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Abstract

We study agents expressing propositional goals
over a set of binary issues to reach a collective deci-
sion. We adapt properties and rules from the litera-
ture on Social Choice Theory to our setting, provid-
ing an axiomatic characterisation of a majority rule
for goal-based voting. We study the computational
complexity of finding the outcome of our rules (i.e.,
winner determination), showing that it ranges from
Nondeterministic Polynomial Time (NP) to Proba-
bilistic Polynomial Time (PP).

1 Introduction

Social choice and voting have become part of the standard
computational toolbox for the design of rational agents that
need to act in situations of collective choice [Shoham and
Leyton-Brown, 2009; Brandt et al., 2016]. In a variety of
applications ranging from product configuration to multiple
sensor control, the space of alternatives from which a collec-
tive choice needs to be taken is often combinatorial. This has
brought many researchers to introduce compact languages for
preference representation, and to design collective procedures
that act directly on a compactly represented preference input
(see, e.g., the survey by Lang and Xia [2016]).

When facing collective decisions with multiple binary is-
sues, the framework of reference is judgment aggregation
(see, e.g., List [2012], Lang and Slavkovik [2014], and En-
driss [2016]). A vast literature explores the computational
complexity of this framework [Endriss et al., 2012; Baumeis-
ter et al., 2015; de Haan and Slavkovik, 2017] and appli-
cations range from multiagent argumentation [Awad et al.,
2017] to the collective annotation of linguistic corpora [Qing
et al., 2014]. However, when considering collective decision-
making in practice, the rigidity of representing individual
views as complete judgments over issues poses serious ob-
stacles, as becomes evident in the following example inspired
by the traveling group problem [Klamler and Pferschy, 2007]:

Example 1. An automated travel planner is organising a city
trip for a group of friends, Ann, Barbara, and Camille, decid-
ing whether to include a visit to a Church, a Museum, and
a Park. Ann wants to see all the points of interest, Barbara
prefers to have a walk in the Park, and Camille would like

to visit a single point of interest but she does not care about
which one. A judgment-based automated planner would re-
quire agents to specify a full valuation for each of the issues
at stake, obtaining the following:

Church Museum Park

Ann �X �X �X

Barbara �× �× �X

Camille �× �X �×

The result by majority is a plan to visit both the Museum and
the Park. However, Camille voted for the Museum only be-
cause asked for a complete judgment, and she was unable to
express her truthful goal to “visit a single place, no matter
which one” that the result does not satisfy.

The option of allowing individuals to abstain on issues, as
proposed by Dietrich and List [2008] and Dokow and Holz-
man [2010b], is easily seen to be insufficient in modelling
Camille’s preference in Example 1. Moreover, the obvious
candidate for aggregating propositional goals, logic-based be-
lief merging [Konieczny and Pérez, 2002], is quickly ruled
out as its rules are not decisive, i.e., they often output a num-
ber of equally preferred plans. Building on an original idea
of Lang [2004], we use a simple language of propositional
goals to model individual preferences, defining and studying
several rules to find the most preferred common alternative
directly on such input.

A general tension exists in current models of collective de-
cision making in combinatorial domains: on one side is the
decisiveness or resoluteness of the rule—i.e., its ability to
take a unique decision in most situations—and on the other
side are fairness requirements, with respect to issues and in-
dividuals. Resoluteness is the primary concern in the devel-
opment of decision-aid tools such as automated travel plan-
ners, or collective product configurators, to avoid returning to
the users an excessive number of final options to choose from.
Therefore, our purpose is to define rules that are as decisive as
possible, whilst keeping high standards of fairness as defined
by classical work in social choice and economic theory.

