
HAL Id: hal-02316904
https://hal.science/hal-02316904v1

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parsimonious Monitoring Approach for Link
Bandwidth Estimation within SDN-based Networks

El-Fadel Bonfoh, Samir Medjiah, Christophe Chassot

To cite this version:
El-Fadel Bonfoh, Samir Medjiah, Christophe Chassot. A Parsimonious Monitoring Approach for
Link Bandwidth Estimation within SDN-based Networks. 4th IEEE Conference on Network Soft-
warization and Workshops (NetSoft 2018), Jun 2018, Montreal, Canada. pp.512-516, �10.1109/NET-
SOFT.2018.8459972�. �hal-02316904�

https://hal.science/hal-02316904v1
https://hal.archives-ouvertes.fr

A Parsimonious Monitoring Approach for Link
Bandwidth Estimation within SDN-based Networks

El-Fadel Bonfoh
LAAS-CNRS

University of Toulouse, INSA
Toulouse, France
efbonfoh@laas.fr

Samir Medjiah
LAAS-CNRS

University of Toulouse, UPS
Toulouse, France
medjiah@laas.fr

Christophe Chassot
LAAS-CNRS

University of Toulouse, INSA
Toulouse, France
chassot@laas.fr

Abstract—Resource monitoring is a key task in network
management. The concept of Software Defined Networking
(SDN) allows taking benefits of the advantages of both active and
passive monitoring techniques. However, this monitoring has a
cost, hence the importance of the selection of the “key” switches
to be interrogated and their polling frequency in order to reduce
monitoring cost. This cost is expressed here in term of computing
time. Monitoring of links can be used to determine the available
bandwidth on each link, with the aim to meet the applicative QoS
requirements based on appropriate routing. In this context, this
paper first provides a formulation of the problem of choosing key
switches as a vertex cover problem and proposes a heuristic
method to solve the formulated problem. It then provides an
implementation and a performance evaluation of the proposed
algorithm within the Floodlight SDN controller. These
performances are compared to those of the currently existing
Floodlight monitoring module. Finally, we present one
application of our proposed monitoring.

Keywords — Network monitoring; Software Defined
Networking; QoS; Vertex cover problem.

I. INTRODUCTION
Monitoring network resources is essential to perform

network operations such as anomalies detection. It consists of
measuring the activity of the different elements of a network
(switch, router, link, ...). These measures are used, among
others, to ensure proper data routing and better load
distribution. Historically, there are two types of monitoring:
passive monitoring and active monitoring [1].

Passive monitoring consists of measuring or deducing
performance-oriented criteria of an entire network from the
observation of the state of the routers and switches that
compose this network. The “real” traffic is then little impacted
by that kind of the monitoring. However, such a performance
measurement approach is tricky to deploy; it also poses safety
problems when observing the state of a device as it requires
the installation of an agent as in SNMP [2].

With active monitoring, additional packets that perform
measurements are injected into the network. For example, the
famous ping [3] command sends ICMP [4] packets across the
network to test the reachability of a machine [1]. If this

technique has the advantage of being easily deployable, it has
the disadvantage of increasing the traffic load.

The concept of Software Defined Networking (SDN) [5]
allows taking benefits of the advantages of both passive and
active monitoring techniques thanks to a centralized
controller. By having a global view of the network, this
controller is able, without installing agents, to monitor the
state of the switches and to retrieve information on active
flows.

However, monitoring an SDN network has a cost that can
be expressed in calculation time and/or in a number of
messages exchanged between the switches and the SDN
controller. Indeed, retrieving an information on a switch
requires a request/response exchange, hence the importance of
the choice of switches to be polled and their polling times. In
this paper, we mainly focus on the former problem.

The selection of the "key" switches is essentially guided by
the aim of the monitoring. FlowCover [6] proposes for
instance to query only the switches that allow covering all
network flows. OpenTM [7] develops several algorithms for
selecting the switches to be interrogated ranging from a
random selection to a selection of the least loaded switches.

