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Abstract
The VC-dimension of a set system is a way to capture its complexity and has been a key pa-
rameter studied extensively in machine learning and geometry communities. In this paper, we
resolve two longstanding open problems on bounding the VC-dimension of two fundamental set
systems: k-fold unions/intersections of half-spaces and the simplices set system. Among other
implications, it settles an open question in machine learning that was first studied in the founda-
tional paper of Blumer et al. (1989) as well as by Eisenstat and Angluin (2007) and Johnson (2008).

Keywords: VC-dimension, union of concepts, intersection of concepts, combinatorial problems,
PAC learning

1. Introduction

Let (X,R) be a set system, where X is a set of elements and R is a set of subsets of X. In the
theory of learning, the elements of R are also called concepts, and R is called a concept class on X.
For any integer k ≥ 2, define the k-fold union of R as the set system induced on X by the ranges

Rk∪ = {R1 ∪ · · · ∪Rk : R1, . . . , Rk ∈ R} .

Similarly, one can define the k-fold intersection of R, denoted by Rk∩, as the set system consisting
of all subsets derived from the common intersection of at most k sets of R. Note that as the
subsets R1, . . . , Rk need not necessarily be distinct, we have R ⊆ Rk∪ and R ⊆ Rk∩. Analogously,
the k-fold symmetric difference of R is defined as Rk⊕ = {R1 ⊕ · · · ⊕Rk : R1, . . . , Rk ∈ R} , where
R1 ⊕ · · · ⊕Rk is the set of those elements that are contained in an odd number of R1, . . . , Rk.

One of the fundamental measures of complexity of a set system is its Vapnik-Chervonenkis
dimension, or in short, VC-dimension. Given a set system (X,R), for any set Y ⊆ X, define the
projection of R onto Y as

R|Y = {Y ∩R : R ∈ R} .

We say that R shatters Y if |R|Y | = 2|Y |; in other words, any subset of Y can be derived as the
intersection of Y with an element of R. The VC-dimension of R, denoted by VC-dim(R), is the size
of the largest subset of X that can be shattered by R. Originally introduced in statistical learning by
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Vapnik and Chervonenkis (1971), it has turned out to be a key parameter in several areas, including
learning theory, combinatorics, and computational geometry.

1.1 Learning Theory.

In learning theory, the VC-dimension of a concept class measures the difficulty of learning a concept
of the class. The foundational paper of Blumer et al. (1989) states that “the essential condition
for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension”. Among their
results, they prove the following theorem.

Theorem A (Blumer et al. 1989) Let (X,R) be a set system and k be any positive integer. Then

VC-dim
(
Rk∪) = O

(
VC-dim (R) · k log k

)
,

VC-dim
(
Rk∩) = O

(
VC-dim (R) · k log k

)
.

Moreover, there are set systems such that VC-dim
(
Rk∪) = Ω (VC-dim (R) · k) and

VC-dim
(
Rk∩) = Ω (VC-dim (R) · k).

Remark. The upper bound holds in a more general setting: for any fixed set-theoretic expression
F (R1, R2, . . . , Rk) (consisting of operations of set union, intersection, and difference) and range
set Rk∗ := {F (R1, . . . , Rk) : R1, . . . , Rk ∈ R}, we have VC-dim(Rk∗) = O(VC-dim (R) · k log k)
(see eg. Matoušek, 2002, chap. 10). In particular, VC-dim

(
Rk⊕) = O (VC-dim (R) · k log k).

They also considered the question of whether the upper bounds of Theorem A are tight in the
most basic geometric case when X ⊆ Rd is a set of points and R is the projection of the family of all
half-spaces of Rd onto X. They proved that the VC-dimension of the k-fold union of half-spaces in
two dimensions is exactly 2k+1. For general dimensions d ≥ 3, they upper-bound the VC-dimension
of the k-fold union of half-spaces by O(d · k log k). This follows from Theorem A together with the
fact that the VC-dimension of the set system induced by half-spaces in Rd is d+ 1. The same upper
bound holds for the VC-dimension of the k-fold intersection of half-spaces in Rd. Later Dobkin
and Gunopulos (1995) showed that the VC-dimension of the k-fold union of half-spaces in R3 is
upper-bounded by 4k.

