El-Fadel Bonfoh
email: efbonfoh@laas.fr

Samir Medjiah
email: medjiah@laas.fr

Christophe Chassot
email: chassot@laas.fr

A Parsimonious Monitoring Approach for Link Bandwidth Estimation within SDN-based Networks

Keywords: Network monitoring, Software Defined Networking, QoS, Vertex cover problem. I

Resource monitoring is a key task in network management. The concept of Software Defined Networking (SDN) allows taking benefits of the advantages of both active and passive monitoring techniques. However, this monitoring has a cost, hence the importance of the selection of the "key" switches to be interrogated and their polling frequency in order to reduce monitoring cost. This cost is expressed here in term of computing time. Monitoring of links can be used to determine the available bandwidth on each link, with the aim to meet the applicative QoS requirements based on appropriate routing. In this context, this paper first provides a formulation of the problem of choosing key switches as a vertex cover problem and proposes a heuristic method to solve the formulated problem. It then provides an implementation and a performance evaluation of the proposed algorithm within the Floodlight SDN controller. These performances are compared to those of the currently existing Floodlight monitoring module. Finally, we present one application of our proposed monitoring.

INTRODUCTION

Monitoring network resources is essential to perform network operations such as anomalies detection. It consists of measuring the activity of the different elements of a network (switch, router, link, ...). These measures are used, among others, to ensure proper data routing and better load distribution. Historically, there are two types of monitoring: passive monitoring and active monitoring [START_REF] Van Adrichem | OpenNetMon: Network Monitoring in OpenFlow Software-Defined Networks[END_REF].

Passive monitoring consists of measuring or deducing performance-oriented criteria of an entire network from the observation of the state of the routers and switches that compose this network. The "real" traffic is then little impacted by that kind of the monitoring. However, such a performance measurement approach is tricky to deploy; it also poses safety problems when observing the state of a device as it requires the installation of an agent as in SNMP [START_REF] Case | A Simple Network Management Protocol (SNMP)[END_REF].

With active monitoring, additional packets that perform measurements are injected into the network. For example, the famous ping [START_REF] Muuss | The Story of the PING Program[END_REF] command sends ICMP [START_REF] Postel | Internet Control Message Protocol[END_REF] packets across the network to test the reachability of a machine [START_REF] Van Adrichem | OpenNetMon: Network Monitoring in OpenFlow Software-Defined Networks[END_REF]. If this technique has the advantage of being easily deployable, it has the disadvantage of increasing the traffic load.

The concept of Software Defined Networking (SDN) [START_REF] Nunes | A Survey of Software-Defined Networking: Past, Present and Future of Programmable Networks[END_REF] allows taking benefits of the advantages of both passive and active monitoring techniques thanks to a centralized controller. By having a global view of the network, this controller is able, without installing agents, to monitor the state of the switches and to retrieve information on active flows.

However, monitoring an SDN network has a cost that can be expressed in calculation time and/or in a number of messages exchanged between the switches and the SDN controller. Indeed, retrieving an information on a switch requires a request/response exchange, hence the importance of the choice of switches to be polled and their polling times. In this paper, we mainly focus on the former problem.

The selection of the "key" switches is essentially guided by the aim of the monitoring. FlowCover [START_REF] Su | FlowCover: Low-cost Flow Monitoring Scheme in Software Defined Networks[END_REF] proposes for instance to query only the switches that allow covering all network flows. OpenTM [START_REF] Tootoonchian | OpenTM: Traffic Matrix Estimator for OpenFlow Networks[END_REF] develops several algorithms for selecting the switches to be interrogated ranging from a random selection to a selection of the least loaded switches.

To the best of our knowledge, there is currently no approach allowing to choose the key switches in order to cover all the links. However, link monitoring may be useful to determine the available bandwidth on each link, with the interest (for example) to meet the QoS requirements of an application based on appropriate routing.