To the best of our knowledge, there is currently no
approach allowing to choose the key switches in order to
cover all the links. However, link monitoring may be useful to
determine the available bandwidth on each link, with the
interest (for example) to meet the QoS requirements of an
application based on appropriate routing.

In this context, the technical contributions of this paper are
as follows:

● the problem of choosing the key switches is first
formulated as a vertex cover problem [8],

● a heuristic method is then proposed to solve the
problem,

● the corresponding algorithm is finally implemented
as a Floodlight [9] controller module; its
performances are evaluated and compared to that of

an existing Floodlight module, which, monitors all
links, naively queries all switches in the network.

Based on a case study, Section II first explains the purpose
of a link monitoring. The issue of choosing the key switches is
then formulated as a vertex cover problem. Finally, an
algorithm is proposed and its complexity is discussed. In
Section III, we evaluate the performances of our proposal,
implemented as a Floodlight module, and we compare it to an
existing Floodlight solution. We end section III by a
presentation of a link monitoring application. Section IV
concludes this paper.

II. PROPOSED APPROACH

A. Problem formulation
The aimed goal is to minimize the number of switches to

be polled to continuously monitor all links of the network.

Let us consider the network of Figure 1. It clearly appears
more beneficial, in term of computing time and/or a number of
request/response messages, to interrogate only switches S3
and S4 rather than (for instance) interrogating all switches of
the network. Indeed, S3 and S4 cover the 6 links of the
network. S3 and S4 are here the key switches of the Figure 1
network.

Fig. 1: The case study

(NB: only the links between the switches are considered)

The network is modeled by an undirected graph
 where: (S, L)N =

● is the set of switches, {s , s , ..., s }S = 1 2 n
● is the number of switches in the network, n = S| |
● is the set of links of the network. {l }L = i j i, j ∈ 1, n[]

Let , having value 1 if the switch is chosen , i xsi ∈ 1, n[]
and 0 otherwise. Let denote the degree of the switch eg(s)d i
expressed as the number of incident links (i.e. to which is si
connected). We then search the set of switches that cover all C
the links. The set is called the vertex cover of the graph .C N

Formulated as an integer linear program, the problem may
be expressed as follows:

inimize m ∑

s ∈ Si

xsi

ubject to x 1 ∀ l s : si + xsj ≥ i j ∈ L
with ∀ s Sxsi ∈ {0, 1} i ∈

and , j i ∈ 1, n[]

This formulation is the integer linear program of a vertex
cover problem known to be NP-hard [10]. Let call this
formulation, problem (1).

B. The resolution algorithm

To solve efficiently the NP-hard problem (1), we propose a
heuristic method inspired from Clarkson [11] consisting in:

● selecting a switch of maximum degree,
● removing from the graph all the links that are

incident to the selected switch,
● iterating until the graph no longer has links.

This so-called greedy algorithm is described in Algorithm
1. With , the main loop of the algorithm runs in n = S| | (n)O
time units and it takes time units to find a switch of (log(n))O
a maximum degree in a sorted list of size by binary search n
[12]. Therefore, the complexity of the algorithm is .(nlog(n)) O

Algorithm 1: Key Switches selection

00:
01:
02:
03:
04:
05:
06:
07:
08:
09:
10:

Input: N = (S, L).
Output: C.
begin function
 C ← ∅
 Lc ← L
 while (Lc ≠ ∅)
 Find such that is maximum si eg(s) d i
 C ← C ⋃ {s }i
 Lc ← Lc \ l{ ij}j ≤ n

 end while
 return C
end function

III. EXPERIMENTS AND APPLICATION

A. Implementation

Our solution, whose architecture is shown in Figure 2, has
been implemented as a Floodlight [9] module in Java
language. Floodlight is an open-source SDN Controller
written in Java and containing many modules on which several
SDN Applications can be built. In this paper, we mainly use
four Floodlight modules: Switch Services, Thread Pool, Timer
and Link Discovery.