Eisenstat and Angluin (2007) proved, by giving a probabilistic construction of an abstract set
system, that the upper bound of Theorem A is asymptotically tight if VC-dim (R) ≥ 5 and that
for VC-dim (R) = 1, an upper bound of k holds which is tight. A few years later, Eisenstat
(2009) filled the gap by showing that there exists a set system (X,R) of VC-dimension 2 such that
VC-dim

(
Rk∪) = Ω (VC-dim (R) · k log k).

For d ≥ 4, the current best upper-bound for the k-fold union and the k-fold intersection of
half-spaces in Rd is still the one given by Theorem A almost 30 years ago, while the lower-bound
has remained Ω (VC-dim(R) · k). We refer the reader to the PhD thesis of Johnson (2008) for a
summary of the bounds on VC-dimensions of these basic combinatorial and geometric set systems.

1.2 Computational Geometry.

The following set system is fundamental in computational geometry. Given a set H of hyperplanes
in Rd, define

∆ (H) =
{
H′ ⊆ H : ∃ an open d-dimensional simplex S in Rd such that

H ∈ H intersects S if and only if H ∈ H′
}
.
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Its importance derives from the fact that it is the set system underlying the construction of cuttings
via random sampling (see Chazelle and Friedman 1990 as well as the recent survey of Mustafa and
Varadarajan 2017, to appear). Cuttings are the key tool for fast point-location algorithms and
were studied in detail recently by Ezra et al. (2017). They provided the best bounds so far for the
VC-dimension of ∆(H).

Lemma B (Ezra et al. 2017) For d ≥ 9, we have

d (d+ 1) ≤ VC-dim (∆ (H)) ≤ 5 · d2 log d.

2. Our Results

For some time now, it has generally been expected that VC-dim
(
Rk∪) = VC-dim

(
Rk∩) = O (dk)

for the k-fold unions and intersections of half-spaces. This upper-bound indeed holds for a related
notion: the primal shattering dimension of the k-fold unions and intersections of half-spaces is O(dk).
In fact, as it was pointed out by Bachem (2018), several papers in learning theory assume the same
for VC-dimension. Likewise for computational geometry literature: for example, the coreset size
bounds in the constructions of Feldman and Langberg (2011), Balcan et al. (2013), and Lucic et al.
(2016) would require an additional log k factor in the coreset size—if the upper-bound of Theorem A
was tight for the k-fold intersection of half-spaces.

In this paper, we resolve the question of VC-dimension for the above two set systems. Our proofs
are short and we make an effort to keep them self-contained.

We show an optimal lower-bound on the VC-dimension of the k-fold union, the k-fold intersection,
and the k-fold symmetric difference of half-spaces in Rd, matching the O(d · k log k) upper bound
of Theorem A, and thus settling affirmatively one of the main open questions studied by Eisenstat
and Angluin (2007), Johnson (2008), and Eisenstat (2009).

Theorem 1 Let k be a given positive integer and d ≥ 4 be an integer. Then there exists a set P of
points in Rd such that the set system R induced on P by half-spaces satisfies

a) VC-dim
(
Rk∪) = Ω

(
VC-dim(R) · k log k

)
= Ω

(
d · k log k

)
,

b) VC-dim
(
Rk∩) = Ω

(
VC-dim(R) · k log k

)
= Ω

(
d · k log k

)
,

c) VC-dim
(
Rk⊕) = Ω

(
VC-dim(R) · k log k

)
= Ω

(
d · k log k

)
.

Remark 1. This statement also provides a non-probabilistic proof of the lower-bound of Eisenstat
and Angluin (2007).

Remark 2. Note that a set of points is shattered by (the k-fold union of) closed half-spaces if
and only if it is shattered by (the k-fold union of) open half-spaces. Thus Theorem 1 also holds
for open half-spaces.

Remark 3. Observe that if R := {Rd \R : R ∈ R}, then VC-dim(R) = VC-dim(R) and

VC-dim
(
Rk∩) = VC-dim

(
Rk∩

)
= VC-dim

(
Rk∪)

.

holds by the De Morgan laws. Since for half-spaces R = R, part a) of Theorem 1 implies part b).