Related work. Judgment aggregation can be seen as
goal-based voting in which individuals express single-model
propositional goals. This is particularly evident in the binary
aggregation model [Dokow and Holzman, 2010a; Grandi and
Endriss, 2011], and is also true of judgments with abstentions,
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which correspond to goals specified as partial conjunctions of
(possibly negated) variables. Propositional goals have been
proposed as compact representations of dichotomous pref-
erences over combinatorial alternatives described by binary
variables. Social choice with dichotomous preferences has
been widely studied as a possible solution to the computa-
tional barriers affecting classical preference aggregation (see,
e.g., the recent survey by Elkind et al. [2017]). However,
to the best of our knowledge it has not been applied to com-
binatorial domains such as those studied in this paper. The
vast literature on boolean games [Harrenstein et al., 2001]

studies similar situations in which agents are endowed with
propositional goals; yet, our agents do not strategize and they
control together the value of the issues at stake. Finally, we
acknowledge an attempt at using logic-based belief merging
to represent individual goals, using axiomatic properties from
belief revision [Dastani and van der Torre, 2002].

Paper structure. In Section 2 we introduce the framework
of goal aggregation, presenting our goal-based voting rules.
In Section 3 we list desirable properties for such rules, and
prove a characterisation result. In Section 4 we analyse the
computational complexity of determining the winner of goal-
based voting, and in Section 5 we conclude.

2 Goal-Based Voting

We begin with basic definitions and we introduce voting rules
for goal-based collective decisions in multi-issue domains.

2.1 Basic Definitions

Let N = {1, . . . , n} be a set of agents deciding over a set
I = {1, . . . ,m} of binary issues or propositions. Agent i
has individual goal γi, expressed as a consistent propositional
formula over variables in I (using standard connectives ∧, ∨,
→ and ¬). For instance, in Example 1 Camille’s individual
goal is γ3 = (1∧¬2∧¬3)∨ (¬1∧ 2∧¬3)∨ (¬1∧¬2∧ 3),
since she wants to visit a single place.

An interpretation is a function v : I → {0, 1} associat-
ing a binary value to each propositional variable. We often
visualise v as the vector (v(1), . . . , v(m)). The set Mod(ϕ)
= {v | v |= ϕ} consists of all the models of formula ϕ. A
goal is exponentially more succint than the set of its mod-
els. In voting terminology, interpretations correspond to al-
ternatives, and models of γi are the alternatives supported by
agent i. We assume that issues in I are independent, i.e., all
interpretations over I are feasible alternatives.

We indicate by mi(j) = (m1
ij ,m

0
ij) the number of 1/0

choices of agent i for issue j in the different models of her
goal γi, where mx

ij = |{v ∈ Mod(γi) | v(j) = x}| for x ∈
{0, 1}. For example, if Mod(γ1) = {(100), (010), (001)} for
issue j = 3 we have m1(3) = (m1

13,m
0
13) = (1, 2).

A goal-profile Γ = (γ1, . . . , γn) collects the goals of all
agents in N and a goal-based voting rule is a function tak-
ing a goal-profile and returning a set of interpretations as
the collective outcome. Formally, it is a collection of func-
tions F : (LI)

n → P({0, 1}m) \ ∅ defined over any n and
m whose input are n formulas submitted by the agents, and
whose output is a set of models over the m issues in I.

If a rule always outputs a singleton we call it resolute,
and irresolute otherwise. We let F (Γ)j = (F (Γ)0j , F (Γ)

1
j ),

where F (Γ)xj = |{v ∈ F (Γ) | vj = x}| for x ∈ {0, 1},
indicate the amount of 0/1 choices in the outcome of F for j.
We write F (Γ)j = x in case F (Γ)1−x

j = 0 for x ∈ {0, 1}.

2.2 Conjunction and Approval Rules

We begin by introducing the following baseline rule:

Conj v(Γ) =

{

Mod(γ1 ∧ · · · ∧ γn) if non-empty
{v} for v ∈ {0, 1}m otherwise

The conjunction rule is an irresolute rule that outputs those
alternatives on which all agents agree, and a default other-
wise. While such consensual alternatives are clearly an op-
timal choice, they rarely exist—the purpose of voting being
to find compromises among conflicting individual goals. To
avoid default options, we introduce the following rule:

Approval(Γ) = argmax
v∈Mod(

∨
i∈N

γi)

|{i ∈ N | v ∈ Mod(γi)}|.