The polling time is determined in two ways: either
periodically or on an event (such as a link adding, a link
deleting, etc.). The Link Discovery module periodically sends
LLDP [13] packets across the underlying network. These
LLDP packets make it possible to notify the Enhanced
Statistics Collector module (Figure 2). Each time a
notification occurs or following a fixed period, the
determination of the key switches is re-performed.

Fig. 2: Internal structure of our solution

The polling of the switches is carried out through the
modules named Switch Service and Thread Pool. The Switch
Services module provides the necessary services (notification,
identification, status, etc.) for the management of the switches
managed by the controller. The Thread Pool module executes
several processes in parallel and allows aggregation of the
retrieved statistics.

The calculation of the available bandwidth is done between
two times and . At each polling time, we note the number t1 t2
of bytes consumed on the link. This value is made available
through bytes counters [14]. The available bandwidth, whose
formula is given in (2), is the difference between the
bandwidth allocated to the link when it has been created (i.e.
its initial capacity supposed to be static) and the quotient of
the number of bytes exchanged on the link on the time elapsed
between and .t1 t2

W Link BW (2)B = − t − t2 1

Bytes counter value at t − Bytes counter value at t2 1

The difference has an impact on the accuracy of the tt2 − 1
bandwidth estimation. The shorter it is, the better the
calculated bandwidth is up to date, with however an increase
in the monitoring traffic. It is, therefore, necessary to find a
compromise between the precision of computed bandwidth
and the traffic load introduced by the monitoring.

B. Evaluation
For the experiments, we built a testbed based on the

Mininet [15] network emulator. The machine used for the test
has a 3.20GHz Intel Core i5-65000 processor having 4 Gbytes
of RAM.

The Statistics Collector module provided by Floodlight
estimates link bandwidth by a simple polling of all switches.
The computation time of this module has been compared to
our Enhanced Statistics Collector module. The comparative
graph of Figure 3 shows the evolution of this computation
time as a function of the number of switches.

We can see that the computation time of our approach (in
green on Figure 3) remains lower than the computation time
(in red) of the basic module Statistics Collector of Floodlight.
Moreover, we can notice a rapid growth of the Statistics
Collector calculation time with the number of switches while
the calculation time of our approach is not subject to the
number of switches. Reducing compute time is crucial for
real-time applications like bandwidth modification who is
time-sensitive [16]. In the next section, we will show how
useful can be to minimize monitoring computing time.

Fig. 3: Computation time as a function of the number of
switches

C. Application: Bandwidth on Demand Service

Monitoring is prior to traffic engineering tasks like
Bandwidth on Demand (BoD) Service. BoD allows users
(private, enterprise, etc.) to request to change bandwidth [17].
BoD enables network operators to optimize per bit revenues
thanks to an adaptation of the cost to the demand [16]. On the
other hand, users have the opportunities to adapt their
consumption to their needs and so to keep control of the cost.

Typically, user request a flow going from
to , where andSrc, Dst, BW)(cur (Src, Dst, BW) req rcS

are the end-hosts implied in communication, isstD BW cur
the current bandwidth and is the new bandwidth BW req
required by the user. The decision of accepting or rejecting the
request for bandwidth allocation is made by the admission
control module which bases his decision on the information
made available by monitoring module (see Figure 4
algorithm).

Fig. 4: Bandwidth allocation algorithm

During a duration time T, we simulate a real traffic with
several users requesting bandwidth allocation. Users requests
denoted by random variable is exponentially distributed X
[18] with rate parameter λ fixed to ½. Flow removal denoted
by the random variable has a triangular distribution [19] Y
with lower limit upper limit and mode 1,α = 2,β =

. The simulation results are shown in the Figure 5a 3γ =
and Figure 5b. Through this simulation, we can observe that
reducing the monitoring computing time is helpful to improve
the accepted connection hit ratio and therefore increase the
occupation rate of links.