Using Theorem 1, we show an asymptotically optimal bound on the VC-dimension of ∆(H), improv-
ing the bound of Ezra et al. (2017) and resolving a question that was studied in the computational
geometry community starting in the 1980s.
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Theorem 2 Let d ≥ 4 be a given integer. Then there exists a set H of Ω
(
d2 log d

)
hyperplanes in

Rd such that ∆ (H) = 2H, that is, we have

VC-dim (∆ (H)) = Ω
(
d2 log d

)
.

Remark. In fact, we prove a more general result bounding the VC-dimension of the set system
induced by intersection of hyperplanes with k-dimensional simplices in Rd. See Section 4 for
details.

Organization. Section 3 contains the proof of Theorem 1 and Section 4 contains the proof of
Theorem 2.

3. Proof of Theorem 1.

We prove the theorem for d even, starting from d = 4. The asymptotic lower-bound for odd values
of d follows from the one in Rd−1. The starting point of the proof is the following lemma.

Lemma 3 (Kupavskii et al., 2016, Lemma 2) Let n, d′ ≥ 2 be integers. Then there exists a
set Bn,d′ of axis-parallel boxes in Rd′

, with |Bn,d′ | = (d′ − 1) (n+ 1) 2n−2, such that for any subset

S ⊆ Bn,d′ , there exists a set Q of points in Rd′
such that |Q| = 2n−1 and

(i) |Q ∩B| = 1 for any B ∈ Bn,d′ \ S, and

(ii) Q∩B = ∅ for any B ∈ S.

Remark. In Kupavskii et al. (2016) this lemma is stated in a weaker form, however the above
stronger statement is implicit in their proof.

Let d′ =
⌊
d
2

⌋
and apply Lemma 3 with n = blog kc+ 1 in Rd′

to get a set B = Bn,d′ of boxes in Rd′
.

By translation, we can assume that all coordinates of points lying in each box in B are positive.
Now we will construct the following mappings:

set of boxes B in Rd/2
π

−−−−−−→ points in Rd,

points in Rd/2
β

−−−−−−→ boxes in Rd
γ

−−−−−−→ half-spaces in Rd.

We will then prove the key property of these mappings, that for any q ∈ Rd/2 and B ∈ B

q ∈ B
(1)

⇐====⇒ π(B) ∈ β(q)
(2)

⇐====⇒ π(B) ∈ γ(β(q)).

We first define mappings π and β, with π : B → Rd and with β mapping points in Rd′
to axis-parallel

boxes in Rd, such that for any B ∈ B and q ∈ Rd′
, we have

q ∈ B ⇐⇒ π(B) ∈ β(q). (1)

• Let B ∈ B be defined as the product of d′ intervals:

B = [x1, x
′
1]× [x2, x

′
2]× · · · × [xd′ , x′d′ ], with xi, x

′
i > 0 for each i ∈ [d′].

Then π maps B in Rd′
to the following point in Rd (see Pach and Tardos, 2013)

π(B) =

(
x1,

1

x′1
, x2,

1

x′2
, . . . , xd′ ,

1

x′d′

)
∈ Rd,

and we let π(B) := {π(B) : B ∈ B}.
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• For any point q = (q1, q2, . . . , qd′) ∈ Rd′
, define β(q) to be the box

β(q) = [0, q1]×
[
0,

1

q1

]
× · · · × [0, qd′ ]×

[
0,

1

qd′

]
⊂ Rd.

Proposition 4 The mappings π and β satisfy (1).

Proof Let q = (q1, q2, . . . , qd′) be a point in Rd′
and B = [x1, x

′
1] × [x2, x

′
2] × · · · × [xd′ , x′d′ ] be an

axis-parallel box in Rd′
. Then q ∈ B if and only if xi ≤ qi ≤ x′i for all i ∈ [d′].

On the other hand, π(B) lies in β(q) if and only if 0 ≤ xi ≤ qi and 0 ≤ 1/x′i ≤ 1/qi for each
i ∈ [d′]—or equivalently, 0 ≤ xi ≤ qi and qi ≤ x′i for each i ∈ [d′].