This rule expresses simple approval voting [Brams and Fish-
burn, 2007; Laslier and Sanver, 2010]. It is also studied by
Lang [2004] as the plurality rule, and in belief merging as an

instance of ∆
∑

,d
µ -rules by Konieczny and Pérez [2002]. De-

spite its intuitive appeal, approval-based voting is not adapted
to combinatorial domains in which a large number of alterna-
tives might be approved by a few agents only.

2.3 Issue-Wise Voting

We first introduce a large class of goal-based rules inspired by
the well-known quota rules from judgment aggregation [Di-
etrich and List, 2007]. Let µϕ : Mod(ϕ) → R be a function
associating to each model v of ϕ some weight µϕ(v), giving
(possibly) different weights to distinct models of the same
formula. Let threshold rules be defined as follows:

TrShµ(Γ)j = 1 iff
(

∑

i∈N

(wi ·
∑

v∈Mod(γi)

v(j) ·µγi
(v))

)

≥ qj

such that 1 ≤ qj ≤ n for all j ∈ I is the quota of issue j,
where for each v ∈ Mod(γi) we have µγi

(v) 6= 0 and wi ∈
[0, 1] is the individual weight of agent i. To ease notation we
omit the vector q = (q1, . . . , qm) from TrShµ, specifying
the particular choice of thresholds for the issues. Intuitively,
threshold rules set a quota to be passed for each issue to be
accepted, with the additional flexibility of weights for agents
and for models of the individual goals.

From here, we can provide a first adaptation of the classical
issue-wise majority voting for goal-based settings. Inspired
by equal and even cumulative voting [Campbell, 1954] we
call EQuota rules those TrShµ procedures having µγi

(v) =
1

|Mod(γi)| and wi = 1 for all v ∈ Mod(γi) and for all i ∈ N .

Thus, the equal and even majority rule EMaj is the EQuota
rule having qj = ⌈n

2 ⌉ for all j ∈ I.
A second (irresolute) version of majority voting simply

compares for each issue the number of acceptances with the
number of rejections, weighting each goal model as EQuota:

TrueMaj (Γ) = Πj∈IM (Γ)j



Γ
1

Γ
2

Γ
3

Mod(γ1) (111) (111) (000)

(111) (111)
Mod(γ2) (001) (011) (110)

(000) (011)

(100) (111) (111)
Mod(γ3) (010) (011) (110)

(101) (000) (011)

EMaj (001) — (010)
TrueMaj (101) (111) —
2sMaj — (011) (111)

Table 1: Three goal-profiles on which majority-based rules differ.

where for each j ∈ I:

M (Γ)j =

{

{x} if
∑

i∈N

mx
ij

|Mod(γi)| >
∑

i∈N

m
1−x

ij

|Mod(γi)|

{0, 1} otherwise

Intuitively, TrueMaj computes a weighted count of the 1s
and the 0s in all models of the individual goals, discounted
by the number of models of the formula sent by the agent.
In case of ties on an issue, the rule outputs all interpretations
with either 0 or 1 for that issue.

We define a third version of the majority rule as
2sMaj(Γ) = Maj (Maj (γ1), . . . ,Maj (γn)), where Maj is
the classical issue-by-issue strict majority rule, that accepts
an issue if and only if a strict majority of the models of γi
does. This procedure belongs to a wider class of rules that
can be obtained by applying a first rule on each individual
goal, and a second, possibly different, rule on the results ob-
tained in the first step.

We now prove that the three proposed versions of goal-
based majority do not always return the same result.

Proposition 1. There exists goal-profiles on which the out-
comes of EMaj , TrueMaj and 2sMaj differ.