Fig. 5a: The number of accepted request as function of
simulation time

Fig. 5b. The hit ratio for Enhanced Statistics Collector and for

Floodlight Statistics Collector

III. CONCLUSION

In this paper, we proposed a parsimonious monitoring
aimed at reducing the number of switches to be interrogated to
cover all the links within SDN networks. The selected
switches, called "key" switches, have been obtained by solving
a vertex cover problem. The heuristic method used to solve
this problem allowed us to reduce the computational time
needed to estimate the available bandwidth on a link. We
finally showed how our proposed monitoring can leverage to
optimize link utilization.

REFERENCES

[1] N. L. M. Van Adrichem, C. Doerr, F. Kuipers, “OpenNetMon: Network
Monitoring in OpenFlow Software-Defined Networks”, IEEE NOMS,
2014.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A Simple Network
Management Protocol (SNMP)”, RFC 1157 (Historic), Internet
Engineering Task Force, May 1990.

[3] M. Muuss, “The Story of the PING Program”, U.S. Army Research
Laboratory, December 1983.

[4] J. Postel, “Internet Control Message Protocol”, RFC 792, Internet
Engineering Task Force, September 1981.

[5] B. A. A. Nunes, M. Mendonca, X.N. Nguyen, K. Obraczka, and T.
Turletti, “A Survey of Software-Defined Networking: Past, Present and
Future of Programmable Networks”, IEEE Communications Surveys
and Tutorials, Vol. 16, No 3, 2014, pp. 1617-1634.

[6] Z. Su, T. Wang, Y. Xia, M. Hamdi, “FlowCover: Low-cost Flow
Monitoring Scheme in Software Defined Networks”, IEEE Global
Communications Conference (GlobeCom 2014).

[7] A. Tootoonchian, M. Ghobadi, Y. Ganjali, “OpenTM: Traffic Matrix
Estimator for OpenFlow Networks”, PAM 2010.

[8] D. Avis, T. Imamura, “A list heuristic for vertex cover”, Operations Res.
Lett., 35 (2007), pp. 201-204.

[9] “Project Floodlight”, http://www.projectfloodlight.org/, accessed
2017-12-17.

[10] V. V. Vazirani, Approximation Algorithms. Springer-Verlag New York,
Inc., 2001.

[11] K. Clarkson, “A modification to the greedy algorithm for the vertex
cover problem” IPL, vol 16:23-25, (1983).

[12] D. Knuth, Sorting and Searching. The Art of Computer Programming.
1998.

[13] T. Jeffree, “Station and Media Access Control Connectivity Discovery”,
IEEE Standard 802.1AB, 2009.

[14] “OpenFlow switch specification 1.3.0”,
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-cont
ent/uploads/2014/10/openflow-spec-v1.3.0.pdf, accessed 2017-12-17.

[15] “Mininet”, http://mininet.org/, accessed 2017-12-17.
[16] Open Networking Foundation, “Operator Network Monetization

Through OpenFlow-Enabled SDN”,
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-cont
ent/uploads/2013/03/sb-network-monetization.pdf, accessed 2018-01-03.

[17] C. Yin, T.C. Kuo, T.Y. Li, M.C. Chang, B.H. Liao, “Mediating Between
OpenFlow and Legacy Transport Networks for Bandwidth On-Demand
Services”, Asia-Pacific Network Operation and Management
Symposium (APNOMS) 2014.

[18] A. Elfessi and D. M. Reineke, "A Bayesian Look at Classical
Estimation: The Exponential Distribution", Journal of Statistics
Education Volume 9, Number 1 (2001).

[19] C. Kokonendji, T. S. Kiesse, S. S. Zocchi, “Discrete triangular
distributions and non-parametric estimation for probability mass
function”, Journal of Nonparametric Statistics 19 (2007) 241–254.

