by using our exponentiation convention above:

1 = λx , −1 = λy

q = λz , −q = λt

But this gives the formula in the statement. �

Observe that the above result shows that any Hamadard matrix at N ≤ 5 is master
Hadamard. We have the following generalization of it, once again from [4]:

Theorem 8.10. The deformed Fourier matrices FM ⊗Q FN are master Hadamard, for
any Q ∈MM×N(T) of the form

Qib = qi(Npb+b)

where q = e2πi/MNk with k ∈ N, and p0, . . . , pN−1 ∈ R.

Proof. The main construction in [4], in connection with deformations, that we will follow
here, is, in terms of master functions, as follows:

f(z) = fM(zNk)fN(z)

Here k ∈ N, and the functions on the right are by definition as follows:

fM(z) =
∑
i

zMri+i

fN(z) =
∑
a

zNpa+a
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We use the eigenvalues λia = qiwa, where w = e2πi/N , and where qNk = ν, where
νM = 1. We have f(z) = fM(zNk)fN(z), so the exponents are:

njb = Nk(Mrj + j) +Npb + b

Thus the associated master Hadamard matrix is given by:

Hia,jb = (qiwa)Nk(Mrj+j)+Npb+b

= νijqi(Npb+b)wa(Npb+b)

= νijwabqi(Npb+b)

Now let us recall that we have the following formula:

(FM ⊗ FN)ia,jb = νijwab

Thus we have as claimed H = FM ⊗Q FN , with:

Qib = qi(Npb+b)

Observe that Q itself is a “master matrix”, because the indices split. �

In view of the above examples, and of the lack of other known examples of master
Hadamard matrices, he following conjecture was made in [4]:

Conjecture 8.11 (Master Hadamard Conjecture). The master Hadamard matrices ap-
pear as Diţă deformations of FN .

There is a relation here with the notions of defect and isolation, that we would like to
discuss now. First, we have the following defect computation:

Theorem 8.12. The defect of a master Hadamard matrix is given by

d(H) = dimR

{
B ∈MN(C)

∣∣∣B̄ =
1

N
BL, (BR)i,ij = (BR)j,ij ∀i, j

}
where the matrices on the right are given by

Lij = f

(
1

λiλj

)
, Ri,jk = f

(
λj
λiλk

)
with f being the master function.

Proof. The first order deformation equations are as follows:∑
k

HikH̄jk(Aik − Ajk) = 0

With Hij = λ
nj
i we have the following formula:

HijH̄jk =

(
λi
λj

)nk
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Thus, the defect is given by the following formula:

d(H) = dimR

{
A ∈MN(R)

∣∣∣∑
k

Aik

(
λi
λj

)nk
=
∑
k

Ajk

(
λi
λj

)nk
∀i, j

}
Now, pick A ∈MN(C) and set B = AH t. We have the following formula:

A =
1

N
BH̄

We have the following computation:

A ∈MN(R) ⇐⇒ BH̄ = B̄H

⇐⇒ B̄ =
1

N
BH̄H∗

On the other hand, the matrix on the right is given by:

(H̄H∗)ij =
∑
k

H̄ikH̄jk

=
∑
k

(λiλj)
−nk

= Lij

Thus A ∈ MN(R) if and only the condition B̄ = 1
N
BL in the statement is satisfied.

Regarding now the second condition on A, observe that with A = 1
N
BH̄ we have:∑

k

Aik

(
λi
λj

)nk
=

1

N

∑
ks

Bis

(
λi
λjλs

)nk
=

1

N

∑
s

BisRs,ij

=
1

N
(BR)i,ij

Thus the second condition on A reads (BR)i,ij = (BR)j,ij, which gives the result. �

In view of the above results, a conjecture would be that the only isolated master Ha-
damard matrices are the Fourier matrices Fp, with p prime. We refer here to [30].

Let us discuss now yet another interesting construction of complex Hadamard matrices,
due to McNulty and Weigert [97]. The matrices constructed there generalize the Tao
matrix T6, and usually have the interesting feature of being isolated. The construction
in [97] uses the theory of MUB, as developed in [36], [64], but we will follow here a more
direct approach, from [30]. The starting observation from [97] is as follows:



142 TEO BANICA

Theorem 8.13. Assuming that K ∈MN(C) is Hadamard, so is the matrix

Hia,jb =
1√
Q
Kij(L

∗
iRj)ab

provided that {L1, . . . , LN} ⊂
√
QUQ and {R1, . . . , RN} ⊂

√
QUQ are such that

1√
Q
L∗iRj ∈

√
QUQ

with i, j = 1, . . . , N , are complex Hadamard.

Proof. The check of the unitarity is done as follows:

< Hia, Hkc > =
1

Q

∑
jb

Kij(L
∗
iRj)abK̄kj(L∗kRj)cb

=
∑
j

KijK̄kj(L
∗
iLk)ac

= Nδik(L
∗
iLk)ac

= NQδikδac

The entries being in addition on the unit circle, we are done. �

As input for the above, we can use the following well-known Fourier construction:

Proposition 8.14. For q ≥ 3 prime, the matrices

{Fq, DFq, . . . , Dq−1Fq}

where Fq is the Fourier matrix, and where

D = diag

(
1, 1, w, w3, w6, w10, . . . , w

q2−1
8 , . . . , w10, w6, w3, w

)
with w = e2πi/q, are such that 1√

q
E∗iEj is complex Hadamard, for any i 6= j.

Proof. With 0, 1, . . . , q − 1 as indices, the formula of the above matrix D is:

Dc = w0+1+...+(c−1) = w
c(c−1)

2

Since we have 1√
q
E∗iEj ∈

√
qUq, we just need to check that these matrices have entries

belonging to T, for any i 6= j. With k = j − i, these entries are given by:

1
√
q

(E∗iEj)ab =
1
√
q

(F ∗qD
kFq)ab

=
1
√
q

∑
c

wc(b−a)Dk
c
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Now observe that with s = b− a, we have the following formula:∣∣∣∣∣∑
c

wcsDk
c

∣∣∣∣∣
2

=
∑
cd

wcs−dsw
c(c−1)

2
·k− d(d−1)

2
·k

=
∑
cd

w(c−d)( c+d−1
2
·k+s)

=
∑
de

we(
2d+e−1

2
·k+s)

=
∑
e

(
w

e(e−1)
2
·k+es

∑
d

wedk

)
=

∑
e

w
e(e−1)

2
·k+es · qδe0

= q

Thus the entries are on the unit circle, and we are done. �

We recall that the Legendre symbol is defined as follows:(
s

q

)
=


0 if s = 0

1 if ∃α, s = α2

−1 if 6 ∃α, s = α2

With this convention, we have the following result from [30], following [97]:

Proposition 8.15. The following matrices,

Gk =
1
√
q
F ∗qD

kFq

with the matrix D being as above,

D = diag
(
w

c(c−1)
2

)
and with k 6= 0 are circulant, their first row vectors V k being given by

V k
i = δq

(
k/2

q

)
w

q2−1
8
·k · w−

i
k
( i
k
−1)

2

where δq = 1 if q = 1(4) and δq = i if q = 3(4), and with all inverses being taken in Zq.

Proof. This is a standard exercice on quadratic Gauss sums. First of all, the matrices Gk

in the statement are indeed circulant, their first vectors being given by:

V k
i =

1
√
q

∑
c

w
c(c−1)

2
·k+ic
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Let us first compute the square of this quantity. We have:

(V k
i )2 =

1

q

∑
cd

w[ c(c−1)
2

+
d(d−1)

2 ]k+i(c+d)

The point now is that the sum S on the right, which has q2 terms, decomposes as
follows, where x is a certain exponent, depending on q, i, k:

S =

{
(q − 1)(1 + w + . . .+ wq−1) + qwx if q = 1(4)

(q + 1)(1 + w + . . .+ wq−1)− qwx if q = 3(4)

We conclude that we have a formula as follows, where δq ∈ {1, i} is as in the statement,
so that δ2

q ∈ {1,−1} is given by δ2
q = 1 if q = 1(4) and δ2

q = −1 if q = 3(4):

(V k
i )2 = δ2

q w
x

In order to compute now the exponent x, we must go back to the above calculation of
the sum S. We succesively have:

– First of all, at k = 1, i = 0 we have x = q2−1
4

.

– By translation we obtain x = q2−1
4
− i(i− 1), at k = 1 and any i.

– By replacing w → wk we obtain x = q2−1
4
· k − i

k
( i
k
− 1), at any k 6= 0 and any i.

Summarizing, we have computed the square of the quantity that we are interested in,
the formula being as follows, with δq being as in the statement:

(V k
i )2 = δ2

q · w
q2−1

4
·k · w−

i
k

( i
k
−1)

By extracting now the square root, we obtain a formula as follows:

V k
i = ±δq · w

q2−1
8
·k · w−

i
k
( i
k
−1)

2

The computation of the missing sign is non-trivial, but by using the theory of quadratic
Gauss sums, and more specifically a result of Gauss, computing precisely this kind of sign,

we conclude that we have indeed a Legendre symbol, ± =
(
k/2
q

)
, as claimed. �

Let us combine now all the above results. We obtain the following statement:

Theorem 8.16. Let q ≥ 3 be prime, consider two subsets

S, T ⊂ {0, 1, . . . , q − 1}
satisfying the conditions |S| = |T | and S ∩ T = ∅, and write:

S = {s1, . . . , sN} , T = {t1, . . . , tN}
Then, with the matrix V being as above, the matrix

Hia,jb = KijV
tj−si
b−a

is complex Hadamard, provided that K ∈MN(C) is.
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Proof. This follows indeed by using the general construction in Theorem 8.13 above, with
input coming from Proposition 8.14 and Proposition 8.15. �

As explained in [97], the above construction covers many interesting examples of Ha-
damard matrices, known from [129], [130] to be isolated, such as the Tao matrix:

T6 =


1 1 1 1 1 1
1 1 w w w2 w2

1 w 1 w2 w2 w
1 w w2 1 w w2

1 w2 w2 w 1 w
1 w2 w w2 w 1


In general, in order to find isolated matrices, the idea from [97] is that of starting with

an isolated matrix, and then use suitable sets S, T . The defect computations are, however,
quite difficult. As a concrete statement, however, we have the following conjecture:

Conjecture 8.17. The complex Hadamard matrix constructed in Theorem 8.13 is iso-
lated, provided that:

(1) K is an isolated Fourier matrix, of prime order.
(2) S, T consist of consecutive odd numbers, and consecutive even numbers.

This statement is supported by the isolation result for T6, and by several computer
simulations in [97]. For further details on all this, we refer to [97], and to [30].

As a final topic now, we would like to discuss an extension of a part of our results,
from here and from section 7, to the case of the partial Hadamard matrices (PHM).
The extension, done in [30], is quite straightforward, but there are however a number of
subtleties appearing. First of all, we can talk about deformations of PHM, as follows:

Definition 8.18. Let H ∈ XM,N be a partial complex Hadamard matrix.

(1) A deformation of H is a smooth function, as follows:

f : T1 → (XM,N)H

(2) The deformation is called “affine” if we have, with A ∈MM×N(R):

fij(q) = Hijq
Aij

(3) We call “trivial” the deformations as follows, with a ∈ RM , b ∈ RN :

fij(q) = Hijq
ai+bj

Observe now that we have the following equality, where UM,N ⊂ MM×N(C) is the set
of matrices having all rows of norm 1, and pairwise orthogonal:

XM,N = MM×N(T) ∩
√
NUM,N

As in the square case, this leads to the following definition:
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Definition 8.19. Associated to a point H ∈ XM,N are the enveloping tangent space

T̃HXM,N = THMM×N(T) ∩ TH
√
NUM,N

as well as the following subcones of this enveloping tangent space:

(1) The tangent cone THXM,N : the set of tangent vectors to the deformations of H.
(2) The affine tangent cone T ◦HXM,N : same as above, using affine deformations only.
(3) The trivial tangent cone T×HXM,N : as above, using trivial deformations only.

Observe that T̃HXM,N , THXM,N are real vector spaces, and that THXM,N , T
◦
HXM,N are

two-sided cones, in the sense that they satisfy the following condition:

λ ∈ R, A ∈ T =⇒ λA ∈ T

Also, we have inclusions as follows:

T×HXM,N ⊂ T ◦HXM,N ⊂ THXM,N ⊂ T̃HXM,N

As in the square matrix case, we can formulate the following definition:

Definition 8.20. The defect of a matrix H ∈ XM,N is the dimension

d(H) = dim(T̃HXM,N)

of the real vector space T̃HXM,N constructed above.

The basic remarks and comments regarding the defect from the square matrix case
extend then to this setting. In particular, we have the following basic result:

Theorem 8.21. The enveloping tangent space at H ∈ XM,N is given by

T̃HXM,N '

{
A ∈MM×N(R)

∣∣∣∑
k

HikH̄jk(Aik − Ajk) = 0,∀i, j

}
and the defect of H is the dimension of this real vector space.

Proof. In the square case this was done in section 7 above, and the extension of the
computations there to the rectangular case is straightforward. �

At the level of non-trivial results now, we first have:

Theorem 8.22. Let H ∈ XM,N , and pick K ∈
√
NUN extending H. We have then

T̃HXM,N '
{
E = (X Y ) ∈MM×N(C)

∣∣∣X = X∗, (EK)ijH̄ij ∈ R,∀i, j
}

with the correspondence A→ E being given by Eij =
∑

kHikK̄jkAik, Aij = (EK)ijH̄ij.
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Proof. Let us set indeed Rij = AijHij and E = RK∗. The correspondence A → R → E
is then bijective, and we have the following formula:

Eij =
∑
k

HikK̄jkAik

With these changes, the system of equations in Theorem 8.21 becomes Eij = Ēji for
any i, j with j ≤ M . But this shows that we must have E = (X Y ) with X = X∗, and
the condition Aij ∈ R corresponds to the condition (EK)ijH̄ij ∈ R, as claimed. �

As an illustration, in the real case we obtain the following result:

Theorem 8.23. For an Hadamard matrix H ∈MM×N(±1) we have

T̃HXM,N 'MM(R)symm ⊕MM×(N−M)(R)

and so the defect is given by

d(H) =
N(N + 1)

2
+M(N −M)

independently of the precise value of H.

Proof. We use Theorem 8.22. Since H is now real we can pick K ∈
√
NUN extending it

to be real too, and with nonzero entries, so the last condition appearing there, namely
(EK)ijH̄ij ∈ R, simply tells us that E must be real. Thus we have:

T̃HXM,N '
{
E = (X Y ) ∈MM×N(R)

∣∣∣X = X∗
}

But this is the formula in the statement, and we are done. �

A matrix H ∈ XM,N cannot be isolated, simply because the space of its Hadamard
equivalents provides a copy TMN ⊂ XM,N , passing through H. However, if we restrict the
attention to the matrices which are dephased, the notion of isolation makes sense:

Proposition 8.24. The defect d(H) = dim(T̃HXM,N) satisfies

d(H) ≥M +N − 1

and if d(H) = M +N − 1 then H is isolated inside the dephased quotient XM,N → ZM,N .

Proof. Once again, the known results in the square case extend:

(1) We have indeed dim(T×HXM,N) = M +N −1, and since the tangent vectors to these

trivial deformations belong to T̃HXM,N , this gives the first assertion.

(2) Since d(H) = M + N − 1, the inclusions T×HXM,N ⊂ THXM,N ⊂ T̃HXM,N must be
equalities, and from THXM,N = T×HXM,N we obtain the result. �

Finally, still at the theoretical level, we have the following conjecture:
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Conjecture 8.25. An isolated matrix H ∈ ZM,N must have minimal defect, namely
d(H) = M +N − 1.

In other words, the conjecture is that if H ∈ ZM,N has only trivial first order de-
formations, then it has only trivial deformations at any order, including at ∞. In the
square matrix case this statement comes with solid evidence, all known examples of com-
plex Hadamard matrices H ∈ XN having non-minimal defect being known to admit
one-parameter deformations. For more on this subject, see [129], [130].

Let us discuss now some examples of isolated partial Hadamard matrices, and provide
some evidence for Conjecture 8.25. We are interested in the following matrices:

Definition 8.26. The truncated Fourier matrix FS,G, with G being a finite abelian group,
and with S ⊂ G being a subset, is constructed as follows:

(1) Given N ∈ N, we set FN = (wij)ij, where w = e2πi/N .
(2) Assuming G = ZN1 × . . .× ZNs, we set FG = FN1 ⊗ . . .⊗ FNs.
(3) We let FS,G be the submatrix of FG having S ⊂ G as row index set.

Observe that FN is the Fourier matrix of the cyclic group ZN . More generally, FG is
the Fourier matrix of the finite abelian group G. Observe also that FG,G = FG.

We can compute the defect of FS,G by using Theorem 8.21, and we obtain:

Theorem 8.27. For a truncated Fourier matrix F = FS,G we have the formula

T̃FXM,N =
{
A ∈MM×N(R)

∣∣∣P = AF t satisfies Pij = Pi+j,j = P̄i,−j,∀i, j
}

where M = |S|, N = |G|, and with all the indices being regarded as group elements.

Proof. We use Theorem 8.21. The defect equations there are as follows:∑
k

FikF̄jk(Aik − Ajk) = 0

For F = FS,G we have the following formula:

FikF̄jk = (F t)k,i−j

We therefore obtain the following formula:

T̃FXM,N =
{
A ∈MM×N(R)

∣∣∣(AF t)i,i−j = (AF t)j,i−j,∀i, j
}

Now observe that for an arbitrary matrix P ∈MM(C), we have:

Pi,i−j = Pj,i−j,∀i, j ⇐⇒ Pi+j,i = Pji,∀i, j
⇐⇒ Pi+j,j = Pij,∀i, j
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We therefore conclude that we have the following equality:

T̃FXM,N =
{
A ∈MM×N(R)

∣∣∣P = AF t satisfies Pij = Pi+j,j,∀i, j
}

Now observe that with A ∈MM×N(R) and P = AF t ∈MM(C) as above, we have:

P̄ij =
∑
k

Aik(F
∗)kj

=
∑
k

Aik(F
t)k,−j

= Pi,−j

Thus, we obtain the formula in the statement, and we are done. �

Let us try to find some explicit examples of isolated matrices, of truncated Fourier type.
For this purpose, we can use the following improved version of Theorem 8.27:

Theorem 8.28. The defect of F = FS,G is the number

d(F ) = dim(K) + dim(I)

where K, I are the following linear spaces,

K =
{
A ∈MM×N(R)

∣∣∣AF t = 0
}

I =
{
P ∈ LM

∣∣∣∃A ∈MM×N(R), P = AF t
}

with LM being the following linear space,

LM =
{
P ∈MM(C)

∣∣∣Pij = Pi+j,j = P̄i,−j,∀i, j
}

with all the indices belonging by definition to the group G.

Proof. We use the general formula in Theorem 8.27. With the notations there, and with
the linear space LM being as above, we have a linear map as follows:

Φ : T̃FXM,N → LM

Φ(A) = AF t

By using this map, we obtain the following equality:

dim(T̃FXM,N) = dim(ker Φ) + dim(Im Φ)

Now since the spaces on the right are precisely those in the statement, ker Φ = K and
Im Φ = I, by applying Theorem 8.27 we obtain the result. �

In order to look now for isolated matrices, the first remark is that since a deformation
of FG will produce a deformation of FS,G too, we must restrict the attention to the case
where G = Zp, with p prime. And here, we have the following conjecture:
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Conjecture 8.29. There exists a constant ε > 0 such that FS,p is isolated, for any p
prime, once S ⊂ Zp satisfies |S| ≥ (1− ε)p.

In principle this conjecture can be approached by using the formula in Theorem 8.28,
and we have for instance evidence towards the fact that Fp−1,p should be always isolated,
that Fp−2,p should be isolated too, provided that p is big enough, and so on. However,
finding a number ε > 0 as above looks like a quite difficult question. See [30].
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9. Circulant matrices

We discuss in this section another type of special complex Hadamard matrices, namely
the circulant ones. There has been a lot of work here, starting with the Circulant Ha-
damard Conjecture (CHC) in the real case, and with many results in the complex case
as well. We will present here the main techniques in dealing with such matrices. It is
convenient to introduce the circulant matrices as follows:

Definition 9.1. A complex matrix H ∈MN(C) is called circulant when we have

Hij = γj−i

for some γ ∈ CN , with the matrix indices i, j ∈ {0, 1, . . . , N − 1} taken modulo N .

Here the index convention is quite standard, as for the Fourier matrices FN , and with
this coming from Fourier analysis considerations, that we will get into later on.

As a basic example of such a matrix, in the real case, we have the matrix K4. The
circulant Hadamard conjecture states that this matrix is, up to equivalence, the only
circulant Hadamard matrix H ∈MN(±1), regardless of the value of N ∈ N:

Conjecture 9.2 (Circulant Hadamard Conjecture (CHC)). The only circulant real Ha-
damard matrices H ∈MN(±1) are the matrix

K4 =


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


and its Hadamard conjugates, and this regardless of the value of N ∈ N.

The fact that such a simple-looking problem is still open might seem quite surprising.
Indeed, if we denote by S ⊂ {1, . . . , N} the set of positions of the −1 entries of the first
row vector γ ∈ (±1)N , the Hadamard matrix condition is simply:

|S ∩ (S + k)| = |S| −N/4
To be more precise, this must hold for any k 6= 0, taken modulo N . Thus, the above

conjecture simply states that at N 6= 4, such a set S cannot exist. Let us record here this
latter statement, originally due to Ryser [117]:

Conjecture 9.3 (Ryser Conjecture). Given an integer N > 4, there is no set

S ⊂ {1, . . . , N}
satisfying |S ∩ (S + k)| = |S| −N/4 for any k 6= 0, taken modulo N .

Our purpose now will be that of showing that the CHC dissapears in the complex case,
where we have examples at any N ∈ N. As a first result here, we have:
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Proposition 9.4. The following are circulant and symmetric Hadamard matrices,

F ′2 =

(
i 1
1 i

)
, F ′3 =

w 1 1
1 w 1
1 1 w

 , F ′′4 =


−1 ν 1 ν
ν −1 ν 1
1 ν −1 ν
ν 1 ν −1


where w = e2πi/3, ν = eπi/4, equivalent to the Fourier matrices F2, F3, F4.

Proof. The orthogonality between rows being clear, we have here complex Hadamard
matrices. The fact that we have an equivalence F2 ∼ F ′2 follows from:(

1 1
1 −1

)
∼
(
i i
1 −1

)
∼
(
i 1
1 i

)
At N = 3 now, the equivalence F3 ∼ F ′3 can be constructed as follows:1 1 1

1 w w2

1 w2 w

 ∼
1 1 w

1 w 1
w 1 1

 ∼
w 1 1

1 w 1
1 1 w


As for the case N = 4, here the equivalence F4 ∼ F ′′4 can be constructed as follows,

where we use the logarithmic notation [k]s = e2πki/s, with respect to s = 8:
0 0 0 0
0 2 4 6
0 4 0 4
0 6 4 2


8

∼


0 1 4 1
1 4 1 0
4 1 0 1
1 0 1 4


8

∼


4 1 0 1
1 4 1 0
0 1 4 1
1 0 1 4


8

Thus, the Fourier matrices F2, F3, F4 can be put indeed in circulant form. �

We will explain later the reasons for denoting the above matrix F ′′4 , instead of F ′4, the
idea being that F ′4 will be a matrix belonging to a certain series. Getting back now to
the real circulant matrix K4, this is equivalent to the Fourier matrix FG = F2⊗F2 of the
Klein group G = Z2 × Z2, as shown by:

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

 ∼


1 1 1 −1
1 −1 1 1
1 1 −1 1
−1 1 1 1

 ∼


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


In fact, we have the following construction of circulant and symmetric Hadamard ma-

trices at N = 4, which involves an extra parameter q ∈ T:
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Proposition 9.5. The following circulant and symmetric matrix is Hadamard,

Kq
4 =


−1 q 1 q
q −1 q 1
1 q −1 q
q 1 q −1


for any q ∈ T. At q = 1, eπi/4 recover respectively the matrices K4, F

′′
4 .

Proof. The rows of the above matrix are pairwise orthogonal for any q ∈ C, and so at
q ∈ T we obtain a complex Hadamard matrix. The last assertion is clear. �

As a first conclusion, coming from the above considerations, we have:

Theorem 9.6. The complex Hadamard matrices of order N = 2, 3, 4, 5, namely

F2, F3, F
p
4 , F5

can be put, up to equivalence, in circulant and symmetric form.

Proof. As explained in section 5 above, the Hadamard matrices at N = 2, 3, 4, 5 are, up to
equivalence, those in the statement. But at N = 2, 3 the problem is solved by Proposition
9.4 above. At N = 4 now, our claim is that, with s = q−2, we have:

Kq
4 ∼ F s

4

By multiplying the rows of Kq
4 , and then the columns, by suitable scalars, we have:

Kq
4 =


−1 q 1 q
q −1 q 1
1 q −1 q
q 1 q −1

 ∼


1 −q −1 −q
1 −q̄ 1 q̄
1 q −1 q
1 q̄ 1 −q̄

 ∼


1 1 1 1
1 s −1 −s
1 −1 1 −1
1 −s −1 s


On the other hand, by permuting the second and third rows of F s

4 , we obtain:

F s
4 =


1 1 1 1
1 −1 1 −1
1 s −1 −s
1 −s −1 s

 ∼


1 1 1 1
1 s −1 −s
1 −1 1 −1
1 −s −1 s


Thus these matrices are equivalent, and the result follows from Proposition 9.5. At

N = 5 now, the matrix that we are looking for is as follows, with w = e2πi/5:

F ′5 =


w2 1 w4 w4 1
1 w2 1 w4 w4

w4 1 w2 1 w4

w4 w4 1 w2 1
1 w4 w4 1 w2


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It is indeed clear that this matrix is circulant, symmetric, and complex Hadamard, and
the fact that we have F5 ∼ F ′5 follows either directly, or by using [69]. �

Summarizing, many interesting examples of complex Hadamard matrices are circulant.
This is in stark contrast with the real case, where the CHC, discussed above, states that
the only circulant real matrices should be those appearing at N = 4.

Let us prove now, as a generalization, that any Fourier matrix FN can be put in circulant
and symmetric form. We use Björck’s cyclic root formalism [43], which is as follows:

Theorem 9.7. Assume that a matrix H ∈MN(T) is circulant, Hij = γj−i. Then H is is
a complex Hadamard matrix if and only if the vector

z = (z0, z1, . . . , zN−1)

given by zi = γi/γi−1 satisfies the following equations:

z0 + z1 + . . .+ zN−1 = 0

z0z1 + z1z2 + . . .+ zN−1z0 = 0

. . .

z0z1 . . . zN−2 + . . .+ zN−1z0 . . . zN−3 = 0

z0z1 . . . zN−1 = 1

If so is the case, we say that z = (z0, . . . , zN−1) is a cyclic N-root.

Proof. This follows from a direct computation, the idea being that, with Hij = γj−i as
above, the orthogonality conditions between the rows are best written in terms of the
variables zi = γi/γi−1, and correspond to the equations in the statement. See [43]. �

Observe that, up to a global multiplication by a scalar w ∈ T, the first row vector
γ = (γ0, . . . , γN−1) of the matrix H ∈MN(T) constructed above is as follows:

γ = (z0, z0z1, z0z1z2, . . . . . . , z0z1 . . . zN−1)

We will use this observation several times, in what follows. Now back to the Fourier
matrices, we have the following result:

Theorem 9.8. Given N ∈ N, set ν = eπi/N and q = νN−1, w = ν2. Then we have a
cyclic N-root as follows,

(q, qw, qw2, . . . , qwN−1)

and the corresponding complex Hadamard matrix F ′N is circulant and symmetric, and
equivalent to the Fourier matrix FN .

Proof. Given q, w ∈ T, let us find out when (q, qw, qw2, . . . , qwN−1) is a cyclic root:

(1) In order for the = 0 equations in Theorem 9.7 to be satisfied, the value of q is
irrelevant, and w must be a primitive N -root of unity.
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(2) As for the = 1 equation in Theorem 9.7, this states in our case that we must have:

qNw
N(N−1)

2 = 1

Thus, we must have qN = (−1)N−1, so with the values of q, w ∈ T in the statement, we
have indeed a cyclic N -root. Now construct Hij = γj−i as in Theorem 9.7. We have:

γk = γ−k ⇐⇒ qk+1w
k(k+1)

2 = q−k+1w
k(k−1)

2

⇐⇒ q2kwk = 1

⇐⇒ q2 = w−1

But this latter condition holds indeed, because we have:

q2 = ν2N−2 = ν−2 = w−1

We conclude that our circulant matrix H is symmetric as well, as claimed. It remains
to construct an equivalence as follows:

H ∼ FN

In order to do this, observe that, due to our conventions q = νN−1, w = ν2, the first
row vector of H is given by:

γk = qk+1w
k(k+1)

2

= ν(N−1)(k+1)νk(k+1)

= ν(N+k−1)(k+1)

Thus, the entries of H are given by the following formula:

H−i,j = H0,i+j

= ν(N+i+j−1)(i+j+1)

= νi
2+j2+2ij+Ni+Nj+N−1

= νN−1 · νi2+Ni · νj2+Nj · ν2ij

With this formula in hand, we can now finish. Indeed, the matrix H = (Hij) is
equivalent to the following matrix:

H ′ = (H−i,j)

Now regarding this latter matrix H ′, observe that in the above formula, the factors
νN−1, νi

2+Ni, νj
2+Nj correspond respectively to a global multiplication by a scalar, and

to row and column multiplications by scalars. Thus this matrix H ′ is equivalent to the
matrix H ′′ obtained from it by deleting these factors.

But this latter matrix, given by H ′′ij = ν2ij with ν = eπi/N , is precisely the Fourier
matrix FN , and we are done. �

As an illustration, let us work out the cases N = 2, 3, 4, 5. We have here:
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Proposition 9.9. The matrices F ′N are as follows:

(1) At N = 2, 3 we obtain the old matrices F ′2, F
′
3.

(2) At N = 4 we obtain the following matrix, with ν = eπi/4:

F ′4 =


ν3 1 ν7 1
1 ν3 1 ν7

ν7 1 ν3 1
1 ν7 1 ν3


(3) At N = 5 we obtain the old matrix F ′5.

Proof. With notations from Theorem 9.8, the proof goes as follows:

(1) At N = 2 we have ν = i, q = i, w = −1, so the cyclic root is:

(i,−i)
The first row vector is (i, 1), and we obtain indeed the old matrix F ′2.

At N = 3 we have ν = eπi/3 and q = w = ν2 = e2πi/3, the cyclic root is:

(w,w2, 1)

The first row vector is (w, 1, 1), and we obtain indeed the old matrix F ′3.

(2) At N = 4 we have ν = eπi/4 and q = ν3, w = ν2, the cyclic root is:

(ν3, ν5, ν7, ν)

The first row vector is (ν3, 1, ν7, 1), and we obtain the matrix in the statement.

(3) At N = 5 we have ν = eπi/5 and q = ν4 = w2, with w = ν2 = e2πi/5, and the cyclic
root is therefore:

(w2, w3, w4, 1, w)

The first row vector is (w2, 1, w4, w4, 1), and we obtain in this way the old matrix F ′5,
as claimed. �

Regarding the above matrix F ′4, observe that this is equivalent to the matrix F ′′4 from
Proposition 9.4, with the equivalence F ′4 ∼ F ′′4 being obtained by multiplying everything
by ν = eπi/4. While both these matrices are circulant and symmetric, and of course equiv-
alent to F4, one of them, namely F ′4, is “better” than the other, because the corresponding
cyclic root comes from a progression. This is the reason for our notations F ′4, F

′′
4 .

Let us discuss now the case of the generalized Fourier matrices FG. In this context,
the assumption of being circulant is somewhat unnatural, because this comes from a ZN
symmetry, and the underlying group is no longer ZN . It is possible to fix this issue by
talking about G-patterned Hadamard matrices, with G being no longer cyclic, but for our
purposes here, best is to formulate the result in a weaker form, as follows:
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Theorem 9.10. The generalized Fourier matrices FG, associated to the finite abelian
groups G, can be put in symmetric and bistochastic form.

Proof. We know from Theorem 9.8 that any usual Fourier matrix FN can be put in
circulant and symmetric form. Since circulant implies bistochastic, in the sense that the
sums on all rows and all columns must be equal, the result holds for FN .

In general now, if we decompose G = ZN1 × . . .× ZNk , we have:

FG = FN1 ⊗ . . .⊗ FNk
Now since the property of being circulant is stable under taking tensor products, and

so is the property of being bistochastic, we therefore obtain the result. �

We have as well the following alternative generalization of Theorem 9.8, coming from
Backelin’s work in [5], and remaining in the circulant and symmetric setting:

Theorem 9.11. Let M |N , and set w = e2πi/N . We have a cyclic root as follows,

( q1, . . . , qM︸ ︷︷ ︸
M

, q1w, . . . , qMw︸ ︷︷ ︸
M

, . . . . . . , q1w
N−1, . . . , qMw

N−1︸ ︷︷ ︸
M

)

provided that q1, . . . , qM ∈ T satisfy the following condition:

(q1 . . . qM)N = (−1)M(N−1)

Moreover, assuming that the following conditions are satisfied,

q1q2 = 1 , q3qM = q4qM−1 = . . . = w

which imply (q1 . . . qM)N = (−1)M(N−1), the Hadamard matrix is symmetric.

Proof. Let us first check the = 0 equations for a cyclic root. Given arbitrary numbers
q1, . . . , qM ∈ T, if we denote by (zi) the vector in the statement, we have:∑

i

zi+1 . . . zi+K =

(
q1 . . . qK + q2 . . . qK+1 + . . . . . .+ qM−K+1 . . . qM

+qM−K+2 . . . qMq1w + . . . . . .+ qMq1 . . . qK−1w
K−1

)
×(1 + wK + w2K + . . .+ w(N−1)K)

Now since the sum on the right vanishes, the = 0 conditions are satisfied. Regarding
now the = 1 condition, the total product of the numbers zi is given by:∏

i

zi = (q1 . . . qM)N(1 · w · w2 . . . wN−1)M

= (q1 . . . qM)Nw
MN(N−1)

2

By using w = e2πi/N we obtain that the coefficient on the right is:

w
MN(N−1)

2 = e
2πi
N
·MN(N−1)

2

= eπiM(N−1)

= (−1)M(N−1)
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Thus, if (q1 . . . qM)N = (−1)M(N−1), we obtain a cyclic root, as stated. See [5], [66].
The corresponding first row vector can be written as follows:

V =

q1, q1q2, . . . , q1 . . . qM︸ ︷︷ ︸
M

, . . . . . . . . . ,
wM−1

q2 . . . qM
, . . . ,

w2

qM−1qM
,
w

qM
, 1︸ ︷︷ ︸

M


Thus, the corresponding circulant complex Hadamard matrix is as follows:

H =



q1 q1q2 q1q2q3 q1q2q3q4 q1q2q3q4q5 . . .
1 q1 q1q2 q1q2q3 q1q2q3q4 . . .
w
qM

1 q1 q1q2 q1q2q3 . . .
w2

qM−1qM

w
qM

1 q1 q1q2 . . .
w3

qM−2qM−1qM

w2

qM−1qM

w
qM

1 q1 . . .
...

...
...

...
...

. . .


We are therefore led to the symmetry conditions in the statement, and we are done. �

Still in relation with the CHC, the problem of investigating the existence of the circulant
Butson matrices appears. The first result here, due to Turyn [136], is as follows:

Proposition 9.12. The size of a circulant Hadamard matrix

H ∈MN(±1)

must be of the form N = 4n2, with n ∈ N.

Proof. Let a, b ∈ N with a + b = N be the number of 1,−1 entries in the first row of H.
If we denote by H0, . . . , HN−1 the rows of H, then by summing over columns we get:

N−1∑
i=0

< H0, Hi > = a(a− b) + b(b− a)

= (a− b)2

On the other hand, by orthogonality of the rows, the quantity on the left is:

< H0, H0 >= N

Thus the number N = (a − b)2 is a square, and together with the fact that we have
N ∈ 2N, this gives N = 4n2, with n ∈ N. �

Also found by Turyn in [136] is the fact that the above number n ∈ N must be odd,
and not a prime power. In the general Butson matrix setting now, we have:
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Proposition 9.13. Assume that H ∈ HN(l) is circulant, let w = e2πi/l. If

a0, . . . , al−1 ∈ N
with

∑
ai = N are the number of 1, w, . . . , wl−1 entries in the first row of H, then:∑

ik

wkaiai+k = N

This condition, with
∑
ai = N , will be called “Turyn obstruction” on (N, l).