Proof sketch. In Table 1 we provide a profile for each pair of

rules on which their results differ. Consider Γ1 and EMaj .
For agents 1 and 2, the weight of the single model satisfying
their goal is 1, while for the third agent is 1

|Mod(γ3)| = 1
3 .

If we focus on the first issue,
m1

11

|Mod(γ1)| +
m1

21

|Mod(γ2)| +
m1

31

|Mod(γ3)|

= 1+ 2
3 < 2, hence EMaj (Γ1)1 = 0. Take TrueMaj instead.

Since
∑

i∈N
m1

i1

|Mod(γi)| = 1+ 2
3 > 1+ 1

3 =
∑

i∈N
m0

i1

|Mod(γi)| we

get TrueMaj (Γ1)1 = 1. The calculations for the other cases
can be obtained straightforwardly.

3 Axiomatic Analysis

In this section we conduct an axiomatic analysis of the pro-
posed rules and we provide a characterisation of TrueMaj .

3.1 Axiom Definitions

A first straightforward generalisation of an axiom from the
literature on Social Choice Theory is the following:

Definition 1. A rule F is anonymous (A) if for any profile Γ

and permutation σ : N → N , we have that F (γ1, . . . , γn) =
F (γσ(1), . . . , γσ(n)).

Observe that all the presented rules are anonymous, except
for threshold rules with varying weights for the agents.

Define ϕ[j 7→ k] for j, k ∈ I as the replacement of each
occurrence of j by k in ϕ. The next axiom ensures that issues
are treated equally:

Definition 2. A rule F is neutral (N) if for all Γ and σ : I →
I, we have F (γσ1 , . . . , γ

σ
n) = {(v(σ(1)), . . . , v(σ(m))) | v ∈

F (Γ)} where γσi = γi[1 7→ σ(1), . . . ,m 7→ σ(m)].

TrShµ and EQuota rules are not neutral when the quotas
for two issues differ. Neither is Conj v , by permuting issues in
a profile of inconsistent goals resulting in a profile of incon-
sistent goals, so that the same default v is chosen. Approval
is neutral, since the values for the issues are permuted in the
models of the agents’ goals. Both TrueMaj and 2sMaj have
the same quota for all issues, and hence they are neutral.

We then move to a controversial yet well-known axiom in
the literature, used in both characterisation and impossibility
results [List, 2012; Brandt et al., 2016].

First, let Dm = {(a, b) | a, b ∈ N and a + b ≤ 2m} and
C = {{0}, {1}, {0, 1}}. Independence is formally defined as:

Definition 3. A ruleF is independent (I) if there are functions
f : Dn

m → C for j ∈ I such that for all profiles Γ we have
F (Γ) = Πj∈If(m1(j), . . . ,mn(j)).

Albeit being often identified as one of the main sources
of impossibilities in aggregation theory [List, 2012], we be-
lieve that independent (i.e., issue-wise) rules are crucial in
solving the tension between fairness and resoluteness in goal-
based voting. From the definitions we easily see that TrShµ,
EQuota and TrueMaj are independent, while Conj v and
Approval are not since they consider the profile globally.

The next axiom holds whenever the unanimous choice of
the agents for an issue is respected in the outcome:

Definition 4. A rule F is unanimous (U) if for all profiles Γ
and for all j ∈ I, if mx

ij = 0 for all i ∈ N then F (Γ)j =
1− x for x ∈ {0, 1}.

While if all agents accept or reject an issue the output of
TrueMaj and 2sMaj will agree with the profile, interestingly
TrShµ and EQuota rules do not satisfy it (by setting a high
enough quota) as well as Conj v (for a profile where goals are
inconsistent and thus the default is chosen).

We say that profiles Γ and Γ
′ are comparable if and only

if for all i ∈ N we have that |Mod(γi)| = |Mod(γ′i)|. Then,
a rule is positively responsive if adding (deleting) support for
issue j when the result for j is equally irresolute or favouring
acceptance (rejection), results in an outcome stricly favouring
acceptance (rejection) for j.