Note that these two conditions are exactly the same, implying (1).

Recall that B = Bn,d′ is the set of boxes provided by Lemma 3 with parameters d′ =
⌊
d
2

⌋
and

n = blog kc+ 1. Thus we have

|B| =
(⌊

d

2

⌋
− 1

)
blog kc2blog kc−1.

Proposition 5 (“Lifted dual version” of Lemma 3) π(B) is a set of
(⌊

d
2

⌋
− 1
)
blog kc2blog kc−1

points in Rd such that for any subset T ⊆ π(B), there is a set Q∗ of at most k axis-parallel boxes in
Rd such that

(i) each point of T is contained in exactly one box in Q∗, and
(ii) no point of π(B) \ T is contained in any box of Q∗.

In particular, π(B) is shattered by the set system induced by the k-fold union of axis-parallel boxes
in Rd and also shattered by the set system induced by the k-fold symmetric difference of axis-parallel
boxes in Rd.

Proof Let S =
{
π−1(p) : p ∈ π(B) \ T

}
. By Lemma 3, there is a set Q of at most k points in Rd′

such that (i), (ii) of Lemma 3 hold for S and Q. Letting Q∗ = {β(q) : q ∈ Q}, the claim follows
from (1).

Next we define the function γ(·) mapping boxes in Rd to half-spaces in Rd such that for any point
p ∈ π(B) and box B = β(q), we have

p ∈ B ⇐⇒ p ∈ γ(B). (2)

For every i ∈ [d], let 0 < αi,1 < αi,2 < . . . denote the sequence of distinct values of the xi-
coordinates of the elements of π(B). Every such sequence has length at most |π(B)|. By re-scaling
the coordinates, we can assume that

for each i ∈ [d] and j ≤ |π (B) |, αi,j+1

αi,j
> d. (3)

Denote the resulting point set by P. Note that scaling along each coordinate does not change
incidences with respect to axis-parallel boxes, thus Proposition 5 still holds if we replace π(B) by P
and that |P| = |π(B)| = |B|.

We claim that P is shattered by the set system induced by the k-fold union of half-spaces in Rd

and also shattered by the set system induced by the k-fold symmetric difference of half-spaces in
Rd. To see that, let P ′ be any subset of P. Let Q∗ be the set of axis-parallel boxes corresponding
to P ′ provided by Proposition 5.
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For each box B ∈ Q∗, we can re-scale B if necessary, without changing its intersection with P
so that B is of the form

B = [0, b1]× [0, b2]× · · · × [0, bd],

where each bi is equal to αi,ji , for a suitable ji. Now for each box B ∈ Q∗, we define a half-space
γ(B) as the set of points (x1, . . . , xd) ∈ Rd satisfying

x1

b1
+
x2

b2
+ · · ·+ xd

bd
≤ d. (4)

Clearly for any point (x1, . . . , xd) contained in the box B, we have xi ∈ [0, bi] and thus each term
on the left-hand side of the Equation (4) is at most 1. This implies that B ⊂ γ(B) and so any point
in the box B lies in the half-space γ(B).

On the other hand, for any point (x1, . . . , xd) ∈ P \ B, there exists an index i ∈ [d] such that
xi > bi. By (3), we have that xi/bi > d, and thus (x1, . . . , xd) cannot lie in the half-space γ(B).

Consider the set of at most k half-spaces defined as H = {γ(B) : B ∈ Q∗}. Now by Proposition
5 and (2), we have

(i) each point of P ′ is contained in exactly one half-space in H, and

(ii) no point of P \ P ′ is contained in any half-space of H.

In other words, the union as well as the symmetric difference of the half-spaces inH contains precisely
the set P ′. As this is true for any P ′ ⊆ P, the k-fold union of half-spaces in Rd shatters P and the
same holds for the k-fold symmetric difference of half-spaces in Rd. Finally, we have

|P| = |B| =
(⌊

d

2

⌋
− 1

)
blog kc2blog kc−1 = Ω (d · k log k) ,

as desired.

4. Proof of Theorem 2.

Given a set H of hyperplanes in Rd, define the set system

∆k (H) =
{
H′ ⊆ H : ∃ an open k-dimensional simplex S in Rd such that

H ∈ H′ if and only if H intersects S
}
.