Proof. Indeed, by summing over the columns of H, we obtain:∑
i

< H0, Hi > =
∑
ij

< wi, wj > aiaj

=
∑
ij

wi−jaiaj

Now since the left term is < H0, H0 >= N , this gives the result. �

We can deduce from this a number of concrete obstructions, as follows:

Theorem 9.14. When l is prime, the Turyn obstruction is∑
i

(ai − ai+k)2 = 2N

for any k 6= 0. Also, for small values of l, the Turyn obstruction is as follows:

(1) At l = 2 the condition is:

(a0 − a1)2 = N

(2) At l = 3 the condition is:

(a0 − a1)2 + (a1 − a2)2 + (a2 − a3)2 = 2N

(3) At l = 4 the condition is:

(a0 − a2)2 + (a1 − a3)2 = N

(4) At l = 5 the condition is:∑
i

(ai − ai+1)2 =
∑
i

(ai − ai+2)2 = 2N

Proof. We use the fact, from section 6 above, that when l is prime, the vanishing sums of
l-roots of unity are exactly the sums of the following type, with c ∈ N:

S = c+ cw + . . .+ cwl−1

We conclude that the Turyn obstruction is equivalent to the following system of equa-
tions, one for each k 6= 0: ∑

i

a2
i −

∑
i

aiai+k = N
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Now by forming squares, this gives the equations in the statement. Regarding now the
l = 2, 3, 4, 5 assertions, these follow from the first assertion when l is prime, l = 2, 3, 5.
Also, at l = 4 we have w = i, so the Turyn obstruction reads:

(a2
0 + a2

1 + a2
2 + a2

3) + i
∑

aiai+1 − 2(a0a2 + a1a3)− i
∑

aiai+1 = N

Thus the imaginary terms cancel, and we obtain the formula in the statement. �

The above results are of course just some basic observations on the subject, and the
massive amount of work on the CHC has a number of interesting Butson matrix exten-
sions. For some more advanced theory on all this, we refer to [26], [53].

Let us go back now to the pure complex case, and discuss Fourier analytic aspects.
From a traditional linear algebra viewpoint, the circulant matrices are best understood
as being the matrices which are Fourier-diagonal, and we will exploit this here.

Let us fix N ∈ N, and denote by F = (wij)/
√
N with w = e2πi/N the rescaled Fourier

matrix. Also, given a vector q ∈ CN , we denote by Q ∈ MN(C) the diagonal matrix
having q as vector of diagonal entries. That is, Qii = qi, and Qij = 0 for i 6= j. With
these conventions, we have the following well-known result:

Theorem 9.15. For a complex matrix H ∈MN(C), the following are equivalent:

(1) H is circulant, Hij = ξj−i for some ξ ∈ CN .
(2) H is Fourier-diagonal, H = FQF ∗ with Q diagonal.

In addition, the first row vector of FQF ∗ is given by ξ = Fq/
√
N .

Proof. If Hij = ξj−i is circulant then Q = F ∗HF is diagonal, given by:

Qij =
1

N

∑
kl

wjl−ikξl−k

= δij
∑
r

wjrξr

Also, if Q = diag(q) is diagonal then H = FQF ∗ is circulant, given by:

Hij =
∑
k

FikQkkF̄jk

=
1

N

∑
k

w(i−j)kqk

Thus, we have proved the equivalence between the conditions in the statement. Finally,
regarding ξ = Fq/

√
N , this follows from the last formula established above. �

The above result is useful in connection with any question regarding the circular ma-
trices, and in relation with the orthogonal and unitary cases, we have:



HADAMARD MATRICES 161

Proposition 9.16. The various sets of circulant matrices are as follows:

(1) The set of all circulant matrices is:

MN(C)circ =
{
FQF ∗

∣∣∣q ∈ CN
}

(2) The set of all circulant unitary matrices is:

U circ
N =

{
FQF ∗

∣∣∣q ∈ TN
}

(3) The set of all circulant orhogonal matrices is:

Ocirc
N =

{
FQF ∗

∣∣∣q ∈ TN , q̄i = q−i,∀i
}

In addition, the first row vector of FQF ∗ is given by ξ = Fq/
√
N .

Proof. All this follows from Theorem 9.15, as follows:

(1) This assertion, along with the last one, is Theorem 9.15 itself.

(2) This is clear from (1), because the eigenvalues must be on the unit circle T.

(3) Observe first that for q ∈ CN we have Fq = F q̃, with q̃i = q̄−i, and so ξ = Fq is
real if and only if q̄i = q−i for any i. Together with (2), this gives the result. �

Observe that in (3), the equations for the parameter space are q0 = q̄0, q̄1 = qn−1,
q̄2 = qn−2, and so on until [N/2] + 1. Thus, with the convention Z∞ = T we have:

Ocirc
N '

{
Z2 × Z(N−1)/2

∞ (N odd)

Z2
2 × Z(N−2)/2

∞ (N even)

In terms of circulant Hadamard matrices, we have the following statement:

Theorem 9.17. The sets of complex and real circulant Hadamard matrices are:

Xcirc
N =

{√
NFQF ∗

∣∣∣q ∈ TN
}
∩MN(T)

Y circ
N =

{√
NFQF ∗

∣∣∣q ∈ TN , q̄i = q−i

}
∩MN(±1)

In addition, the sets of q parameters are invariant under cyclic permutations, and also
under mutiplying by numbers in T, respectively under multiplying by −1.

Proof. All the assertions are indeed clear from Proposition 9.16 above, by intersecting the
sets there with MN(T). �

The above statement is of course something quite theoretical in the real case, where
the CHC states that we should have Y circ

N = ∅, at any N 6= 4. However, in the complex
case all this is useful, and complementary to Björck’s cyclic root formalism.

Let us discuss now a number of geometric and analytic aspects. First, we have the
following deep counting result, due to Haagerup [70]:
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Theorem 9.18. When N is prime, the number of circulant N × N complex Hadamard
matrices, counted with certain multiplicities, is exactly:

Ncirc =

(
2N − 2

N − 1

)
Proof. This is something advanced, using a variety of techiques from Fourier analysis,
number theory, complex analysis and algebraic geometry. The idea is as follows:

(1) As explained in [70], when N is prime, Björck’s cyclic root formalism, explained
above, can be further manipulated, by using discrete Fourier transforms, and we are
eventually led to a simpler system of equations.

(2) This simplified system can be shown then to have a finite number of solutions, the
key ingredient here being a well-known theorem of Chebotarev, which states that when
N is prime, all the minors of the Fourier matrix FN are nonzero.

(3) With this finiteness result in hand, the precise count can be done as well, by using
various techniques from classical algebraic geometry, and we are led to the formula in the
statement. For the details here, see [70]. �

When N is not prime, the situation is considerably more complicated, with some values
leading to finitely many solutions, and with other values leading to an infinite number of
solutions, and with many other new phenomena appearing. See [43], [44], [45], [70].

Let us discuss now an alternative take on these questions, based on the p-norm con-
siderations from sections 2-3 above. As explained in [26], the most adapted exponent for
the circulant case is p = 4. So, as a starting point, let us formulate:

Proposition 9.19. Given a matrix U ∈ UN we have

||U ||4 ≥ 1

with equality precisely when H = U/
√
N is Hadamard.

Proof. This follows from the Cauchy-Schwarz inequality, as follows:

||U ||44 =
∑
ij

|Uij|4

≥ 1

N2

(∑
ij

|Uij|2
)2

= 1

Thus we have ||U ||4 ≥ 1, with equality if and only if H =
√
NU is Hadamard. �

In the circulant case now, and in Fourier formulation, the estimate is as follows:
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Theorem 9.20. Given a vector q ∈ TN , written q = (q0, . . . , qN−1) consider the following
quantity, with all the indices being taken modulo N :

Φ =
∑

i+k=j+l

qiqk
qjql

Then this quantity Φ is real, and we have the estimate

Φ ≥ N2

with equality happening precisely when
√
Nq is the eigenvalue vector of a circulant Hada-

mard matrix H ∈MN(C).

Proof. By conjugating the formula of Φ we see that this quantity is indeed real. In fact,
Φ appears by definition as a sum of N3 terms, consisting of N(2N − 1) values of 1 and of
N(N − 1)2 other complex numbers of modulus 1, coming in pairs (a, ā).

Regarding now the second assertion, by using the various identifications in Theorem
9.15 and Proposition 9.16, and the formula ξ = Fq/

√
N there, we have:

||U ||44 = N
∑
s

|ξs|4

=
1

N3

∑
s

|
∑
i

wsiqi|4

=
1

N3

∑
s

∑
i

wsiqi
∑
j

w−sj q̄j
∑
k

wskqk
∑
l

w−slq̄l

=
1

N3

∑
s

∑
ijkl

w(i−j+k−l)s qiqk
qjql

=
1

N2

∑
i+k=j+l

qiqk
qjql

Thus Proposition 9.19 gives the following estimate:

Φ = N2||U ||44 ≥ N2

Moreover, we have equality precisely in the Hadamard matrix case, as claimed. �

We have the following more direct explanation of the above result:

Proposition 9.21. With the above notations, we have the formula

Φ = N2 +
∑
i 6=j

(|νi|2 − |νj|2)2

where ν = (ν0, . . . , νN−1) is the vector given by ν = Fq.
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Proof. This follows by replacing in the above proof the Cauchy-Schwarz estimate by the
corresponding sum of squares. More precisely, we know from the above proof that:

Φ = N3
∑
i

|ξi|4

On the other hand Uij = ξj−i being unitary, we have
∑

i |ξi|2 = 1, and so:

1 =
∑
i

|ξi|4 +
∑
i 6=j

|ξi|2 · |ξj|2

= N
∑
i

|ξi|4 −

(
(N − 1)

∑
i

|ξi|4 −
∑
i 6=j

|ξi|2 · |ξj|2
)

=
1

N2
Φ−

∑
i 6=j

(|ξi|2 − |ξj|2)2

Now by multiplying by N2, this gives the formula in the statement. �

As an application of the above considerations, in the real Hadamard matrix case, we
have the following analytic reformulation of the CHC, from [26]:

Theorem 9.22. For a vector q ∈ TN satisfying q̄i = q−i the following quantity is real,

Φ =
∑

i+j+k+l=0

qiqjqkql

and satisfies the following inequality:

Φ ≥ N2

The CHC states that we cannot have equality at N > 4.

Proof. This follows from Theorem 9.20, via the identifications from Theorem 9.15, the
parameter space in the real case being {q ∈ TN |q̄i = q−i}. Thus, we obtain the result. �

Following [26], let us further discuss all this. We first have:

Theorem 9.23. Let us decompose the above function as

Φ = Φ0 + . . .+ ΦN−1

with each Φi being given by the same formula as Φ, namely

Φ =
∑

i+k=j+l

qiqk
qjqk

but keeping the index i fixed. Then:

(1) The critical points of Φ are those where Φi ∈ R, for any i.
(2) In the Hadamard case we have Φi = N , for any i.
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Proof. This follows by doing some elementary computations, as follows:

(1) The first observation is that the non-constant terms in the definition of Φ involving
the variable qi are the terms of the sum Ki + K̄i, where:

Ki =
∑

2i=j+l

q2
i

qjql
+ 2

∑
k 6=i

∑
i+k=j+l

qiqk
qjql

Thus if we fix i and we write qi = eiαi , we obtain:

∂Φ

∂αi
= 4Re

(∑
k

∑
i+k=j+l

i · qiqk
qjql

)

= 4Im

( ∑
i+k=j+l

qiqk
qjql

)
= 4Im(Φi)

Now since the derivative must vanish for any i, this gives the result.

(2) We first perform the end of the Fourier computation in the proof of Theorem 9.20
above backwards, by keeping the index i fixed. We obtain:

Φi =
∑

i+k=j+l

qiqk
qjql

=
1

N

∑
s

∑
ijkl

w(i−j+k−l)s qiqk
qjql

=
1

N

∑
s

wsiqi
∑
j

w−sj q̄j
∑
k

wskqk
∑
l

w−slq̄l

= N2
∑
s

wsiqiξ̄sξsξ̄s

Here we have used the formula ξ = Fq/
√
N . Now by assuming that we are in the

Hadamard case, we have |ξs| = 1/
√
N for any s, and so we obtain:

Φi = N
∑
s

wsiqiξ̄s

= N
√
Nqi(F ∗ξ)i

= Nqiq̄i

= N

Thus, we have obtained the conclusion in the statement. �
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Let us discuss now a probabilistic approach to all this. Given a compact manifold
X endowed with a probability measure, and a bounded function Θ : X → [0,∞), the
maximum of this function can be recaptured via following well-known formula:

max Θ = lim
p→∞

(∫
X

Θ(x)p dx

)1/p

In our case, we are rather interested in computing a minimum, and we have:

Proposition 9.24. We have the formula

min Φ = N3 − lim
p→∞

(∫
TN

(N3 − Φ)p dq

)1/p

where the torus TN is endowed with its usual probability measure.

Proof. This follows from the above formula, with Θ = N3 −Φ. Observe that Θ is indeed
positive, because Φ is by definition a sum of N3 complex numbers of modulus 1. �

Let us restrict now the attention to the problem of computing the moments of Φ, which
is more or less the same as computing those of N3 − Φ. We have here:

Proposition 9.25. The moments of Φ are given by∫
TN

Φp dq = #

{(
i1k1 . . . ipkp
j1l1 . . . jplp

) ∣∣∣is + ks = js + ls, [i1k1 . . . ipkp] = [j1l1 . . . jplp]

}
where the sets between brackets are by definition sets with repetition.

Proof. This is indeed clear from the formula of Φ. See [27]. �

Regarding now the real case, an analogue of Proposition 9.25 holds, but the combina-
torics does not get any simpler. One idea in dealing with this problem is by considering
the “enveloping sum”, obtained from Φ by dropping the condition i+ k = j + l:

Φ̃ =
∑
ijkl

qiqk
qjql

The point is that the moments of Φ appear as “sub-quantities” of the moments of Φ̃,
so perhaps the question to start with is to understand very well the moments of Φ̃. And
this latter problem sounds like a quite familiar one, because:

Φ̃ =

∣∣∣∣∣∑
i

qi

∣∣∣∣∣
4

We will be back to this later. For the moment, let us do some combinatorics:
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Proposition 9.26. We have the moment formula∫
TN

Φ̃p dq =
∑

π∈P (2p)

(
2p

π

)
N !

(N − |π|)!

where the coefficients on the right are given by(
2p

π

)
=

(
2p

b1, . . . , b|π|

)
with b1, . . . , b|π| being the lengths of the blocks of π.

Proof. Indeed, by using the same method as for Φ, we obtain:∫
TN

Φ̃(q)p dq = #

{(
i1k1 . . . ipkp
j1l1 . . . jplp

) ∣∣∣[i1k1 . . . ipkp] = [j1l1 . . . jplp]

}
The sets with repetitions on the right are best counted by introducing the corresponding

partitions π = ker
(
i1k1 . . . ipkp

)
, and this gives the formula in the statement. �

In order to discuss now the real case, we have to slightly generalize the above result,

by computing all the half-moments of Φ̃. The result here is best formulated as:

Proposition 9.27. We have the moment formula∫
TN

∣∣∣∣∣∑
i

qi

∣∣∣∣∣
2p

dq =
∑
k

Cpk
N !

(N − k)!

with the coefficients being given by

Cpk =
∑

π∈P (p),|π|=k

(
p

b1, . . . , b|π|

)
where b1, . . . , b|π| are the lengths of the blocks of π.

Proof. This follows indeed exactly as Proposition 9.26 above, by replacing the exponent
p by the exponent p/2, and by splitting the resulting sum as in the statement. �

Finally, here is a random walk formulation of the problem:

Proposition 9.28. The moments of Φ have the following interpretation:

(1) First, the moments of the enveloping sum
∫

Φ̃p count the loops of length 4p on the
standard lattice ZN ⊂ RN , based at the origin.

(2)
∫

Φp counts those loops which are “piecewise balanced”, in the sense that each of
the p consecutive 4-paths forming the loop satisfy i+ k = j + l modulo N .

Proof. The first assertion follows from the formula in the proof of Proposition 9.26, and
the second assertion follows from the formula in Proposition 9.25. �
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This statement looks quite encouraging, but passing from (1) to (2) is quite a delicate
task, because in order to interpret the condition i + k = j + l we have to label the
coordinate axes of RN by elements of the cyclic group ZN , and this is a quite unfamiliar
operation. In addition, in the real case the combinatorics becomes more complex due to
the symmetries of the parameter space, and no further results are available so far.
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10. Bistochastic form

In this section and the next two ones we discuss certain further analytic aspects of the
complex Hadamard matrices. Let us begin with the following definition:

Definition 10.1. A complex Hadamard matrix H ∈ MN(C) is called bistochastic when
the sums on all rows and all columns are equal. We denote by

Xbis
N =

{
H ∈ XN

∣∣∣H = bistochastic
}

the real algebraic manifold formed by such matrices.

The bistochastic Hadamard matrices are quite interesting objects, and include for in-
stance all the circulant Hadamard matrices, that we discussed in section 9. Indeed,
assuming that Hij = ξj−i is circulant, all rows and columns sum up to:

λ =
∑
i

ξi

Let us begin, however, with some considerations regarding the real case. As a first and
trivial remark, the first Walsh matrix W2 = F2 looks better in bistochastic form:(

1 1
1 −1

)
∼
(
i 1
1 i

)
The second Walsh matrix W4 = W2 ⊗W2 looks as well better in bistochastic form:

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ∼


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1



∼


1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1



∼


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


All this is quite interesting, philosophically speaking. Indeed, we have here a new

idea, in connection with the various questions explained in sections 1-4 above, namely
that of studying the real Hadamard matrices H ∈ MN(±1) by putting them in complex
bistochastic form, H ′ ∈MN(T), and then studying these latter matrices.

Let us record here, as a partial conclusion, the following simple fact:
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Theorem 10.2. All the Walsh matrices can be put in bistocastic form, as follows:

(1) The matrices WN with N = 4n admit a real bistochastic form, namely:

WN ∼


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


⊗n

(2) The matrices WN with N = 2× 4n admit a complex bistochastic form, namely:

WN ∼
(
i 1
1 i

)
⊗


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


⊗n

Proof. This follows indeed from the above discussion. �

Let us review now the material in section 9. According to the results there, and to the
above-mentioned fact that circulant implies bistochastic, we have:

Theorem 10.3. The class of bistochastic Hadamard matrices is stable under permuting
rows and columns, and under taking tensor products. As examples, we have:

(1) The circulant and symmetric forms F ′N of the Fourier matrices FN .
(2) The bistochastic and symmetric forms F ′G of the Fourier matrices FG.
(3) The circulant and symmetric Backelin matrices, having size MN with M |N .

Proof. In this statement the claim regarding permutations of rows and columns is clear.
Assuming now that H,K are bistochastic, with sums λ, µ, we have:∑

ia

(H ⊗K)ia,jb =
∑
ia

HijKab =
∑
i

Hij

∑
a

Kab = λµ

We have as well the following computation:∑
jb

(H ⊗K)ia,jb =
∑
jb

HijKab =
∑
j

Hij

∑
b

Kab = λµ

Thus, the matrix H⊗K is bistochastic as well. As for the assertions (1,2,3), we already
know all this, from section 9 above. �

In the above list of examples, (2) is the key entry. Indeed, while many interesting
complex Hadamard matrices, such as the usual Fourier ones FN , can be put in circulant
form, this is something quite exceptional, which does not work any longer when looking
at the general Fourier matrices FG. To be more precise, with G = ZN1 × . . . × ZNk , we
can consider the following matrix, which is equivalent to FG:

F ′G = F ′N1
⊗ . . .⊗ F ′Nk
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Now since the tensor product of circulant matrices is not necessarily circulant, we can
only say that this matrix F ′G is bistochastic. As a conclusion, the bistochastic Hadamard
matrices are interesting objects, definitely worth some study. So, let us develop now some
general theory, for such matrices. First, we have the following elementary result:

Proposition 10.4. For an Hadamard matrix H ∈MN(C), the following are equivalent:

(1) H is bistochastic, with sums λ.
(2) H is row-stochastic, with sums λ, and |λ|2 = N .

Proof. Both the implications are elementary, as follows:

(1) =⇒ (2) If we denote by H1, . . . , HN ∈ TN the rows of H, we have indeed:

N =
∑
i

< H1, Hi >

=
∑
i

∑
j

H1jH̄ij

=
∑
j

H1j

∑
i

H̄ij

=
∑
j

H1j · λ̄

= |λ|2

(2) =⇒ (1) Consider the all-one vector ξ = (1)i ∈ CN . The fact that H is row-
stochastic with sums λ reads:∑

j

Hij = λ,∀i ⇐⇒
∑
j

Hijξj = λξi,∀i

⇐⇒ Hξ = λξ

Also, the fact that H is column-stochastic with sums λ reads:∑
i

Hij = λ,∀j ⇐⇒
∑
j

Hijξi = λξj,∀j

⇐⇒ H tξ = λξ

We must prove that the first condition implies the second one, provided that the row
sum λ satisfies |λ|2 = N . But this follows from the following computation:

Hξ = λξ =⇒ H∗Hξ = λH∗ξ

=⇒ N2ξ = λH∗ξ

=⇒ N2ξ = λ̄H tξ

=⇒ H tξ = λξ

Thus, we have proved both the implications, and we are done. �
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Here is another basic result, that we will need as well in what follows:

Proposition 10.5. For a complex Hadamard matrix H ∈ MN(C), and a number λ ∈ C
satisfying |λ|2 = N , the following are equivalent:

(1) We have H ∼ H ′, with H ′ being bistochastic, with sums λ.
(2) Kij = aibjHij is bistochastic with sums λ, for some a, b ∈ TN .
(3) The equation Hb = λā has solutions a, b ∈ TN .

Proof. Once again, this is an elementary result, the proof being as follows:

(1) ⇐⇒ (2) Since the permutations of the rows and columns preserve the bistochas-
ticity condition, the equivalence H ∼ H ′ that we are looking for can be assumed to come
only from multiplying the rows and columns by numbers in T. Thus, we are looking for
scalars ai, bj ∈ T such that Kij = aibjHij is bistochastic with sums λ, as claimed.

(2) ⇐⇒ (3) The row sums of the matrix Kij = aibjHij are given by:∑
j

Kij =
∑
j

aibjHij = ai(Hb)i

Thus K is row-stochastic with sums λ precisely when Hb = λā, and by using the
equivalence in Proposition 10.4, we obtain the result. �

Finally, here is an extension of the excess inequality from section 2 above:

Theorem 10.6. For a complex Hadamard matrix H ∈MN(C), the excess,

E(H) =
∑
ij

Hij

satisfies |E(H)| ≤ N
√
N , with equality if and only if H is bistochastic.

Proof. In terms of the all-one vector ξ = (1)i ∈ CN , we have:

E(H) =
∑
ij

Hij =
∑
ij

Hijξj ξ̄i =
∑
i

(Hξ)iξ̄i =< Hξ, ξ >

Now by using the Cauchy-Schwarz inequality, along with the fact that U = H/
√
N is

unitary, and hence of norm 1, we obtain, as claimed:

|E(H)| ≤ ||Hξ|| · ||ξ|| ≤ ||H|| · ||ξ||2 = N
√
N

Regarding now the equality case, this requires the vectors Hξ, ξ to be proportional, and
so our matrix H to be row-stochastic. Now, let us assume:

Hξ = λξ

We have then |λ|2 = N , and by Proposition 10.4 we obtain the result. �
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Let us go back now to the fundamental question, which already appeared several times
in the above, of putting an arbitrary Hadamard matrix in bistochastic form. As already
explained, we are interested in solving this question in general, and in particular in the
real case, with potential complex reformulations of the HC and CHC at stake. What we
know so far on this subject can be summarized as follows:

Proposition 10.7. An Hadamard matrix H ∈ MN(C) can be put in bistochastic form
when one of the following conditions is satisfied:

(1) The equations |Ha|i =
√
N , with i = 1, . . . , N , have solutions a ∈ TN .

(2) The quantity |E| attains its maximum N
√
N over the equivalence class of H.

Proof. This follows indeed from Proposition 10.4 and Proposition 10.5 above, which alto-
gether gives the equivalence between the two conditions in the statement. �

Thus, we have two approaches to the problem, one algebraic, and one analytic. Let
us first discuss the algebraic approach, coming from (1) above. What we have there is a
certain system of N equations, having as unknowns N real variables, namely the phases
of a1, . . . , aN . This system is highly non-linear, but can be solved, however, via a certain
non-explicit method, as explained by Idel and Wolf in [75].

In order to discuss this material, which is quite advanced, let us begin with some
preliminaries. The complex projective space appears by definition as follows:

PN−1
C = (CN − {0})

/
< x = λy >

Inside this projective space, we have the Clifford torus, constructed as follows:

TN−1 =
{

(z1, . . . , zN) ∈ PN−1
C

∣∣∣|z1| = . . . = |zN |
}

With these conventions, we have the following result, from [75]:

Proposition 10.8. For a unitary matrix U ∈ UN , the following are equivalent:

(1) There exist L,R ∈ UN diagonal such that the following matrix is bistochastic:

U ′ = LUR

(2) The standard torus TN ⊂ CN satisfies:

TN ∩ UTN 6= ∅
(3) The Clifford torus TN−1 ⊂ PN−1

C satisfies:

TN−1 ∩ UTN−1 6= ∅

Proof. These equivalences are all elementary, as follows:

(1) =⇒ (2) Assuming that U ′ = LUR is bistochastic, which in terms of the all-1
vector ξ means U ′ξ = ξ, if we set f = Rξ ∈ TN we have:

Uf = L̄U ′R̄f = L̄U ′ξ = L̄ξ ∈ TN
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Thus we have Uf ∈ TN ∩ UTN , which gives the conclusion.

(2) =⇒ (1) Given g ∈ TN ∩ UTN , we can define R,L as follows:

R = diag(g1, . . . , gN)

L̄ = diag((Ug)1, . . . , (Ug)N)

With these values for L,R, we have then the following formulae:

Rξ = g , L̄ξ = Ug

Thus the matrix U ′ = LUR is bistochastic, because:

U ′ξ = LURξ = LUg = ξ

(2) =⇒ (3) This is clear, because TN−1 ⊂ PN−1
C appears as the projective image of

TN ⊂ CN , and so TN−1 ∩ UTN−1 appears as the projective image of TN ∩ UTN .

(3) =⇒ (2) We have indeed the following equivalence:

TN−1 ∩ UTN−1 6= ∅ ⇐⇒ ∃λ 6= 0, λTN ∩ UTN 6= ∅

But U ∈ UN implies |λ| = 1, and this gives the result. �

The point now is that the condition (3) above is something familiar in symplectic
geometry, and known to hold for any U ∈ UN . Thus, following [75], we have:

Theorem 10.9. Any unitary matrix U ∈ UN can be put in bistochastic form,

U ′ = LUR

with L,R ∈ UN being both diagonal, via a certain non-explicit method.

Proof. As already mentioned, the condition TN−1 ∩UTN−1 6= ∅ in Proposition 10.8 (3) is
something quite natural in symplectic geometry. To be more precise, TN−1 ⊂ PN−1

C is a
Lagrangian submanifold, TN−1 → UTN−1 is a Hamiltonian isotopy, and a result from [42],
[48] states that TN−1 cannot be displaced from itself via a Hamiltonian isotopy. Thus,
the results in [42], [48] tells us that TN−1∩UTN−1 6= ∅ holds indeed, for any U ∈ UN . We
therefore obtain the result, via Proposition 10.8. See [75]. �

In relation now with our Hadamard matrix questions, we have:

Theorem 10.10. Any complex Hadamard matrix can be put in bistochastic form, up to
the standard equivalence relations for such matrices.

Proof. This follows indeed from Theorem 10.9, because if H =
√
NU is Hadamard then

so is H ′ =
√
NU ′, and with the remark that, in what regards the equivalence relation, we

just need the multiplication of the rows and columns by scalars in T. �
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As explained in [75], the various technical results from [42], [48] show that in the
generic, “transverse” situation, there are at least 2N−1 ways of putting a unitary matrix
U ∈ UN in bistochastic form, and this modulo the obvious transformation U → zU , with
|z| = 1. Thus, the question of explicitely putting the Hadamard matrices H ∈ MN(C)
in bistochastic form remains open, and open as well is the question of finding a simpler
proof for the fact that this can be done indeed, without using [42], [48].

Regarding this latter question, a possible approach comes from the excess result from
Theorem 10.6 above. Indeed, in view of the remark there, it is enough to show that the
law of |E| over the equivalence class of H has N

√
N as upper support bound. In order

to comment on this, let us first formulate:

Definition 10.11. The glow of H ∈MN(C) is the measure µ ∈ P(C) given by:∫
C
ϕ(x)dµ(x) =

∫
TN×TN

ϕ

(∑
ij

aibjHij

)
d(a, b)

That is, the glow is the law of the excess E =
∑

ij Hij over the equivalence class of H.

In this definition H can be any complex matrix, but the equivalence relation is the
one for the complex Hadamard matrices. To be more precise, let us call two matrices
H,K ∈ MN(C) equivalent if one can pass from one to the other by permuting rows
and columns, or by multiplying the rows and columns by numbers in T. Now since
permuting rows and columns does not change the quantity E =

∑
ij Hij, we can restrict

attention from the full equivalence group G = (SN o TN) × (SN o TN) to the smaller
group G′ = TN × TN , and we obtain the measure µ in Definition 10.11.

As in the real case, the terminology comes from a picture of the following type, with
the stars ∗ representing the entries of our matrix, and with the switches being supposed
now to be continuous, randomly changing the phases of the concerned entries:

→ ∗ ∗ ∗ ∗
→ ∗ ∗ ∗ ∗
→ ∗ ∗ ∗ ∗
→ ∗ ∗ ∗ ∗

↑ ↑ ↑ ↑

In short, what we have here is a complex generalization of the Gale-Berlekamp game
[67], [116], and this is where the main motivation for studying the glow comes from.

We are in fact interested in computing a real measure, because we have:
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Proposition 10.12. The laws µ, µ+ of E, |E| over the torus TN × TN are related by

µ = ε× µ+

where × is the multiplicative convolution, and ε is the uniform measure on T.

Proof. We have E(λH) = λE(H) for any λ ∈ T, and so µ = law(E) is invariant under
the action of T. Thus µ must decompose as µ = ε×µ+, where µ+ is a certain probability
measure on [0,∞), and this measure µ+ is the measure in the statement. �

In particular, we can see from the above result that the glow is invariant under rotations.
With this observation made, we can formulate the following result:

Theorem 10.13. The glow of any Hadamard matrix H ∈ MN(C), or more generally of

any H ∈
√
NUN , satisfies the following conditions, where D is the unit disk,

N
√
N T ⊂ supp(µ) ⊂ N

√
N D

with the inclusion on the right coming from Cauchy-Schwarz, and with the inclusion on
the left corresponding to the fact that H can be put in bistochastic form.

Proof. In this statement the inclusion on the right comes indeed from Cauchy-Schwarz,
as explained in the proof of Theorem 10.6 above, with the remark that the computation
there only uses the fact that the rescaled matrix U = H/

√
N is unitary.

Regarding now the inclusion on the left, we know from Theorem 10.9 that H can be
put in bistochastic form. According to Proposition 10.7, this tells us that we have:

N
√
N T ∩ supp(µ) 6= ∅

Now by using the rotational invariance of the glow, and hence of its support, coming
from Proposition 10.12, we obtain from this:

N
√
N T ⊂ supp(µ)

Thus, we are led to the conclusions in the statement. �

The challenging question is that of proving the above result by using probabilistic
techniques. Indeed, as explained in section 9, the support of a measure can be recaptured
from the moments, by computing a limit. Thus, knowing the moments of the glow well
enough would solve the problem. Regarding these moments, the formula is as follows:

Proposition 10.14. For H ∈MN(T) the even moments of |E| are given by∫
TN×TN

|E|2p =
∑

[i]=[k],[j]=[l]

Hi1j1 . . . Hipjp

Hk1l1 . . . Hkplp

where the sets between brackets are by definition sets with repetition.
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Proof. We have indeed the following computation:∫
TN×TN

|E|2p =

∫
TN×TN

∣∣∣∑
ij

Hijaibj

∣∣∣2p
=

∫
TN×TN

(∑
ijkl

Hij

Hkl

· aibj
akbl

)p

=
∑
ijkl

Hi1j1 . . . Hipjp

Hk1l1 . . . Hkplp

∫
TN

ai1 . . . aip
ak1 . . . akp

∫
TN

bj1 . . . bjp
bl1 . . . blp

Now since the integrals at right equal respectively the Kronecker symbols δ[i],[k] and
δ[j],[l], we are led to the formula in the statement. �

With this formula in hand, the main result, regarding the fact that the complex Hada-
mard matrices can be put in bistochastic form, reformulates as follows:

Theorem 10.15. For a complex Hadamard matrix H ∈MN(T) we have

lim
p→∞

 ∑
[i]=[k],[j]=[l]

Hi1j1 . . . Hipjp

Hk1l1 . . . Hkplp

1/p

= N3

coming from the fact that H can be put in bistochastic form.

Proof. This follows from the well-known fact that the maximum of a bounded function
Θ : X → [0,∞) can be recaptured via following formula:

max(Θ) = lim
p→∞

(∫
X

Θ(x)p dx

)1/p

With X = TN ×TN and with Θ = |E|2, we conclude that the limit in the statement is
the square of the upper bound of the glow. But, according to Theorem 10.13, this upper
bound is known to be ≤ N3 by Cauchy-Schwarz, and the equality holds by [75]. �

To conclude now, the challenging question is that of finding a direct proof for Theorem
10.15. All this would provide an alternative aproach to the results in [75], which would be
of course still not explicit, but which would use at least some more familiar tools. We will
discuss such questions in section 11 below, with the remark however that the problems at
N ∈ N fixed being quite difficult, we will do a N →∞ study only.

Getting away now from these difficult questions, we have nothing concrete so far, besides
the list of examples from Theorem 10.3, coming from the circulant matrix considerations
in section 9. So, our purpose will be that of extending that list. A first natural question
is that of looking at the Butson matrix case. We have here the following result:
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Proposition 10.16. Assuming that HN(l) contains a bistochastic matrix, the equations

a0 + a1 + . . .+ al−1 = N

|a0 + a1w + . . .+ al−1w
l−1|2 = N

must have solutions, over the positive integers.

Proof. This is a reformulation of the equality |λ|2 = N , from Proposition 10.5 above.
Indeed, if we set w = e2πi/l, and we denote by ai ∈ N the number of wi entries appearing
in the first row of our matrix, then the row sum of the matrix is given by:

λ = a0 + a1w + . . .+ al−1w
l−1

Thus, we obtain the system of equations in the statement. �

The point now is that, in practice, we are led precisely to the Turyn obstructions from
section 9 above. At very small values of l, the obstructions are as follows:

Theorem 10.17. Assuming that HN(l) contains a bistochastic matrix, the following equa-
tions must have solutions, over the integers:

(1) l = 2: 4n2 = N .
(2) l = 3: x2 + y2 + z2 = 2N , with x+ y + z = 0.
(3) l = 4: a2 + b2 = N .

Proof. This follows indeed from the results that we have:

(1) This is something well-known, which follows from Proposition 10.17.

(2) This is best viewed by using Proposition 10.17, and the following formula, that we
already know, from section 5 above:∣∣a+ bw + cw2

∣∣2 =
1

2
[(a− b)2 + (b− c)2 + (c− a)2]

At the level of the concrete obstructions, we must have for instance 56 |N . Indeed, this
follows as in the proof of the de Launey obstruction for HN(3) with 5|N .

(3) This follows again from Proposition 10.17, and from |a+ ib|2 = a2 + b2. �

As a conclusion, nothing much interesting is going on in the Butson matrix case, with
various arithmetic obstructions, that we partly already met, appearing here. See [85]. In
order to reach, however, to a number of positive results, beyond those in Theorem 10.4,
we can investigate various special classes of matrices, such as the Diţă products. In order
to formulate our results, we will use the following notion:

Definition 10.18. We say that a complex Hadamard matrix H ∈ MN(C) is in “almost

bistochastic form” when all the row sums belong to
√
N · T.
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Observe that, assuming that this condition holds, the matrix H can be put in bistochas-
tic form, just by multiplying its rows by suitable numbers from T. We will be particularly
interested here in the special situation where the affine deformations Hq ∈ MN(C) of a
given complex Hadamard matrix H ∈ MN(C) can be put in almost bistochastic form,
independently of the value of the parameter q. For the simplest deformations, namely
those of F2 ⊗ F2, this is indeed the case:

Proposition 10.19. The deformations of F2 ⊗ F2, with parameter matrix Q = (pr
q
s),

F2 ⊗Q F2 =


p q p q
p −q p −q
r s −r −s
r −s −r s


can be put in almost bistochastic form, independently of the value of Q.

Proof. By multiplying the columns of the matrix in the statement with 1, 1,−1, 1 respec-
tively, we obtain the following matrix:

F2 ⊗′′Q F2 =


p q −p q
p −q −p −q
r s r −s
r −s r s


The row sums of this matrix being 2q,−2q, 2r, 2r ∈ 2T, we are done. �

We will see later on that the above matrix F2 ⊗′′Q F2 is equivalent to a certain matrix
F2⊗′ F2, which looks a bit more complicated, but is part of a series FN ⊗′ FN . Now back
to the general case, we have the following result:

Theorem 10.20. A deformed tensor product H ⊗Q K can be put in bistochastic form
when there exist numbers xia ∈ T such that with

Gib =
(K∗xi)b
Qib

we have |(H∗G)ib| =
√
MN , for any i, b.