Definition 5. A rule F satisfies positive responsiveness (PR)
if for all comparable profiles Γ = (γ1, . . . , γi, . . . , γn) and
Γ
⋆ = (γ1, . . . , γ

⋆
i , . . . , γn), for all j ∈ I and i ∈ N , if

mx⋆
ij ≥ mx

ij for x ∈ {0, 1}, then F (Γ)1−x
j ≥ F (Γ)xj implies

F (Γ⋆)1−x
j > F (Γ⋆)xj .

Observe that all our presented versions of majority are pos-
itively responsive, since they have a threshold of acceptance.



We conclude by presenting two important fairness axioms.
The first aims at formalising the “one man, one vote” prin-
ciple, and ensures that a rule is giving equal weight to the
models of each individual goal for all the agents. It is satis-
fied by all EQuota rules as well as by TrueMaj :

Definition 6. A rule F is egalitarian (E) if for all Γ, on the
profile Γ

′ with |N ′| = |N | · lcm(|Mod(γ1)|, . . . , |Mod(γn)|),

and for all i ∈ N and v ∈ Mod(γi) there are
|N ′|

|N |·|Mod(γi)|

agents in Γ
′ having goal γ with Mod(γ) = {v}, it holds that

F (Γ) = F (Γ′).

The second axiom instead focuses on possible biases to-
wards acceptance or rejection of the issues.

Definition 7. A rule is dual (D) if for all profiles Γ,
F (γ1, . . . , γn) = {(1 − v(1), . . . , 1 − v(m)) | v ∈ F (Γ)}
where γ = γ[¬1 7→ 1, . . . ,¬m 7→ m].

A similar requirement is called neutrality by May [1952],
while in binary aggregation this is known as domain-
neutrality [Grandi and Endriss, 2011].

3.2 Characterising Goal-Based Majority Rules

A seminal result in characterising aggregation rules is May’s
Theorem [1952], where an axiomatisation of the majority rule
in the context of voting over two alternatives is provided. A
natural question to ask after defining three versions of the ma-
jority rule is therefore whether one can be axiomatised, build-
ing on May’s results. We answer this question in the positive:

Theorem 1. A rule F satisfies (E), (I), (N), (A), (PR), (U)
and (D) if and only if it is TrueMaj .

Proof. Right-to-left follows from discussion in Section 3.1.
For left-to-right, consider a rule F . Let Γ be an arbitrary pro-
file over n voters and m issues. By (E), we can construct a
profile Γ′ form issues and n′ agents, where n′ is as in Defini-
tion 6, in which each agent submits a single-model goal and
such that v ∈ F (Γ) if and only if v ∈ F (Γ′). We therefore
consider the restriction of F on profiles over n′ agents and m
issues where agents submit single-model goals. We denote

G� such a set of profiles (hence, in particular, Γ′ ∈ G�). We
now show that F (Γ′) = TrueMaj (Γ′).

By (I), there are functions f1, . . . , fm such that F (Γ′) =
f1(m1(1), . . . ,mn(1))×· · ·×fm(m1(m), . . . ,mn(m)). Ob-

serve that since Γ
′ ∈ G�, we have mi(j) ∈ {(0, 1), (1, 0)}

for all i ∈ N and j ∈ I. Hence, we can equivalently see each

f on profiles in G� as a function from {0, 1}n to C. By (N)
and (I) we get that f1 = · · · = fm, i.e., the same function
applies to all issues, let us denote it with f .

By (A), any permutation of agents in Γ
′ gives the same

result F (Γ′). Hence, combining (A) with (I) and (N), we
have that only the number of ones (and zeroes) and not their
position is necessary to determine the outcome of f . Hence,
we can write it as f : {0, . . . , n} → C.