In this context, the technical contributions of this paper are as follows:

• the problem of choosing the key switches is first formulated as a vertex cover problem [START_REF] Avis | A list heuristic for vertex cover[END_REF],

• a heuristic method is then proposed to solve the problem, • the corresponding algorithm is finally implemented as a Floodlight [START_REF]Project Floodlight[END_REF] controller module; its performances are evaluated and compared to that of an existing Floodlight module, which, monitors all links, naively queries all switches in the network.

Based on a case study, Section II first explains the purpose of a link monitoring. The issue of choosing the key switches is then formulated as a vertex cover problem. Finally, an algorithm is proposed and its complexity is discussed. In Section III, we evaluate the performances of our proposal, implemented as a Floodlight module, and we compare it to an existing Floodlight solution. We end section III by a presentation of a link monitoring application. Section IV concludes this paper.

II. PROPOSED APPROACH

A. Problem formulation

The aimed goal is to minimize the number of switches to be polled to continuously monitor all links of the network.

Let us consider the network of Figure 1. It clearly appears more beneficial, in term of computing time and/or a number of request/response messages, to interrogate only switches S3 and S4 rather than (for instance) interrogating all switches of the network. Indeed, S3 and S4 cover the 6 links of the network. S3 and S4 are here the key switches of the Figure 1 network.

= i j i, j ∈ 1, n []

Let

, having value 1 if the switch is chosen , i x s i ∈ 1, n [] and 0 otherwise. Let denote the degree of the switch eg(s) d i expressed as the number of incident links (i.e. to which is s i connected). We then search the set of switches that cover all C the links. The set is called the vertex cover of the graph .

C N

Formulated as an integer linear program, the problem may be expressed as follows:

inimize m ∑ s ∈ S i x s i ubject to x 1 ∀ l s : s i + x s j ≥ i j ∈ L with ∀ s S x s i ∈ {0, 1} i ∈ and , j i ∈ 1, n []
This formulation is the integer linear program of a vertex cover problem known to be NP-hard [START_REF] Vazirani | Approximation Algorithms[END_REF]. Let call this formulation, problem [START_REF] Van Adrichem | OpenNetMon: Network Monitoring in OpenFlow Software-Defined Networks[END_REF].

B. The resolution algorithm

To solve efficiently the NP-hard problem (1), we propose a heuristic method inspired from Clarkson [START_REF] Clarkson | A modification to the greedy algorithm for the vertex cover problem[END_REF] consisting in:

• selecting a switch of maximum degree,

• removing from the graph all the links that are incident to the selected switch, • iterating until the graph no longer has links.

This so-called greedy algorithm is described in Algorithm

Input : N = (S, L). Output : C. begin function C ← ∅ Lc ← L while (Lc ≠ ∅) Find such that is maximum s i eg(s) d i C ← C ⋃ {s } i Lc ← L c \ l { ij } j ≤ n
end while return C end function

III. EXPERIMENTS AND APPLICATION

A. Implementation

Our solution, whose architecture is shown in Figure 2, has been implemented as a Floodlight [START_REF]Project Floodlight[END_REF] module in Java language. Floodlight is an open-source SDN Controller written in Java and containing many modules on which several SDN Applications can be built. In this paper, we mainly use four Floodlight modules: Switch Services , Thread Pool , Timer and Link Discovery .

The polling time is determined in two ways: either periodically or on an event (such as a link adding, a link deleting, etc.). The Link Discovery module periodically sends LLDP [START_REF] Jeffree | Station and Media Access Control Connectivity Discovery[END_REF] packets across the underlying network. These LLDP packets make it possible to notify the Enhanced Statistics Collector module (Figure 2). Each time a notification occurs or following a fixed period, the determination of the key switches is re-performed. The calculation of the available bandwidth is done between two times and . At each polling time, we note the number t 1 t 2 of bytes consumed on the link. This value is made available through bytes counters [START_REF]OpenFlow switch specification 1.3.0[END_REF]. The available bandwidth, whose formula is given in [START_REF] Case | A Simple Network Management Protocol (SNMP)[END_REF], is the difference between the bandwidth allocated to the link when it has been created (i.e. its initial capacity supposed to be static) and the quotient of the number of bytes exchanged on the link on the time elapsed between and .

t 1 t 2 W Link BW (2) B = - t -t 2 1
Bytes counter value at t -Bytes counter value at t

2 1
The difference has an impact on the accuracy of the t t 2 -1 bandwidth estimation. The shorter it is, the better the calculated bandwidth is up to date, with however an increase in the monitoring traffic. It is, therefore, necessary to find a compromise between the precision of computed bandwidth and the traffic load introduced by the monitoring .