Proof. The deformed tensor product L = H ⊗Q K is given by the following formula:

Lia,jb = QibHijKab

By multiplying the columns by scalars Rjb ∈ T, this matrix becomes:

L′ia,jb = RjbQibHijKab
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The row sums of this matrix are given by:

S ′ia =
∑
jb

RjbQibHijKab

=
∑
b

KabQib

∑
j

HijRjb

=
∑
b

KabQib(HR)ib

Consider now the following variables:

Ci
b = Qib(HR)ib

In terms of these variables, the rows sums are given by:

S ′ia =
∑
b

KabC
i
b = (KCi)a

Thus H ⊗Q K can be put in bistochastic form when we can find scalars Rjb ∈ T and
xia ∈ T such that, with Ci

b = Qib(HR)ib, the following condition is satisfied:

(KCi)a =
√
MNxia , ∀i, a

But this condition is equivalent to the following condition:

KCi =
√
MNxi , ∀i

Now by multiplying to the left by K∗, we are led to the following condition:
√
NCi =

√
MK∗xi , ∀i

Now by recalling that Ci
b = Qib(HR)ib, this condition is equivalent to:
√
NQib(HR)ib =

√
M(K∗xi)b , ∀i, b

Consider now the variables in the statement, namely:

Gib =
(K∗xi)b
Qib

In terms of these variables, the above condition reads:
√
N(HR)ib =

√
MGib , ∀i, b

But this condition is equivalent to:
√
NHR =

√
MG

Now by multiplying to the left by H∗, we are led to the following condition:
√
MNR = H∗G

Thus, we have obtained the condition in the statement. �
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As an illustration for the above result, assume that H,K can be put in bistochastic
form, by using vectors y ∈ TM , z ∈ TN . If we set xia = yiza, with Q = 1 we have:

Gib = (K∗xi)b = [K∗(yiz)]b = yi(K
∗z)b

We therefore obtain the following formula:

(H∗G)ib =
∑
j

(H∗)ijGjb =
∑
j

(H∗)ijyj(K
∗z)b = (H∗y)i(K

∗z)b

Thus the usual tensor product H ⊗K can be put in bistochastic form as well.

In the case H = FM the equations simplify, and we have:

Proposition 10.21. A deformed tensor product FM⊗QK can be put in bistochastic form
when there exist numbers xia ∈ T such that with

Gib =
(K∗xi)b
Qib

we have the following formulae, with l being taken modulo M :∑
j

GjbḠj+l,b = MNδl,0 , ∀l, b

Moreover, the M×N matrix |Gjb|2 is row-stochastic with sums N2, and the l = 0 equations
state that this matrix must be column-stochastic, with sums MN .

Proof. With notations from Theorem 10.20, and with w = e2πi/M , we have:

(H∗G)ib =
∑
j

w−ijGjb

The absolute value of this number can be computed as follows:

|(H∗G)ib|2 =
∑
jk

wi(k−j)GjbḠkb

=
∑
jl

wilGjbḠj+l,b

=
∑
l

wil
∑
j

GjbḠj+l,b

If we denote by vbl the sum on the right, we obtain:

|(H∗G)ib|2 =
∑
l

wilvbl = (FMv
b)i

Now if we denote by ξ the all-one vector in CM , the condition |(H∗G)ib| =
√
MN for

any i, b found in Theorem 10.20 above reformulates as follows:

FMvb = MNξ , ∀b
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By multiplying to the left by F ∗M/M , this condition is equivalent to:

vb = NF ∗Mξ =


MN

0
...
0


Let us examine the first equation, vb0 = MN . By definition of vbl , we have:

vb0 =
∑
j

GjbḠjb =
∑
j

|Gjb|2

Now recall from Theorem 10.20 that we have, for certain numbers xjb ∈ T:

Gjb =
(K∗xj)b
Qjb

Since we have Qjb ∈ T and K∗/
√
N ∈ UN , we obtain:∑

b

|Gjb|2 =
∑
b

|(K∗xj)b|2 = ||K∗xj||22 = N ||xj||22 = N2

Thus the M × N matrix |Gjb|2 is row-stochastic, with sums N2, and our equations
vb0 = MN for any b state that this matrix must be column-stochastic, with sums MN .

Regarding now the other equations that we found, namely vbl = 0 for l 6= 0, by definition
of vbl and of the variables Gjb, these state that we must have:∑

j

GjbḠj+l,b = 0 , ∀l 6= 0,∀b

Thus, we are led to the conditions in the statement. �

As an illustration for this result, let us go back to the Q = 1 situation, explained after
Theorem 10.20. By using the formula Gib = yi(K

∗z)b there, we have:∑
j

GjbḠj+l,b =
∑
j

yj(K
∗z)b yj+l(K

∗z)b

= |(K∗z)b|2
∑
j

yj
yj+l

= M ·Nδl,0

Thus, if K can be put in bistochastic form, then so can be put FM ⊗K. As a second
illustration, let us go back to the matrices F2 ⊗′Q F2 from the proof of Proposition 10.19
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above. The vector of the row sums being S = (2q,−2q, 2r, 2r), we have x = (q,−q, r, r),
and so we obtain the following formulae for the upper entries of G:

G0b =

[(
1 1
1 −1

)(
q
−q

)]
b

Q0b

=

(
0
2q

)
b

Q0b

As for the lower entries of G, these are as follows:

G1b =

[(
1 1
1 −1

)(
r
r

)]
b

Q1b

=

(
2r
0

)
b

Q1b

Thus, in this case the matrix G is as follows, independently of Q:

G =

(
0 2
2 0

)
In particular, we see that the conditions in Proposition 10.21 are satisfied. As a main

application now, we have the following result:

Theorem 10.22. The Diţă deformations of tensor squares of Fourier matrices,

FN ⊗Q FN
can be put in almost bistochastic form, independently of the value of Q ∈MN(T).

Proof. We use Proposition 10.21 above, with M = N , and with K = FN . Let w = e2πi/N ,
and consider the vectors xi ∈ TN given by:

xi = (w(i−1)a)a

Since K∗K = N1N , and xi are the column vectors of K, shifted by 1, we have:

K∗x0 =


0
0
...
0
N

 , K∗x1 =


N
0
...
0
0

 , . . . , K∗xN−1 =


0
0
...
N
0


We conclude that we have (K∗xi)b = Nδi−1,b, and so the matrix G is given by:

Gib =
Nδi−1,b

Qib

With this formula in hand, the sums in Proposition 10.21 are given by:∑
j

GjbḠj+l,b =
∑
j

Nδj−1,b

Qjb

· Nδj+l−1,b

Qj+l,b
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In the case l 6= 0 we clearly get 0, because the products of Kronecker symbols are 0. In
the case l = 0 the denominators are |Qjb|2 = 1, and we obtain:∑

j

GjbḠjb = N2
∑
j

δj−1,b = N2

Thus, the conditions in Proposition 10.21 are satisfied, and we obtain the result. �

Here is an equivalent formulation of the above result:

Theorem 10.23. The matrix FN ⊗′Q FN , with Q ∈MN(T), defined by

(FN ⊗′Q FN)ia,jb =
wij+ab

wbj+j
· Qib

Qb+1,b

where w = e2πi/N is almost bistochastic, and equivalent to FN ⊗Q FN .

Proof. Our claim is that this is the matrix constructed in the proof of Theorem 10.22.
Indeed, let us first go back to the proof of Theorem 10.20. In the case M = N and
H = K = FN , the Diţă deformation L = H ⊗Q K studied there is given by:

Lia,jb = QibHijKab = wij+abQib

As explained in the proof of Theorem 10.22, if the conditions in the statement there
are satisfied, then the matrix L′ia,jb = RjbLia,jb is almost bistochastic, where:

√
MN ·R = H∗G

In our case now, M = N and H = K = FN , we know from the proof of Proposition
10.21 that the choice of G which makes work Theorem 10.22 is as follows:

Gib =
Nδi−1,b

Qib

With this formula in hand, we can compute the matrix R, as follows:

Rjb =
1

N
(H∗G)jb =

1

N

∑
i

w−ijGib =
∑
i

wij · δi−1,b

Qib

=
w−(b+1)j

Qb+1,b

Thus, the modified version of FN ⊗Q FN which is almost bistochastic is given by:

L′ia,jb = RjbLia,jb

=
w−(b+1)j

Qb+1,b

· wij+abQib

=
wij+ab

wbj+j
· Qib

Qb+1,b

Thus we have obtained the formula in the statement, and we are done. �
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As an illustration, let us work out the case N = 2. Here we have w = −1, and with
Q = (pr

q
s), and then with u = p

r
, v = s

q
, we obtain the following matrix:

F2 ⊗Q F2 =


p
r

q
q
−p
r

q
q

p
r
− q
q
−p
r
− q
q

r
r

s
q

r
r
− s
q

r
r
− s
q

r
r

s
q

 =


u 1 −u 1
u −1 −u −1
1 v 1 −v
1 −v 1 v


In general, the question of putting the Diţă deformations of the tensor products in

explicit bistochastic form remains open. Open as well is the question of putting the
arbitrary affine deformations of the Fourier matrices in explicit bistochastic form.

A related interesting question, which can serve as a good motivation for all this, is
whether the real Hadamard matrices, H ∈ MN(±1), can be put or not in bistochastic
form, in an explicit way. This is certainly true for the Walsh matrices, but for the other
basic examples, such as the Paley or the Williamson matrices, no results seem to be
known so far. Having such a theory would be potentially very interesting, with a complex
reformulation of the HC and of the other real Hadamard questions at stake.

We already know that we are done with the case N ≤ 8. The next problem regards the
Paley matrix at N = 12, which is the unique real Hadamard matrix there:

P12 ∼ P 1
12 ∼ P 2

12

This matrix cannot be put of course in real bistochastic form, its size being not of the
form N = 4n2. Nor can it be put in bistochastic form over {±1,±i}, because the Turyn
obstruction for matrices over {±1,±i} is N = a2 + b2, and we have:

12 6= a2 + b2

However, the question of putting P12 in bistochastic form over the 3-roots of unity
makes sense, because the Turyn obstruction here is:

x+ y + z = 0

x2 + y2 + z2 = 2N

And, we do have solutions to these equations at N = 12, as follows:

42 + (−2)2 + (−2)2 = 24

Another question is whether P12 can be put in bistochastic form over the 8-roots of
unity. In order to comment on this, let us first work out the Turyn obstruction, for the
bistochastic matrices having as entries the 8-roots of unity. The result is as follows:
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Proposition 10.24. The Turyn obstruction for the bistochastic matrices having as entries
the 8-roots of unity is

x2 + y2 + z2 + t2 = N

xy + yz + zt = xt

with x, y, z, t ∈ Z.

Proof. The 8-roots of unity are as follows, with w = eπi/4:

1, w, i, iw,−1,−w,−i,−iw
Thus, we are led to an equation as follows, with x, y, z, t ∈ Z:

|x+ wy + iz + iwt|2 = N

We have the following computation:

|x+ wy + iz + iwt|2

= (x+ wy + iz + iwt)(x− iwy − iz − wt)
= x2 + y2 + z2 + t2 + w(1− i)(xy + yz + zt− xt)
= x2 + y2 + z2 + t2 −

√
2(xy + yz + zt− xt)

Thus, we are led to the conclusion in the statement. �

The point now is that the equations in Proposition 10.24 do have solutions at N = 12,
namely:

x = 0, y = 2, z = −2, t = ±2

Summarizing, the Paley matrix P12 cannot be put in bistochastic form over the 4-roots,
but the question makes sense over the 3-roots, and over the 8-roots. There are many
questions here, and as already mentioned above, all this can potentially lead to a complex
reformulation of the HC and of the other real Hadamard matrix questions.
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11. Glow computations

We discuss here the computation of the glow of the complex Hadamard matrices, in
the N → ∞ limit. As a first motivation, we have the Gale-Berlekamp game [67], [116].
Another motivation comes from the questions regarding the bistochastic matrices, in
relation with [75], explained in section 10. Finally, we have the question of connecting
the defect, and other invariants of the Hadamard matrices, to the glow.

Let us begin by reviewing the few theoretical things that we know about the glow, from
section 10. The main results there can be summarized as follows:

Theorem 11.1. The glow of H ∈MN(C), which is the law µ ∈ P(C) of the excess

E =
∑
ij

Hij

over the Hadamard equivalence class of H, has the following properties:

(1) µ = ε× µ+, where µ+ = law(|E|).
(2) µ is invariant under rotations.

(3) H ∈
√
NUN implies supp(µ) ⊂ N

√
N D.

(4) H ∈
√
NUN implies as well N

√
N T ⊂ supp(µ).

Proof. We already know all this from section 10, the idea being as follows:

(1) This follows indeed by using H → zH with |z| = 1.

(2) This follows from (1), the convolution with ε bringing the invariance.

(3) This folllows indeed from Cauchy-Schwarz.

(4) This is something highly non-trivial, coming from [75]. �

In what follows we will be mainly interested in the Hadamard matrix case, but since
the computations here are quite difficult, let us begin our study with other matrices.
It is convenient to normalize our matrices, by assuming that the corresponding 2-norm

||H||2 =
√∑

ij |Hij|2 takes the same value as for the Hadamard matrices, namely:

||H||2 = N

We recall that the complex Gaussian distribution C is the law of z = 1√
2
(x+ iy), where

x, y are independent standard Gaussian variables. In order to detect this distribution, we
can use the moment method, and the following well-known formula:

E(|z|2p) = p!

Finally, we use the symbol ∼ to denote an equality of distributions.

With these conventions, we have the following result:
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Proposition 11.2. We have the following computations:

(1) For the rescaled identity ĨN =
√
NIN we have

E ∼
√
N(q1 + . . .+ qN)

with q ∈ TN random. With N →∞ we have E/N ∼ C.
(2) For the flat matrix JN = (1)ij we have

E ∼ (a1 + . . .+ aN)(b1 + . . .+ bN)

with (a, b) ∈ TN × TN random. With N →∞ we have E/N ∼ C × C.

Proof. We use Theorem 11.1, and the moment method:

(1) Here we have E =
√
N
∑

i aibi, with a, b ∈ TN random. With qi = aibi this gives
the first assertion. Let us estimate now the moments of |E|2. We have:∫

TN×TN
|E|2p

= Np

∫
TN
|q1 + . . .+ qN |2pdq

= Np

∫
TN

∑
ij

qi1 . . . qip
qj1 . . . qjp

dq

= Np#
{

(i, j) ∈ {1, . . . , N}p × {1, . . . , N}p
∣∣∣[i1, . . . , ip] = [j1, . . . , jp]

}
' Np · p!N(N − 1) . . . (N − p+ 1)

' Np · p!Np

= p!N2p

Here, and in what follows, the sets between brackets are by defintion sets with repetition,
and the middle estimate comes from the fact that, with N → ∞, only the multi-indices
i = (i1, . . . , ip) having distinct entries contribute. But this gives the result.

(2) Here we have the following formula, which gives the first assertion:

E =
∑
ij

aibj =
∑
i

ai
∑
j

bj

Now since a, b ∈ TN are independent, so are the quantities
∑

i ai,
∑

j bj, so we have:∫
TN×TN

|E|2p =

(∫
TN
|q1 + . . .+ qN |2pdq

)2

' (p!Np)2

Here we have used the estimate in the proof of (1), and this gives the result. �
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As a first conclusion, the glow is intimately related to the basic hypertoral law, namely
that of q1 + . . .+ qN , with q ∈ TN random. Observe that at N = 1 this hypertoral law is
simply δ1, and that at N = 2 we obtain the following law:

law|1 + q| = law
√

(1 + eit)(1 + e−it)

= law
√

2 + 2 cos t

= law

(
2 cos

t

2

)
In general, the law of

∑
qi is known to be related to the Pólya random walk [112]. Also,

as explained for instance in section 9, the moments of this law are:∫
TN
|q1 + . . .+ qN |2pdq =

∑
π∈P (p)

(
p

π

)
N !

(N − |π|)!

As a second conclusion, even under the normalization ||H||2 = N , the glow can behave
quite differently in theN →∞ limit. So, let us restrict now the attention to the Hadamard
matrices. At N = 2 we only have F2 to be invesigated, the result being:

Proposition 11.3. For the Fourier matrix F2 we have

|E|2 = 4 + 2Re(α− β)

for certain variables α, β ∈ T which are uniform, and independent.

Proof. The matrix that we interested in, namely the Fourier matrix F2 altered by a vertical
switching vector (a, b) and an horizontal switching vector (c, d), is:

F̃2 =

(
ac ad
bc −bd

)
With this notation, we have the following formula:

|E|2 = |ac+ ad+ bc− bd|2

= 4 +
ad

bc
+
bc

ad
− bd

ac
− ac

bd

For proving that the variables α = ad
bc

and β = bd
ac

are independent, we can use the
moment method, as follows:∫

T4

(
ad

bc

)p(
bd

ac

)q
=

∫
T
ap−q

∫
T
bq−p

∫
T
c−p−q

∫
T
dp+q

= δpqδpqδp,−qδp,−q

= δp,q,0

Thus α, β are indeed independent, and we are done. �
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It is possible of course to derive from this some more concrete formulae, but let us look
instead at the case N = 3. Here the matrix that we are interested in is:

F̃3 =

ad ae af
bd wbe w2bf
cd w2ce wcf


Thus, we would like to compute the law of the following quantity:

|E| = |ad+ ae+ af + bd+ wbe+ w2bf + cd+ w2ce+ wcf |

The problem is that when trying to compute |E|2, the terms won’t cancel much. More
precisely, we have a formula of the following type:

|E|2 = 9 + C0 + C1w + C2w
2

Here the quantities C0, C1, C2 are as follows:

C0 =
ae

bd
+
ae

cd
+
af

bd
+
af

cd
+
bd

ae
+
bd

af
+
be

cf
+
bf

ce
+
cd

ae
+
cd

af
+
ce

bf
+
cf

be

C1 =
ad

bf
+
ad

ce
+
ae

bf
+
af

ce
+
bd

ce
+
be

ad
+
be

af
+
be

cd
+
cd

bf
+
cf

ad
+
cf

ae
+
cf

bd

C2 =
ad

be
+
ad

cf
+
ae

cf
+
af

be
+
bd

cf
+
bf

ad
+
bf

ae
+
bf

cd
+
cd

be
+
ce

ad
+
ce

af
+
ce

bd

In short, all this leads nowhere, and the exact study stops at F2. In general now, one
idea is that of using Bernoulli-type variables coming from the row sums, as follows:

Theorem 11.4. The glow of H ∈MN(C) is given by the formula

law(E) =

∫
a∈TN

B((Ha)1, . . . , (Ha)N)

where the quantities on the right are

B(c1, . . . , cN) = law

(∑
i

λici

)
with λ ∈ TN being random.

Proof. This is clear from E =< a,Hb >. Indeed, when the vector a ∈ TN is assumed to
be fixed, this variable E follows the law B((Ha)1, . . . , (Ha)N) in the statement. �

Observe that we can write a formula of the following type:

B(c1, . . . , cN) = ε× β(|c1|, . . . , |cN |)



HADAMARD MATRICES 191

To be more precise, such a formula holds indeed, with the measure β(r1, . . . , rN) ∈
P(R+) with r1, . . . , rN ≥ 0 being given by:

β(r1, . . . , rN) = law

∣∣∣∣∣∑
i

λiri

∣∣∣∣∣
Regarding now the computation of β, we have:

β(r1, . . . , rN) = law

√∑
ij

λi
λj
· rirj

Consider now the following variable, which is easily seen, for instance by using the
moment method, to be uniform over the projective torus TN−1 = TN/T:

(µ1, µ2, . . . , µN) =

(
λ1

λ2

,
λ2

λ3

, . . . ,
λN
λ1

)
Now since we have λi/λj = µiµi+1 . . . µj, with the convention µi . . . µj = µj . . . µi for

i > j, this gives the following formula, with µ ∈ TN−1 random:

β(r1, . . . , rN) = law

√∑
ij

µiµi+1 . . . µj · rirj

It is possible to further study the laws β by using this formula. However, in practice,
it is more convenient to use the complex measures B from Theorem 11.4.

Let us end these preliminaries with a discussion of the “arithmetic” version of the
problem, which makes the link with the Gale-Berlekamp switching game [67], [116] and
with the work in section 2. We have the following unifying formalism:

Definition 11.5. Given H ∈ MN(C) and s ∈ N ∪ {∞}, we define a measure µs ∈ P(C)
by the formula ∫

C
ϕ(x)dµs(x) =

∫
ZNs ×ZNs

ϕ

(∑
ij

aibjHij

)
d(a, b)

where Zs ⊂ T is the group of the s-roots of unity, with the convention Z∞ = T.

Observe that at s =∞ we obtain the measure in Theorem 11.1. Also, at s = 2 and for
a usual Hadamard matrix, H ∈MN(±1), we obtain the measure from section 2. Observe
also that for H ∈MN(±1), knowing µ2 is the same as knowing the statistics of the number
of one entries, |1 ∈ H|. This follows indeed from the following formula:∑

ij

Hij = |1 ∈ H| − | − 1 ∈ H| = 2|1 ∈ H| −N2

More generally, at s = p prime, we have the following result:
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Theorem 11.6. When s is prime and H ∈ MN(Zs), the statistics of the number of one
entries, |1 ∈ H|, can be recovered from that of the total sum, E =

∑
ij Hij.

Proof. The problem here is of vectorial nature, so given V ∈ Zns , we would like to compare
the quantities |1 ∈ V | and

∑
Vi. Let us write, up to permutations:

V = (1 . . . 1︸ ︷︷ ︸
a0

w . . . w︸ ︷︷ ︸
a1

. . . . . . ws−1 . . . ws−1︸ ︷︷ ︸
as−1

)

We have then |1 ∈ V | = a0, as well as:∑
Vi = a0 + a1w + . . .+ as−1w

s−1

We also know that a0 + a1 + . . .+ as−1 = n. Now when s is prime, the only ambiguity
in recovering a0 from a0 + a1w + . . .+ as−1w

s−1 can come from:

1 + w + . . .+ ws−1 = 0

But since the sum of the numbers ai is fixed, a0 + a1 + . . . + as−1 = n, this ambiguity
dissapears, and this gives the result. �

Let us investigate now the glow of the complex Hadamard matrices, by using the
moment method. We use the moment formula from section 10, namely:

Proposition 11.7. For H ∈MN(T) the even moments of |E| are given by∫
TN×TN

|E|2p =
∑

[i]=[k],[j]=[l]

Hi1j1 . . . Hipjp

Hk1l1 . . . Hkplp

where the sets between brackets are by definition sets with repetition.

Proof. As explained in section 10, with E =
∑

ij Hijaibj we obtain:∫
TN×TN

|E|2p =

∫
TN×TN

(∑
ijkl

Hij

Hkl

· aibj
akbl

)p

=
∑
ijkl

Hi1j1 . . . Hipjp

Hk1l1 . . . Hkplp

∫
TN

ai1 . . . aip
ak1 . . . akp

∫
TN

bj1 . . . bjp
bl1 . . . blp

The integrals on the right being δ[i],[k] and δ[j],[l], we obtain the result. �

As a first application, let us investigate the tensor products. We have:

Proposition 11.8. The even moments of |E| for a tensor product L = H ⊗K are given
by the formula∫

TNM×TNM
|E|2p =

∑
[ia]=[kc],[jb]=[ld]

Hi1j1 . . . Hipjp

Hk1l1 . . . Hkplp

·
Ka1b1 . . . Kapbp

Kc1d1 . . . Kcpdp

where the sets between brackets are as usual sets with repetition.
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Proof. With L = H ⊗K, the formula in Proposition 11.7 reads:∫
TNM×TNM

|E|2p =
∑

[ia]=[kc],[jb]=[ld]

Li1a1,j1b1 . . . Lipap,jpbp
Lk1c1,l1d1 . . . Lkpcp,lpdp

But this gives the formula in the statement, and we are done. �

Let us develop now some moment machinery. Let P (p) be the set of partitions of
{1, . . . , p}, with its standard order relation ≤, which is such that, for any π ∈ P (p):

uu . . . ≤ π ≤ | | . . . | |

We denote by µ(π, σ) the associated Möbius function, given by:

µ(π, σ) =


1 if π = σ

−
∑

π≤τ<σ µ(π, τ) if π < σ

0 if π 6≤ σ

For π ∈ P (p) we use the following notation, where b1, . . . , b|π| are the block lenghts:(
p

π

)
=

(
p

b1 . . . b|π|

)
=

p!

b1! . . . b|π|!

Finally, we use the following notation, where H1, . . . , HN ∈ TN are the rows of H:

Hπ(i) =
⊗
β∈π

∏
r∈β

Hir

With these notations, we have the following result:

Theorem 11.9. The glow moments of a matrix H ∈MN(T) are given by∫
TN×TN

|E|2p =
∑
π∈P (p)

K(π)N |π|I(π)

where K(π) =
∑

σ∈P (p) µ(π, σ)
(
p
σ

)
, and where the contributions are given by

I(π) =
1

N |π|

∑
[i]=[j]

< Hπ(i), Hπ(j) >

by using the above notations and conventions.

Proof. We know from Proposition 11.7 that the moments are given by:∫
TN×TN

|E|2p =
∑

[i]=[j],[x]=[y]

Hi1x1 . . . Hipxp

Hj1y1 . . . Hjpyp
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With σ = kerx, ρ = ker y, we deduce that the moments of |E|2 decompose over parti-
tions, according to a formula as follows:∫

TN×TN
|E|2p =

∫
TN

∑
σ,ρ∈P (p)

C(σ, ρ)

To be more precise, the contributions are as follows:

C(σ, ρ) =
∑

kerx=σ,ker y=ρ

δ[x],[y]

∑
ij

Hi1x1 . . . Hipxp

Hj1y1 . . . Hjpyp

·
ai1 . . . aip
aj1 . . . ajp

We have C(σ, ρ) = 0 unless σ ∼ ρ, in the sense that σ, ρ must have the same block
structure. The point now is that the sums of type

∑
kerx=σ can be computed by using the

Möbius inversion formula. We obtain a formula as follows:

C(σ, ρ) = δσ∼ρ
∑
π≤σ

µ(π, σ)
∏
β∈π

C|β|(a)

Here the functions on the right are by definition given by:

Cr(a) =
∑
x

∑
ij

Hi1x . . . Hirx

Hj1x . . . Hjrx

· ai1 . . . air
aj1 . . . ajr

=
∑
ij

< Hi1 . . . Hir , Hj1 . . . Hjr > ·
ai1 . . . air
aj1 . . . ajr

Now since there are
(
p
σ

)
partitions having the same block structure as σ, we obtain:∫

TN×TN
|Ω|2p =

∫
TN

∑
π∈P (p)

(∑
σ∼ρ

∑
µ≤σ

µ(π, σ)

)∏
β∈π

C|β|(a)

=
∑
π∈P (p)

 ∑
σ∈P (p)

µ(π, σ)

(
p

σ

)∫
TN

∏
β∈π

C|β|(a)

But this gives the formula in the statement, and we are done. �

Let us discuss now the asymptotic behavior of the glow. For this purpose, we first
study the coefficients K(π) in Theorem 11.9. We have here the following result:

Proposition 11.10. K(π) =
∑

π≤σ µ(π, σ)
(
p
σ

)
has the following properties:

(1) K̃(π) = K(π)
p!

is multiplicative: K̃(ππ′) = K̃(π)K̃(π′).

(2) K(uu . . .u) =
∑

σ∈P (p)(−1)|σ|−1(|σ| − 1)!
(
p
σ

)
.

(3) K(uu . . .u) =
∑p

r=1(−1)r−1(r − 1)!Cpr, where Cpr =
∑

p=a1+...+ar

(
p

a1,...,ar

)2
.
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Proof. This follows from some standard computations, as follows:

(1) We can use here the formula µ(ππ′, σσ′) = µ(π, σ)µ(π′, σ′), which is a well-known
property of the Möbius function, which can be proved by recurrence. Now if b1, . . . , bs
and c1, . . . , ct are the block lengths of σ, σ′, we obtain, as claimed:

K̃(ππ′) =
∑

ππ′≤σσ′
µ(ππ′, σσ′) · 1

b1! . . . bs!
· 1

c1! . . . ct!

=
∑

π≤σ,π′≤σ′
µ(π, σ)µ(π′, σ′) · 1

b1! . . . bs!
· 1

c1! . . . ct!

= K̃(π)K̃(π′)

(2) We can use here the following formula, which once again is well-known, and can be
proved by recurrence on |σ|:

µ(uu . . .u, σ) = (−1)|σ|−1(|σ| − 1)!

We obtain, as claimed:

K(uu . . .u) =
∑
σ∈P (p)

µ(uu . . .u, σ)

(
p

σ

)

=
∑
σ∈P (p)

(−1)|σ|−1(|σ| − 1)!

(
p

σ

)
(3) By using the formula in (2), and summing over r = |σ|, we obtain:

K(uu . . .u) =

p∑
r=1

(−1)r−1(r − 1)!
∑
|σ|=r

(
p

σ

)
Now if we denote by a1, . . . , ar with ai ≥ 1 the block lengths of σ, then:(

p

σ

)
=

(
p

a1, . . . , ar

)
On the other hand, given a1, . . . , ar ≥ 1 with a1 + . . .+ar = p, there are exactly

(
p

a1,...,ar

)
partitions σ having these numbers as block lengths, and this gives the result. �

Now let us take a closer look at the integrals I(π). We have here:

Proposition 11.11. Consider the one-block partition uu . . .u ∈ P (p).

(1) I(uu . . .u) = #{i, j ∈ {1, . . . , N}p|[i] = [j]}.
(2) I(uu . . .u) =

∫
TN |

∑
i ai|2pda.

(3) I(uu . . .u) =
∑

σ∈P (p)

(
p
σ

)
N !

(N−|σ|)! .

(4) I(uu . . .u) =
∑p−1

r=1 Cpr
N !

(N−r)! , where Cpr =
∑

p=b1+...+br

(
p

b1,...,br

)2
.
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Proof. Once again, this follows from some standard combinatorics, as follows:

(1) This follows indeed from the following computation:

I(uu . . .u) =
∑

[i]=[j]

1

N
< Hi1 . . . Hir , Hj1 . . . Hjr >=

∑
[i]=[j]

1

(2) This follows from the following computation:∫
TN

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
2p

=

∫
TN

∑
ij

ai1 . . . aip
aj1 . . . ajp

da = #
{
i, j
∣∣∣[i] = [j]

}
(3) If we let σ = ker i in the above formula of I(uu . . .u), we obtain:

I(uu . . .u) =
∑
σ∈P (p)

#
{
i, j
∣∣∣ ker i = σ, [i] = [j]

}
Now since there are N !

(N−|σ|)! choices for i, and then
(
p
σ

)
for j, this gives the result.

(4) If we set r = |σ|, the formula in (3) becomes:

I(uu . . .u) =

p−1∑
r=1

N !

(N − r)!
∑

σ∈P (p),|σ|=r

(
p

σ

)
Now since there are exactly

(
p

b1,...,br

)
permutations σ ∈ P (p) having b1, . . . , br as block

lengths, the sum on the right equals
∑

p=b1+...+br

(
p

b1,...,br

)2
, as claimed. �

In general, the integrals I(π) can be estimated as follows:

Proposition 11.12. Let H ∈MN(T), having its rows pairwise orthogonal.

(1) I(| | . . . |) = Np.
(2) I(| | . . . | π) = NaI(π), for any π ∈ P (p− a).
(3) |I(π)| . p!Np, for any π ∈ P (p).

Proof. This is something elementary, as follows:

(1) Since the rows of H are pairwise orthogonal, we have:

I(| | . . . |) =
∑

[i]=[j]

p∏
r=1

δir,jr =
∑

[i]=[j]

δij =
∑
i

1 = Np

(2) This follows by the same computation as the above one for (1).
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(3) We have indeed the following estimate:

|I(π)| ≤
∑

[i]=[j]

∏
β∈π

1

=
∑

[i]=[j]

1

= #
{
i, j ∈ {1, . . . , N}

∣∣∣[i] = [j]
}

' p!Np

Thus we have obtained the formula in the statement, and we are done. �

We have now all needed ingredients for a universality result:

Theorem 11.13. The glow of a complex Hadamard matrix H ∈MN(T) is given by:

1

p!

∫
TN×TN

(
|E|
N

)2p

= 1−
(
p

2

)
N−1 +O(N−2)

In particular, E/N becomes complex Gaussian in the N →∞ limit.

Proof. We use the moment formula in Theorem 11.9. By using Proposition 11.12 (3), we
conclude that only the p-block and (p− 1)-block partitions contribute at order 2, so:∫

TN×TN
|E|2p = K(| | . . . |)NpI(| | . . . |)

+

(
p

2

)
K(u| . . . |)Np−1I(u| . . . |)

+ O(N2p−2)

Now by dividing by N2p and then by using the various formulae in Proposition 11.10,
Proposition 11.11 and Proposition 11.12 above, we obtain, as claimed:∫

TN×TN

(
|E|
N

)2p

= p!−
(
p

2

)
p!

2
· 2N − 1

N2
+O(N−2)

Finally, since the law of E is invariant under centered rotations in the complex plane,
this moment formula gives as well the last assertion. �

Let us study now the glow of the Fourier matrices, F = FG. We use the following
standard formulae:

FixFiy = Fi,x+y

F ix = Fi,−x∑
x

Fix = Nδi0

We first have the following result:
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Proposition 11.14. For a Fourier matrix FG we have

I(π) = #

{
i, j
∣∣∣[i] = [j],

∑
r∈β

ir =
∑
r∈β

jr,∀β ∈ π

}
with all the indices, and with the sums at right, taken inside G.

Proof. The basic components of the integrals I(π) are given by:

1

N

〈∏
r∈β

Fir ,
∏
r∈β

Fjr

〉
=

1

N

〈
F∑

r∈β ir
, F∑

r∈β ir

〉
= δ∑

r∈β ir,
∑
r∈β jr

But this gives the formula in the statement, and we are done. �

We have the following interpretation of the above integrals:

Proposition 11.15. For any partition π we have the formula

I(π) =

∫
TN

∏
b∈π

(
1

N2

∑
ij

|Hij|2|β|
)
da

where H = FAF ∗, with F = FG and A = diag(a0, . . . , aN−1).

Proof. We have the following computation:

H = F ∗AF =⇒ |Hxy|2 =
∑
ij

FiyFjx
FixFjy

· ai
aj

=⇒ |Hxy|2p =
∑
ij

Fj1x . . . Fjpx

Fi1x . . . Fipx
·
Fi1y . . . Fipy

Fj1y . . . Fjpy
·
ai1 . . . aip
aj1 . . . ajp

=⇒
∑
xy

|Hxy|2p =
∑
ij

∣∣< Hi1 . . . Hip , Hj1 . . . Hjp >
∣∣2 · ai1 . . . aip

aj1 . . . ajp

But this gives the formula in the statement, and we are done. �

We must estimate now the quantities I(π). We first have the following result:

Proposition 11.16. For FG we have the estimate

I(π) = b1! . . . b|π|!N
p +O(Np−1)

where b1, . . . , b|π| with b1 + . . .+ b|π| = p are the block lengths of π.

Proof. With σ = ker i we obtain:

I(π) =
∑
σ∈P (p)

#

{
i, j
∣∣∣ ker i = σ, [i] = [j],

∑
r∈β

ir =
∑
r∈β

jr,∀β ∈ π

}
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There are N !
(N−|σ|)! ' N |σ| choices for i satisfying ker i = σ. Then, there are

(
p
σ

)
= O(1)

choices for j satisfying [i] = [j]. We conclude that the main contribution comes from the
partition σ = | | . . . |. Thus, we have the following formula:

I(π) = #

{
i, j
∣∣∣ ker i = | | . . . |, [i] = [j],

∑
r∈β

ir =
∑
r∈β

jr,∀β ∈ π

}
+O(Np−1)

Now the condition ker i = | | . . . | tells us that i must have distinct entries, and there
are N !

(N−p)! ' Np choices for such multi-indices i. Regarding now the indices j, the main

contribution comes from those obtained from i by permuting the entries over the blocks
of π, and since there are b1! . . . b|π|! choices here, this gives the result. �

At the second order now, the estimate is as follows:

Proposition 11.17. For FG we have the formula

I(π)

b1! . . . bs!Np
= 1 +

(∑
i<j

∑
c≥2

(
bi
c

)(
bj
c

)
− 1

2

∑
i

(
bi
2

))
N−1 +O(N−2)

where b1, . . . , bs being the block lengths of π ∈ P (p).

Proof. Let us define the “non-arithmetic” part of I(π) as follows:

I◦(π) = #
{
i, j
∣∣∣[ir|r ∈ β] = [jr|r ∈ β], ∀β ∈ π

}
We then have the following formula:

I◦(π) =
∏
β∈π

{
i, j ∈ I |β|

∣∣∣[i] = [j]
}

=
∏
β∈π

I(β)

Also, Proposition 11.16 shows that we have the following estimate:

I(π) = I◦(π) +O(Np−1)

Our claim now is that we have the following formula:

I(π)− I◦(π)

b1! . . . bs!Np
=
∑
i<j

∑
c≥2

(
bi
c

)(
bj
c

)
N−1 +O(N−2)

Indeed, according to Proposition 11.16, we have a formula of the following type:

I(π) = I◦(π) + I1(π) +O(Np−2)

More precisely, this formula holds indeed, with I1(π) coming from i1, . . . , ip distinct,
[i] = [j], and with one constraint of type:∑

r∈β

ir =
∑
j∈β

jr , [ir|r ∈ β] 6= [jr|r ∈ β]
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Now observe that for a two-block partition π = (a, b) this constraint is implemented,
up to permutations which leave invariant the blocks of π, as follows:

i1 . . . ic k1 . . . ka−c j1 . . . jc l1 . . . la−c
j1 . . . jc︸ ︷︷ ︸

c

k1 . . . ka−c︸ ︷︷ ︸
a−c

i1 . . . ic︸ ︷︷ ︸
c

l1 . . . la−c︸ ︷︷ ︸
b−c

Let us compute now I1(a, b). We cannot have c = 0, 1, and once c ≥ 2 is given, we have(
a
c

)
,
(
b
c

)
choices for the positions of the i, j variables in the upper row, then Np−1+O(Np−2)

choices for the variables in the upper row, and then finally we have a!b! permutations which
can produce the lower row. We therefore obtain the following formula:

I1(a, b) = a!b!
∑
c≥2

(
a

c

)(
b

c

)
Np−1 +O(Np−2)

In the general case now, a similar discussion applies.