Consider now a profile Γ
+ ∈ G� such that for all i ∈ N

we have m0
ij = 0. By (U) we know that F (Γ)0j = 0, i.e.,

v(j) = 1 for all v ∈ F (Γ), and consequently that f(n) =
{1}. Analogously we obtain that f(0) = {0}.

Let now s be a sequence of G�-profiles Γ− = Γ
0, Γ1, . . . ,

Γ
n = Γ

+ where exactly one agent i at a step k changes her

goal γi such that m1
ij = 0 in Γ

k and m1
ij = 1 in Γ

k+1. By
(I) and the definition of cartesian product, for any Γ and j,
F (Γ)j is either equal to (a, 0), (b, b) or (0, c) for a, b, c ∈ N.

By (PR), the outcome of the Γ
k profiles in s can only

switch from (a, 0) to (b, b) or (0, c), and from (b, b) to (0, c).
In particular, this means that there is some number q such
that f(0) = {0}, . . . , f(q − 1) = {0}, f(q) = {0, 1} or
f(q) = {1}, and f(q + 1) = {1}, . . . , f(n) = {1}.

We now show that for n even, q = n
2 and f(q) = {0, 1},

while for n odd we have q = n+1
2 and f(q) = {1}. For

n even, consider profile Γ
ℓ where exactly half of the agents

accept j. If F (Γℓ)j = (0, a) or (c, 0), by (D) we would need

to reverse the outcome in F (Γ
ℓ
)j . However, the decision in

both profiles is determined by f(n2 ), which is therefore equal

to {0, 1}. For n odd, suppose that q < n+1
2 and consider a

profile Γ where there are exactly q agents accepting j. By

(PR) we have F (Γ)j = (0, c). Consider now profile Γ: we
have |{i | mi(j) = (0, 1) for γi ∈ Γ}| = |{i | mi(j) =
(1, 0) for γi ∈ Γ}| = q < n+1

2 . Hence, |{i | mi(j) =

(0, 1) for γi ∈ Γ}| ≥ n+1
2 > q. Hence, F (Γ)j = (0, c),

contradicting (D). Suppose q > n+1
2 and consider a profile Γ

where n+1
2 ≤ |{i | mi(j) = (0, 1) for γi ∈ Γ}| < q. Then,

F (Γ)j = (a, 0) and F (Γ)j = (a, 0), again contradicting (D).
To sum up, F is defined as the cartesian product of binary

decisions taken by the same function f : {0, . . . , n} → C.
on each issue, with f(k) = {0, 1} for n even and k = n

2 ,

f(k) = {0} for
∑

i∈N ′ m
x
ij >

∑

i∈N ′ m
1−x
ij for x ∈ {0, 1},

corresponding to the definition of TrueMaj . Since Γ is an
arbitrary goal profile, and TrueMaj satisfies (E), we obtained
the desired equivalence.

While both EMaj and 2sMaj are based on similar intu-
itions as TrueMaj , EMaj has a bias towards the rejection
of the issues, while 2sMaj does not satisfy the equality ax-
iom. TrueMaj however remains the only irresolute rule of
the three, once more showing the tension between fairness
criteria and the decisiveness of a goal-based voting rule.

We conclude with a seemingly negative result. A rule is
grounded if v ∈ F (Γ) implies v ∈ Mod(γ1 ∨ · · · ∨ γn).

Proposition 2. EQuota , TrueMaj and 2sMaj are not
grounded.

Proof. Consider profile Γ for 3 agents and 3 issues where
Mod(γ1) = {(111)}, Mod(γ2) = {(010)} and Mod(γ3) =
{(001)}. Both EQuota (with uniform quota 2), TrueMaj
and 2sMaj return (011), contradicting groundedness.

Hence, the three majority rules do not guarantee that the col-
lective choice will satisfy the goal of at least one agent. How-
ever, by considering aggregation as compromising between
agents, it becomes less important for a rule to be grounded.