B. Evaluation

For the experiments, we built a testbed based on the Mininet [START_REF]Mininet[END_REF] network emulator. The machine used for the test has a 3.20GHz Intel Core i5-65000 processor having 4 Gbytes of RAM.

The Statistics Collector module provided by Floodlight estimates link bandwidth by a simple polling of all switches. The computation time of this module has been compared to our Enhanced Statistics Collector module . The comparative graph of Figure 3 shows the evolution of this computation time as a function of the number of switches.

We can see that the computation time of our approach (in green on Figure 3) remains lower than the computation time (in red) of the basic module Statistics Collector of Floodlight. Moreover, we can notice a rapid growth of the Statistics Collector calculation time with the number of switches while the calculation time of our approach is not subject to the number of switches. Reducing compute time is crucial for real-time applications like bandwidth modification who is time-sensitive [START_REF]Operator Network Monetization Through OpenFlow-Enabled SDN[END_REF]. In the next section, we will show how useful can be to minimize monitoring computing time. Monitoring is prior to traffic engineering tasks like Bandwidth on Demand (BoD) Service. BoD allows users (private, enterprise, etc.) to request to change bandwidth [START_REF] Yin | Mediating Between OpenFlow and Legacy Transport Networks for Bandwidth On-Demand Services[END_REF]. BoD enables network operators to optimize per bit revenues thanks to an adaptation of the cost to the demand [START_REF]Operator Network Monetization Through OpenFlow-Enabled SDN[END_REF]. On the other hand, users have the opportunities to adapt their consumption to their needs and so to keep control of the cost. In this paper, we proposed a parsimonious monitoring aimed at reducing the number of switches to be interrogated to cover all the links within SDN networks. The selected switches, called "key" switches, have been obtained by solving a vertex cover problem. The heuristic method used to solve this problem allowed us to reduce the computational time needed to estimate the available bandwidth on a link. We finally showed how our proposed monitoring can leverage to optimize link utilization.

Fig. 1 :

 1 Fig. 1: The case study (NB: only the links between the switches are considered)

 1. With , the main loop of the algorithm runs in n = S | | (n) O time units and it takes time units to find a switch of (log(n)) O a maximum degree in a sorted list of size by binary search n [12]. Therefore, the complexity of the algorithm is .

Fig. 2 :

 2 Fig. 2: Internal structure of our solutionThe polling of the switches is carried out through the modules named Switch Service and Thread Pool . The Switch Service s module provides the necessary services (notification, identification, status, etc.) for the management of the switches managed by the controller. The Thread Pool module executes several processes in parallel and allows aggregation of the retrieved statistics.

Fig. 3 :

 3 Fig. 3: Computation time as a function of the number of switches C. Application: Bandwidth on Demand Service

Fig. 4 :

 4 Fig. 4: Bandwidth allocation algorithm During a duration time T, we simulate a real traffic with several users requesting bandwidth allocation. Users requests denoted by random variable is exponentially distributed X [18] with rate parameter λ fixed to ½. Flow removal denoted by the random variable has a triangular distribution [19] Y with lower limit upper limit and mode 1, α = 2, β = . The simulation results are shown in the Figure 5a 3 γ = and Figure 5b. Through this simulation, we can observe that reducing the monitoring computing time is helpful to improve the accepted connection hit ratio and therefore increase the occupation rate of links.

Fig. 5a :

 5a Fig. 5a: The number of accepted request as function of simulation time