Indeed, the constraint of type
∑

r∈β ir =
∑

r∈β jr with [ir|r ∈ β] 6= [jr|r ∈ β] cannot
affect ≤ 1 blocks, because we are not in the non-arithmetic case, and cannot affect either
≥ 3 blocks, because affecting ≥ 3 blocks would require ≥ 2 constraints.

Thus this condition affects exactly 2 blocks, and if we let i < j be the indices in
{1, . . . , s} corresponding to these 2 blocks, we obtain:

I1(π) = b1! . . . bs!
∑
i<j

∑
c≥2

(
bi
c

)(
bj
c

)
Np−1 +O(Np−2)

But this proves the above claim. Let us estimate now I(uu . . .u). We have:

I(uu . . .u) = p!
N !

(N − p)!
+

(
p

2

)
p!

2
· N !

(N − p+ 1)!
+O(Np−2)

= p!N r

(
1−

(
p

2

)
N−1 +O(N−2)

)
+

(
p

2

)
p!

2
Np−1 +O(Np−2)

= p!Np

(
1− 1

2

(
p

2

)
N−1 +O(N−2)

)
Now recall that we have:

I◦(π) =
∏
β∈π

I(β)

We therefore obtain:

I◦(π) = b1! . . . bs!N
p

(
1− 1

2

∑
i

(
bi
2

)
N−1 +O(N−2)

)
By plugging this quantity into the above estimate, we obtain the result. �

In order to estimate glow, we will need the explicit formula of I(uu):
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Proposition 11.18. For FG with G = ZN1 × . . .× ZNk we have the formula

I(uu) = N(4N3 − 11N + 2e + 7)

where e ∈ {0, 1, . . . , k} is the number of even numbers among N1, . . . , Nk.

Proof. Let us first recall that the conditions defining the quantities I(π) are as follows:∑
r∈β

ir =
∑
r∈β

jr

We use the fact that, when dealing with these conditions, one can always erase some
of the variables ir, jr, as to reduce to the “purely arithmetic” case, namely:

{ir|r ∈ β} ∩ {jr|r ∈ β} = ∅
We deduce from this that we have:

I(uu) = I◦(uu) + Iari(uu)

Let us compute now Iari(uu). There are 3 contributions to this quantity, namely:

(1) Case (iijjjjii), with i 6= j, 2i = 2j. Since 2(i1, . . . , ik) = 2(j1, . . . , jk) corresponds to the

collection of conditions 2ir = 2jr, inside ZNr , which each have 1 or 2 solutions, depending
on whether Nr is odd or even, the contribution here is:

Iari1 (uu) = #{i 6= j|2i = 2j}
= #{i, j|2i = 2j} −#{i, j|i = j}
= 2eN −N
= (2e − 1)N

(2) Case (iijkjkii), with i, j, k distinct, 2i = j + k. The contribution here is:

Iari2 (uu) = 4#{i, j, k distinct|2i = j + k}
= 4#{i 6= j|2i− j 6= i, j}
= 4#{i 6= j|2i 6= 2j}
= 4(#{i, j|i 6= j} −#{i 6= j|2i = 2j})
= 4(N(N − 1)− (2e − 1)N)

= 4N(N − 2e)

(3) Case (ijklklij), with i, j, k, l distinct, i+ j = k + l. The contribution here is:

Iari3 (uu) = 4#{i, j, k, l distinct|i+ j = k + l}
= 4#{i, j, k distinct|i+ j − k 6= i, j, k}
= 4#{i, j, k distinct|i+ j − k 6= k}
= 4#{i, j, k distinct|i 6= 2k − j}
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We can split this quantity over two cases, 2j 6= 2k and 2j = 2k, and we obtain:

Iari3 (uu) = 4(#{i, j, k distinct|2j 6= 2k, i 6= 2k − j}
+#{i, j, k distinct|2j = 2k, i 6= 2k − j})

The point now is that in the first case, 2j 6= 2k, the numbers j, k, 2k − j are distinct,
while in the second case, 2j = 2k, we simply have 2k − j = j. Thus, we obtain:

Iari3 (uu) = 4

( ∑
j 6=k,2j 6=2k

#{i|i 6= j, k, 2k − j}+
∑

j 6=k,2j=2k

#{i|i 6= j, k}

)
= 4(N(N − 2e)(N − 3) +N(2e − 1)(N − 2))

= 4N(N(N − 3)− 2e(N − 3) + 2e(N − 2)− (N − 2))

= 4N(N2 − 4N + 2e + 2)

We can now compute the arithmetic part. This is given by:

Iari(uu) = (2e − 1)N + 4N(N − 2e) + 4N(N2 − 4N + 2e + 2)

= N(2e − 1 + 4(N − 2e) + 4(N2 − 4N + 2e + 2))

= N(4N2 − 12N + 2e + 7)

Thus the integral to be computed is given by:

I(uu) = N2(2N − 1)2 +N(4N2 − 12N + 2e + 7)

= N(4N3 − 4N2 +N + 4N2 − 12N + 2e + 7)

= N(4N3 − 11N + 2e + 7)

Thus we have reached to the formula in the statement, and we are done. �

We have the following asymptotic result, from [11]:

Theorem 11.19. The glow of FG, with |G| = N , is given by

1

p!

∫
TN×TN

(
|E|
N

)2p

= 1−K1N
−1 +K2N

−2 −K3N
−3 +O(N−4)

with the coefficients being as follows:

K1 =

(
p

2

)
, K2 =

(
p

2

)
3p2 + p− 8

12
, K3 =

(
p

3

)
p3 + 4p2 + p− 18

8

Thus, the rescaled complex glow is asymptotically complex Gaussian,

E

N
∼ C

and we have in fact universality at least up to order 3.



HADAMARD MATRICES 203

Proof. We use the following quantities:

K̃(π) =
K(π)

p!
, Ĩ(π) =

I(π)

Np

These are subject to the following formulae:

K̃(π| . . . |) = K̃(π) , Ĩ(π| . . . |) = Ĩ(π)

Consider as well the following quantities:

J(σ) =

(
p

σ

)
K̃(σ)Ĩ(σ)

In terms of these quantities, we have:

1

p!

∫
TN×TN

|E|2p = J(∅)

+ N−1J(u)

+ N−2 (J(uu) + J(uu))

+ N−3 (J(uuu) + J(uu u) + J(u u u))

+ O(N−4)

We have the following formulae:

K̃0 = 1

K̃1 = 1

K̃2 =
1

2
− 1 = −1

2

K̃3 =
1

6
− 3

2
+ 2 =

2

3

K̃4 =
1

24
− 4

6
− 3

4
+

12

2
− 6 = −11

8
Regarding now the numbers Cpr in Proposition 11.16, these are given by:

Cp1 = 1 , Cp2 =
1

2

(
2p

p

)
− 1 , . . . , Cp,p−1 =

p!

2

(
p

2

)
, Cpp = p!

We deduce that we have the following formulae:

I(|) = N

I(u) = N(2N − 1)

I(uu) = N(6N2 − 9N + 4)

I(uuu) = N(24N3 − 72N2 + 82N − 33)
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By using Proposition 11.17 and Proposition 11.18, we obtain the following formula:

1

p!

∫
TN×TN

|E|2p = 1− 1

2

(
p

2

)
(2N−1 −N−2) +

2

3

(
p

3

)
(6N−2 − 9N−3)

+ 3

(
p

4

)
N−2 − 33

(
p

4

)
N−3 − 40

(
p

5

)
N−3

− 15

(
p

6

)
N−3 +O(N−4)

But this gives the formulae of K1, K2, K3 in the statement, and we are done. �

It is possible to compute the next term as well, the result being:

Theorem 11.20. Let G = ZN1 × . . .× ZNk be a finite abelian group, and set:

N = N1 . . . Nk

Then the glow of the associated Fourier matrix FG is given by

1

p!

∫
TN×TN

(
|E|
N

)2p

= 1−K1N
−1 +K2N

−2 −K3N
−3 +K4N

−4 +O(N−5)

where the quantities K1, K2, K3, K4 are given by

K1 =

(
p

2

)
K2 =

(
p

2

)
3p2 + p− 8

12

K3 =

(
p

3

)
p3 + 4p2 + p− 18

8

K4 =
8

3

(
p

3

)
+

3

4

(
121 +

2e

N

)(
p

4

)
+ 416

(
p

5

)
+

2915

2

(
p

6

)
+ 40

(
p

7

)
+ 105

(
p

8

)
where e ∈ {0, 1, . . . , k} is the number of even numbers among N1, . . . , Nk.

Proof. This is something that we already know, up to order 3, and the next coefficient
K4 can be computed in a similar way, based on results that we already have. �

The passage to Theorem 11.20 is quite interesting, because it shows that the glow of
the Fourier matrices FG is not polynomial in N = |G|. When restricting the attention to
the usual Fourier matrices FN , the glow up to order 4 is polynomial both in N odd, and
in N even, but it is not clear what happens at higher order. An interesting question here
is that of computing the glow of the Walsh matrices, where the integrals I(π), and hence
the glow, might be polynomial in N . We do not know if this is really the case.
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12. Local estimates

We discuss here some further analytic questions, regarding the complex Hadamard
matrices, following [25], in analogy with the considerations in sections 2-3 above. First,
we have the following basic estimate, that we already know:

Theorem 12.1. Given a function ψ : [0,∞)→ R, the following function over UN

F (U) =
∑
ij

ψ(|Uij|2)

satisfies the following inequality, when ψ is convex,

F (U) ≥ N2ψ

(
1

N

)
and the following inequality, when ψ is concave,

F (U) ≤ N2ψ

(
1

N

)
and assuming that ψ is strictly convex/concave, the equality case appears precisely for the

rescaled Hadamard matrices, U = H/
√
N with H ∈MN(T) Hadamard.

Proof. This follows indeed from the Jensen inequality, exactly as in the real case. �

Of particular interest for us are the power functions ψ(x) = xp/2, which are concave at
p ∈ [1, 2), and convex at p ∈ (2,∞). These lead to the following statement:

Theorem 12.2. Let U ∈ UN , and set H =
√
NU .

(1) For p ∈ [1, 2) we have ||U ||p ≤ N2/p−1/2, with equality when H is Hadamard.
(2) For p ∈ (2,∞] we have ||U ||p ≥ N2/p−1/2, with equality when H is Hadamard.

Proof. Consider indeed the p-norm on UN , which at p ∈ [1,∞) is given by:

||U ||p =

(∑
ij

|Uij|p
)1/p

By the above discussion, involving the functions ψ(x) = xp/2, Theorem 12.1 applies and
gives the results at p ∈ [1,∞), the precise estimates being as follows:

||U ||p =


≤ N2/p−1/2 if p < 2

= N1/2 if p = 2

≥ N2/p−1/2 if p > 2

As for the case p =∞, this follows with p→∞, or directly via Cauchy-Schwarz. �

For future reference, let us record as well the particular cases p = 1, 4,∞ of the above
result, that we already met before, and which are of particular interest:
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Theorem 12.3. For any matrix U ∈ UN we have the estimates

||U ||1 ≤ N
√
N , ||U ||4 ≥ 1 , ||U ||∞ ≥

1√
N

which in terms of the rescaled matrix H =
√
NU read

||H||1 ≤ N2 , ||H||4 ≥
√
N , ||H||∞ ≥ 1

and in each case, the equality case holds when H is Hadamard.

Proof. These results follow from Theorem 12.2 at p = 1, 4,∞, with the remark that for
each of these particular exponents, we do not really need the Hölder inequality, with a
basic application of the Cauchy-Schwarz inequality doing the job. �

The above results suggest the following definition:

Definition 12.4. Given U ∈ UN , the matrix H =
√
NU is called:

(1) Almost Hadamard, if U locally maximizes the 1-norm on UN .
(2) p-almost Hadamard, with p < 2, if U locally maximizes the p-norm on UN .
(3) p-almost Hadamard, with p > 2, if U locally minimizes the p-norm on UN .
(4) Absolute almost Hadamard, if it is p-almost Hadamard at any p 6= 2.

We have as well real versions of these notions, with UN replaced by ON .

All this might seem a bit complicated, but this is the best way of presenting things.
We are mainly interested in (1), but as explained in section 9, the exponent p = 4 from
(3) is interesting as well, and once we have (3) we must formulate (2) as well, and finally
(4) is a useful thing too, because the absolute case is sometimes easier to study.

As for the “doubling” of all these notions, via the last sentence, this is necessary too,
because given a function F : UN → R, an element U ∈ ON can be a local extremum of
the restriction F|ON : ON → R, but not of the function F itself. And, we will see in what
follows that this is the case, and in a quite surprising way, with the p-norms.

Let us first study the critical points. Things are quite tricky here, and complete results
are available so far only at p = 1. Following [25], we first have the following result:

Theorem 12.5. If U ∈ UN locally maximizes the 1-norm, then

Uij 6= 0

must hold for any i, j.

Proof. We use the same method as in the real case, namely a “rotation trick”. Let us
denote by U1, . . . , UN the rows of U , and let us perform a rotation of U1, U2:[

U t
1

U t
2

]
=

[
cos t · U1 − sin t · U2

sin t · U1 + cos t · U2

]
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In order to compute the 1-norm, let us permute the columns of U , in such a way that
the first two rows look as follows, with X, Y,A,B having nonzero entries:[

U1

U2

]
=

[
0 0 Y A
0 X 0 B

]
The rotated matrix will look then as follows:[

U t
1

U t
2

]
=

[
0 − sin t ·X cos t · Y cos t · A− sin t ·B
0 cos t ·X sin t · y sin t · A+ cos t ·B

]
Our claim is that X, Y must be empty. Indeed, if A and B are not empty, let us fix a

column index k for both A,B, and set α = Ak, β = Bk. We have then:

|(U t
1)k|+ |(U t

2)k| = | cos t · α− sin t · β|+ | sin t · α + cos t · β|

=
√

cos2 t · |α|2 + sin2 t · |β|2 − sin t cos t(αβ̄ + βᾱ)

+
√

sin2 t · |α|2 + cos2 t · |β|2 + sin t cos t(αβ̄ + βᾱ)

Since α, β 6= 0, the above function is derivable at t = 0, and we obtain:

∂ (|(U t
1)k|+ |(U t

2)k|)
∂t

=
sin 2t(|β|2 − |α|2)− cos 2t(αβ̄ + βᾱ)

2
√

cos2 t · |α|2 + sin2 t · |β|2 − sin t cos t(αβ̄ + βᾱ)

+
sin 2t(|α|2 − |β|2) + cos 2t(αβ̄ + βᾱ)

2
√

sin2 t · |α|2 + cos2 t · |β|2 + sin t cos t(αβ̄ + βᾱ)

Thus at t = 0, we obtain the following formula:

∂ (|(U t
1)k|+ |(U t

2)k|)
∂t

(0) =
αβ̄ + βᾱ

2

(
1

|β|
− 1

|α|

)
Now since U locally maximizes the 1-norm, both directional derivatives of ||U t||1 must

be negative in the limit t → 0. On the other hand, if we denote by C the contribution
coming from the right, which might be zero in the case where A and B are empty, i.e.
the sum over k of the above quantities, we have:

∂||U t||1
∂t

∣∣t=0+
=

∂

∂t
∣∣t=0+

(| cos t|+ | sin t|)(||X||1 + ||Y ||1) + C

= (− sin t+ cos t)∣∣t=0
(||X||1 + ||Y ||1) + C

= ||X||1 + ||Y ||1 + C
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As for the derivative at left, this is given by the following formula:

∂||U t||1
∂t

∣∣t=0−
=

∂

∂t
∣∣t=0−

(| cos t|+ | sin t|)(||X||1 + ||Y ||1) + C

= (− sin t− cos t)∣∣t=0
(||X||1 + ||Y ||1) + C

= −||X||1 − ||Y ||1 + C

We therefore obtain the following inequalities, where C is as above:

||X||1 + ||Y ||1 + C ≤ 0

−||X||1 − ||Y ||1 + C ≤ 0

Consider now the matrix obtained from U by interchanging U1, U2. Since this matrix
must be as well a local maximizer of the 1-norm, and since the above formula shows that
C changes its sign when interchanging U1, U2, we obtain:

||X||1 + ||Y ||1 − C ≤ 0

−||X||1 − ||Y ||1 − C ≤ 0

The four inequalities that we have give altogether ||X||1 + ||Y ||1 = C = 0, and from
||X||1 + ||Y ||1 = 0 we obtain that both X, Y must be empty, as claimed.

As a conclusion, up to a permutation of the columns, the first two rows must be of the
following form, with A,B having only nonzero entries:[

U1

U2

]
=

[
0 A
0 B

]
By permuting the rows of U , the same must hold for any two rows Ui, Uj. Now since U

cannot have a zero column, we conclude that U cannot have zero entries, as claimed. �

Let us compute now the critical points. Following [25], we have:

Theorem 12.6. Let ϕ : [0,∞) → R be a differentiable function. A matrix U ∈ U∗N is a
critical point of the quantity

F (U) =
∑
ij

ϕ(|Uij|)

precisely when WU∗ is self-adjoint, where:

Wij = sgn(Uij)ϕ
′(|Uij|)

Proof. We regard UN as a real algebraic manifold, with coordinates Uij, Ūij. This manifold
consists by definition of the zeroes of the following polynomials:

Aij =
∑
k

UikŪjk − δij



HADAMARD MATRICES 209

Since UN is smooth, and so is a differential manifold in the usual sense, it follows from
the general theory of Lagrange multipliers that a given matrix U ∈ UN is a critical point
of F precisely when the following condition is satisfied:

dF ∈ span(dAij)

Regarding the space span(dAij), this consists of the following quantities:∑
ij

MijdAij =
∑
ijk

Mij(UikdŪjk + ŪjkdUik)

=
∑
jk

(M tU)jkdŪjk +
∑
ik

(MŪ)ikdUik

=
∑
ij

(M tU)ijdŪij +
∑
ij

(MŪ)ijdUij

In order to compute dF , observe first that, with Sij = sgn(Uij), we have:

d|Uij| = d
√
UijŪij

=
UijdŪij + ŪijdUij

2|Uij|

=
1

2
(SijdŪij + S̄ijdUij)

Now let us set, as in the statement:

Wij = sgn(Uij)ϕ
′(|Uij|)

In terms of these variables, we obtain:

dF =
∑
ij

d (ϕ(|Uij|))

=
∑
ij

ϕ′(|Uij|)d|Uij|

=
1

2

∑
ij

WijdŪij + W̄ijdUij

We conclude that U ∈ UN is a critical point of F if and only if there exists a matrix
M ∈MN(C) such that the following two conditions are satisfied:

W = 2M tU , W̄ = 2MŪ

Now observe that these two equations can be written as follows:

M t =
1

2
WU∗ , M t =

1

2
UW ∗
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Summing up, the critical point condition on U ∈ UN simply reads:

WU∗ = UW ∗

But this means that the matrix WU∗ must be self-adjoint, as claimed. �

In order to process the above result, we can use the following notion:

Definition 12.7. Given U ∈ UN , we consider its “color decomposition”

U =
∑
r>0

rUr

with Ur ∈MN(T ∪ {0}) containing the phase components at r > 0, and we call U :

(1) Semi-balanced, if UrU
∗ and U∗Ur, with r > 0, are all self-adjoint.

(2) Balanced, if UrU
∗
s and U∗rUs, with r, s > 0, are all self-adjoint.

These conditions are quite natural, because for a unitary matrix U ∈ UN , the relations
UU∗ = U∗U = 1 translate as follows, in terms of the color decomposition:∑

r>0

rUrU
∗ =

∑
r>0

rU∗Ur = 1

∑
r,s>0

rsUrU
∗
s =

∑
r,s>0

rsU∗rUs = 1

Thus, our balancing conditions express the fact that the various components of the
above sums all self-adjoint. Now back to our critical point questions, we have:

Theorem 12.8. For a matrix U ∈ U∗N , the following are equivalent:

(1) U is a critical point of F (U) =
∑

ij ϕ(|Uij|), for any ϕ : [0,∞)→ R.

(2) U is a critical point of all the p-norms, with p ∈ [1,∞).
(3) U is semi-balanced, in the above sense.

Proof. We use Theorem 12.6 above. The matrix constructed there is given by:

(WU∗)ij =
∑
k

sgn(Uik)ϕ
′(|Uik|)Ūjk

=
∑
r>0

ϕ′(r)
∑

k,|Uik|=r

sgn(Uik)Ūjk

=
∑
r>0

ϕ′(r)
∑
k

(Ur)ikŪjk

=
∑
r>0

ϕ′(r)(UrU
∗)ij

Thus we have the following formula:

WU∗ =
∑
r>0

ϕ′(r)UrU
∗
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Now when ϕ : [0,∞) → R varies, as a differentiable function, or as a power function
ϕ(x) = xp with p ∈ [1,∞), the individual components must be self-adjoint, as desired. �

In practice now, most of the known examples of semi-balanced matrices are actually
balanced. We have the following collection of simple facts, regarding such matrices:

Proposition 12.9. The class of balanced matrices is as follows:

(1) It contains the matrices U = H/
√
N , with H ∈MN(C) Hadamard.

(2) It is stable under transposition, complex conjugation, and taking adjoints.
(3) It is stable under taking tensor products.
(4) It is stable under the Hadamard equivalence relation.
(5) It contains the matrix VN = 1

N
(2IN −N1N), where IN is the all-1 matrix.

Proof. All these results are elementary, the proof being as follows:

(1) Here U ∈ UN follows from the Hadamard condition, and since there is only one
color component, namely U1/

√
N = H, the balancing condition is satisfied as well.

(2) Assuming that U =
∑

r>0 rUr is a color decomposition of a given matrix U ∈ UN ,
the following are color decompositions too, and this gives the assertions:

U t =
∑
r>0

rU t
r

Ū =
∑
r>0

rŪr

U∗ =
∑
r>0

rU∗r

(3) Assuming that U =
∑

r>0 rUr and V =
∑

s>0 sVs are the color decompositions of
two given unitary matrices U, V , we have:

U ⊗ V =
∑
r,s>0

rs · Ur ⊗ Vs

=
∑
p>0

p
∑
p=rs

Ur ⊗ Vs

Thus the color components of W = U ⊗ V are the following matrices:

Wp =
∑
p=rs

Ur ⊗ Vs

It follows that if U, V are both balanced, then so is W = U ⊗ V .

(4) We recall that the Hadamard equivalence consists in permuting rows and columns,
and switching signs on rows and columns. Since all these operations correspond to certain
conjugations at the level of the matrices UrU

∗
s , U

∗
rUs, we obtain the result.
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(5) The matrix in the statement, which goes back to [28], is as follows:

VN =
1

N


2−N 2 . . . 2

2 2−N . . . 2
. . . . . . . . . . . .
2 2 . . . 2−N


Observe that this matrix is indeed unitary, its rows being of norm one, and pairwise

orthogonal. The color components of this matrix being V2/N−1 = 1N and V2/N = IN − 1N ,
it follows that this matrix is balanced as well, as claimed. �

Let us look now more in detail at VN , and at the matrices having similar properties.
Following [28], let us call (a, b, c) pattern any matrix M ∈MN(0, 1), with N = a+ 2b+ c,
such that any two rows look as follows, up to a permutation of the columns:

0 . . . 0 0 . . . 0 1 . . . 1 1 . . . 1
0 . . . 0︸ ︷︷ ︸

a

1 . . . 1︸ ︷︷ ︸
b

0 . . . 0︸ ︷︷ ︸
b

1 . . . 1︸ ︷︷ ︸
c

As explained in [28], there are many interesting examples of (a, b, c) patterns, coming
from the balanced incomplete block designs (BIBD), and all these examples can produce
two-entry unitary matrices, by replacing the 0, 1 entries with suitable numbers x, y.

Now back to the matrix VN from Proposition 12.9 (5), observe that this matrix comes
from a (0, 1, N − 2) pattern. And also, independently of this, this matrix has the remark-
able property of being at the same time circulant and self-adjoint.

We have in fact the following result, generalizing Proposition 12.9 (5):

Theorem 12.10. The following matrices are balanced:

(1) The orthogonal matrices coming from (a, b, c) patterns.
(2) The unitary matrices which are circulant and self-adjoint.

Proof. These observations basically go back to [28], the proofs being as follows:

(1) If we denote by P,Q ∈ MN(0, 1) the matrices describing the positions of the 0, 1
entries inside the pattern, then we have the following formulae:

PP t = P tP = aIN + b1N

QQt = QtQ = cIN + b1N

PQt = P tQ = QP t = QtP = bIN − b1N
Since all these matrices are symmetric, U is balanced, as claimed.

(2) Assume that U ∈ UN is circulant, Uij = γj−i, and in addition self-adjoint, which
means γ̄i = γ−i. Consider the following sets, which must satisfy Dr = −Dr:

Dr = {k : |γr| = k}
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In terms of these sets, we have the following formula:

(UrU
∗
s )ij =

∑
k

(Ur)ik(Ūs)jk

=
∑
k

δ|γk−i|,r sgn(γk−i) · δ|γk−j |,s sgn(γ̄k−j)

=
∑

k∈(Dr+i)∩(Ds+j)

sgn(γk−i) sgn(γ̄k−j)

With k = i+ j −m we obtain, by using Dr = −Dr, and then γ̄i = γ−i:

(UrU
∗
s )ij =

∑
m∈(−Dr+j)∩(−Ds+i)

sgn(γj−m) sgn(γ̄i−m)

=
∑

m∈(Dr+i)∩(Dr+j)

sgn(γj−m) sgn(γ̄i−m)

=
∑

m∈(Dr+i)∩(Dr+j)

sgn(γ̄m−j) sgn(γm−i)

Now by interchanging i↔ j, and with m→ k, this formula becomes:

(UrU
∗
s )ji =

∑
k∈(Dr+i)∩(Dr+j)

sgn(γ̄k−i) sgn(γk−j)

We recognize here the complex conjugate of (UrU
∗
s )ij, as previously computed above,

and we therefore deduce that UrU
∗
s is self-adjoint. The proof for U∗rUs is similar. �

Let us compute now derivatives. As in Theorem 12.6, it is convenient to do the com-
putations in a more general framework, where we have a function as follows:

F (U) =
∑
ij

ψ(|Uij|2)

In order to study the local extrema of these quantities, consider the following function,
depending on t > 0 small:

f(t) = F (UetA) =
∑
ij

ψ(|(UetA)ij|2)

Here U ∈ UN is a unitary matrix, and A ∈ MN(C) is assumed to be anti-hermitian,
A∗ = −A, as for having eA ∈ UN . Let us first compute the derivative of f . We have:

Proposition 12.11. We have the following formula,

f ′(t) = 2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]
valid for any U ∈ UN , and any A ∈MN(C) anti-hermitian.
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Proof. The matrices U, etA being both unitary, we have:

|(UetA)ij|2 = (UetA)ij(UetA)ij

= (UetA)ij((Ue
tA)∗)ji

= (UetA)ij(e
tA∗U∗)ji

= (UetA)ij(e
−tAU∗)ji

We can now differentiate our function f , and by using once again the unitarity of the
matrices U, etA, along with the formula A∗ = −A, we obtain:

f ′(t) =
∑
ij

ψ′(|(UetA)ij|2)
[
(UAetA)ij(e

−tAU∗)ji − (UetA)ij(e
−tAAU∗)ji

]
=

∑
ij

ψ′(|(UetA)ij|2)
[
(UAetA)ij((e−tAU∗)∗)ij − (UetA)ij((e−tAAU∗)∗)ij

]
=

∑
ij

ψ′(|(UetA)ij|2)
[
(UAetA)ij(UetA)ij + (UetA)ij(UAetA)ij

]
But this gives the formula in the statement, and we are done. �

Before computing the second derivative, let us evaluate f ′(0). We have:

Proposition 12.12. We have the following formula,

f ′(0) = 2
∑
r>0

rψ′(r2)Re [Tr(U∗rUA)]

where the matrices Ur ∈MN(T ∪ {0}) are the color components of U .

Proof. We use the formula in Proposition 12.11 above. At t = 0, we obtain:

f ′(0) = 2
∑
ij

ψ′(|Uij|2)Re
[
(UA)ijU ij

]
Consider now the color decomposition of U . We have the following formulae:

Uij =
∑
r>0

r(Ur)ij =⇒ |Uij|2 =
∑
r>0

r2|(Ur)ij|

=⇒ ψ′(|Uij|2) =
∑
r>0

ψ′(r2)|(Ur)ij|

Now by getting back to the above formula of f ′(0), we obtain:

f ′(0) = 2
∑
r>0

ψ′(r2)
∑
ij

Re
[
(UA)ijU ij|(Ur)ij|

]
Our claim now is that we have:

U ij|(Ur)ij| = r(Ur)ij



HADAMARD MATRICES 215

Indeed, in the case |Uij| 6= r this formula reads U ij · 0 = r · 0, which is true, and in the
case |Uij| = r this formula reads rS̄ij · 1 = r · S̄ij, which is once again true.

We therefore conclude that we have:

f ′(0) = 2
∑
r>0

rψ′(r2)
∑
ij

Re
[
(UA)ij(Ur)ij

]
But this gives the formula in the statement, and we are done. �

Let us compute now the second derivative. The result here is as follows:

Proposition 12.13. We have the following formula,

f ′′(0) = 4
∑
ij

ψ′′(|Uij|2)Re
[
(UA)ijU ij

]2
+2
∑
ij

ψ′(|Uij|2)Re
[
(UA2)ijU ij

]
+2
∑
ij

ψ′(|Uij|2)|(UA)ij|2

valid for any U ∈ UN , and any A ∈MN(C) anti-hermitian.

Proof. We use the formula in Proposition 12.11 above, namely:

f ′(t) = 2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]
Since the real part on the right, or rather its double, appears as the derivative of the

quantity |(UetA)ij|2, when differentiating a second time, we obtain:

f ′′(t) = 4
∑
ij

ψ′′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]2

+2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]′
In order to compute now the missing derivative, observe that we have:[

(UAetA)ij(UetA)ij

]′
= (UA2etA)ij(UetA)ij + (UAetA)ij(UAetA)ij

= (UA2etA)ij(UetA)ij + |(UAetA)ij|2
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Summing up, we have obtained the following formula:

f ′′(t) = 4
∑
ij

ψ′′(|(UetA)ij|2)Re
[
(UAetA)ij(UetA)ij

]2

+2
∑
ij

ψ′(|(UetA)ij|2)Re
[
(UA2etA)ij(UetA)ij

]
+2
∑
ij

ψ′(|(UetA)ij|2)|(UAetA)ij|2

But at t = 0 this gives the formula in the statement, and we are done. �

For the function ψ(x) =
√
x, corresponding to F (U) = ||U ||1, we have:

Proposition 12.14. Let U ∈ U∗N . For the function F (U) = ||U ||1 we have the formula

f ′′(0) = Re
[
Tr(S∗UA2)

]
+
∑
ij

Im
[
(UA)ijSij

]2
|Uij|

valid for any anti-hermitian matrix A, where Uij = Sij|Uij|.

Proof. We use the formula in Proposition 12.13 above, with the following data:

ψ(x) =
√
x , ψ′(x) =

1

2
√
x

, ψ′′(x) = − 1

4x
√
x

We obtain the following formula:

f ′′(0) = −
∑
ij

Re
[
(UA)ijU ij

]2
|Uij|3

+
∑
ij

Re
[
(UA2)ijU ij

]
|Uij|

+
∑
ij

|(UA)ij|2

|Uij|

= −
∑
ij

Re
[
(UA)ijSij

]2
|Uij|

+
∑
ij

Re
[
(UA2)ijSij

]
+
∑
ij

|(UA)ij|2

|Uij|

= Re
[
Tr(S∗UA2)

]
+
∑
ij

|(UA)ij|2 −Re
[
(UA)ijSij

]2
|Uij|

But this gives the formula in the statement, and we are done. �

We are therefore led to the following result, regarding the 1-norm:

Theorem 12.15. A matrix U ∈ U∗N locally maximizes the one-norm on UN precisely
when S∗U is self-adjoint, where Sij = sgn(Uij), and when

Tr(S∗UA2) +
∑
ij

Im
[
(UA)ijSij

]2
|Uij|

≤ 0

holds, for any anti-hermitian matrix A ∈MN(C).
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Proof. According to Theorem 12.6 and Proposition 12.14, the local maximizer condition
requires X = S∗U to be self-adjoint, and the following inequality to be satisfied:

Re
[
Tr(S∗UA2)

]
+
∑
ij

Im
[
(UA)ijSij

]2
|Uij|

≤ 0

Now observe that since both X and A2 are self-adjoint, we have:

Re
[
Tr(XA2)

]
=

1

2

[
Tr(XA2) + Tr(A2X)

]
= Tr(XA2)

Thus we can remove the real part, and we obtain the inequality in the statement. �

In order to further improve the above result, we will need:

Proposition 12.16. For a self-adjoint matrix X ∈MN(C), the following are equivalent:

(1) Tr(XA2) ≤ 0, for any anti-hermitian matrix A ∈MN(C).
(2) Tr(XB2) ≥ 0, for any hermitian matrix B ∈MN(C).
(3) Tr(XC) ≥ 0, for any positive matrix C ∈MN(C).
(4) X ≥ 0.

Proof. These equivalences are well-known, the proof being as follows:

(1) =⇒ (2) follows by taking B = iA.

(2) =⇒ (3) follows by taking C = B2.

(3) =⇒ (4) follows by diagonalizing X, and then taking C to be diagonal.

(4) =⇒ (1) is clear as well, because with Y =
√
X we have:

Tr(XA2) = Tr(Y 2A2)

= Tr(Y A2Y )

= −Tr((Y A)(Y A)∗)

≤ 0

Thus, the above four conditions are indeed equivalent. �

Following [25], we can now formulate a final result on the subject, as follows:

Theorem 12.17. Given U ∈ UN , set Sij = sgn(Uij), and X = S∗U . Then U locally
maximizes the 1-norm on UN precisely when X ≥ 0, and when

Φ(U,B) = Tr(XB2)−
∑
ij

Re
[
(UB)ijSij

]2
|Uij|

is positive, for any hermitian matrix B ∈MN(C).
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Proof. This follows from Theorem 12.15, by setting A = iB, and by using Proposition
12.16, which shows that we must have indeed X ≥ 0. �

Quite surprisingly, the basic real almost Hadamard matrix KN is not an almost Hada-
mard matrix in the complex sense. That is, while KN/

√
N locally maximizes the 1-norm

on ON , it does not do so over UN . In fact, the same happens for the other basic real
almost Hadamard matrices discussed in section 3 above, such as the circulant ones, and
the 2-entry ones studied there. We are led in this way to:

Conjecture 12.18 (Almost Hadamard conjecture, (AHC)). Any local maximizer of the
1-norm on UN must be a global maximizer, i.e. must be a rescaled Hadamard matrix.

In other words, our conjecture would be that, in the complex setting, almost Hadamard
implies Hadamard. This would be something useful, because we would have here a new
approach to the complex Hadamard matrices, which is by construction analytic and local.
As an example of a potential application, numeric methods, such as the gradient descent
one, could be used for finding new examples of complex Hadamard matrices.

In order to explain this, let us study now more in detail the quantity Φ(U,B) appearing
in Theorem 12.17. As a first observation here, we have the following result:

Proposition 12.19. With Sij = sgn(Uij) and X = S∗U as above, we have

Φ(U,B) = Φ(U,B +D)

for any D ∈MN(R) diagonal.

Proof. The matrices X,B,D being all self-adjoint, we have:

(XBD)∗ = DBX

Thus when computing Φ(U,B +D), the trace term decomposes as follows:

Tr(X(B +D)2) = Tr(XB2) + Tr(XBD) + Tr(XDB) + Tr(XD2)

= Tr(XB2) + Tr(XBD) + Tr(DBX) + Tr(XD2)

= Tr(XB2) + 2Re[Tr(XBD)] + Tr(XD2)

Regarding now the second term, with D = diag(λ1, . . . , λN) with λi ∈ R we have the
following formula:

(UD)ijSij = UijλjSij = λj|Uij|
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Thus the second term decomposes as follows:∑
ij

Re
[
(UB + UD)ijSij

]2
|Uij|

=
∑
ij

Re
[
(UB)ijSij + λj|Uij|

]2
|Uij|

=
∑
ij

[
Re
[
(UB)ijSij

]
+ λj|Uij|

]2
|Uij|

=
∑
ij

Re
[
(UB)ijSij

]2
|Uij|

+ 2
∑
ij

λjRe
[
(UB)ijSij

]
+
∑
ij

λ2
j |Uij|

Now observe that the middle term in this expression is given by:

2
∑
ij

λjRe
[
(UB)ijSij

]
= 2Re

[∑
ij

λj(UB)ijSij

]

= 2Re

[∑
ij

(S∗)ji(UB)ijDjj

]
= 2Re[Tr(XBD)]

As for the term on the right in the above expression, this is given by:∑
ij

λ2
j |Uij| =

∑
ij

λ2
jSijUij

=
∑
ij

Sij(UD
2)ij

= Tr(XD2)

Thus when doing the substraction we obtain Φ(U,B +D) = Φ(U,B), as claimed. �

Observe that with B = 0 we obtain Φ(U,D) = 0, for any D ∈ MN(R) diagonal. In
other words, the inequality is Theorem 12.17 is an equality, when B is diagonal.