4 Computational Complexity

In this section we study the computational complexity of de-
termining the result of goal-based voting, showing that propo-
sitional goals entail a significant increase from standard vot-
ing, in some cases from P to Probabilistic Polynomial time.



4.1 Winner Determination

We present two definitions for the winner determination
problem, for resolute and irresolute rules, in line with the
literature on judgment aggregation [Endriss et al., 2012;
Baumeister et al., 2015; de Haan and Slavkovik, 2017].

Note that we provide the existential version of the winner
determination problem — a universal definition is also possi-
ble [Lang and Slavkovik, 2014]. We start with resolute rules:

WINDET(F )
Input: profile Γ, issue j
Question: Is it the case that F (Γ)j = 1?

The outcome for F (Γ) can then be computed by repeatedly
answering the question in WINDET over all issues j ∈ I.
Next, we introduce the problem for irresolute rules.

WINDET
⋆(F )

Input: profile Γ, set S ⊆ I, partial model ρ : S → {0, 1}
Question: Is there a v ∈ F (Γ) with v(j) = ρ(j) for j ∈ S?

By answering to the question in WINDET
⋆ starting from a

set S with one issue and filling it with all the issues in I,
and checking possible values for the partial function ρ we
can construct a complete model in the outcome of F (Γ).

4.2 Conjunction and Approval Rules

Our first complexity result provides a lower bound for the
family of conjunction rules Conj v(Γ).

Theorem 2. WINDET
⋆(Conj v) is NP-hard.

Proof. We reduce from SAT. Let ϕ⋆[p⋆1, . . . , p
⋆
k] be the for-

mula over k variables whose satisfiability we want to check.
Construct an instance of WINDET(Conj v) as follows. Let
I = {p⋆1, . . . , p

⋆
k} ∪ {q}. Consider a profile Γ = (γ1) for a

single agent 1, such that γ1 = q ⊕ ϕ⋆, for ⊕ the exclusive or.
This formula is true if and only if either q is true or ϕ⋆ is true,
so that the default model v is not needed. If we set S = {q}
and ρ(q) = 0, we get that ϕ⋆ is satisfiable if and only if for
this instance of WINDET

⋆(Conj v) the answer is yes.

Membership in NP is still open. The intuitive algorithm that
guesses a model v, then checks whether v |=

∧

i∈N γi, if the

answer is negative it checks v |=
∧

j∈S
ρ(j)=1

j ∧
∧

j′∈S

ρ(j′)=0

¬j′

(i.e., the formula expressing ρ), excludes the case in which
the conjunction of the goals is satisfiable, but v is not a model.

The Approval rule is significantly harder. We first need

some definitions. Let Θp
2 = P

NP[log] be the class of decision
problems solvable in polynomial time by a Turing machine
that can make O(log n) queries to an NP oracle, for n the size
of the input. Consider the following Θp

2-complete problem
[Chen and Toda, 1995]:

MAX-MODEL

Input: satisfiable propositional formula ϕ, variable p of ϕ
Question: Is there a model v ∈ Mod(ϕ) that sets a maximal
number of variables of ϕ to true and such that v(p) = 1?

We are now ready to prove the following:

Theorem 3. WINDET
⋆(Approval ) is Θp

2-complete.

Proof. Membership in Θp
2 can be obtained from Proposi-

tion 4 by Lang [2004], using the following formula in the
definition of the ELECT-SAT problem:

ψ =
∧

j∈S
ρ(j)=1

j ∧
∧

j′∈S

ρ(j′)=0

¬j′.

For completeness, we give a reduction from MAX-
MODEL. Consider an instance of MAX-MODEL where
ϕ[p1, . . . , pm] is a satisfiable formula and pi for i ∈
{1, . . . ,m} is one of its variables. Construct now an in-
stance of WIN-DET

⋆(Approval) in the following way. Let
Γ = (γ1, . . . , γm+1, γm+2, . . . , γ2m+1) be a profile such that
γ1 = · · · = γm+1 = ϕ and γm+2 = p1, . . . , γ2m+1 = pm.

