

Natural Interaction in Virtual Reality: Impact on the Cognitive Load

Thomas Galais, Rémy Alonso, Alexandra Delmas

▶ To cite this version:

Thomas Galais, Rémy Alonso, Alexandra Delmas. Natural Interaction in Virtual Reality: Impact on the Cognitive Load. The Human Factors and Ergonomics Society / Europe (hfes europe chapter), Oct 2019, Nantes, France. hal-02316908

HAL Id: hal-02316908 https://hal.science/hal-02316908v1

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

onepoint

beyond the obvious

Natural Interaction in Virtual Reality Impact on the Cognitive Load

Thomas Galais, Rémy Alonso, Alexandra Delmas – onepoint, R&D department t.galais @groupeonepoint.com

01 Introduction

Controller constraints¹

- Hold it in a certain manner
- Have it available
- Learn the button to action mapping

Natural interaction

Natural User Interface² Scognitive load

02 Related Work

Hand gestures

Problem: Cognitive load not evaluated

03 Objective

Design more natural interactions in virtual reality:

Compare gestural interaction to traditional controllers

Evaluate their respective impact on the cognitive load 2

04 Experimental Evaluation

Participants: 11 experimented users / 8 novice users

Experimental task

Replace 9 cubes in the right position and orientation

Randomized trial

Leap Motion[®] and controllers

05 Preliminary Results

NASA-TLX Results (Leap Motion® vs. controllers)

Leap Motion® Controllers

Measures

Objective: performance	Subjective: cognitive load (NASA-TLX ⁵)	
Execution time (seconds)	Mental demand	Performance
Number of user's errors	Physical demand	Effort
Number of detection errors	Temporal demand	Frustration

Procedure

Figure 1: Cognitive load results obtained with NASA-TLX for Leap Motion® and controller groups, for both novice and expert participants

Figure 2: Performance results for Leap Motion® and controller groups, for both novice and expert participants: A) execution time, B) detection errors, C) user's errors

Questionnaire

05 Discussion and conclusion

Limitations

Perspectives

- Reliability of Leap Motion®
- No continuous hand tracking
- No haptic feedback⁷
- Haptic gloves
- Other hand tracking sensors
- Other cognitive load
 - measures⁸ (eye-tracking...)

06 References

- Pfeuffer, K., Mayer, B., Mardanbegi, D., & Gellersen, H. (2017, October). Gaze+ pinch interaction in virtual reality. In Proceedings of the 5th Symposium on Spatial User Interaction (pp. 99-108). ACM.
- Wigdor, D., & Wixon, D. (2011). Brave NUI world: designing natural user interfaces for touch and gesture. Elsevier. 2.
- Caggianese, G., Gallo, L., & Neroni, P. (2018, June). The Vive controllers vs. Leap motion for interactions in virtual environments: A comparative evaluation. In International Conference on Intelligent Interactive Multimedia Systems and Services (pp. 24-33). Springer, Cham.
- Zhang, F., Chu, S., Pan, R., Ji, N., & Xi, L. (2017, May). Double hand-gesture interaction for walk-through in VR environment. In 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) (pp. 539-544). IEEE.
- 5. Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139-183). North-Holland.
- 6. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The international journal of aviation psychology, 3(3), 203-220.
- 7. Lok, B., Naik, S., Whitton, M., & Brooks, F. P. (2003). Effects of handling real objects and self-avatar fidelity on cognitive task performance and sense of presence in virtual environments. Presence: Teleoperators & Virtual Environments, 12(6), 615-628.
- Fridman, L., Reimer, B., Mehler, B., & Freeman, W. T. (2018, April). Cognitive load estimation in the wild. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (p. 652). ACM.