Consider now the following matrix, which is the basic example of a real AHM:

KN =
1√
N


2−N 2 . . . 2

2 2−N . . . 2
. . . . . . . . . . . .
2 2 . . . 2−N


We have the following result, which provides the first piece of evidence for the AHC:
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Theorem 12.20. Consider the matrix U = 1
N

(2IN −N1N). Assuming that B ∈ MN(R)
is symmetric and satisfies UB = λB, we have:

Φ(U,B) = λ · N − 4

2

[
Tr(B2) +

λN

N − 2

∑
i

B2
ii

]
In particular, KN =

√
NU is not complex AHM at N 6= 4, because:

(1) For B = IN we have Φ(U,B) = N2(N−1)(N−4)
2(N−2)

, which is negative at N = 3.

(2) For B ∈ MN(R) nonzero, symmetric, and satisfying BIN = 0, diag(B) = 0 we
have Φ(U,B) = (2− N

2
)Tr(B2), which is negative at N ≥ 5.

Proof. With U ∈ O(N), B ∈MN(R), the formula in Theorem 12.17 reads:

Φ(U,B) = Tr(StUB2)−
∑
ij

(UB)2
ij

|Uij|

Asusming now U = 1
N

(2IN −N1N) and UB = λB, this formula becomes:

Φ(U,B) = λ

[
Tr(StB2)− λN

∑
ij

B2
ij

|2−Nδij|

]
Now observe that in our case, we have:

INB =
N

2
(U + 1N)B =

(λ+ 1)N

2
B

Thus the trace term is given by the following formula:

Tr(StB2) = Tr
[
(IN − 21N)B2

]
=

(
(λ+ 1)N

2
− 2

)
Tr(B2)

Regarding now the sum on the right, this can be computed as follows:∑
ij

B2
ij

|2−Nδij|
=

∑
ij

B2
ij

(
1

2
+

(
1

N − 2
− 1

2

)
δij

)
=

∑
ij

B2
ij

(
1

2
− N − 4

2(N − 2)
δij

)
=

1

2
Tr(B2)− N − 4

2(N − 2)

∑
i

B2
ii

We obtain the following formula, which gives the one in the statement:

Φ(U,B) = λ

[(
(λ+ 1)N

2
− 2− λN

2

)
Tr(B2) +

λN(N − 4)

2(N − 2)

∑
i

B2
ii

]
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We can now prove our various results, as follows:

(1) Here we have λ = 1, and we obtain, as claimed:

Φ(U,B) =
N − 4

2

[
N2 +

N2

N − 2

]
=

N2(N − 4)(N − 1)

2(N − 2)

(2) Here we have λ = −1, and we obtain, as claimed:

Φ(U,B) =

(
2− N

2

)
Tr(B2)

It remains to prove that matrices B as in the statement exist, at any N ≥ 5. As a first
remark, such matrices cannot exist at N = 2, 3. At N = 4, however, we have solutions,
which are as follows, with x+ y + z = 0, not all zero:

B =


0 x y z
x 0 z y
y z 0 x
z y x 0


At N ≥ 5 now, we can simply use this matrix, completed with 0 entries. �

Let us go back now to the inequality in Theorem 12.17. When U is a rescaled complex
Hadamard matrix we have of course equality, and in addition, the following happens:

Proposition 12.21. For a rescaled complex Hadamard matrix, a stronger version of the
inequality in Theorem 12.17 holds, with the real part replaced by the absolute value.

Proof. Indeed, for a rescaled Hadamard matrix U = H/
√
N we have S = H =

√
NU ,

and thus X =
√
N1N . We therefore obtain:

Φ(U,B) =
√
N

[
Tr(B2)−

∑
ij

Re
[
(UB)ijSij

]2]

≥
√
N

[
Tr(B2)−

∑
ij

|(UB)ijSij|2
]

=
√
N

[
Tr(B2)−

∑
ij

|(UB)ij|2
]

=
√
N
[
Tr(B2)− Tr(UB2U∗)

]
= 0

But this proves our claim, and we are done. �
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We have the following result, in relation with the notion of defect, from [130]:

Theorem 12.22. For a rescaled complex Hadamard matrix, the space

EU =
{
B ∈MN(C)

∣∣∣B = B∗,Φ(U,B) = 0
}

is isomorphic, via B → [(UB)ijU ij]ij, to the following space:

DU =

{
A ∈MN(R)

∣∣∣∑
k

ŪkiUkj(Aki − Akj) = 0,∀i, j

}
In particular the two “defects” dimREU and dimRDU coincide.

Proof. Since a self-adjoint matrix B ∈ MN(C) belongs to EU precisely when the only
inequality in the proof of Proposition 12.21 above is saturated, we have:

EU =
{
B ∈MN(C)

∣∣∣B = B∗, Im
[
(UB)ijU ij

]
= 0,∀i, j

}
The condition on the right tells us that the matrix A = (UB)ijŪij must be real. Now

since the construction B → A is injective, we obtain an isomorphism, as follows:

EU '
{
A ∈MN(R)

∣∣∣Aij = (UB)ijŪij =⇒ B = B∗
}

Our claim is that the space on the right is DU . Indeed, let us pick A ∈ MN(R). The
condition Aij = (UB)ijŪij is then equivalent to (UB)ij = NUijAij, and so in terms of the
matrix Cij = UijAij we have (UB)ij = NCij, and so UB = NC. Thus B = NU∗C, and
we can now perform the study of the condition B = B∗, as follows:

B = B∗ ⇐⇒ U∗C = C∗U

⇐⇒
∑
k

ŪkiCkj =
∑
k

C̄kiUkj,∀i, j

⇐⇒
∑
k

ŪkiUkjAkj =
∑
k

ŪkiAkiUkj,∀i, j

Thus we have reached to the condition defining DU , and we are done. �

Regarding now the known verifications of the AHC, as already mentioned above, these
basically concern the natural “candidates” coming from Theorem 12.9 and Theorem 12.10,
as well as some straightforward complex generalizations of these candidates. All this is
quite technical, and generally speaking, we refer here to [25]. Let us mention, however,
that the main idea that emerges from [25] is that of using a method based on a random
derivative, pointing towards a suitable homogeneous space coset.
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13. Quantum groups

We discuss in what follows the relation between the Hadamard matrices and the quan-
tum groups, and its potential applications to certain mathematical physics questions. The
idea is very simple, namely that associated to any Hadamard matrix H ∈ MN(C) is a
certain quantum permutation group G ⊂ S+

N , which describes the “symmetries” of the
matrix. As a basic illustration, for a Fourier matrix H = FG we obtain the group G itself,
acting on itself, G ⊂ SG. In general, however, we obtain non-classical quantum groups.

We will need many preliminaries, namely operator algebras and quantum spaces, then
compact quantum groups, then quantum permutation groups, and finally matrix models
for such quantum groups. Let us begin with the following standard result:

Theorem 13.1. Given a Hilbert space H, the linear operators T : H → H which are
bounded, in the sense that ||T || = sup||x||≤1 ||Tx|| is finite, form a complex algebra with
unit, denoted B(H). This algebra has the following properties:

(1) B(H) is complete with respect to ||.||, so we have a Banach algebra.
(2) B(H) has an involution T → T ∗, given by < Tx, y >=< x, T ∗y >.

In addition, the norm and involution are related by the formula ||TT ∗|| = ||T ||2.

Proof. The fact that we have indeed an algebra follows from:

||S + T || ≤ ||S||+ ||T || , ||λT || = |λ| · ||T || , ||ST || ≤ ||S|| · ||T ||
Regarding now (1), if {Tn} ⊂ B(H) is Cauchy then {Tnx} is Cauchy for any x ∈ H, so

we can define the limit T = limn→∞ Tn by setting Tx = limn→∞ Tnx.
As for (2), here the existence of T ∗ comes from the fact that ϕ(x) =< Tx, y > being

a linear map H → C, we must have ϕ(x) =< x, T ∗y >, for a certain vector T ∗y ∈ H.
Moreover, since this vector is unique, T ∗ is unique too, and we have as well:

(S + T )∗ = S∗ + T ∗ , (λT )∗ = λ̄T ∗ , (ST )∗ = T ∗S∗ , (T ∗)∗ = T

Observe also that we have indeed T ∗ ∈ B(H), because:

||T || = sup
||x||=1

sup
||y||=1

< Tx, y >= sup
||y||=1

sup
||x||=1

< x, T ∗y >= ||T ∗||

Regarding the last assertion, we have:

||TT ∗|| ≤ ||T || · ||T ∗|| = ||T ||2

Also, we have the following estimate:

||T ||2 = sup
||x||=1

| < Tx, Tx > | = sup
||x||=1

| < x, T ∗Tx > | ≤ ||T ∗T ||

By replacing T → T ∗ we obtain from this ||T ||2 ≤ ||TT ∗||, and we are done. �

We will be interested in fact in the algebras of operators, rather than in the operators
themselves. The basic axioms here, inspired from Theorem 13.1, are as follows:
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Definition 13.2. A C∗-algebra is a complex algebra with unit A, having:

(1) A norm a→ ||a||, making it a Banach algebra (the Cauchy sequences converge).
(2) An involution a→ a∗, which satisfies ||aa∗|| = ||a||2, for any a ∈ A.

According to Theorem 13.1, the operator algebra B(H) itself is a C∗-algebra. More
generally, we have as examples all the closed ∗-subalgebras A ⊂ B(H). We will see later
on (the “GNS theorem”) that any C∗-algebra appears in fact in this way.

Generally speaking, the elements a ∈ A are best thought of as being some kind of
“generalized operators”, on some Hilbert space which is not present. By using this idea,
one can emulate spectral theory in this setting, in the following way:

Theorem 13.3. Given a ∈ A, define its spectrum as σ(a) = {λ ∈ C|a − λ 6∈ A−1}, and
its spectral radius ρ(a) as the radius of the smallest centered disk containing σ(a).

(1) The spectrum of a norm one element is in the unit disk.
(2) The spectrum of a unitary element (a∗ = a−1) is on the unit circle.
(3) The spectrum of a self-adjoint element (a = a∗) consists of real numbers.
(4) The spectral radius of a normal element (aa∗ = a∗a) is equal to its norm.

Proof. Our first claim is that for any polynomial f ∈ C[X], and more generally for any
rational function f ∈ C(X) having poles outside σ(a), we have:

σ(f(a)) = f(σ(a))

This indeed something well-known for the usual matrices. In the general case, assume
first that we have a polynomial, f ∈ C[X]. If we pick an arbitrary number λ ∈ C, and
write f(X)− λ = c(X − r1) . . . (X − rk), we have then, as desired:

λ /∈ σ(f(a)) ⇐⇒ f(a)− λ ∈ A−1

⇐⇒ c(a− r1) . . . (a− rk) ∈ A−1

⇐⇒ a− r1, . . . , a− rk ∈ A−1

⇐⇒ r1, . . . , rk /∈ σ(a)

⇐⇒ λ /∈ f(σ(a))

Assume now that we are in the general case, f ∈ C(X). We pick λ ∈ C, we write
f = P/Q, and we set F = P − λQ. By using the above finding, we obtain, as desired:

λ ∈ σ(f(a)) ⇐⇒ F (a) /∈ A−1

⇐⇒ 0 ∈ σ(F (a))

⇐⇒ 0 ∈ F (σ(a))

⇐⇒ ∃µ ∈ σ(a), F (µ) = 0

⇐⇒ λ ∈ f(σ(a))

Regarding now the assertions in the statement, these basically follow from this:
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(1) This comes from the following formula, valid when ||a|| < 1:

1

1− a
= 1 + a+ a2 + . . .

(2) Assuming a∗ = a−1, we have the following norm computations:

||a|| =
√
||aa∗|| =

√
1 = 1

||a−1|| = ||a∗|| = ||a|| = 1

If we denote by D the unit disk, we obtain from this, by using (1):

||a|| = 1 =⇒ σ(a) ⊂ D

||a−1|| = 1 =⇒ σ(a−1) ⊂ D

On the other hand, by using the rational function f(z) = z−1, we have:

σ(a−1) ⊂ D =⇒ σ(a) ⊂ D−1

Now by putting everything together we obtain, as desired:

σ(a) ⊂ D ∩D−1 = T

(3) This follows by using (2), and the rational function f(z) = (z + it)/(z − it), with
t ∈ R. Indeed, for t >> 0 the element f(a) is well-defined, and we have:(

a+ it

a− it

)∗
=
a− it
a+ it

=

(
a+ it

a− it

)−1

Thus f(a) is a unitary, and by (2) its spectrum is contained in T. We conclude that we
have f(σ(a)) = σ(f(a)) ⊂ T, and so σ(a) ⊂ f−1(T) = R, as desired.

(4) We have ρ(a) ≤ ||a|| from (1). Conversely, given ρ > ρ(a), we have:∫
|z|=ρ

zn

z − a
dz =

∞∑
k=0

(∫
|z|=ρ

zn−k−1dz

)
ak = an−1

By applying the norm and taking n-th roots we obtain:

ρ ≥ lim
n→∞

||an||1/n

In the case a = a∗ we have ||an|| = ||a||n for any exponent of the form n = 2k, and by
taking n-th roots we get ρ ≥ ||a||. This gives the missing inequality, namely:

ρ(a) ≥ ||a||
In the general case aa∗ = a∗a we have an(an)∗ = (aa∗)n, and we get:

ρ(a)2 = ρ(aa∗)

Now since aa∗ is self-adjoint, we get ρ(aa∗) = ||a||2, and we are done. �
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With these preliminaries in hand, we can now formulate some theorems. The basic
facts about the C∗-algebras, that we will need here, can be summarized as:

Theorem 13.4. The C∗-algebras have the following properties:

(1) The commutative ones are those of the form C(X), with X compact space.
(2) Any such algebra A embeds as A ⊂ B(H), for some Hilbert space H.
(3) In finite dimensions, these are the direct sums of matrix algebras.

Proof. All this is standard, the idea being as follows:

(1) Given a compact space X, the algebra C(X) of continuous functions f : X → C
is indeed a C∗-algebra, with norm ||f || = supx∈X |f(x)|, and involution f ∗(x) = f(x).
Observe that this algebra is indeed commutative, because f(x)g(x) = g(x)f(x).

Conversely, if A is commutative, we can define X = Spec(A) to be the space of char-
acters χ : A → C, with topology making continuous all evaluation maps eva : χ → χ(a).
We have then a morphism of algebras ev : A → C(X) given by a → eva, and Theorem
13.3 (3) shows that ev is a ∗-morphism, Theorem 13.3 (4) shows that ev is isometric, and
finally the Stone-Weierstrass theorem shows that ev is surjective.

(2) This is standard for A = C(X), where we can pick a probability measure on X,
and set H = L2(X), and use the embedding A ⊂ B(H) given by f → (g → fg).

In the general case, where A is no longer commutative, the proof is quite similar, by
emulating basic measure theory in the abstract C∗-algebra setting.

(3) Assuming that A is finite dimensional, we can first decompose its unit as 1 =
p1 + . . . + pk, with pi ∈ A being minimal projections. Each of the linear spaces Ai =
piApi is then a non-unital ∗-subalgebra of A, and we have a non-unital ∗-algebra sum
decomposition A = A1 ⊕ . . .⊕ Ak. On the other hand, since each pi is minimal, we have
unital ∗-algebra isomorphisms Ai ' Mri(C), where ri = rank(pi). Thus, we obtain a
C∗-algebra isomorphism A 'Mr1(C)⊕ . . .⊕Mrk(C), as desired. �

All the above was of course quite brief, but full details on this, covering 10-15 pages,
can be found in any book on operator algebras. In what concerns us, we will be mainly
interested in Theorem 13.4 (1), called Gelfand theorem, which suggests formulating:

Definition 13.5. Given a C∗-algebra A, not necessarily commutative, we write

A = C(X)

and call the abstract object X a compact quantum space.

In other words, we define the category of the compact quantum spaces X to be the
category of the C∗-algebras A, with the arrows reversed. Due to the Gelfand theorem, 13.4
(1) above, the category of the usual compact spaces embeds covariantly into the category
of the compact quantum spaces, and the image of this embedding consists precisely of
the compact quantum spaces X which are “classical”, in the sense that the corresponding
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C∗-algebra A = C(X) is commutative. Thus, what we have done here is to extend the
category of the usual compact spaces, and this justifies Definition 13.5.

In practice now, the general compact quantum spaces X do not have points, but we
can perfectly study them via the associated algebras A = C(X), a bit in the same way as
we study a compact Lie group via its associated Lie algebra, or an algebraic manifold via
the ideal of polynomials vanishing on it, and so on. In short, nothing that much abstract
going on here, just another instance of the old idea “we will use algebras, no need for
points”, with the remark that for us, the use of points will be actually forbidden.

We will be interested in what follows in the case where the compact quantum space X
is a “compact quantum group”. The axioms for the corresponding C∗-algebras, found by
Woronowicz in [149], are, in a soft form, as follows:

Definition 13.6. A Woronowicz algebra is a C∗-algebra A, given with a unitary matrix
u ∈MN(A) whose coefficients generate A, such that the formulae

∆(uij) =
∑
k

uik ⊗ ukj

ε(uij) = δij

S(uij) = u∗ji

define morphisms of C∗-algebras ∆ : A→ A⊗ A, ε : A→ C, S : A→ Aopp.

The morphisms ∆, ε, S are called comultiplication, counit and antipode. We say that
A is cocommutative when Σ∆ = ∆, where Σ(a ⊗ b) = b ⊗ a is the flip. We have the
following result, which justifies the terminology and axioms:

Proposition 13.7. The following are Woronowicz algebras:

(1) C(G), with G ⊂ UN compact Lie group. Here the structural maps are:

∆(ϕ) = (g, h)→ ϕ(gh)

ε(ϕ) = ϕ(1)

S(ϕ) = g → ϕ(g−1)

(2) C∗(Γ), with FN → Γ finitely generated group. Here the structural maps are:

∆(g) = g ⊗ g
ε(g) = 1

S(g) = g−1

Moreover, we obtain in this way all the commutative/cocommutative algebras.
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Proof. This is something very standard, the idea being as follows:

(1) Consider a compact Lie group G ⊂ UN . We can set A = C(G), which is a Woronow-
icz algebra, together with the matrix u = (uij) formed by coordinates of G, given by:

g =

u11(g) . . . u1N(g)
...

...
uN1(g) . . . uNN(g)


Conversely, if (A, u) is a commutative Woronowicz algebra, by using the Gelfand the-

orem we can write A = C(X), with X being a certain compact space. The coordinates
uij give then an embedding X ⊂ MN(C), and since the matrix u = (uij) is unitary we
actually obtain an embedding X ⊂ UN , and finally by using the maps ∆, ε, S we conclude
that our compact subspace X ⊂ UN is in fact a compact Lie group, as desired.

(2) Consider a finitely generated group FN → Γ. We can set A = C∗(Γ), which is
by definition the completion of the complex group algebra C[Γ], with involution given by
g∗ = g−1, for any g ∈ Γ, with respect to the biggest C∗-norm, and we obtain a Woronowicz
algebra, together with the diagonal matrix formed by the generators of Γ:

u =

g1 0
. . .

0 gN


Conversely, if (A, u) is a cocommutative Woronowicz algebra, the Peter-Weyl theory of

Woronowicz, to be explained below, shows that the irreducible corepresentations of A are
all 1-dimensional, and form a group Γ, and so we have A = C∗(Γ), as desired. �

In relation with the above, starting from Definition 13.5, we should mention that there
are some functional analysis subtleties here, coming from the fact that our quantum spaces
and groups must be actually divided by an equivalence relation, for everything to work
fine. To be more precise, in the context of Definition 13.6, we write (A, u) = (B, v) when
there is a ∗-algebra isomorphism < uij >'< vij > mapping uij → vij. See [149].

In general now, the structural maps ∆, ε, S have the following properties:

Proposition 13.8. Let (A, u) be a Woronowicz algebra.

(1) ∆, ε satisfy the usual axioms for a comultiplication and a counit, namely:

(∆⊗ id)∆ = (id⊗∆)∆

(ε⊗ id)∆ = (id⊗ ε)∆ = id

(2) S satisfies the antipode axiom, on the ∗-subalgebra generated by entries of u:

m(S ⊗ id)∆ = m(id⊗ S)∆ = ε(.)1

(3) In addition, the square of the antipode is the identity, S2 = id.
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Proof. The two comultiplication axioms follow from:

(∆⊗ id)∆(uij) = (id⊗∆)∆(uij) =
∑
kl

uik ⊗ ukl ⊗ ulj

(ε⊗ id)∆(uij) = (id⊗ ε)∆(uij) = uij

As for the antipode formulae, the verification here is similar. �

Summarizing, the Woronowicz algebras appear to have nice properties. In view of
Proposition 13.7 and Proposition 13.8, we can formulate the following definition:

Definition 13.9. Given a Woronowicz algebra A, we formally write

A = C(G) = C∗(Γ)

and call G compact quantum group, and Γ discrete quantum group.

When A is both commutative and cocommutative, G is a compact abelian group, Γ

is a discrete abelian group, and these groups are dual to each other, G = Γ̂,Γ = Ĝ. In
general, we still agree to write, but in a formal sense:

G = Γ̂ , Γ = Ĝ

With this in mind, let us call now corepresentation of A any unitary matrix v ∈Mn(A)
satisfying the same conditions as those satisfied by u, namely:

∆(vij) =
∑
k

vik ⊗ vkj , ε(vij) = δij , S(vij) = v∗ji

These corepresentations can be thought of as corresponding to the unitary representa-
tions of the underlying compact quantum group G. As main examples, we have u = (uij)
itself, its conjugate ū = (u∗ij), as well as any tensor product between u, ū.

We have the following key result, due to Woronowicz [149]:

Theorem 13.10. Any Woronowicz algebra has a unique Haar integration functional,(∫
G

⊗id
)

∆ =

(
id⊗

∫
G

)
∆ =

∫
G

(.)1

which can be constructed by starting with any faithful positive form ϕ ∈ A∗, and setting∫
G

= lim
n→∞

1

n

n∑
k=1

ϕ∗k

where φ ∗ ψ = (φ⊗ ψ)∆. Moreover, for any corepresentation v ∈Mn(C)⊗ A we have(
id⊗

∫
G

)
v = P

where P is the orthogonal projection onto Fix(v) = {ξ ∈ Cn|vξ = ξ}.
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Proof. Following [149], this can be done in 3 steps, as follows:

(1) Given ϕ ∈ A∗, our claim is that the following limit converges, for any a ∈ A:∫
ϕ

a = lim
n→∞

1

n

n∑
k=1

ϕ∗k(a)

Indeed, by linearity we can assume that a is the coefficient of corepresentation, a =
(τ ⊗ id)v. But in this case, an elementary computation shows that we have the following
formula, where Pϕ is the orthogonal projection onto the 1-eigenspace of (id⊗ ϕ)v:(

id⊗
∫
ϕ

)
v = Pϕ

(2) Since vξ = ξ implies [(id⊗ ϕ)v]ξ = ξ, we have Pϕ ≥ P , where P is the orthogonal
projection onto the space Fix(v) = {ξ ∈ Cn|vξ = ξ}. The point now is that when ϕ ∈ A∗
is faithful, by using a positivity trick, one can prove that we have Pϕ = P . Thus our
linear form

∫
ϕ

is independent of ϕ, and is given on coefficients a = (τ ⊗ id)v by:(
id⊗

∫
ϕ

)
v = P

(3) With the above formula in hand, the left and right invariance of
∫
G

=
∫
ϕ

is clear

on coefficients, and so in general, and this gives all the assertions. See [149]. �

Consider the dense ∗-subalgebraA ⊂ A generated by the coefficients of the fundamental
corepresentation u, and endow it with the following scalar product:

< a, b >=

∫
G

ab∗

We have then the following result, also from [149]:

Theorem 13.11. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u⊗k.
(3) A =

⊕
v∈Irr(A) Mdim(v)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

Proof. All these results are from [149], the idea being as follows:

(1) Given v ∈ Mn(A), its intertwiner algebra End(v) = {T ∈ Mn(C)|Tv = vT} is a
finite dimensional C∗-algebra, and so decomposes as End(v) = Mn1(C) ⊕ . . . ⊕Mnr(C).
But this gives a decomposition of type v = v1 + . . .+ vr, as desired.

(2) Consider indeed the Peter-Weyl corepresentations, u⊗k with k colored integer, de-
fined by u⊗∅ = 1, u⊗◦ = u, u⊗• = ū and multiplicativity. The coefficients of these
corepresentations span the dense algebra A, and by using (1), this gives the result.
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(3) Here the direct sum decomposition, which is technically a ∗-coalgebra isomorphism,
follows from (2). As for the second assertion, this follows from the fact that (id⊗

∫
G

)v is
the orthogonal projection Pv onto the space Fix(v), for any corepresentation v.

(4) Let us define indeed the character of v ∈Mn(A) to be the matrix trace, χv = Tr(v).
Since this character is a coefficient of v, the orthogonality assertion follows from (3). As
for the norm 1 claim, this follows once again from (id⊗

∫
G

)v = Pv. �

Observe that in the cocommutative case, we obtain from (4) that the irreducible corep-
resentations must be all 1-dimensional, and so that we must have A = C∗(Γ) for some
discrete group Γ, as mentioned in Proposition 13.7 above.

We will be interested here in the quantum permutation groups, and their relation with
the Hadamard matrices. The following key definition is due to Wang [142]:

Definition 13.12. A magic unitary matrix is a square matrix over a C∗-algebra,

u ∈MN(A)

whose entries are projections, summing up to 1 on each row and each column.

The basic examples of such matrices come from the usual permutation groups, G ⊂ SN .
Indeed, given such subgroup, the following matrix is magic:

uij = χ
(
σ ∈ G

∣∣∣σ(j) = i
)

The interest in these matrices comes from the following functional analytic description
of the usual symmetric group, from [142]:

Proposition 13.13. Consider the symmetric group SN .

(1) The standard coordinates vij ∈ C(SN), coming from the embedding SN ⊂ ON given
by the permutation matrices, are given by vij = χ(σ|σ(j) = i).

(2) The matrix v = (vij) is magic, in the sense that its entries are orthogonal projec-
tions, summing up to 1 on each row and each column.

(3) The algebra C(SN) is isomorphic to the universal commutative C∗-algebra gener-
ated by the entries of a N ×N magic matrix.

Proof. These results are all elementary, as follows:

(1) The canonical embedding SN ⊂ ON , coming from the standard permutation matri-
ces, is given by σ(ej) = eσ(j). Thus, we have σ =

∑
j eσ(j)j, so the standard coordinates

on SN ⊂ ON are given by vij(σ) = δi,σ(j). Thus, we must have, as claimed:

vij = χ
(
σ
∣∣∣σ(j) = i

)
(2) Any characteristic function χ ∈ {0, 1} being a projection in the operator algebra

sense (χ2 = χ∗ = χ), we have indeed a matrix of projections. As for the sum 1 condition
on rows and columns, this is clear from the formula of the elements vij.
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(3) Consider the universal algebra in the statement, namely:

A = C∗comm

(
(wij)i,j=1,...,N

∣∣∣w = magic
)

We have a quotient map A→ C(SN), given by wij → vij. On the other hand, by using
the Gelfand theorem we can write A = C(X), with X being a compact space, and by
using the coordinates wij we have X ⊂ ON , and then X ⊂ SN . Thus we have as well a
quotient map C(SN)→ A given by vij → wij, and this gives (3). See Wang [142]. �

We are led in this way to the following result:

Theorem 13.14. The following is a Woronowicz algebra,

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

and the underlying compact quantum group S+
N is called quantum permutation group.

Proof. As a first remark, the algebra C(S+
N) is indeed well-defined, because the magic

condition forces ||uij|| ≤ 1, for any C∗-norm. Our claim now is that we can define maps
∆, ε, S as in Definition 13.6. Consider indeed the following matrix:

Uij =
∑
k

uik ⊗ ukj

As a first observation, we have Uij = U∗ij. In fact the entries Uij are orthogonal projec-
tions, because we have as well:

U2
ij =

∑
kl

uikuil ⊗ ukjulj =
∑
k

uik ⊗ ukj = Uij

In order to prove now that the matrix U = (Uij) is magic, it remains to verify that the
sums on the rows and columns are 1. For the rows, this can be checked as follows:∑

j

Uij =
∑
jk

uik ⊗ ukj =
∑
k

uik ⊗ 1 = 1⊗ 1

For the columns the computation is similar, as follows:∑
i

Uij =
∑
ik

uik ⊗ ukj =
∑
k

1⊗ ukj = 1⊗ 1

Thus the matrix U = (Uij) is magic indeed, and so we can define a comultiplication
map by setting ∆(uij) = Uij. By using a similar reasoning, we can define as well a counit
map by ε(uij) = δij, and an antipode map by S(uij) = uji. Thus the Woronowicz algebra
axioms from Definition 13.6 are satisfied, and this finishes the proof. �

The terminology comes from the following result, also from [142]:
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Proposition 13.15. The quantum permutation group S+
N acts on the set X = {1, . . . , N},

the corresponding coaction map Φ : C(X)→ C(X)⊗ C(S+
N) being given by:

Φ(δi) =
∑
j

δj ⊗ uji

In fact, S+
N is the biggest compact quantum group acting on X, by leaving the counting

measure invariant, in the sense that (tr ⊗ id)Φ = tr(.)1, where tr(δi) = 1
N
,∀i.

Proof. Our claim is that given a compact quantum group G, the formula Φ(δi) =
∑

j δj⊗
uji defines a morphism of algebras, which is a coaction map, leaving the trace invariant,
precisely when the matrix u = (uij) is a magic corepresentation of C(G).

Indeed, let us first determine when Φ is multiplicative. We have:

Φ(δi)Φ(δk) =
∑
jl

δjδl ⊗ ujiulk =
∑
j

δj ⊗ ujiujk

On the other hand, we have as well:

Φ(δiδk) = δikΦ(δi) = δik
∑
j

δj ⊗ uji

We conclude that the multiplicativity of Φ is equivalent to the following conditions:

ujiujk = δikuji , ∀i, j, k
Regarding now the unitality of Φ, we have the following formula:

Φ(1) =
∑
i

Φ(δi) =
∑
ij

δj ⊗ uji =
∑
j

δj ⊗

(∑
i

uji

)
Thus Φ is unital when the following conditions are satisfied:∑

i

uji = 1 , ∀i

Finally, the fact that Φ is a ∗-morphism translates into:

uij = u∗ij , ∀i, j
Summing up, in order for Φ(δi) =

∑
j δj ⊗ uji to be a morphism of C∗-algebras, the

elements uij must be projections, summing up to 1 on each row of u. Regarding now the
preservation of the trace condition, observe that we have:

(tr ⊗ id)Φ(δi) =
1

N

∑
j

uji

Thus the trace is preserved precisely when the elements uij sum up to 1 on each of
the columns of u. We conclude from this that Φ(δi) =

∑
j δj ⊗ uji is a morphism of C∗-

algebras preserving the trace precisely when u is magic, and since the coaction conditions
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on Φ are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. �

As a quite surprising result now, also from [142], we have:

Theorem 13.16. We have an embedding SN ⊂ S+
N , given at the algebra level by:

uij → χ
(
σ
∣∣∣σ(j) = i

)
This is an isomorphism at N ≤ 3, but not at N ≥ 4, where S+

N is not classical, nor finite.

Proof. The fact that we have indeed an embedding as above is clear. Regarding now the
second assertion, we can prove this in four steps, as follows:

Case N = 2. The fact that S+
2 is indeed classical, and hence collapses to S2, is trivial,

because the 2× 2 magic matrices are as follows, with p being a projection:

U =

(
p 1− p

1− p p

)
Case N = 3. It is enough to check that u11, u22 commute. But this follows from:

u11u22 = u11u22(u11 + u12 + u13)

= u11u22u11 + u11u22u13

= u11u22u11 + u11(1− u21 − u23)u13

= u11u22u11

Indeed, by applying the involution to this formula, we obtain from this that we have
u22u11 = u11u22u11 as well, and so we get u11u22 = u22u11, as desired.

Case N = 4. Consider the following matrix, with p, q being projections:

U =


p 1− p 0 0

1− p p 0 0
0 0 q 1− q
0 0 1− q q


This matrix is then magic, and if we choose p, q as for the algebra < p, q > to be infinite

dimensional, we conclude that C(S+
4 ) is infinite dimensional as well.

Case N ≥ 5. Here we can use the standard embedding S+
4 ⊂ S+

N , obtained at the level
of the corresponding magic matrices in the following way:

u→
(
u 0
0 1N−4

)
Indeed, with this in hand, the fact that S+

4 is a non-classical, infinite compact quantum
group implies that S+

N with N ≥ 5 has these two properties as well. See [142]. �

In order to study S+
N , we will use the following version of Tannakian duality:
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Theorem 13.17. The following operations are inverse to each other:

(1) The construction A → C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Ckl = Hom(u⊗k, u⊗l).

(2) The construction C → A, which associates to any tensor category C the Woronow-
icz algebra A presented by the relations T ∈ Hom(u⊗k, u⊗l), with T ∈ Ckl.

Proof. This is something quite deep, going back to [150] in a slightly different form, and
to [93] in the simplified form presented above. The idea is as follows:

(1) We have indeed a construction A → C as above, whose output is a tensor C∗-
subcategory with duals of the tensor C∗-category of Hilbert spaces.

(2) We have as well a construction C → A as above, simply by dividing the free
∗-algebra on N2 variables by the relations in the statement.

Regarding now the bijection claim, some elementary algebra shows that C = CAC
implies A = ACA , and also that C ⊂ CAC is automatic. Thus we are left with proving
CAC ⊂ C. But this latter inclusion can be proved indeed, by doing a lot of algebra, and
using von Neumann’s bicommutant theorem, in finite dimensions. See [93]. �

We will need as well the notion of “easiness”, from [32]. Let us start with:

Definition 13.18. Let P (k, l) be the set of partitions between an upper row of k points,
and a lower row of l points. A set D =

⊔
k,lD(k, l) with D(k, l) ⊂ P (k, l) is called a

category of partitions when it has the following properties:

(1) Stability under the horizontal concatenation, (π, σ)→ [πσ].
(2) Stability under the vertical concatenation, (π, σ)→ [σπ].
(3) Stability under the upside-down turning, π → π∗.
(4) Each set P (k, k) contains the identity partition || . . . ||.
(5) The set P (0, 2) contains the semicircle partition ∩.

As a basic example, we have the category of all partitions P itself. Other basic examples
include the category of pairings P2, or the categories NC,NC2 of noncrossing partitions,
and pairings. There are many other examples, and we will be back to this.

The relation with the Tannakian categories and duality comes from:

Proposition 13.19. Each π ∈ P (k, l) produces a linear map Tπ : (CN)⊗k → (CN)⊗l,

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or not.
The assignement π → Tπ is categorical, in the sense that we have

Tπ ⊗ Tσ = T[πσ] , TπTσ = N c(π,σ)T[σπ ] , T ∗π = Tπ∗

where c(π, σ) are certain integers, coming from the erased components in the middle.
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Proof. The concatenation axiom follows from the following computation:

(Tπ ⊗ Tσ)(ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)

=
∑
j1...jq

∑
l1...ls

δπ

(
i1 . . . ip
j1 . . . jq

)
δσ

(
k1 . . . kr
l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

=
∑
j1...jq

∑
l1...ls

δ[πσ]

(
i1 . . . ip k1 . . . kr
j1 . . . jq l1 . . . ls

)
ej1 ⊗ . . .⊗ ejq ⊗ el1 ⊗ . . .⊗ els

= T[πσ](ei1 ⊗ . . .⊗ eip ⊗ ek1 ⊗ . . .⊗ ekr)
The composition axiom follows from the following computation:

TπTσ(ei1 ⊗ . . .⊗ eip)

=
∑
j1...jq

δσ

(
i1 . . . ip
j1 . . . jq

) ∑
k1...kr

δπ

(
j1 . . . jq
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

=
∑
k1...kr

N c(π,σ)δ[σπ ]

(
i1 . . . ip
k1 . . . kr

)
ek1 ⊗ . . .⊗ ekr

= N c(π,σ)T[σπ ](ei1 ⊗ . . .⊗ eip)
Finally, the involution axiom follows from the following computation:

T ∗π (ej1 ⊗ . . .⊗ ejq)

=
∑
i1...ip

< T ∗π (ej1 ⊗ . . .⊗ ejq), ei1 ⊗ . . .⊗ eip > ei1 ⊗ . . .⊗ eip

=
∑
i1...ip

δπ

(
i1 . . . ip
j1 . . . jq

)
ei1 ⊗ . . .⊗ eip

= Tπ∗(ej1 ⊗ . . .⊗ ejq)
Summarizing, our correspondence is indeed categorical. �

In relation with the quantum groups, we have the following notion, from [32]:

Definition 13.20. A compact quantum matrix group G is called easy when we have

Hom(u⊗k, u⊗l) = span
(
Tπ

∣∣∣π ∈ D(k, l)
)

for any colored integers k, l, for certain sets of partitions D(k, l) ⊂ P (k, l), where

Tπ(ei1 ⊗ . . .⊗ eik) =
∑
j1...jl

δπ

(
i1 . . . ik
j1 . . . jl

)
ej1 ⊗ . . .⊗ ejl

with the Kronecker type symbols δπ ∈ {0, 1} depending on whether the indices fit or not.
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We can now formulate our main result regarding S+
N , as follows:

Theorem 13.21. We have the following results:

(1) SN is easy, coming from the category of all partitions P .
(2) S+

N is easy, coming from the category of all noncrossing partitions NC.