We prove the following more general theorem from which Theorem 2 follows immediately by setting
k = d.

Theorem 6 For any integer d ≥ 4 and k ≤ d, there exists a set H of Ω (dk log k) hyperplanes in
Rd such that |∆k(H)| = 2|H|, that is, we have

VC-dim (∆k (H)) = Ω (d · k log k) .

Proof Apply Theorem 1 to get a set P of Ω (dk log k) points in Rd that is shattered by the k-fold
union of open half-spaces. Using point-hyperplane duality (see eg. Matoušek, 2002), map each point
p ∈ P to a hyperplane α(p) by

p = (p1, . . . , pd) 7−→ α(p) :=
{

(x1, . . . , xd) : p1x1 + p2x2 + · · ·+ pd−1xd−1 − xd = −pd
}
.

Our desired set H of hyperplanes will simply be

H =
{
α(p) : p ∈ P

}
.

6



Tight Lower Bounds on the VC-dimension of Geometric Set Systems

It is easy to check that the mapping α is injective and thus |H| = |P| = Ω(dk log k). We claim
that H is shattered by the set system induced by open k-dimensional simplices; in other words,
for any H′ ⊆ H, there exists a k-dimensional simplex S such that the interior of S intersects each
hyperplane of H′, and no hyperplane of H \H′.

Fix any H′ ⊆ H and let P ′ = α−1 (H′) be the corresponding points of P. Then there exists a
set H(P ′) of k open half-spaces whose union contains all points in P ′ and no point in P \ P ′. From
Equation (4), it follows that each half-space in H(P ′) is of the form

x1

b1
+
x2

b2
+ · · ·+ xd

bd
< d,

where b1, . . . , bd are positive reals. Map each half-space H ∈ H(P ′) to the point δ(H), given by

H =

{
(x1, . . . , xd) :

x1

b1
+
x2

b2
+ · · ·+ xd

bd
< d

}
7−→ δ(H) :=

(
bd
b1
, . . . ,

bd
bd−1

, d · bd
)
.

It is easy to verify that for a point p ∈ Rd and the half-space H, we have

p ∈ H ⇐⇒ p1

b1
+
p2

b2
+ · · ·+ pd

bd
< d

⇐⇒ p1 ·
bd
b1

+ p2 ·
bd
b2

+ · · ·+ pd−1 ·
bd
bd−1

+ pd < d · bd

⇐⇒ point

(
bd
b1
,
bd
b2
, . . . ,

bd
bd−1

, d · bd
)

lies strictly above the hyperplane

p1x1 + p2x2 + · · ·+ pd−1xd−1 − xd = −pd
⇐⇒ the point δ(H) lies strictly above the hyperplane α(p). (5)

Here we crucially needed the fact that all half-spaces in H(P ′) are downward facing, that is, each
half-space in H(P ′) contains the origin, which lies below (with respect to the xd-coordinate) its
bounding hyperplane.

Now consider the k open half-spaces in H(P ′) and let

∆′ = {δ(H) : H ∈ H(P ′)}

be k points in Rd. From the relation (5), it follows that

• As each point p ∈ P ′ lies in some half-space H ∈ H(P ′), the point δ(H) lies strictly above the
hyperplane α(p) in H—or equivalently, the hyperplane α(p) has at least one of the k points in
the set ∆′ lying strictly above it.

• For each point p ∈ P \ P ′, all the k points in ∆′ lie on or below the hyperplane α(p) ∈ H.

Then, by the above discussion, H ∈ H′ if and only if one of these is true:

1. H intersects the interior of conv (∆′) and so at least one vertex of ∆′ lies strictly above H, or

2. H does not intersect conv (∆′), but then all vertices of ∆′ lie strictly above H.

Finally consider the k-dimensional simplex

S = conv
(

∆′
⋃

(0, . . . , 0,−∞)
)
.

Clearly, a hyperplane H ∈ H intersects the interior of S if and only if H ∈ H′. Note that the point
(0, . . . , 0,−∞) can be any point (0, . . . , 0, t) for a small-enough value of t ∈ R. This concludes the
proof.
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