Proof. This is something quite fundamental, with the proof, using the above Tannakian
results and subsequent easiness theory, being as follows:

(1) S+
N . We know that this quantum group comes from the magic condition. In order

to interpret this magic condition, consider the fork partition:

Y ∈ P (2, 1)

The linear map associated to this fork partition Y is then given by:

TY (ei ⊗ ej) = δijei

Thus, in usual matrix notation, this linear map is given by:

TY = (δijk)i,jk

Now given a corepresentation u, we have the following formula:

(TY u
⊗2)i,jk =

∑
lm

(TY )i,lm(u⊗2)lm,jk = uijuik

We have as well the following formula:

(uTY )i,jk =
∑
l

uil(TY )l,jk = δjkuij

We conclude that we have the following equivalence:

TY ∈ Hom(u⊗2, u) ⇐⇒ uijuik = δjkuij,∀i, j, k
The condition on the right being equivalent to the magic condition, we obtain that S+

N

is indeed easy, the corresponding category of partitions being, as desired:

D =< Y >= NC

(2) SN . Here there is no need for new computations, because we have:

SN = S+
N ∩ON

At the categorical level means that SN is easy, coming from:

< NC, /\ >= P

Alternatively, we can rewrite the above proof for S+
N , by adding at each step the basic

crossing /\ next to the fork partition Y . �

Let us discuss now the computation of the law of the main character. This computation
is the main problem regarding any compact quantum group, as shown by the following
result, which summarizes the various motivations for doing this:
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Theorem 13.22. Given a Woronowicz algebra (A, u), the law of the main character

χ =
N∑
i=1

uii

with respect to the Haar integration has the following properties:

(1) The moments of χ are the numbers Mk = dim(Fix(u⊗k)).
(2) Mk counts as well the lenght p loops at 1, on the Cayley graph of A.
(3) law(χ) is the Kesten measure of the associated discrete quantum group.
(4) When u ∼ ū the law of χ is a usual measure, supported on [−N,N ].
(5) The algebra A is amenable precisely when N ∈ supp(law(Re(χ))).
(6) Any morphism f : (A, u)→ (B, v) must increase the numbers Mk.
(7) Such a morphism f is an isomorphism when law(χu) = law(χv).

Proof. All this is quite advanced, the idea being as follows:

(1) This comes from the Peter-Weyl type theory in [149], which tells us the number of
fixed points of v = u⊗k can be recovered by integrating the character χv = χku.

(2) This is something true, and well-known, for A = C∗(Γ), with Γ =< g1, . . . , gN >
being a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case A = C∗(Γ), with
Γ =< g1, . . . , gN > being a discrete group. In general, this follows from (2).

(4) The equivalence u ∼ ū translates into χu = χ∗u, and this gives the first assertion.
As for the support claim, this follows from uu∗ = 1 =⇒ ||uii|| ≤ 1, for any i.

(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C∗(Γ), with Γ =< g1, . . . , gN > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl type theory from [149], the idea being
that if f is not injective, then it must strictly increase one of the spaces Fix(u⊗k). �

All the above was quite short, but details on all this, characters and motivations for
computing laws of characters, can be found in any good quantum group book.

In the case of the symmetric group SN , the character result is as follows:

Theorem 13.23. For the symmetric group SN the main character counts the fixed points,

χ(σ) = #
{
i ∈ {1, . . . , N}

∣∣∣σ(i) = i
}

and its law becomes Poisson (1), in the N →∞ limit.
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Proof. This is something very classical, which can be done in 3 steps, as follows:

(1) A straightforward application of the inclusion-exclusion principle shows that the
number of permutations σ ∈ SN having no fixed points is:

N∅ = N !
N∑
k=0

(−1)k

k!

(2) Thus, when dividing by N !, and letting N →∞, we obtain:

P (χ = 0) ' 1

e

(3) In fact, the same method gives the following formula, valid for any k ∈ N:

P (χ = k) ' 1

ek!

But this shows that χ becomes Poisson (1) with N →∞, as claimed. �

In order to include as well S+
N in our discussion, we will need the following result, with

∗ being the classical convolution, and � being Voiculescu’s free convolution [138]:

Theorem 13.24. The following Poisson type limits converge, for any t > 0,

pt = lim
n→∞

((
1− 1

n

)
δ0 +

1

n
δt

)∗n

πt = lim
n→∞

((
1− 1

n

)
δ0 +

1

n
δt

)�n
the limiting measures being the Poisson law pt, and the Marchenko-Pastur law πt,

pt =
1

et

∞∑
k=0

tkδk
k!

πt = max(1− t, 0)δ0 +

√
4t− (x− 1− t)2

2πx
dx

whose moments are given by the following formulae:

Mk(pt) =
∑

π∈P (k)

t|π|

Mk(πt) =
∑

π∈NC(k)

t|π|

The Marchenko-Pastur measure πt is also called free Poisson law.
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Proof. This is something quite advanced, related to probability theory, free probability
theory, and random matrices, the idea being as follows:

(1) The first step is that of finding suitable functional transforms, which linearize the
convolution operations in the statement. In the classical case this is the logarithm of the
Fourier transform logF , and in the free case this is Voiculescu’s R-transform.

(2) With these tools in hand, the above limiting theorems can be proved in a standard
way, a bit as when proving the Central Limit Theorem. The computations give the
moment formulae in the statement, and the density computations are standard as well.

(3) Finally, in order for the discussion to be complete, what still remains to be explained
is the precise nature of the “liberation” operation pt → πt, as well as the random matrix
occurrence of πt. This is more technical, and we refer here to [38], [94], [140]. �

Getting back now to quantum permutations, the results here are as follows:

Theorem 13.25. The law of the main character, given by

χ =
∑
i

uii

for SN/S
+
N becomes p1/π1 with N →∞. As for the truncated character

χt =

[tN ]∑
i=1

uii

for SN/S
+
N , with t ∈ (0, 1], this becomes pt/πt with N →∞.

Proof. This is something quite technical, the idea being as follows:

(1) In the classical case this is well-known, and follows by using the inclusion-exclusion
principle, and then letting N →∞, as in the proof of Theorem 13.23.

(2) In the free case we know from easiness that Fix(u⊗k) = span(NC(k)) at N ≥ 4,
and at the probabilistic level, this leads to the formulae in the statement. See [16]. �

There are many other things known about the quantum permutations. See [16].
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14. Hadamard models

We have seen that a free analogue S+
N of the usual permutation group SN can be con-

structed, as a compact quantum group, according to the following formula, with “magic”
meaning formed of projections, which sum up to 1 on each row and each column:

C(S+
N) = C∗

(
(uij)i,j=1,...,N

∣∣∣u = magic
)

We discuss here the construction of the quantum permutation group G ⊂ S+
N associated

to a complex Hadamard matrix H ∈ MN(C). The idea will be that G encodes the
“symmetries” of H, a bit in the same way as ZN encodes the symmetries of FN .

As a first observation, the complex Hadamard matrices are related to the quantum
permutation groups, via the following simple fact:

Proposition 14.1. If H ∈MN(C) is Hadamard, the rank one projections

Pij = Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H, form a magic unitary.

Proof. This is clear, the verification for the rows being as follows:〈
Hi

Hj

,
Hi

Hk

〉
=
∑
l

Hil

Hjl

· Hkl

Hil

=
∑
l

Hkl

Hjl

= Nδjk

As for the verification for the columns, this is similar, as follows:〈
Hi

Hj

,
Hk

Hj

〉
=
∑
l

Hil

Hjl

· Hjl

Hkl

=
∑
l

Hil

Hkl

= Nδik

Thus, we have indeed a magic unitary, as claimed. �

The above result suggests the following definition:

Definition 14.2. Associated to any Hadamard matrix H ∈MN(C) is the representation

π : C(S+
N)→MN(C)

uij → Proj

(
Hi

Hj

)
where H1, . . . , HN ∈ TN are the rows of H.

The representation π constructed above is a “matrix model” for the algebra C(S+
N),

in the sense that the standard generators uij ∈ C(S+
N), and more generally any element

a ∈ C(S+
N), gets modelled in this way by an explicit matrix π(a) ∈MN(C).

The point now is that, given such a model, we have the following notions:
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Definition 14.3. Let G be a compact matrix quantum group, and let π : C(G)→MN(C)
be a matrix model for the associated Woronowicz algebra.

(1) The Hopf image of π is the smallest quotient Woronowicz algebra C(G)→ C(H)
producing a factorization of type π : C(G)→ C(H)→MN(C).

(2) When the inclusion H ⊂ G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that π is inner faithful.

As a first observation, in the case where the model is faithful, π : C(G) ⊂MN(C), the
Hopf image is the algebra C(G) itself, and the model is inner faithful as well. However, this
is something that will not appear often in practice, because the existence of an embedding
C(G) ⊂MN(C) forces the algebra C(G) to be finite dimensional, and so G to be a finite
quantum group. At the level of non-trivial examples now, we have:

(1) In the case where G = Γ̂ is a group dual, the model π : C(G) = C∗(Γ) → MN(C)
must come from a unitary group representation ρ : Γ→ UN , the minimal factorization of
π is the one obtained by taking the image, ρ : Γ → Λ ⊂ UN , and the model π is inner
faithful when Γ ⊂ UN . This is the main example of the construction in Definition 14.3,
which provides intuition, and justifies the terminology as well.

(2) In the case where G is a classical compact group, we have a standard construc-
tion of a matrix model for C(G), obtained by taking an arbitrary family of elements
g1, . . . , gN ∈ G, and then constructing the representation π : C(G) → MN(C) given by
f → diag(f(g1), . . . , f(gN)). The minimal factorization of π is then via the algebra C(H),
with H = < g1, . . . , gN > ⊂ G, and π is inner faithful when G = H.

In general, the existence and uniqueness of the Hopf image follow by dividing C(G) by
a suitable ideal. We refer to [14] for more details regarding this construction. In relation
now with the complex Hadamard matrices, we can simply combine Definition 14.2 and
Definition 14.3, and we are led in this way into the following notion:

Definition 14.4. To any Hadamard matrix H ∈ MN(C) we associate the quantum per-
mutation group G ⊂ S+

N given by the following Hopf image factorization,

C(S+
N)

π //

$$

MN(C)

C(G)

::

where π(uij) = Proj(Hi/Hj), with H1, . . . , HN ∈ TN being the rows of H.

Our claim now is that this construction H → G is something really useful, with G
encoding the combinatorics of H, a bit in the same way as ZN encodes the combinatorics
of FN . There are several results supporting this, and as a first such result, we have:
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Theorem 14.5. The construction H → G has the following properties:

(1) For H = FN we obtain the group G = ZN , acting on itself.
(2) More generally, for H = FG we obtain the group G itself, acting on itself.
(3) For a tensor product H = H ′ ⊗H ′′ we obtain a product, G = G′ ×G′′.

Proof. All this is standard, and elementary, as follows:

(1) The rows of the Fourier matrix H = FN are given by Hi = ρi, where ρ =
(1, w, w2, . . . , wN−1), with w = e2πi/N . Thus, we have the following formula:

Hi

Hj

= ρi−j

It follows that the corresponding rank 1 projections Pij = Proj(Hi/Hj) form a circu-
lant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G ⊂ SN . Now by taking into account the circulant property
of P = (Pij) as well, we are led to the conclusion that we have G = ZN .

(2) In the general case now, where H = FG, with G being an arbitrary finite abelian
group, the result can be proved either by extending the above proof, of by decomposing
G = ZN1 × . . .× ZNk and using (3) below, whose proof is independent from (1,2).

(3) Assume that we have a tensor product H = H ′ ⊗ H ′′, and let G,G′, G′′ be the
associated quantum permutation groups. We have then a diagram as follows:

C(S+
N ′)⊗ C(S+

N ′′)
// C(G′)⊗ C(G′′) // MN ′(C)⊗MN ′′(C)

��
C(S+

N)

OO

// C(G) // MN(C)

Here all the maps are the canonical ones, with those on the left and on the right coming
from N = N ′N ′′. At the level of standard generators, the diagram is as follows:

u′ij ⊗ u′′ab // w′ij ⊗ w′′ab // P ′ij ⊗ P ′′ab

��
uia,jb

OO

// wia,jb // Pia,jb

Now observe that this diagram commutes. We conclude that the representation asso-
ciated to H factorizes indeed through C(G′)⊗ C(G′′), and this gives the result. �
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Generally speaking, going beyond Theorem 14.5 is a quite difficult question. There
are several computations available here, for the most regarding the deformations of the
Fourier matrices, and we will be back to all this later, in section 16 below.

Let us keep discussing what happens at the general level. We will need the following
result, valid in the general context of the Hopf image construction:

Theorem 14.6. Given a matrix model π : C(G)→MN(C), the fundamental corepresen-
tation v of its Hopf image is subject to the Tannakian conditions

Hom(v⊗k, v⊗l) = Hom(U⊗k, U⊗l)

where Uij = π(uij), and where the spaces on the right are taken in a formal sense.

Proof. Since the morphisms increase the intertwining spaces, when defined either in a
representation theory sense, or just formally, we have inclusions as follows:

Hom(u⊗k, u⊗l) ⊂ Hom(U⊗k, U⊗l)

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of π. Thus, by Tannakian duality [150], the Hopf image must be given by
the fact that the intertwining spaces must be the biggest, subject to these inclusions.

On the other hand, since u is biunitary, so is U , and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H, v) given by:

Hom(v⊗k, v⊗l) = Hom(U⊗k, U⊗l)

By the above discussion, C(H) follows to be the Hopf image of π, as claimed. �

With the above result in hand, we can compute the Tannakian category of the Hopf
image, in the Hadamard matrix case, and we are led in this way to:

Theorem 14.7. The Tannakian category of the quantum group G ⊂ S+
N associated to a

complex Hadamard matrix H ∈MN(C) is given by

T ∈ Hom(u⊗k, u⊗l) ⇐⇒ T ◦Gk+2 = Gl+2T ◦

where the objects on the right are constructed as follows:

(1) T ◦ = id⊗ T ⊗ id.

(2) Gjb
ia =

∑
kHikH̄jkH̄akHbk.

(3) Gk
i1...ik,j1...jk

= G
jkjk−1

ikik−1
. . . Gj2j1

i2i1
.

Proof. With the notations in Theorem 14.6, we have the following formula:

Hom(u⊗k, u⊗l) = Hom(U⊗k, U⊗l)

The vector space on the right consists by definition of the complex N l × Nk matrices
T , satisfying the following relation:

TU⊗k = U⊗lT
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If we denote this equality by L = R, the left term L is given by:

Lij = (TU⊗k)ij

=
∑
a

TiaU
⊗k
aj

=
∑
a

TiaUa1j1 . . . Uakjk

As for the right term R, this is given by:

Rij = (U⊗lT )ij

=
∑
b

U⊗lib Tbj

=
∑
b

Ui1b1 . . . UilblTbj

Consider now the vectors ξij = Hi/Hj. Since these vectors span the ambient Hilbert
space, the equality L = R is equivalent to the following equality:

< Lijξpq, ξrs >=< Rijξpq, ξrs >

We use now the following well-known formula, expressing a product of rank one pro-
jections P1, . . . , Pk in terms of the corresponding image vectors ξ1, . . . , ξk:

< P1 . . . Pkx, y >=< x, ξk >< ξk, ξk−1 > . . . . . . < ξ2, ξ1 >< ξ1, y >

This gives the following formula for L:

< Lijξpq, ξrs > =
∑
a

Tia < Pa1j1 . . . Pakjkξpq, ξrs >

=
∑
a

Tia < ξpq, ξakjk > . . . < ξa1j1 , ξrs >

=
∑
a

TiaG
qjk
pak
Gjkjk−1
akak−1

. . . Gj2j1
a2a1

Gj1s
a1r

=
∑
a

TiaG
k+2
rap,sjq

= (T ◦Gk+2)rip,sjq
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As for the right term R, this is given by:

< Rijξpq, ξrs > =
∑
b

< Pi1b1 . . . Pilblξpq, ξrs > Tbj

=
∑
b

< ξpq, ξilbl > . . . < ξi1b1 , ξrs > Tbj

=
∑
b

Gqbl
pil
G
blbl−1

ilil−1
. . . Gb2b1

i2i1
Gb1s
i1r
Tbj

=
∑
b

Gl+2
rip,sbqTbj

= (Gl+2T ◦)rip,sjq

Thus, we obtain the formula in the statement. See [17]. �

There is some similarity here with the computations with transfer matrices from sta-
tistical mechanics, and we will be back to this.

Let us discuss now the computation of the Haar functional for the quantum permutation
group G ⊂ S+

N associated to a complex Hadamard matrix H ∈ MN(C). In the general
random matrix model context, we have the following formula for the Haar integration
functional of the Hopf image, coming from the work in [22], [143]:

Theorem 14.8. Given an inner faithful model π : C(G)→MN(C(T )), we have∫
G

= lim
k→∞

1

k

k∑
r=1

∫ r

G

with the truncated integrals on the right being given by∫ r

G

= (ϕ ◦ π)∗r

where ϕ = tr ⊗
∫
T

is the random matrix trace.

Proof. We must prove that the limit in the statement
∫ ′
G

converges, and that we have∫ ′
G

=
∫
G

. It is enough to check this on the coefficients of corepresentations:(
id⊗

∫ ′
G

)
v =

(
id⊗

∫
G

)
v

We know from section 13 that the matrix on the right is the orthogonal projection
onto Fix(v). As for the matrix on the left, this is the orthogonal projection onto the
1-eigenspace of (id⊗ ϕπ)v. Now observe that, if we set Vij = π(vij), we have:

(id⊗ ϕπ)v = (id⊗ ϕ)V
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Thus, as in the proof in section 13, we conclude that the 1-eigenspace that we are
interested in equals Fix(V ). But, according to Theorem 14.6, we have:

Fix(V ) = Fix(v)

Thus, we have proved that we have
∫ ′
G

=
∫
G

, as desired. �

In practice now, we are led to the computation of the truncated integrals
∫ r
G

appearing
in the above result, and the formula of these truncated integrals is as follows:

Proposition 14.9. The truncated integrals in Theorem 14.8, namely∫ r

G

= (ϕ ◦ π)∗r

are given by the following formula, in the orthogonal case, where u = ū,∫ r

G

ua1b1 . . . uapbp = (T rp )a1...ap,b1...bp

with the matrix on the right being given by the formula

(Tp)i1...ip,j1...jp =

(
tr ⊗

∫
T

)
(Ui1j1 . . . Uipjp)

where Uij = π(uij) are the images of the standard coordinates in the model.

Proof. This is something straightforward, which comes from the definition of the truncated
integrals, namely

∫ r
G

= (ϕ ◦ π)∗r, with ϕ = tr ⊗
∫
T

being the random matrix trace.
Let us mention as well that in the general compact quantum group case, where the
condition u = ū does not necessarily hold, an analogue of the above result holds, by
adding exponents e1, . . . , ep ∈ {1, ∗} everywhere. See [15]. �

Regarding now the main character, the result here is as follows:

Theorem 14.10. In the context of Theorem 14.8, let µr be the law of the main character
χ = Tr(u) with respect to the truncated integration

∫ r
G

= (ϕ ◦ π)∗r.

(1) The law of the main character is given by the following formula:

µ = lim
k→∞

1

k

k∑
r=0

µr

(2) The moments of the truncated measure µr are the following numbers:

crp = Tr(T rp )

Proof. These results are both elementary, the proof being as follows:

(1) This follows from the general limiting formula in Theorem 14.8.

(2) This follows from the formula in Proposition 14.9, by summing over ai = bi. �
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In connection with the complex Hadamard matrices, we can use the above technology
in order to compute the law of the main character, and also to discuss the behavior of the
construction H → G with respect to the operations H → H t, H̄,H∗.

Following [15], let us first introduce the following abstract duality:

Definition 14.11. Let π : C(G)→MN(C) be inner faithful, mapping uij → Uij.

(1) We set (U ′kl)ij = (Uij)kl, and define a model as follows:

ρ̃ : C(U+
N )→MN(C)

vkl → U ′kl
(2) We perform the Hopf image construction, as to get a model as follows:

ρ : C(G′)→MN(C)

In this definition U+
N is Wang’s quantum unitary group, whose standard coordinates

are subject to the biunitarity condition u∗ = u−1, ut = ū−1. Observe that the matrix
U ′ constructed in (1) is given by U ′ = ΣU , where Σ is the flip. Thus this matrix is
indeed biunitary, and produces a representation ρ as in (1), and then a factorization as
in (2). The operation A→ A′ is a duality, in the sense that we have A′′ = A, and in the
Hadamard matrix case, this comes from the operation H → H t. See [15].

We denote by D the dilation operation for probability measures, or for general ∗-
distributions, given by the formula Dr(law(X)) = law(rX). We have then:

Theorem 14.12. Consider the rescaled measure ηr = D1/N(µr).

(1) The moments γrp = crp/N
p of ηr satisfy the following formula:

γrp(G) = γpr (G
′)

(2) ηr has the same moments as the following matrix:

T ′r = Tr(G
′)

(3) In the orthogonal case, where u = ū, we have:

ηr = law(T ′r)

Proof. All the results follow from Theorem 14.10, as follows:

(1) We have the following computation:

crp(A) =
∑
i

(Tp)i11...i1p,i21...i2p . . . . . . (Tp)ir1...irp,i11...i1p

=
∑
i

tr(Ui11i21 . . . Ui1pi2p) . . . . . . tr(Uir1i11 . . . Uirpi1p)

=
1

N r

∑
i

∑
j

(Ui11i21)j11j12 . . . (Ui1pi2p)j1pj11 . . . . . . (Uir1i11)jr1jr2 . . . (Uirpi1p)jrpjr1



HADAMARD MATRICES 249

In terms of the matrix (U ′kl)ij = (Uij)kl, then by permuting the terms in the product
on the right, and finally with the changes iba ↔ iab , j

b
a ↔ jab , we obtain:

crp(A) =
1

N r

∑
i

∑
j

(U ′j11j12
)i11i21 . . . (U

′
j1pj

1
1
)i1pi2p . . . . . . (U

′
jr1j

r
2
)ir1i11 . . . (U

′
jrpj

r
1
)irpi1p

=
1

N r

∑
i

∑
j

(U ′j11j12
)i11i21 . . . (U

′
jr1j

r
2
)ir1i11 . . . . . . (U

′
j1pj

1
1
)i1pi2p . . . (U

′
jrpj

r
1
)irpi1p

=
1

N r

∑
i

∑
j

(U ′j11j21
)i11i12 . . . (U

′
j1r j

2
r
)i1ri11 . . . . . . (U

′
jp1 j

1
1
)ip1i

p
2
. . . (U ′jpr j1r )i

p
r i
p
1

On the other hand, if we use again the above formula of crp(A), but this time for the
matrix U ′, and with the changes r ↔ p and i↔ j, we obtain:

cpr(A
′) =

1

Np

∑
i

∑
j

(U ′j11j21
)i11i12 . . . (U

′
j1r j

2
r
)i1ri11 . . . . . . (U

′
jp1 j

1
1
)ip1i

p
2
. . . (U ′jpr j1r )i

p
r i
p
1

Now by comparing this with the previous formula, we obtain:

N rcrp(A) = Npcpr(A
′)

Thus we have the following equalities, which give the result:

crp(A)

Np
=
cpr(A

′)

N r

(2) By using (1) and the formula in Theorem 14.10, we obtain:

crp(A)

Np
=

cpr(A
′)

N r

=
Tr((T ′r)

p)

N r

= tr((T ′r)
p)

But this gives the equality of moments in the statement.

(3) This follows from the moment equality in (2), and from the standard fact that for
self-adjoint variables, the moments uniquely determine the distribution. �

We will be back to such computations in section 16 below, in the context of some
explicit examples of quantum groups associated to Hadamard matrices.

Let us discuss now some potential applications of the construction H → G, and of the
Hadamard matrices in general, to certain questions from mathematical physics. In order
to start, we will need some basic von Neumann algebra theory, coming as a complement
to the basic C∗-algebra theory explained in section 13 above, as follows:
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Theorem 14.13. The von Neumann algebras, which are the ∗-algebras A ⊂ B(H) closed
under the weak operator topology, making each T → Tx continuous, are as follows:

(1) They are exactly the ∗-algebras of operators A ⊂ B(H) which are equal to their
bicommutant, A = A′′.

(2) In the commutative case, these are the algebras of type A = L∞(X), with X
measured space, represented on H = L2(X), up to a multiplicity.

(3) If we write the center as Z(A) = L∞(X), then we have a decomposition of type
A =

∫
X
Ax dx, with the fibers Ax having trivial center, Z(Ax) = C.

(4) The factors, Z(A) = C, can be fully classified in terms of II1 factors, which are
those satisfying dimA =∞, and having a faithful trace tr : A→ C.

(5) The II1 factors enjoy the “continuous dimension geometry” property, in the sense
that the traces of their projections can take any values in [0, 1].

(6) Among the II1 factors, the most important one is the Murray-von Neumann hy-
perfinite factor R, obtained as an inductive limit of matrix algebras.

Proof. This is something quite heavy, the idea being as follows:

(1) This is von Neumann’s bicommutant theorem, which is well-known in finite dimen-
sions, and whose proof in general is not that complicated, either.

(2) It is clear, via basic measure theory, that L∞(X) is indeed a von Neumann algebra
on H = L2(X). The converse can be proved as well, by using spectral theory.

(3) This is von Neumann’s reduction theory main result, whose statement is already
quite hard to understand, and whose proof uses advanced functional analysis.

(4) This is something heavy, due to Murray-von Neumann and Connes, the idea being
that the other factors can be basically obtained via crossed product constructions.

(5) This is a gem of functional analysis, with the rational traces being relatively easy
to obtain, and with the irrational ones coming from limiting arguments.

(6) Once again, heavy results, due to Murray-von Neumann and Connes, the idea being
that any finite dimensional construction always leads to the same factor, called R. �

In relation now with our questions, variations of von Neumann’s reduction theory idea,
basically using the abelian subalgebra Z(A) ⊂ A, include the use of maximal abelian
subalgebras B ⊂ A, called MASA. In the finite von Neumann algebra case, where we
have a trace, the use of orthogonal MASA is a standard method as well:

Definition 14.14. A pair of orthogonal MASA is a pair of maximal abelian subalgebras

B,C ⊂ A

which are orthogonal with respect to the trace, in the sense that we have:

(B 	 C1) ⊥ (C 	 C1)
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Here the scalar product is by definition < b, c >= tr(bc∗), and by taking into account
the multiples of the identity, the orthogonality condition reformulates as follows:

tr(bc) = tr(b)tr(c)

This notion is potentially useful in the infinite dimensional context, in relation with
various structure and classification problems for the II1 factors.

However, as a “toy example”, we can try and see what happens for the simplest factor
that we know, namely the matrix algebra MN(C), endowed with its usual matrix trace.
In this context, we have the following surprising observation of Popa [113]:

Theorem 14.15. Up to a conjugation by a unitary, the pairs of orthogonal MASA in the
simplest factor, namely the matrix algebra MN(C), are as follows,

A = ∆

B = H∆H∗

with ∆ ⊂MN(C) being the diagonal matrices, and with H ∈MN(C) being Hadamard.

Proof. Any MASA in MN(C) being conjugated to ∆, we can assume, up to conjugation
by a unitary, that we have, with U ∈ UN :

A = ∆

B = U∆U∗

Now observe that given two diagonal matrices D,E ∈ ∆, we have:

tr(D · UEU∗) =
1

N

∑
i

(DUEU∗)ii

=
1

N

∑
ij

DiiUijEjjŪij

=
1

N

∑
ij

DiiEjj|Uij|2

Thus, the orthogonality condition A ⊥ B reformulates as follows:

1

N

∑
ij

DiiEjj|Uij|2 =
1

N2

∑
ij

DiiEjj

But this tells us precisely that the entries |Uij| must have the same absolute value:

|Uij| =
1√
N

Thus the rescaled matrix H =
√
NU must be Hadamard. �

Along the same lines, but at a more advanced level, we have the following result:
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Theorem 14.16. Given a complex Hadamard matrix H ∈ MN(C), the diagram formed
by the associated pair of orthogonal MASA, namely

∆ // MN(C)

C

OO

// H∆H∗

OO

is a commuting square in the sense of subfactor theory, in the sense that the expectations
onto ∆, H∆H∗ commute, and their product is the expectation onto C.

Proof. It follows from definitions that the expectation E∆ : MN(C)→ ∆ is the operation
which consists in keeping the diagonal, and erasing the rest:

M →M∆

Consider now the other expectation, namely:

EH∆H∗ : MN(C)→ H∆H∗

It is better to identify this with the following expectation, with U = H/
√
N :

EU∆U∗ : MN(C)→ U∆U∗

This latter expectation must be given by a formula of type M → UX∆U
∗, with X

satisfying:
< M,UDU∗ >=< UX∆U

∗, UDU∗ > , ∀D ∈ ∆

The scalar products being given by < a, b >= tr(ab∗), this condition reads:

tr(MUD∗U∗) = tr(X∆D
∗) , ∀D ∈ ∆

Thus X = U∗MU , and the formulae of our two expectations are as follows:

E∆(M) = M∆

EU∆U∗(M) = U(U∗MU)∆U
∗

With these formulae in hand, we have the following computation:

(E∆EU∆U∗M)ij = δij(U(U∗MU)∆U
∗)ii

= δij
∑
k

Uik(U
∗MU)kkŪik

= δij
∑
k

1

N
· (U∗MU)kk

= δijtr(U
∗MU)

= δijtr(M)

= (ECM)ij
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As for the other composition, the computation here is similar, as follows:

(EU∆U∗E∆M)ij = (U(U∗M∆U)∆U
∗)ij

=
∑
k

Uik(U
∗M∆U)kkŪjk

=
∑
kl

UikŪlkMllUlkŪjk

=
1

N

∑
kl

UikMllŪjk

= δijtr(M)

= (ECM)ij

Thus, we have indeed a commuting square, as claimed. �

As a conclusion, all this leads us into commuting squares and subfactor theory. So, let
us explain now the basic theory here. As a first object, which will be central in what
follows, we have the Temperley-Lieb algebra [135], constructed as follows:

Definition 14.17. The Temperley-Lieb algebra of index N ∈ [1,∞) is defined as

TLN(k) = span(NC2(k, k))

with product given by vertical concatenation, with the rule

© = N

for the closed circles that might appear when concatenating.

In other words, the algebra TLN(k), depending on parameters k ∈ N and N ∈ [1,∞), is
the formal linear span of the pairings π ∈ NC2(k, k). The product operation is obtained by
linearity, for the pairings which span TLN(k) this being the usual vertical concatenation,
with the conventions that things go “from top to bottom”, and that each floating circle
that might appear when concatenating is replaced by a scalar factor, equal to N .

Observe that there is a connection here with S+
N , and more specifically with the category

of noncrossing partitions NC producing S+
N , due to the following fact:

Proposition 14.18. We have bijections NC(k) ' NC2(2k) ' NC2(k, k), constructed by
fattening/shrinking and rotating/flattening, as follows:

(1) The application NC(k) → NC2(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NC2(2k)→ NC(k) is the “shrinking” application, obtained by collaps-
ing pairs of consecutive neighbors.

(3) The bijection NC2(2k) ' NC2(k, k) is obtained by rotating and flattening the
noncrossing pairings, in the obvious way.
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Proof. The fact that the two operations in (1,2) are indeed inverse to each other is clear,
by computing the corresponding two compositions, with the remark that the construction
of the fattening operation requires the partitions to be noncrossing. �

Following now Jones [78], consider an inclusion of II1 factors, which is actually some-
thing quite natural in quantum physics:

A0 ⊂ A1

We can consider the orthogonal projection e1 : A1 → A0, and set:

A2 =< A1, e1 >

This procedure, called “basic construction”, can be iterated, and we obtain in this way
a whole tower of II1 factors, as follows:

A0 ⊂e1 A1 ⊂e2 A2 ⊂e3 A3 ⊂ . . . . . .

The basic construction is something quite subtle, making deep connections with ad-
vanced mathematics and physics. All this was discovered by Jones, and his main result
from [78], which came as a big surprise at that time, along with some supplementary
fundamental work, done later, in [79], can be summarized as follows:

Theorem 14.19. Let A0 ⊂ A1 be an inclusion of II1 factors.

(1) The sequence of projections e1, e2, e3, . . . ∈ B(H) produces a representation of the
Temperley-Lieb algebra TLN ⊂ B(H), where N = [A1, A0].

(2) The collection P = (Pk) of the linear spaces Pk = A′0 ∩ Ak, which contains the
image of TLN , has a planar algebra structure.

(3) The index N = [A1, A0], which is a Murray-von Neumann continuous quantity
N ∈ [1,∞], must satisfy N ∈ {4 cos2(π

n
)|n ∈ N} ∪ [4,∞].

Proof. This is something quite heavy, the idea being as follows:

(1) The idea here is that the functional analytic study of the basic construction leads to
the conclusion that the sequence of projections e1, e2, e3, . . . ∈ B(H) behaves algebrically
exactly as the rescaled sequence of diagrams ε1, ε2, ε3, . . . ∈ TLN given by ε1 = ∪

∩, ε2 = | ∪∩,
ε3 = || ∪∩, and so on, with the parameter being the index, N = [A2, A1].

(2) Since the orthogonal projection e1 : A1 → A0 commutes with A0 we have e1 ∈ P ′2,
and by translation we obtain e1, . . . , ek−1 ∈ Pk for any k, and so TLN ⊂ P . The point
now is that the planar algebra structure of TLN , obtained by composing diagrams, can
be shown to extend into an abstract planar algebra structure of P .

(3) This is something quite surprising, which follows from (1), via some clever positivity
considerations, involving the Perron-Frobenius theorem. In fact, the subfactors having
index N ∈ [1, 4] can be classified by ADE diagrams, and the obstruction N = 4 cos2(π

n
)

itself comes from the fact that N must be the squared norm of such a graph. �
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As before with other preliminary material, the above was quite quick. We recommend
here Jones’ papers [78], [79], which are a must-read, when doing Hadamard matrices.

Getting back now to the commuting squares, the idea is that any such square C produces
a subfactor of the hyperfinite II1 factor R. Indeed, under suitable assumptions on the
inclusions C00 ⊂ C10, C01 ⊂ C11, we can perform the basic construction for them, in finite
dimensions, and we obtain a whole array of commuting squares, as follows:

A0 A1 A2

C02
//

OO

C12
//

OO

C22
//

OO

B2

C01
//

OO

C11
//

OO

C21
//

OO

B1

C00

OO

// C10

OO

// C20

OO

// B0

Here the various A,B letters stand for the von Neumann algebras obtained in the limit,
which are all isomorphic to the hyperfinite II1 factor R, and we have:

Theorem 14.20. In the context of the above diagram, the following happen:

(1) A0 ⊂ A1 is a subfactor, and {Ai} is the Jones tower for it.
(2) The corresponding planar algebra is given by A′0 ∩ Ak = C ′01 ∩ Ck0.
(3) A similar result holds for the “horizontal” subfactor B0 ⊂ B1.

Proof. This is something standard, the idea being as follows:

(1) This is something quite routine.

(2) This is a subtle result, called Ocneanu compactness theorem [108].

(3) This follows from (1,2), by flipping the diagram. �

Getting back now to the Hadamard matrices, we can extend our lineup of results,
namely Theorem 14.15 and Theorem 14.16, with an advanced statement, as follows:
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Theorem 14.21. Given a complex Hadamard matrix H ∈ MN(C), the diagram formed
by the associated pair of orthogonal MASA, namely

∆ // MN(C)

C

OO

// H∆H∗

OO

is a commuting square in the sense of subfactor theory, and the associated planar algebra
P = (Pk) is given by the following formula, in terms of H itself,

T ∈ Pk ⇐⇒ T ◦G2 = Gk+2T ◦

where the objects on the right are constructed as follows:

(1) T ◦ = id⊗ T ⊗ id.

(2) Gjb
ia =

∑
kHikH̄jkH̄akHbk.

(3) Gk
i1...ik,j1...jk

= G
jkjk−1

ikik−1
. . . Gj2j1

i2i1
.

Proof. The fact that we have indeed a commuting square is from Theorem 14.16, and the
computation of the associated planar algebra is possible thanks to formula in Theorem
14.20 (2). By doing some computations, which are quite similar to those in the proof of
Theorem 14.7 above, we obtain the formula in the statement. See [81]. �

Now by comparing with Theorem 14.7, we are led to the following result:

Theorem 14.22. Let H ∈MN(C) be a complex Hadamard matrix.

(1) The planar algebra associated to H is given by Pk = Fix(u⊗k), where G ⊂ S+
N is

the associated quantum permutation group.
(2) The corresponding Poincaré series f(z) =

∑
k dim(Pk)z

k equals the Stieltjes trans-
form

∫
G

1
1−zχ of the law of the main character χ =

∑
i uii.

Proof. This follows by comparing the quantum group and subfactor results:

(1) As already mentioned above, this simply follows by comparing Theorem 14.7 with
the subfactor computation in Theorem 14.21. For full details here, we refer to [17].

(2) This is a consequence of (1), and of the Peter-Weyl type results from [149], which
tell us that fixed points can be counted by integrating characters. �

Summarizing, we have now a clarification of the various quantum algebraic objects asso-
ciated to a complex Hadamard matrix H ∈MN(C), the idea being that the central object,
which best encodes the “symmetries” of the matrix, and which allows the construction of
the other objects as well, is the associated quantum permutation group G ⊂ S+

N .

Regarding now the subfactor itself, the result here is as follows:
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Theorem 14.23. The subfactor associated to H ∈MN(C) is of the form

AG ⊂ (CN ⊗ A)G

with A = Ro Ĝ, where G ⊂ S+
N is the associated quantum permutation group.

Proof. This is something more technical, the idea being that the basic construction pro-
cedure for the commuting squares, explained before Theorem 14.20, can be performed in
an “equivariant setting”, for commuting squares having components as follows:

D ⊗G E = (D ⊗ (E o Ĝ))G

To be more precise, starting with a commuting square formed by such algebras, we ob-
tain by basic construction a whole array of commuting squares as follows, with {Di}, {Ei}
being by definition Jones towers, and with D∞, E∞ being their inductive limits:

D0 ⊗G E∞ D1 ⊗G E∞ D2 ⊗G E∞

D0 ⊗G E2

OO

// D1 ⊗G E2

OO

// D2 ⊗G E2

OO

// D∞ ⊗G E2

D0 ⊗G E1

OO

// D1 ⊗G E1

OO

// D2 ⊗G E1

OO

// D∞ ⊗G E1

D0 ⊗G E0

OO

// D1 ⊗G E0

OO

// D2 ⊗G E0

OO

// D∞ ⊗G E0

The point now is that this quantum group picture works in fact for any commuting
square having C in the lower left corner. In the Hadamard matrix case, that we are
interested in here, the corresponding commuting square is as follows:

C⊗G CN // CN ⊗G CN

C⊗G C

OO

// CN ⊗G C

OO

Thus, the subfactor obtained by vertical basic construction appears as follows:

C⊗G E∞ ⊂ CN ⊗G E∞
But this gives the conclusion in the statement, with the II1 factor appearing there being

by definition A = E∞ o Ĝ, and with the remark that we have E∞ ' R. See [7]. �
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All the above is conjecturally related to statistical mechanics. Indeed, the Tannakian
category/planar algebra formula from Theorem 14.7/14.21 has many similarities with the
transfer matrix computations for the spin models, and this is explained in Jones’ paper
[81], and known in fact for long before that, from his 1989 paper [79].

However, the precise significance of the Hadamard matrices in statistical mechanics, or
in related areas such as knot and link invariants, remains a bit unclear. From a quantum
permutation group perspective, the same questions make sense. The idea here, which is
old folklore, going back to the 1998 discovery by Wang [142] of the quantum permutation
group S+

N , is that associated to any 2D spin model should be a quantum permutation
group G ⊂ S+

N , which appears by factorizing the flat representation C(S+
N) → MN(C)

associated to the N × N matrix of the Boltzmann weights of the model, and whose
representation theory computes the partition function of the model.

This is supported on one hand by Jones’ theory in [79], [81], via the connecting results
presented above, and on the other hand by a number of more recent results, such as
those in [24], having similarities with the computations for the Ising and Potts models.
However, the whole thing remains not axiomatized, at least for the moment, and in what
regards the Hadamard matrices, their precise physical significance remains unclear.
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15. Generalizations

We discuss in this section two extensions of the construction H → G from the previous
section, which are both quite interesting. A first idea, from [13], is that of using complex
Hadamard matrices with noncommutative entries.

Let A be a C∗-algebra. For most of the applications A will be a commutative algebra,
A = C(X) with X being a compact space, or a matrix algebra, A = MK(C) with K ∈ N.
We will sometimes consider random matrix algebras, A = MK(C(X)), with X being a
compact space, and with K ∈ N. Two row or column vectors over A, say a = (a1, . . . , aN)
and b = (b1, . . . , bN), are called orthogonal when:∑

i

aib
∗
i =

∑
i

a∗i bi = 0

Observe that, by applying the involution, we have as well:∑
i

bia
∗
i =

∑
i

b∗i ai = 0

With this notion in hand, we can formulate:

Definition 15.1. An Hadamard matrix over A is a square matrix H ∈MN(A) such that:

(1) All the entries of H are unitaries, Hij ∈ U(A).
(2) These entries commute on all rows and all columns of H.
(3) The rows and columns of H are pairwise orthogonal.

As a first remark, in the simplest case A = C the unitary group is the unit circle in
the complex plane, U(C) = T, and we obtain the usual complex Hadamard matrices. In
the general commutative case, A = C(X) with X compact space, our Hadamard matrix
must be formed of “fibers”, one for each point x ∈ X. Therefore, we obtain:

Proposition 15.2. The Hadamard matrices H ∈ MN(A) over a commutative algebra
A = C(X) are exactly the families of complex Hadamard matrices of type

H = {Hx|x ∈ X}
with Hx depending continuously on the parameter x ∈ X.

Proof. This follows indeed by combining the above two observations. Observe that, when
we wrote A = C(X) in the above statement, we used the Gelfand theorem. �

Let us comment now on the above axioms. For U, V ∈ U(A) the commutation relation
UV = V U implies as well the following commutation relations:

UV ∗ = V ∗U , U∗V = V U∗ , U∗V ∗ = U∗V ∗

Thus the axiom (2) tells us that the C∗-algebras R1, . . . , RN and C1, . . . , CN generated
by the rows and the columns of A must be all commutative.
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We will be particulary interested in the following type of matrices:

Definition 15.3. An Hadamard matrix H ∈ MN(A) is called “non-classical” if the C∗-
algebra generated by its coefficients is not commutative.

Let us comment now on the axiom (3). According to our definition of orthogonality
there are 4 sets of relations to be satisfied, namely for any i 6= k we must have:∑

j

HijH
∗
kj =

∑
j

H∗ijHkj =
∑
j

HjiH
∗
jk =

∑
j

H∗jiHjk = 0

Now since by axiom (1) all the entries Hij are known to be unitaries, we can replace
this formula by the following more general equation, valid for any i, k:∑

j

HijH
∗
kj =

∑
j

H∗ijHkj =
∑
j

HjiH
∗
jk =

∑
j

H∗jiHjk = Nδik

The point now is that everything simplifies in terms of the matrices:

H = (Hij) , H∗ = (H∗ji) , H t = (Hji) , H̄ = (H∗ij)

Indeed, the above equations simply read:

HH∗ = H∗H = H tH̄ = H̄H t = N1N

So, let us recall now that a square matrix H ∈ MN(A) is called “biunitary” if both H
and H t are unitaries. In the particular case where A is commutative, A = C(X), we have
“H unitary =⇒ H t unitary”, so in this case biunitary means of course unitary. In terms
of this notion, we have the following reformulation of Definition 15.1:

Proposition 15.4. Assume that H ∈MN(A) has unitary entries, which commute on all
rows and all columns of H. Then the following are equivalent:

(1) H is Hadamard.

(2) H/
√
N is biunitary.

(3) HH∗ = H tH̄ = N1N .

Proof. We know that (1) happens if and only if the axiom (3) in Definition 15.1 is satisfied,
and by the above discussion, this axiom (3) is equivalent to (2). Regarding now the
equivalence with (3), this follows from the commutation axiom (2) in Definition 15.1. �

Observe that if H = (Hij) is Hadamard, so are H̄ = (H∗ij), H
t = (Hji), H

∗ = (H∗ji). In
addition, we have the following result:

Proposition 15.5. The class of Hadamard matrices H ∈MN(A) is stable under:

(1) Permuting the rows or columns.
(2) Multiplying the rows or columns by central unitaries.

When successively combining these two operations, we obtain an equivalence relation on
the class of Hadamard matrices H ∈MN(A).
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Proof. This is clear from definitions. Observe that in the commutative case A = C(X) any
unitary is central, so we can multiply the rows or columns by any unitary. In particular
in this case we can always “dephase” the matrix, i.e. assume that its first row and column
consist of 1 entries. Note that this operation is not allowed in the general case. �

Let us discuss now the tensor product operation:

Proposition 15.6. Let H ∈MN(A) and K ∈MM(A) be Hadamard matrices, and assume
that < Hij > commutes with < Kab >. Then the “tensor product”

H ⊗K ∈MNM(A)

given by (H ⊗K)ia,jb = HijKab, is an Hadamard matrix.

Proof. This follows from definitions, and is as well a consequence of the more general
Theorem 15.7 below, that will be proved with full details. �

Following [62], the deformed tensor products are constructed as follows:

Theorem 15.7. Let H ∈ MN(A) and K ∈ MM(A) be Hadamard matrices, and Q ∈
MN×M(UA). Then the “deformed tensor product” H ⊗Q K ∈MNM(A), given by

(H ⊗Q K)ia,jb = QibHijKab

is an Hadamard matrix as well, provided that the entries of Q commute on rows and
columns, and that the algebras < Hij >, < Kab >, < Qib > pairwise commute.

Proof. First, the entries of L = H ⊗Q K are unitaries, and its rows are orthogonal:∑
jb

Lia,jbL
∗
kc,jb =

∑
jb

QibHijKab ·Q∗kbK∗cbH∗kj

= Nδik
∑
b

QibKab ·Q∗kbK∗cb

= Nδik
∑
j

KabK
∗
cb

= NM · δikδac
The orthogonality of columns can be checked as follows:∑

ia

Lia,jbL
∗
ia,kc =

∑
ia

QibHijKab ·Q∗icK∗acH∗ik

= Mδbc
∑
i

QibHij ·Q∗icH∗ik

= Mδbc
∑
i

HijH
∗
ik

= NM · δjkδbc
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For the commutation on rows we use in addition the commutation on rows for Q:

Lia,jbLkc,jb = QibHijKab ·QkbHkjKcb

= QibQkb ·HijHkj ·KabKcb

= QkbQib ·HkjHij ·KcbKab

= QkbHkjKcb ·QibHijKab

= Lkc,jbLia,jb

The commutation on columns is similar, using the commutation on columns for Q:

Lia,jbLia,kc = QibHijKab · qicHikKac

= QibQic ·HijHik ·KabKac

= QicQib ·HikHij ·KacKab

= QicHikKac ·QibHijKab

= Lia,kcLia,jb

Thus all the axioms are satisfied, and L is indeed Hadamard. �

As a basic example, we have the following construction:

Proposition 15.8. The following matrix is Hadamard,

M =


x y x y
x −y x −y
z t −z −t
z −t −z t


for any unitaries x, y, z, t satisfying [x, y] = [x, z] = [y, t] = [z, t] = 0.

Proof. This follows indeed from Theorem 15.7, because we have:

(
1 1
1 −1

)
⊗x y

z t


(

1 1
1 −1

)
=


x y x y
x −y x −y
z t −z −t
z −t −z t


In addition, the commutation relations in Theorem 15.7 are satisfied indeed. �

The usual complex Hadamard matrices were classified in [69] at N = 2, 3, 4, 5. In this
section we investigate the case of the general Hadamard matrices. We use the equivalence
relation constructed in Proposition 15.5 above. We first have:

Proposition 15.9. The 2× 2 Hadamard matrices are all classical, and are all equivalent
to the Fourier matrix F2.
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Proof. Consider indeed an arbitrary 2× 2 Hadamard matrix:

H =

(
A B
C D

)
We already know that A,D each commute with B,C. Also, we have:

AB∗ + CD∗ = 0

We deduce that A = −CD∗B commutes with D, and that C = −AB∗D commutes with
B. Thus our matrix is classical, any since all unitaries are now central, we can dephase
our matrix, which follows therefore to be the Fourier matrix F2. �

Let us discuss now the case N = 3. Here the classification in the classical case uses the
key fact that any formula of type a+ b+ c = 0, with |a| = |b| = |c| = 1, must be, up to a
permutation of terms, a “trivial” formula of type a+ ja+ j2a = 0, with j = e2πi/3. Here
is the noncommutative analogue of this simple fact:

Proposition 15.10. Assume that a + b + c = 0 is a vanishing sum of unitaries. Then
this sum must be of type

a+ wa+ w2a = 0

with w unitary satisfying 1 + w + w2 = 0.

Proof. Since −c = a+ b is unitary we have (a+ b)(a+ b)∗ = 1. Thus ab∗+ ba∗ = −1, and
so ab∗ba∗ + (ba∗)2 = −ba∗. With w = ba∗ we obtain 1 + w2 = −w, and we are done. �

With this result in hand, we can start the N = 3 classification. We first have the
following technical result, that we will improve later on:

Proposition 15.11. Any 3× 3 Hadamard matrix must be of the form

H =

 a b c
ua uv∗w2vb uv∗wvc
va wvb w2vc


with w being subject to the equation 1 + w + w2 = 0.

Proof. Consider an arbitrary Hadamard matrix H ∈ M3(A). We define a, b, c, u, v, w as
for that part of the matrix to be exactly as in the statement, as follows:

H =

 a b c
ua x y
va wvb z


Let us look first at the scalar product between the first and third row:

vaa∗ + wvbb∗ + zc∗ = 0

By simplifying we obtain v+wv+ zc∗ = 0, and by using Proposition 15.10 we conclude
that we have 1 + w + w2 = 0, and that zc∗ = w2v, and so z = w2vc, as claimed.
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The scalar products of the first column with the second and third ones are:

a∗b+ a∗u∗x+ a∗v∗wvb = 0

a∗c+ a∗u∗y + a∗v∗w2vc = 0

By multiplying to the left by va, and to the right by b∗v∗ and c∗v∗, we obtain:

1 + vu∗xb∗v∗ + w = 0

1 + vu∗yc∗v∗ + w2 = 0

Now by using Proposition 15.10 again, we obtain vu∗xb∗v∗ = w2 and vu∗yc∗v∗ = w,
and so x = uv∗w2vb and y = uv∗wvc, and we are done. �

We can already deduce now a first classification result, as follows:

Proposition 15.12. There is no Hadamard matrix H ∈M3(A) with self-adjoint entries.

Proof. We use Proposition 15.11. Since the entries are idempotents, we have:

a2 = b2 = c2 = u2 = v2 = (uw)2 = (vw)2 = 1

It follows that our matrix is in fact of the following form:

H =

 a b c
ua uwb uw2c
va wvb w2vc


The commutation between H22, H23 reads:

[uwb, wvb] = 0 =⇒ [uw,wv] = 0

=⇒ uwwv = wvuw

=⇒ uvw = vuw2

=⇒ w = 1

Thus we have reached to a contradiction, and we are done. �

Let us go back now to the general case. We have the following technical result, which
refines Proposition 15.11 above, and which will be in turn further refined, later on:

Proposition 15.13. Any 3× 3 Hadamard matrix must be of the form

H =

 a b c
ua w2ub wuc
va wvb w2vc


where (a, b, c) and (u, v, w) are triples of commuting unitaries, and:

1 + w + w2 = 0
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Proof. We use Proposition 15.11. With e = uv∗, the matrix there becomes:

H =

 a b c
eva ew2vb ewvc
va wvb w2vc


The commutation relation between H22, H32 reads:

[ew2vb, wvb] = 0 =⇒ [ew2v, wv] = 0

=⇒ ew2vwv = wvew2v

=⇒ ew2v = wvew

=⇒ [ew,wv] = 0

Similarly, the commutation between H23, H33 reads:

[ewvc, w2vc] = 0 =⇒ [ewv, w2v] = 0

=⇒ ewvw2v = w2vewv

=⇒ ewv = w2vew2

=⇒ [ew2, w2v] = 0

We can rewrite this latter relation by using the formula w2 = −1 − w, and then, by
further processing it by using the first relation, we obtain:

[e(1 + w), (1 + w)v] = 0 =⇒ [e, wv] + [ew, v] = 0

=⇒ 2ewv − wve− vew = 0

=⇒ ewv =
1

2
(wve+ vew)

We use now the key fact that when an average of two unitaries is unitary, then the
three unitaries involved are in fact all equal. This gives:

ewv = wve = vew

Thus we obtain [w, e] = [w, v] = 0, so w, e, v commute. Our matrix becomes:

H =

 a b c
eva w2evb wevc
va wvb w2vc


Now by remembering that u = ev, this gives the formula in the statement. �

We can now formulate our main classification result, as follows:

Theorem 15.14. The 3 × 3 Hadamard matrices are all classical, and are all equivalent
to the Fourier matrix F3.
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Proof. We know from Proposition 15.13 that we can write our matrix in the following
way, where (a, b, c) and (u, v, w) pairwise commute, and where 1 + w + w2 = 0:

H =

 a b c
au buw cuw∗

av bvw∗ cvw


We also know that (a, u, v), (b, uw, vw∗), (c, uw∗, vw) and (ab, ac, bc, w) have entries

which pairwise commute. We first show that uv is central. Indeed, we have:

buv = buvww∗

= b(uw)(vw∗)

= (uw)(vw∗)b

= uvb

Similarly, cuv = uvc. It follows that we may in fact suppose that uv is a scalar. But
since our relations are homogeneous, we may assume in fact that u = v∗.

Let us now show that [abc, vw∗] = 0. Indeed, we have:

abc = a(bc)ww∗

= aw(bc)w∗

= av(wv∗)bcw∗

= avb(wv∗)cw∗

= v(ab)wv∗cw∗

= vw(ab)v∗cw∗

= vw(ab)w(w∗v∗)cw∗

= vw2(ab)c(w∗v∗)w∗

= vw∗abcv∗w

We know also that [b, vw∗] = 0. Hence [ac, vw∗] = 0. But [ac, w∗] = 0. Hence [ac, v] = 0.
But [a, v] = 0. Hence [c, v] = 0. But [c, vw] = 0. So [c, w] = 0. But [bc, w] = 0. So
[b, w] = 0. But [b, v∗w] = 0 and [ab, w] = 0, so respectively [b, v] = 0 and [a, w] = 0. Thus
all operators a, b, c, v, w pairwise commute, and we are done. �

At N = 4 now, the classical theory uses the fact that an equation of type a+b+c+d = 0
with |a| = |b| = |c| = |d| = 1 must be, up to a permutation of the terms, a “trivial”
equation of the form a− a+ b− b = 0. In our setting, however, we have for instance:(

a 0
0 x

)
+

(
−a 0
0 y

)
+

(
b 0
0 −x

)
+

(
−b 0
0 −y

)
= 0

It is probably possible to further complicate this kind of identity, and this makes the
N = 4 classification a quite difficult task.
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The generalized Hadamard matrices produce quantum groups, as follows:

Theorem 15.15. If H ∈MN(A) is Hadamard, the following matrices Pij ∈MN(A) form
altogether a magic matrix P = (Pij), over the algebra MN(A):

(Pij)ab =
1

N
HiaH

∗
jaHjbH

∗
ib

Thus, we can let π : C(S+
N) → MN(A) be the representation associated to P , mapping

uij → Pij, and then factorize this representation as follows,

π : C(S+
N)→ C(G)→MN(A)

with the closed subgroup G ⊂ S+
N chosen minimal.

Proof. The magic condition can be checked in three steps, as follows:

(1) Let us first check that each Pij is a projection, i.e. that we have Pij = P ∗ij = P 2
ij.

Regarding the first condition, namely Pij = P ∗ij, this simply follows from:

(Pij)
∗
ba =

1

N
(HibH

∗
jbHjaH

∗
ia)
∗ =

1

N
HiaH

∗
jaHjbH

∗
ib = (Pij)ab

As for the second condition, Pij = P 2
ij, this follows from the fact that all the entries Hij

are assumed to be unitaries, i.e. follows from axiom (1) in Definition 15.1:

(P 2
ij)ab =

∑
c

(Pij)ac(Pij)cb

=
1

N2

∑
c

HiaH
∗
jaHjcH

∗
icHicH

∗
jcHjbH

∗
ib

=
1

N
HiaH

∗
jaHjbH

∗
ib

= (Pij)ab

(2) Let us check now that fact that the entries of P sum up to 1 on each row. For this
purpose we use the equality H∗H = N1N , coming from the axiom (3), which gives:

(
∑
j

Pij)ab =
1

N

∑
j

HiaH
∗
jaHjbH

∗
ib

=
1

N
Hia(H

∗H)abH
∗
ib

= δabHiaH
∗
ib

= δab

(3) Finally, let us check that the entries of P sum up to 1 on each column. This is the
tricky check, because it involves, besides axiom (1) and the formula H tH̄ = N1N coming
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from axiom (3), the commutation on the columns of H, coming from axiom (2):

(
∑
i

Pij)ab =
1

N

∑
i

HiaH
∗
jaHjbH

∗
ib

=
1

N

∑
i

H∗jaHiaH
∗
ibHjb

=
1

N
H∗ja(H

tH̄)abHjb

= δabH
∗
jaHjb

= δab

Thus P is indeed a magic matrix in the above sense, and we are done. �

As an illustration, consider a usual Hadamard matrix H ∈ MN(C). If we denote its
rows by H1, . . . , HN and we consider the vectors ξij = Hi/Hj, then we have:

ξij =

(
Hi1

Hj1

, . . . ,
HiN

HjN

)
Thus the orthogonal projection on this vector ξij is given by:

(Pξij)ab =
1

||ξij||2
(ξij)a(ξij)b =

1

N
HiaH

∗
jaHjbH

∗
ib = (Pij)ab

We conclude that we have Pij = Pξij for any i, j, so our construction from Theorem
15.15 is compatible with the construction for the usual complex Hadamard matrices.

We discuss now the computation of the quantum permutation groups associated to
the deformed tensor products of Hadamard matrices. Let us begin with a study of the
associated magic unitary. We have:

Proposition 15.16. The magic unitary associated to H ⊗Q K is given by

Pia,jb = Rij ⊗
1

N
(QicQ

∗
jcQjdQ

∗
id ·KacK

∗
bcKbdK

∗
ad)cd

where Rij is the magic unitary matrix associated to H.

Proof. With standard conventions for deformed tensor products and for double indices,
the entries of L = H ⊗Q K are by definition the following elements:

Lia,jb = QibHijKab



HADAMARD MATRICES 269

Thus the projections Pia,jb constructed in Theorem 15.15 are given by:

(Pia,jb)kc,ld =
1

MN
Lia,kcL

∗
jb,kcLjb,ldL

∗
ia,ld

=
1

MN
(QicHikKac)(QjcHjkKbc)

∗(QjdHjlKbd)(QidHilKad)
∗

=
1

MN
(QicQ

∗
jcQjdQ

∗
id)(HikH

∗
jkHjlH

∗
il)(KacK

∗
bcKbdK

∗
ad)

In terms now of the standard matrix units ekl, ecd, we have:

Pia,jb

=
1

MN

∑
kcld

ekl ⊗ ecd ⊗ (QicQ
∗
jcQjdQ

∗
id)(HikH

∗
jkHjlH

∗
il)(KacK

∗
bcKbdK

∗
ad)

=
1

MN

∑
kcld

(
ekl ⊗ 1⊗HikH

∗
jkHjlH

∗
il

)
(1⊗ ecd ⊗QicQ

∗
jcQjdQ

∗
id ·KacK

∗
bcKbdK

∗
ad)

Since the quantities on the right commute, this gives the formula in the statement. �

In order to investigate the Diţă deformations, we use:

Definition 15.17. Let C(S+
M) → A and C(S+

N) → B be Hopf algebra quotients, with
fundamental corepresentations denoted u, v. We let

A ∗w B = A∗N ∗B/ < [u
(i)
ab , vij] = 0 >

with the Hopf algebra structure making wia,jb = u
(i)
ab vij a corepresentation.

The fact that we have indeed a Hopf algebra follows from the fact that w is magic. In
terms of quantum groups, if A = C(G), B = C(H), we write A ∗w B = C(G o∗ H):

C(G) ∗w C(H) = C(G o∗ H)

The o∗ operation is the free analogue of o, the usual wreath product. See [39]. With
this convention, we have the following result:

Theorem 15.18. The representation associated to L = H ⊗Q K factorizes as

C(S+
NM)

πL //

''

MNM(C)

C(S+
M o∗ GH)

77

and so the quantum group associated to L appears as a subgroup GL ⊂ S+
M o∗ GH .

Proof. We use the formula in Proposition 15.16. For simplifying the writing we agree to

use fractions of type
HiaHjb
HjaHib

instead of expressions of type HiaH
∗
jaHjbH

∗
ib, by keeping in
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mind that the variables are only subject to the commutation relations in Definition 15.1.
Our claim is that the factorization can be indeed constructed, as follows:

U
(i)
ab =

∑
j

Pia,jb , Vij =
∑
a

Pia,jb

Indeed, we have three verifications to be made, as follows:

(1) We must prove that the elements Vij =
∑

a Pia,jb do not depend on b, and generate
a copy of C(GH). But if we denote by (Rij) the magic for H, we have indeed:

Vij =
1

N

(
QicQjd

QidQjc

· HikHjl

HilHjk

· δcd
)
kc,ld

= ((Rij)klδcd)kc,ld

= Rij ⊗ 1

(2) We prove now that for any i, the elements U
(i)
ab =

∑
j Pia,jb form a magic matrix.

Since P = (Pia,jb) is magic, the elements U
(i)
ab =

∑
j Pia,jb are self-adjoint, and we have∑

b U
(i)
ab =

∑
bj Pia,jb = 1. The fact that each U

(i)
ab is an idempotent follows from:

((U
(i)
ab )2)kc,ld

=
1

N2M2

∑
mejn

QicQje

QieQjc

· HikHjm

HimHjk

· KacKbe

KaeKbc

· QieQnd

QidQne

· HimHnl

HilHnm

· KaeKbd

KadKbe

=
1

NM2

∑
ejn

QicQjeQnd

QjcQidQne

· HikHnl

HjkHil

δjn ·
KacKbd

KbcKad

=
1

NM2

∑
ej

QicQjeQjd

QjcQidQje

· HikHjl

HjkHil

· KacKbd

KbcKad

=
1

NM

∑
j

QicQjd

QjcQid

· HikHjl

HjkHil

· KacKbd

KbcKad

= (U
(i)
ab )kc,ld

Finally, the condition
∑

a U
(i)
ab = 1 can be checked as follows:∑

a

U
(i)
ab =

1

N

(∑
j

QicQjd

QidQjc

· HikHjl

HilHjk

· δcd

)
kc,ld

=
1

N

(∑
j

HikHjl

HilHjk

· δcd

)
kc,ld

= 1
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(3) It remains to prove that we have U
(i)
ab Vij = VijU

(i)
ab = Pia,jb. First, we have:

(U
(i)
ab Vij)kc,ld =

1

N2M

∑
mn

QicQnd

QidQnc

· HikHnm

HimHnk

· KacKbd

KadKbc

· HimHjl

HilHjm

=
1

NM

∑
n

QicQnd

QidQnc

· HikHjl

HnkHil

δnj ·
KacKbd

KadKbc

=
1

NM
· QicQjd

QidQjc

· HikHjl

HjkHil

· KacKbd

KadKbc

= (Pia,jb)kc,ld

The remaining computation is similar, as follows:

(VijU
(i)
ab )kc,ld =

1

N2M

∑
mn

HikHjm

HimHjk

· QicQnd

QidQnc

· HimHnl

HilHnm

· KacKbd

KadKbc

=
1

NM

∑
n

QicQnd

QidQnc

· HikHnl

HjkHil

δjn ·
KacKbd

KadKbc

=
1

NM
· QicQjd

QidQjc

· HikHjl

HjkHil

· KacKbd

KadKbc

= (Pia,jb)kc,ld

Thus we have checked all the relations, and we are done. �

In general, the problem of further factorizing the above representation is a quite difficult
one, even in the classical case. For a number of results here, we refer to [15], [40].

Let us discuss now another generalization of the construction H → G, which is inde-
pendent from the one above. The idea, following [31], will be that of looking at the partial
Hadamard matrices (PHM), and their connection with the partial permutations. Let us
start with the following standard definition:

Definition 15.19. A partial permutation of {1 . . . , N} is a bijection σ : X ' Y , with:

X, Y ⊂ {1, . . . , N}

We denote by S̃N the set formed by such partial permutations.

We have SN ⊂ S̃N , and the embedding u : SN ⊂ MN(0, 1) given by the standard

permutation matrices can be extended to an embedding u : S̃N ⊂MN(0, 1), as follows:

uij(σ) =

{
1 if σ(j) = i

0 otherwise

By looking at the image of this embedding, we see that S̃N is in bijection with the
matrices M ∈MN(0, 1) having at most one 1 entry on each row and column.
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In analogy with Wang’s theory in [142], we have the following definition:

Definition 15.20. A submagic matrix is a matrix u ∈ MN(A) whose entries are projec-

tions, which are pairwise orthogonal on rows and columns. We let C(S̃+
N) be the universal

C∗-algebra generated by the entries of a N ×N submagic matrix.

Here the fact that the algebra C(S̃+
N) is indeed well-defined is clear. As a first observa-

tion, this algebra has a comultiplication, given by:

∆(uij) =
∑
k

uik ⊗ ukj

This algebra has as well a counit, given by:

ε(uij) = δij

Thus S̃+
N is a quantum semigroup, and we have maps as follows, with the bialgebras at

left corresponding to the quantum semigroups at right:

C(S̃+
N) → C(S+

N)

↓ ↓

C(S̃N) → C(SN)

:

S̃+
N ⊃ S+

N

∪ ∪

S̃N ⊃ SN

The relation of all this with the PHM is immediate, appearing as follows:

Theorem 15.21. If H ∈ MM×N(T) is a PHM, with rows denoted H1, . . . , HM ∈ TN ,
then the following matrix of rank one projections is submagic:

Pij = Proj

(
Hi

Hj

)
Thus H produces a representation πH : C(S̃+

M) → MN(C), given by uij → Pij, that we

can factorize through C(G), with the quantum semigroup G ⊂ S̃+
M chosen minimal.

Proof. We have indeed the following computation, for the rows:〈Hi

Hj

,
Hi

Hk

〉
=
∑
l

Hil

Hjl

· Hkl

Hil

=
∑
l

Hkl

Hjl

=< Hk, Hj >= δjk

The verification for the columns is similar, as follows:〈
Hi

Hj

,
Hk

Hj

〉
=
∑
l

Hil

Hjl

· Hjl

Hkl

=
∑
l

Hil

Hkl

= Nδik

Regarding now the last assertion, we can indeed factorize our representation as in-
dicated, with the existence and uniqueness of the bialgebra C(G), with the minimality

property as above, being obtained by dividing C(S̃+
M) by a suitable ideal. See [31]. �
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Summarizing, we have a generalization of the H → G construction. The very first
problem is that of deciding under which exact assumptions our construction is in fact
“classical”. In order to explain the answer here, we will need:

Definition 15.22. A pre-Latin square is a square matrix

L ∈MM(1, . . . , N)

having the property that its entries are distinct, on each row and each column.

Given such a pre-Latin square L, to any x ∈ {1, . . . , N} we can associate the partial

permutation σx ∈ S̃M given by:

σx(j) = i ⇐⇒ Lij = x

With this construction in hand, we denote by G ⊂ S̃M the semigroup generated by
these partial permutations σ1, . . . , σN , and call it semigroup associated to L. Also, given
an orthogonal basis ξ = (ξ1, . . . , ξN) of CN , we can construct a submagic matrix P ∈
MM(MN(C)), according to the following formula:

Pij = Proj(ξLij)

With these notations, we have the following result, from [31]:

Theorem 15.23. If H ∈MN×M(C) is a PHM, the following are equivalent:

(1) The semigroup G ⊂ S̃+
M is classical, i.e. G ⊂ S̃M .

(2) The projections Pij = Proj(Hi/Hj) pairwise commute.
(3) The vectors Hi/Hj ∈ TN are pairwise proportional, or orthogonal.
(4) The submagic matrix P = (Pij) comes for a pre-Latin square L.

In addition, if so is the case, G is the semigroup associated to L.

Proof. This is something standard, as follows:

(1) ⇐⇒ (2) is clear.

(2) ⇐⇒ (3) comes from the fact that two rank 1 projections commute precisely when
their images coincide, or are orthogonal.

(3) ⇐⇒ (4) is clear again.

The last assertion comes from Gelfand duality. See [31]. �

We call “classical” the matrices in Theorem 15.23, that we will study now. Let us begin
with a study at M = 2. We make the following convention, where τ is the transposition,
ij is the partial permutation i→ j, and ∅ is the null map:

S̃2 = {id, τ, 11, 12, 21, 22, ∅}
With this convention, we have the following result:
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Proposition 15.24. A partial Hadamard matrix H ∈M2×N(T), in dephased form

H =

(
1 . . . 1
λ1 . . . λN

)
is of classical type when one of the following happens:

(1) Either λi = ±w, for some w ∈ T, in which case G = {id, τ}.
(2) Or

∑
i λ

2
i = 0, in which case G = {id, 11, 12, 21, 22, ∅}

Proof. With 1 = (1, . . . , 1) and λ = (λ1, . . . , λN), the matrix formed by the vectors Hi/Hj

is (1
λ̄
λ
1). Since 1 ⊥ λ, λ̄ we just have to compare λ, λ̄, and we have two cases:

(1) Case λ ∼ λ̄. This means λ2 ∼ 1, and so λi = ±w, for some w ∈ T. In this case the
associated pre-Latin square is L = (1

2
2
1), the partial permutations σx associated to L are

σ1 = id and σ2 = τ , and we have G =< id, τ >= {id, τ}, as claimed.

(2) Case λ ⊥ λ̄. This means
∑

i λ
2
i = 0. In this case the associated pre-Latin square is

L = (1
3

2
1), the associated partial permutations σx are given by σ1 = id, σ2 = 21, σ3 = 12,

and so we obtain G =< id, 21, 12 >= {id, 11, 12, 21, 22, ∅}, as claimed. �

The matrices in (1) are, modulo equivalence, those which are real. As for the matrices
in (2), these are parametrized by the solutions λ ∈ TN of the following equations:∑

i

λi =
∑
i

λ2
i = 0

In general, it is quite unclear on how to deal with these equations. Observe that, as a
basic example here, we have the upper 2×N submatrix of FN , with N ≥ 3.

Let us discuss now in detail the truncated Fourier matrix case. First, we have:

Proposition 15.25. The Fourier matrix, FN = (wij) with w = e2πi/N , is of classical
type, and the associated group G ⊂ SN is the cyclic group ZN .

Proof. Since H = FN is a square matrix, the associated semigroup G ⊂ S̃+
N must be a

quantum group, G ⊂ S+
N . We must prove that this quantum group is G = ZN .

With ρ = (1, w, w2, . . . , wN−1) the rows of H are given by Hi = ρi, and so we have
Hi/Hj = ρi−j. We conclude that H is indeed of classical type, coming from the Latin
square Lij = j − i and from the orthogonal basis ξ = (1, ρ−1, ρ−2, . . . , ρ1−N).

We have G =< σ1, . . . , σN >, where σx ∈ SN is given by σx(j) = i ⇐⇒ Lij = x. From
Lij = j − i we obtain σx(j) = j − x, and so G = {σ1, . . . , σN} ' ZN , as claimed. �

Let FM,N be the upper M × N submatrix of FN , and GM,N ⊂ S̃M be the associated
semigroup. The simplest case is that when M is small, and here we have:
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Theorem 15.26. In the N > 2M − 2 regime, GM,N ⊂ S̃M is formed by the maps

σ =

◦ ◦ ◦ ◦

��

◦

��

◦

��

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
that is, σ : I ' J , σ(j) = j − x, with I, J ⊂ {1, . . . ,M} intervals, independently of N .

Proof. Since for H̃ = FN the associated Latin square is circulant, L̃ij = j−i, the pre-Latin
square that we are interested in is:

L =


0 1 2 . . . M − 1

N − 1 0 1 . . . M − 2
N − 2 N − 1 0 . . . M − 3
. . .

N −M + 1 N −M + 2 N −M + 3 . . . 0


Observe that, due to our N > 2M − 2 assumption, we have N −M + 1 > M − 1, and

so the entries above the diagonal are distinct from those below the diagonal.

Let us compute now the partial permutations σx ∈ S̃M given by σx(j) = i ⇐⇒ Lij = x.
We have σ0 = id, and then σ1, σ2, . . . , σM−1 are as follows:

σ1 =
◦ ◦
��

◦
��

◦
��

◦
��

◦ ◦ ◦ ◦ ◦
σ2 =

◦ ◦ ◦
||

◦
||

◦
||

◦ ◦ ◦ ◦ ◦
. . . σM−1 =

◦ ◦ ◦ ◦ ◦

vv◦ ◦ ◦ ◦ ◦

Observe that σ2 = σ2
1, σ3 = σ3

1, . . . , σM−1 = σM−1
1 . As for the remaining partial permu-

tations, these are given by σN−1 = σ−1
1 , σN−2 = σ−1

2 , . . . , σN−M+1 = σ−1
M−1:

σN−1 =
◦
��

◦
��

◦
��

◦
��

◦

◦ ◦ ◦ ◦ ◦
σN−2 =

◦
""

◦
""

◦
""

◦ ◦

◦ ◦ ◦ ◦ ◦
. . . σN−M+1 =

◦

((

◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦

Thus GM,N =< σ1 >. Now if we denote by G′M,N the semigroup in the statement, we
have σ1 ∈ G′M,N , so GM,N ⊂ G′M,N . The reverse inclusion can be proved as follows:

(1) Assume first that σ ∈ G′M,N , σ : I ' J has the property M ∈ I, J :

σ =

◦ ◦ ◦ ◦ ◦

��

◦

��

◦

��
◦ ◦ ◦ ◦ ◦ ◦ ◦

Then we can write σ = σN−kσk, with k = M − |I|, so we have σ ∈ GM,N .
(2) Assume now that σ ∈ G′M,N , σ : I ' J has just the property M ∈ I or M ∈ J :
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σ′ =

◦ ◦ ◦ ◦ ◦

{{

◦

{{

◦

{{◦ ◦ ◦ ◦ ◦ ◦ ◦
σ′′ =

◦ ◦ ◦ ◦

��

◦

��

◦

��

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
In this case we have as well σ ∈ GM,N , because σ appears from one of the maps in (1)

by adding a “slope”, which can be obtained by composing with a suitable map σk.
(3) Assume now that σ ∈ G′M,N , σ : I ' J is arbitrary:

σ =

◦ ◦ ◦ ◦

��

◦

��

◦

��

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
Then we can write σ = σ′σ′′ with σ′ : L ' J , σ′′ : I ' L, where L is an interval

satisfying |L| = |I| = |J | and M ∈ L, and since σ′, σ′′ ∈ GM,N by (2), we are done. �

Summarizing, we have so far complete results at N = M , and at N > 2M − 2. In the

remaining regime, M < N ≤ 2M − 2, the semigroup GM,N ⊂ S̃M looks quite hard to
compute, and for the moment we only have some partial results regarding it.

For a partial permutation σ : I ' J with |I| = |J | = k, set κ(σ) = k. We have:

Theorem 15.27. The components G
(k)
M,N = {σ ∈ GM,N |κ(σ) = k} with k > 2M −N are,

in the M < N ≤ 2M − 2 regime, the same as those in the N > 2M − 2 regime.

Proof. In the M < N ≤ 2M − 2 regime the pre-Latin square that we are interested in
has as usual 0 on the diagonal, and then takes its entries from the set S = {1, . . . , N −
M} ∪ {N −M + 1, . . . ,M − 1} ∪ {M, . . . , N − 1}, in a uniform way from each of the 3
components of S. Here is an illustrating example, at M = 6, N = 8:

L =


0 1 2 3 4 5
7 0 1 2 3 4
6 7 0 1 2 3
5 6 7 0 1 2
4 5 6 7 0 1
3 4 5 6 7 0


The point now is that σ1, . . . , σN−M are given by the same formulae as those in the

proof of Theorem 15.26, then σN−M+1, . . . , σM−1 all satisfy κ(σ) = 2M − N , and finally
σM , . . . , σN−1 are once again given by the formulae in the proof of Theorem 15.26.

Now since we have κ(σρ) ≤ min(κ(σ), κ(ρ)), adding the maps σN−M+1, . . . , σM−1 to the

semigroup GM,N ⊂ S̃M computed in the proof of Theorem 15.26 won’t change the G
(k)
M,N

components of this semigroup at k > 2M −N , and this gives the result. �
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16. Fourier models

We have seen that associated to any complex Hadamard matrix H ∈ MN(C) is a
quantum permutation group G ⊂ S+

N . The construction H → G is something very
simple, obtained by factorizing the representation π : C(S+

N) → MN(C) given by uij →
Proj(Hi/Hj), where H1, . . . , HN ∈ TN are the rows of H. As a basic example, a Fourier
matrix H = FG produces in this way the group G itself, acting on itself.

Following [15], we discuss here the computation of the quantum permutation groups
associated to the Diţă deformations of the tensor products of Fourier matrices. Let us
begin by recalling the construction of the Fourier matrix models:

Definition 16.1. Associated to a finite abelian group G is the matrix model

π : C(G)→MG(C)

coming from the following magic matrix,

(Uij)kl =
1

N
Fi−j,k−l

where F = FG is the Fourier matrix of G.

According to the formulae in section 13 above, this is precisely the matrix model ob-
tained by taking the minimal factorization of the model C(S+

G) → MG(C) coming from
the Fourier matrix FG, with the algebra C(G) being the Hopf image of this latter model,
and with G itself being the quantum permutation group associated to FG.

Let us recall as well the construction of the deformed Fourier models:

Definition 16.2. Given two finite abelian groups G,H, we consider the corresponding
deformed Fourier matrix, given by the formula

(FG ⊗Q FH)ia,jb = Qib(FG)ij(FH)ab

and we factorize the associated representation πQ of the algebra C(S+
G×H),

C(S+
G×H)

πQ //

$$

MG×H(C)

C(GQ)

π

::

with C(GQ) being the Hopf image of this representation πQ.

Explicitely computing the above quantum permutation group GQ ⊂ S+
G×H , as function

of the parameter matrix Q ∈ MG×H(T), will be our main purpose, in what follows. In
order to do so, we will need the following elementary result:
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Proposition 16.3. If G is a finite abelian group then

C(G) = C(S+
G)
/〈

uij = ukl

∣∣∣∀i− j = k − l
〉

with all the indices taken inside G.

Proof. As a first observation, the quotient algebra in the statement is commutative, be-
cause we have the following relations:

uijukl = uijui,l−k+i = δj,l−k+iuij

ukluij = ui,l−k+iuij = δj,l−k+iuij

Thus if we denote the algebra in the statement by C(H), we have H ⊂ SG. Now since
uij(σ) = δiσ(j) for any σ ∈ H, we obtain:

i− j = k − l =⇒ (σ(j) = i ⇐⇒ σ(l) = k)

But this condition tells us precisely that σ(i)− i must be independent on i, and so, for
some g ∈ G, we have σ(i) = i+ g. Thus we have σ ∈ G, as desired. �

In order to factorize the representation in Definition 16.2, we will need:

Definition 16.4. Gives two Hopf algebra quotients, as follows,

C(S+
M)→ A , C(S+

N)→ B

with fundamental corepresentations denoted u, v, we let

A ∗w B = A∗N ∗B/ < [u
(i)
ab , vij] = 0 >

with the Hopf algebra structure making wia,jb = u
(i)
ab vij a corepresentation.

The fact that we have indeed a Hopf algebra follows from the fact that w is magic. In
terms of quantum groups, let us write A = C(G), B = C(H). We write then:

A ∗w B = C(G o∗ H)

In other words, we make the following convention:

C(G) ∗w C(H) = C(G o∗ H)

The o∗ operation is then the free analogue of o, the usual wreath product. For details
regarding this construction, we refer to [15].

We can now factorize representation πQ in Definition 16.2, as follows:
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Theorem 16.5. We have a factorization as follows,

C(S+
G×H)

πQ //

%%

MG×H(C)

C(H o∗ G)

π

99

given on the standard generators by the formulae

U
(i)
ab =

∑
j

Wia,jb , Vij =
∑
a

Wia,jb

independently of b, where W is the magic matrix producing πQ.

Proof. With K = FG, L = FH and M = |G|, N = |H|, the formula of the magic matrix
W ∈MG×H(MG×H(C)) associated to H = K ⊗Q L is as follows:

(Wia,jb)kc,ld =
1

MN
· QicQjd

QidQjc

· KikKjl

KilKjk

· LacLbd
LadLbc

=
1

MN
· QicQjd

QidQjc

·Ki−j,k−lLa−b,c−d

Our claim now is that the representation πQ constructed in Definition 16.2 can be
factorized in three steps, up to the factorization in the statement, as follows:

C(S+
G×H)

πQ //

��

MG×H(C)

C(S+
H o∗ S

+
G) //

44

C(S+
H o∗ G) //

::

C(H o∗ G)

OO

Indeed, these factorizations can be constructed as follows:

(1) The construction of the map on the left is standard, by checking the relations for
the free wreath product, and this produces the first factorization.

(2) Regarding the second factorization, the one in the middle, this comes from the fact
that since the elements Vij depend on i − j, they satisfy the defining relations for the
quotient algebra C(S+

G)→ C(G), coming from Proposition 16.3.

(3) Finally, regarding the third factorization, the one on the right, observe that the
above matrix Wia,jb depends only on i, j and on a− b. By summing over j we obtain that

the elements U
(i)
ab depend only on a− b, and we are done. �
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In order to further factorize the above representation, we use:

Definition 16.6. If H y Γ is a finite group acting by automorphisms on a discrete group,
the corresponding crossed coproduct Hopf algebra is

C∗(Γ) o C(H) = C∗(Γ)⊗ C(H)

with comultiplication given by the following formula,

∆(r ⊗ δk) =
∑
h∈H

(r ⊗ δh)⊗ (h−1 · r ⊗ δh−1k)

for r ∈ Γ and k ∈ H.

Observe that C(H) is a subcoalgebra, and that C∗(Γ) is not a subcoalgebra. The

quantum group corresponding to C∗(Γ) o C(H) is denoted Γ̂ oH.

Now back to the factorization in Theorem 16.5, the point is that we have:

Proposition 16.7. With L = FH , N = |H| we have an isomorphism

C(H o∗ G) ' C∗(H)∗G o C(G)

given by vij → 1⊗ vij and by

u
(i)
ab =

1

N

∑
c

Lb−a,cc
(i) ⊗ 1

on the standard generators.

Proof. We know that the algebra C(H o∗ G) is the quotient of C(H)∗G ∗ C(G) by the

relations [u
(i)
ab , vij] = 0. Now since vij depends only on j − i, we obtain:

[u
(i)
ab , vkl] = [u

(i)
ab , vi,l−k+i] = 0

Thus, we are in a usual tensor product situation, and we have:

C(H o∗ G) = C(H)∗G ⊗ C(G)

Let us compose now this identification with Φ∗G⊗ id, where Φ : C(H)→ C∗(H) is the
Fourier transform. We obtain an isomorphism as in the statement.

Now observe that we have the following formula:

Φ(uab) =
1

N

∑
c

Lb−a,cc

Thus the formula for the image of u
(i)
ab is indeed the one in the statement. �

Here is now our key result, which will lead to further factorizations:
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Proposition 16.8. With c(i) =
∑

a Lacu
(i)
a0 and εke =

∑
iKikeie we have:

π(c(i))(εke) =
Qi,e−cQi−k,e

QieQi−k,e−c
εk,e−c

In particular if c1 + . . .+ cs = 0 then the matrix

π(c
(i1)
1 . . . c(is)

s )

is diagonal, for any choice of the indices i1, . . . , is.

Proof. With c(i) as in the statement, we have the following formula:

π(c(i)) =
∑
a

Lacπ(u
(i)
a0)

=
∑
aj

LacWia,j0

On the other hand, in terms of the basis in the statement, we have:

Wia,jb(εke) =
1

N
δi−j,k

∑
d

QidQje

QieQjd

La−b,d−eεkd

We therefore obtain, as desired:

π(c(i))(εke) =
1

N

∑
ad

Lac
QidQi−k,e

QieQi−k,d
La,d−eεkd

=
1

N

∑
d

QidQi−k,e

QieQi−k,d
εkd
∑
a

La,d−e+c

=
∑
d

QidQi−k,e

QieQi−k,d
εkdδd,e−c

=
Qi,e−cQi−k,e

QieQi−k,e−c
εk,e−c

Regarding now the last assertion, this follows from the fact that each matrix of type

π(c
(ir)
r ) acts on the standard basis elements εke by preserving the left index k, and by

rotating by cr the right index e. Thus when we assume c1 + . . .+ cs = 0 all these rotations
compose up to the identity, and we obtain indeed a diagonal matrix. �

We have now all needed ingredients for refining Theorem 16.5, as follows:
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Theorem 16.9. We have a factorization as follows,

C(S+
G×H)

πQ //

&&

MG×H(C)

C∗(ΓG,H) o C(G)

ρ

88

where the group on the bottom is given by:

ΓG,H = H∗G
/〈

[c
(i1)
1 . . . c(is)

s , d
(j1)
1 . . . d(js)

s ] = 1
∣∣∣∑

r

cr =
∑
r

dr = 0

〉
Proof. Assume that we have a representation, as follows:

π : C∗(Γ) o C(G)→ML(C)

Let Λ be a G-stable normal subgroup of Γ, so that G acts on Γ/Λ, and we can form
the product C∗(Γ/Λ) o C(G), and assume that π is trivial on Λ. Then π factorizes as:

C∗(Γ) o C(G)
π //

''

ML(C)

C∗(Γ/Λ) o C(G)

ρ

99

With Γ = H∗G, and by using the above results, this gives the result. �

In what follows we will restrict attention to the case where the parameter matrix Q is
generic, and we prove that the representation in Theorem 16.9 is the minimal one.

Our starting point is the group ΓG,H found above:

Definition 16.10. Associated to two finite abelian groups G,H is the discrete group

ΓG,H = H∗G
/〈

[c
(i1)
1 . . . c(is)

s , d
(j1)
1 . . . d(js)

s ] = 1
∣∣∣∑

r

cr =
∑
r

dr = 0

〉
where the superscripts refer to the G copies of H, inside the free product.

We will need a more convenient description of this group. The idea here is that the
above commutation relations can be realized inside a suitable semidirect product. Given
a group acting on another group, H y G, we denote as usual by G o H the semidirect
product of G by H, which is the set G×H, with multiplication:

(a, s)(b, t) = (as(b), st)
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Now given a group G, and a finite abelian group H, we can make H act on GH , and
form the product GH o H. Since the elements of type (g, . . . , g) are invariant, we can
form as well the product (GH/G) oH. We can identify GH/G ' G|H|−1 via the map:

(1, g1, . . . , g|H|−1)→ (g1, . . . , g|H|−1)

Thus, we obtain a product G|H|−1 oH. With these notations, we have:

Proposition 16.11. The group ΓG,H has the following properties:

(1) We have an isomorphism as follows:

ΓG,H ' Z(|G|−1)(|H|−1) oH

(2) We have as well an isomorphism as follows,

ΓG,H ⊂ Z(|G|−1)|H| oH

via c(0) → (0, c) and c(i) → (bi0 − bic, c) for i 6= 0, where bic are the standard
generators of Z(|G|−1)|H|.

Proof. We prove these assertions at the same time. We must prove that we have group
morphisms, given by the formulae in the statement, as follows:

ΓG,H ' Z(|G|−1)(|H|−1) oH

⊂ Z(|G|−1)|H| oH

Our first claim is that the formula in (2) defines a morphism as follows:

ΓG,H → Z(|G|−1)|H| oH

Indeed, the elements (0, c) produce a copy of H, and since we have a group embedding
H ⊂ Z|H| oH given by c→ (b0 − bc, c), the elements C(i) = (bi0 − bic, c) produce a copy
of H, for any i 6= 0. In order to check now the commutation relations, observe that:

C
(i1)
1 . . . C(is)

s =

(
bi10 − bi1c1 + bi2c1 − bi2,c1+c2 + . . .+ bis,c1+...+cs−1 − bis,c1+...+cs ,

∑
r

cr

)
Thus

∑
r cr = 0 implies the following condition:

C
(i1)
1 . . . C(is)

s ∈ Z(|G|−1)|H|

Since we are now inside an abelian group, we have the commutation relations, and our
claim is proved. By using the general crossed product considerations before the statement,
it is routine to construct an embedding as follows:

Z(|G|−1)(|H|−1) oH ⊂ Z(|G|−1)|H| oH
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To be more precise, we would like this embedding to be such that we have group
morphisms whose composition is the group morphism just constructed, as follows:

ΓG,H → Z(|G|−1)(|H|−1) oH

⊂ Z(|G|−1)|H| oH

It remains to prove that the map on the left is injective. For this purpose, consider the
morphism ΓG,H → H given by c(i) → c, whose kernel T is formed by the elements of type

c
(i1)
1 . . . c

(is)
s , with

∑
r cr = 0. We get an exact sequence, as follows:

1→ T → ΓG,H → H → 1

This sequence splits by c→ c(0), so we have:

ΓG,H ' T oH

Now by the definition of ΓG,H , the subgroup T constructed above is abelian, and is
moreover generated by the following elements:

(−c)(0)c(i) , c 6= 0

Finally, the fact that T is freely generated by these elements follows from the compu-
tation in the proof of Proposition 16.13 below. �

As already mentioned, we will be interested in what follows in the case where the
deformation matrix Q is generic. Our genericity assumptions are as follows:

Definition 16.12. We use the following notions:

(1) We call p1, . . . , pm ∈ T root independent if for any r1, . . . , rm ∈ Z we have:

pr11 . . . prmm = 1 =⇒ r1 = . . . = rm = 0

(2) A matrix Q ∈MG×H(T), taken to be dephased,

Q0c = Qi0 = 1

is called generic if the elements Qic, with i, c 6= 0, are root independent.

In what follows we will do the computation for such matrices. We will need:

Proposition 16.13. Assume that Q ∈MG×H(T) is generic, and set:

θkeic =
Qi,e−cQi−k,e

QieQi−k,e−c

For every k ∈ G, we have a representation πk : ΓG,H → U|H| given by:

πk(c(i))εe = θkeic εe−c

The family of representations (πk)k∈G is projectively faithful, in the sense that if for some
t ∈ ΓG,H we have that πk(t) is a scalar matrix for any k, then t = 1.
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Proof. The representations πk arise as above. With ΓG,H = T o H, as in the proof of
Proposition 16.11, we see that for t ∈ ΓG,H such that πk(t) is a scalar matrix for any k,
then t ∈ T , since the elements of T are the only ones having their image by πk formed by
diagonal matrices. Now write t as follows, with the generators of T being as in the proof
of Proposition 16.11 above, and with Ric ∈ Z being certain integers:

t =
∏

i 6=0,c 6=0

((−c)(0)(c)(i))Ric

Consider now the following quantities:

A(k, e) =
∏
i 6=0

∏
c 6=0

(θkeic (θke0c )
−1

)Ric

=
∏
i 6=0

∏
c 6=0

(θkeic )Ric(θke0c )
−Ric

=
∏
i 6=0

∏
c 6=0

(θkeic )Ric ·
∏
c6=0

(θke0c )
−
∑
i6=0Ric

=
∏
j 6=0

∏
c 6=0

(θkejc )Rjc ·
∏
c6=0

∏
j 6=0

(θkejc )
∑
i 6=0Ric

=
∏
j 6=0

∏
c 6=0

(θkejc )Rjc+
∑
i6=0Ric

We have πk(t)(εe) = A(k, e)εe, for any k, e. Our assumption is that for any k, we have
A(k, e) = A(k, f), for any e, f . Using the root independence of the elements Qic, i, c 6= 0,
we see that this implies Ric = 0 for any i, c, and this proves our assertion. �

We will need as well the following technical result:

Proposition 16.14. Let π : C∗(Γ) o C(H) → L be a surjective Hopf algebra map, such
that π|C(H) is injective, and such that for r ∈ Γ and f ∈ C(H), we have:

π(r ⊗ 1) = π(1⊗ f) =⇒ r = 1

Then π is an isomorphism.

Proof. We use here various Hopf algebra tools. Consider the following algebra:

A = C∗(Γ) o C(H)

We start with the following standard Hopf algebra exact sequence, where i(f) = 1⊗ f ,
and where p = ε⊗ 1:

C→ C(H)
i→ A

p→ C∗(Γ)→ C
Since π ◦ i is injective, and the Hopf subalgebra π ◦ i(C(H)) is central in L, we can form

the following quotient Hopf algebra:

L = L/(π ◦ i(C(H))+L
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We obtain in this way another exact sequence, as follows:

C −→ C(H)
π◦i−→ L

q−→ L −→ C
Note that this sequence is indeed exact, e.g. by centrality. Thus, we get the following

diagram with exact rows, with the Hopf algebra map on the right being surjective:

C // C(H)
i // A

π

��

p // C∗(Γ) //

��

C

C // C(H)
π◦i // L

q // L // C

Since a quotient of a group algebra is still a group algebra, we get a commutative
diagram with exact rows as follows:

C // C(H)
i // A

π

��

p // C∗(Γ) //

��

C

C // C(H)
π◦i // L

q′ // C∗(Γ) // C

Here the Hopf algebra map on the right is induced by a surjective morphism u : Γ→ Γ,
g 7→ g. By the five lemma we just have to show that u is injective. So, let g ∈ Γ be such
that u(g) = 1. We have then:

q′π(g ⊗ 1) = up(g ⊗ 1) = u(g) = g = 1

For g ∈ Γ, let us set:

gA =
{
a ∈ A

∣∣∣ p(a1)⊗ a2 = g ⊗ a
}

gL =
{
l ∈ L

∣∣∣ q′(l1)⊗ l2 = g ⊗ l
}

The commutativity of the square on the right ensures that we have:

π(gA) ⊂ gL

Then with the previous g, we have, by exactness of the sequence:

π(g ⊗ 1) ∈ 1L = πi(C(H))

Thus, for some f ∈ C(H), we must have:

π(g ⊗ 1) = π(1⊗ f)

We conclude by our assumption that g = 1. �

We have now all the needed ingredients for proving a main result, as follows:
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Theorem 16.15. When Q is generic, the minimal factorization for πQ is

C(S+
G×H)

πQ //

&&

MG×H(C)

C∗(ΓG,H) o C(G)

π

88

where on the bottom

ΓG,H ' Z(|G|−1)(|H|−1) oH

is the discrete group constructed above.

Proof. We want to apply Proposition 16.13 to the following morphism, arising from the
factorization in Theorem 16.9, where L denotes the Hopf image of πQ:

θ : C∗(ΓG,H) o C(G)→ L

To be more precise, this morphism produces the following commutative diagram:

C(S+
G×H)

πQ //

((

$$

MG×H(C)

L

66

C∗(ΓG,H) o C(G)

θ

OO
π

AA

The first observation is that the injectivity assumption on C(G) holds by construction,
and that for f ∈ C(G), the matrix π(f) is “block scalar”, the blocks corresponding to the
indices k in the basis εke in the basis from Proposition 16.13.

Now for r ∈ ΓG,H with θ(r ⊗ 1) = θ(1 ⊗ f) for some f ∈ C(G), we see, using the
commutative diagram, that we will have that π(r⊗1) is block scalar. By Proposition 16.11,
the family of representations (πk) of ΓG,H , corresponding to the blocks k, is projectively
faithful, so r = 1. We can apply indeed Proposition 16.13, and we are done. �

Summarizing, we have computed the quantum permutation groups associated to the
Diţă deformations of the tensor products of Fourier matrices, in the case where the de-
formation matrix Q is generic. For some further computations, in the case where the
deformation matrix Q is no longer generic, we refer to [15] and follow-up papers.

Let us compute now the Kesten measure µ = law(χ). Our results here will be a
combinatorial moment formula, a geometric interpretation of it, and an asymptotic result.
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Let us begin with the moment formula, which is as follows:

Theorem 16.16. We have the moment formula∫
χp =

1

|G| · |H|
#

{
i1, . . . , ip ∈ G
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
where the sets between square brackets are by definition sets with repetition.

Proof. According to the various formulae above, the factorization found in Theorem 16.15
is, at the level of standard generators, as follows:

C(S+
G×H) → C∗(ΓG,H)⊗ C(G) → MG×H(C)

uia,jb → 1
|H|
∑

c Fb−a,cc
(i) ⊗ vij → Wia,jb

Thus, the main character of the quantum permutation group that we found in Theorem
16.15 is given by the following formula:

χ =
1

|H|
∑
iac

c(i) ⊗ vii

=
∑
ic

c(i) ⊗ vii

=

(∑
ic

c(i)

)
⊗ δ1

Now since the Haar functional of C∗(Γ) o C(H) is the tensor product of the Haar
functionals of C∗(Γ), C(H), this gives the following formula, valid for any p ≥ 1:∫

χp =
1

|G|

∫
Γ̂G,H

(∑
ic

c(i)

)p

Consider the elements Si =
∑

c c
(i). By using the embedding in Proposition 16.11 (2),

with the notations there we have:

Si =
∑
c

(bi0 − bic, c)

Now observe that these elements multiply as follows:

Si1 . . . Sip =
∑
c1...cp

 bi10 − bi1c1 + bi2c1 − bi2,c1+c2

+bi3,c1+c2 − bi3,c1+c2+c3 + . . . . . . , c1 + . . .+ cp
. . . . . .+ bip,c1+...+cp−1 − bip,c1+...+cp


In terms of the new indices dr = c1 + . . .+ cr, this formula becomes:

Si1 . . . Sip =
∑
d1...dp

bi10 − bi1d1 + bi2d1 − bi2d2
+bi3d2 − bi3d3 + . . . . . . , dp
. . . . . .+ bipdp−1 − bipdp





HADAMARD MATRICES 289

Now by integrating, we must have dp = 0 on one hand, and on the other hand:

[(i1, 0), (i2, d1), . . . , (ip, dp−1)] = [(i1, d1), (i2, d2), . . . , (ip, dp)]

Equivalently, we must have dp = 0 on one hand, and on the other hand:

[(i1, dp), (i2, d1), . . . , (ip, dp−1)] = [(i1, d1), (i2, d2), . . . , (ip, dp)]

Thus, by translation invariance with respect to dp, we obtain:∫
Γ̂G,H

Si1 . . . Sip =
1

|H|
#

{
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
It follows that we have the following moment formula:∫

Γ̂G,H

(∑
i

Si

)p

=
1

|H|
#

{
i1, . . . , ip ∈ G
d1, . . . , dp ∈ H

∣∣∣ [(i1, d1), (i2, d2), . . . , (ip, dp)]
= [(i1, dp), (i2, d1), . . . , (ip, dp−1)]

}
Now by dividing by |G|, we obtain the formula in the statement. �

The formula in Theorem 16.16 can be interpreted as follows:

Theorem 16.17. With M = |G|, N = |H| we have the formula

law(χ) =

(
1− 1

N

)
δ0 +

1

N
law(A)

where the matrix

A ∈ C(TMN ,MM(C))

is given by A(q) = Gram matrix of the rows of q.

Proof. According to Theorem 16.16, we have the following formula:∫
χp =

1

MN

∑
i1...ip

∑
d1...dp

δ[i1d1,...,ipdp],[i1dp,...,ipdp−1]

=
1

MN

∫
TMN

∑
i1...ip

∑
d1...dp

qi1d1 . . . qipdp
qi1dp . . . qipdp−1

dq

=
1

MN

∫
TMN

∑
i1...ip

(∑
d1

qi1d1
qi2d1

)(∑
d2

qi2d2
qi3d2

)
. . .

∑
dp

qipdp
qi1dp

 dq

Consider now the Gram matrix in the statement, namely:

A(q)ij =< Ri, Rj >

Here R1, . . . , RM are the rows of the following matrix:

q ∈ TMN 'MM×N(T)
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We have then the following computation:∫
χp =

1

MN

∫
TMN

< Ri1 , Ri2 >< Ri2 , Ri3 > . . . < Rip , Ri1 >

=
1

MN

∫
TMN

A(q)i1i2A(q)i2i3 . . . A(q)ipi1

=
1

MN

∫
TMN

Tr(A(q)p)dq

=
1

N

∫
TMN

tr(A(q)p)dq

But this gives the formula in the statement, and we are done. �

In general, the moments of the Gram matrix A are given by a quite complicated formula,
and we cannot expect to have a refinement of Theorem 16.17, with A replaced by a plain,
non-matricial random variable, say over a compact abelian group. However, this kind of
simplification does appear at M = 2. As a first remark, at M = 2 we have:

Proposition 16.18. For F2 ⊗Q FH , with Q ∈M2×N(T) generic, we have

N

∫ ( χ
N

)p
=

∫
TN

∑
k≥0

(
p

2k

) ∣∣∣∣a1 + . . .+ aN
N

∣∣∣∣2k da
where the integral on the right is with respect to the uniform measure on TN .

Proof. Consider the following quantity, from the proof of Theorem 16.17:

Φ(q) =
∑
i1...ip

∑
d1...dp

qi1d1 . . . qipdp
qi1dp . . . qipdp−1

We can “half-dephase” the matrix q ∈M2×N(T) if we want to, as follows:

q =

(
1 . . . 1
a1 . . . aN

)
Let us compute now the above quantity Φ(q), in terms of the numbers a1, . . . , aN . Our

claim is that we have the following formula:

Φ(q) = 2
∑
k≥0

Np−2k

(
p

2k

) ∣∣∣∣∣∑
i

ai

∣∣∣∣∣
2k

Indeed, the 2Nk contribution will come from i = (1 . . . 1) and i = (2 . . . 2), then we will
have a p(p− 1)Nk−2|

∑
i ai|2 contribution coming from indices of type i = (2 . . . 21 . . . 1),

up to cyclic permutations, then a 2
(
p
4

)
Np−4|

∑
i ai|4 contribution coming from indices

of type i = (2 . . . 21 . . . 12 . . . 21 . . . 1), and so on. More precisely, in order to find the
Np−2k|

∑
i ai|2k contribution, we have to count the circular configurations consisting of p
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numbers 1, 2, such that the 1 values are arranged into k non-empty intervals, and the 2
values are arranged into k non-empty intervals as well. Now by looking at the endpoints
of these 2k intervals, we have 2

(
p
2k

)
choices, and this gives the above formula.

Now by integrating, this gives the formula in the statement. �

Observe now that the integrals in Proposition 16.18 can be computed as follows:∫
TN
|a1 + . . .+ aN |2kda =

∫
TN

∑
i1...ik

∑
j1...jk

ai1 . . . aik
aj1 . . . ajk

da

= #
{
i1 . . . ik, j1 . . . jk

∣∣∣[i1, . . . , ik] = [j1, . . . , jk]
}

=
∑

k=
∑
ri

(
k

r1, . . . , rN

)2

We obtain in this way the following “blowup” result, for our measure:

Proposition 16.19. For F2 ⊗Q FH , with Q ∈M2×N(T) generic, we have

µ =

(
1− 1

N

)
δ0 +

1

2N

(
Ψ+
∗ ε+ Ψ−∗ ε

)
where ε is the uniform measure on TN , and where the blowup function is:

Ψ±(a) = N ±

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
Proof. We use the formula found in Proposition 16.18 above, along with the following
standard identity, coming from the Taylor formula:∑

k≥0

(
p

2k

)
x2k =

(1 + x)p + (1− x)p

2

By using this identity, Proposition 16.18 reformulates as follows:

N

∫ ( χ
N

)p
=

1

2

∫
TN

(
1 +

∣∣∣∣∑i ai
N

∣∣∣∣)p +

(
1−

∣∣∣∣∑i ai
N

∣∣∣∣)p da
Now by multiplying by Np−1, we obtain the following formula:∫

χk =
1

2N

∫
TN

(
N +

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
)p

+

(
N −

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
)p

da

But this gives the formula in the statement, and we are done. �

We can further improve the above result, by reducing the maps Ψ± appearing there to
a single one, and we are led to the following statement:
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Theorem 16.20. For F2 ⊗Q FH , with Q ∈M2×N(T) generic, we have

µ =

(
1− 1

N

)
δ0 +

1

N
Φ∗ε

where ε is the uniform measure on Z2 × TN , and where the blowup map is:

Φ(e, a) = N + e

∣∣∣∣∣∑
i

ai

∣∣∣∣∣
Proof. This is clear indeed from Proposition 16.19 above. �

Let us go back now to the general case, whereM,N ∈ N are arbitrary. The problem that
we would like to solve is that of finding the good regime, M = f(K), N = g(K), K →∞,
where the measure in Theorem 16.16 converges, after some suitable manipulations.

We denote by NC(p) the set of noncrossing partitions of {1, . . . , p}, and for π ∈ P (p)
we denote by |π| ∈ {1, . . . , p} the number of blocks. We will need:

Proposition 16.21. With M = αK,N = βK, K →∞ we have:

cp
Kp−1

'
p∑
r=1

#
{
π ∈ NC(p)

∣∣∣|π| = r
}
αr−1βp−r

In particular, with α = β we have:

cp '
1

p+ 1

(
2p

p

)
(αK)p−1

Proof. We use the combinatorial formula in Theorem 16.16 above. Our claim is that, with
π = ker(i1, . . . , ip), the corresponding contribution to cp is:

Cπ '

{
α|π|−1βp−|π|Kp−1 if π ∈ NC(p)

O(Kp−2) if π /∈ NC(p)

As a first observation, the number of choices for a multi-index (i1, . . . , ip) ∈ Xp satis-
fying ker i = π is:

M(M − 1) . . . (M − |π|+ 1) 'M |π|

Thus, we have the following estimate:

Cπ 'M |π|−1N−1#
{
d1, . . . , dp ∈ Y

∣∣∣[dα|α ∈ b] = [dα−1|α ∈ b], ∀b ∈ π
}

Consider now the following partition:

σ = ker d

The contribution of σ to the above quantity Cπ is then given by:

∆(π, σ)N(N − 1) . . . (N − |σ|+ 1) ' ∆(π, σ)N |σ|
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Here the quantities on the right are as follows:

∆(π, σ) =

{
1 if |b ∩ c| = |(b− 1) ∩ c|,∀b ∈ π,∀c ∈ σ
0 otherwise

We use now the standard fact that for π, σ ∈ P (p) satisfying ∆(π, σ) = 1 we have:

|π|+ |σ| ≤ p+ 1

In addition, the equality case is well-known to happen when π, σ ∈ NC(p) are inverse
to each other, via Kreweras complementation. This shows that for π /∈ NC(p) we have
Cπ = O(Kp−2), and that for π ∈ NC(p) we have:

Cπ ' M |π|−1N−1Np−|π|−1

= α|π|−1βp−|π|Kp−1

Thus, we have obtained the result. �

We denote by D the dilation operation, Dr(law(X)) = law(rX). We have:

Theorem 16.22. With M = αK,N = βK, K →∞ we have:

µ =

(
1− 1

αβK2

)
δ0 +

1

αβK2
D 1

βK
(πα/β)

In particular with α = β we have:

µ =

(
1− 1

α2K2

)
δ0 +

1

α2K2
D 1

αK
(π1)

Proof. At α = β, this follows from Proposition 16.21. In general now, we have:
cp

Kp−1
'

∑
π∈NC(p)

α|π|−1βp−|π|

=
βp

α

∑
π∈NC(p)

(
α

β

)|π|
=

βp

α

∫
xpdπα/β(x)

When α ≥ β, where dπα/β(x) = ϕα/β(x)dx is continuous, we obtain:

cp =
1

αK

∫
(βKx)pϕα/β(x)dx

=
1

αβK2

∫
xpϕα/β

(
x

βK

)
dx

But this gives the formula in the statement. When α ≤ β the computation is similar,
with a Dirac mass as 0 dissapearing and reappearing, and gives the same result. �



294 TEO BANICA

Let us state as well an explicit result, regarding densities:

Theorem 16.23. With M = αK,N = βK, K →∞ we have:

µ =

(
1− 1

αβK2

)
δ0 +

1

αβK2
·
√

4αβK2 − (x− αK − βK)2

2πx
dx

In particular with α = β we have:

µ =

(
1− 1

α2K2

)
δ0 +

1

α2K2
·

√
4αK
x
− 1

2π

Proof. According to the formula for the density of the free Poisson law, the density of the
continuous part D 1

βK
(πα/β) is indeed given by:√

4α
β
− ( x

βK
− 1− α

β
)2

2π · x
βK

=

√
4αβK2 − (x− αK − βK)2

2πx

With α = β now, we obtain the second formula in the statement, and we are done. �

Observe that at α = β = 1, where M = N = K →∞, the above measure is:

µ =

(
1− 1

K2

)
δ0 +

1

K2
D 1

K
(π1)

This measure is supported by [0, 4K]. On the other hand, since the groups ΓM,N are
all amenable, the corresponding measures are supported on [0,MN ], and so on [0, K2] in
the M = N = K situation. The fact that we do not have a convergence of supports is
not surprising, because our convergence is in moments.

There are many interesting questions that are still open, regarding the computation of
the spectral measure in the case where the parameter matrix Q is not generic, and also
regarding the computation for the deformations of the generalized Fourier matrices, which
are not necessarily of Diţă type. We refer here to [12], [15], [41] and related papers.
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tochastic matrices, N=3 and N=4, Comm. Math. Phys. 259 (2005), 307–324.

[38] H. Bercovici and V. Pata, Stable laws and domains of attraction in free probability theory, Ann. of
Math. 149 (1999), 1023–1060.

[39] J. Bichon, Free wreath product by the quantum permutation group, Alg. Rep. Theory 7 (2004),
343–362.

[40] J. Bichon, Algebraic quantum permutation groups, Asian-Eur. J. Math. 1 (2008), 1–13.
[41] J. Bichon, Quotients and Hopf images of a smash coproduct, Tsukuba J. Math. 39 (2015), 285–310.
[42] P. Biran, M. Entov and L. Polterovich, Calabi quasimorphisms for the symplectic ball, Commun.

Contemp. Math. 6 (2004), 793–802.
[43] G. Björck, Functions of modulus 1 on Zn whose Fourier transforms have constant modulus, and

cyclic n-roots, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 315 (1990), 131–140.
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[62] P. Diţă, Some results on the parametrization of complex Hadamard matrices, J. Phys. A 37 (2004),

5355–5374.
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