We have that Approval(Γ) ⊆ Mod(ϕ), since a strict ma-
jority of m+1

2m+1 agents already supports all the models of ϕ.

Moreover, note that in this instance of Approval precisely
the models maximising the number of variables set to true in
ϕ win. In fact, consider a model v ∈ Mod(ϕ): as explained,
v gets the support of all the first m + 1 agents whose goal is
ϕ, and then for all the agents in {m+ 2, . . . , 2m+ 1} it gets
the support of those agents whose goal-variable is true in v.
Specifically, the support of v is (m+1)+ |{pi | v(pi) = 1}|.

Hence, only those v ∈ Mod(ϕ) with a maximal number of
1s are in the outcome of Approval(Γ). It now suffices to set
S = {pi} for pi the propositional variable in the instance of
MAX-MODEL and ρ(pi) = 1. Therefore, a formula ϕ has a
model with a maximal number of variables set to true where
pi is true if and only if WINDET

⋆(Approval) returns yes on
the constructed input.

4.3 Threshold Rules

We study the complexity of finding the outcome of TrShµ

rules for the special case where each model, as well as each
agent, has the same weight of 1. We start by studying the
following auxiliary problem.

k−MODELSUM

Input: propositional formulas ψ1, . . . , ψℓ, number k ∈ N

Question: Is it the case that
∑

1≤i≤ℓ |Mod(ψi)| > k?

We now find the complexity for k−MODELSUM.

Lemma 1. k−MODELSUM is NP-complete.

Proof. To show membership in NP guess k1, . . . , kℓ numbers
with ki ≤ k + 1 for all 1 ≤ i ≤ ℓ, and guess X1, . . . , Xℓ

sets, where Xi ⊆ 2|Var | for 1 ≤ i ≤ ℓ and Var is the set of
variables of ψ1, . . . , ψℓ. The size of each Xi for 1 ≤ i ≤ ℓ
is bounded by k + 1, and each Xi corresponds to a set of
models. It is then easy to check that k1 + · · · + kℓ > k, that
for all 1 ≤ i ≤ ℓ we have |Xi| = ki and for all vi ∈ Xi we
have vi ∈ Mod(ψi).

For completeness, we reduce from SAT. Let ϕ⋆ be the for-
mula whose satisfiability we want to check. Construct now an
instance of k−MODELSUM where ψ1 = ϕ⋆ and k = 1. For-
mula ϕ⋆ is satisfiable if and only if it has at least one model,
and SAT can be reduced to k−MODELSUM.

Now we can assess the complexity of the rule TrShµ.



Theorem 4. For µγi
(v) = 1 constant and wi = 1 for all

i ∈ N , WINDET(TrShµ) is NP-complete.

Proof. For membership in NP consider a profile Γ =
(γ1, . . . , γn) and an issue j. Guess k1, . . . , kn numbers with
ki ≤ k+1 for 1 ≤ i ≤ n, and guessX1, . . . , Xn sets of mod-
els where Xi ⊆ 2m and for each v ∈ Xi we have v(j) = 1
for i ∈ N . It is then easy to check whether k1+· · ·+kn > qj ,
that for all i ∈ N we have |Xi| = ki and for all vi ∈ Xi we
have vi ∈ Mod(γi).

For completeness, we reduce from k−MODELSUM. Let
ψ1, . . . , ψℓ and k ∈ N be an instance of this problem. Con-
struct now an instance of WINDET(TrShµ) such that Γ =
(γ1, . . . , γℓ) where for all i ∈ N we have γi = ψi ⊕ ¬p
for p a fresh variable and ⊕ the exclusive or. This is done
since the formulas of the k−MODELSUM might be inconsis-
tent, while individual goals are always consistent. Now, we
choose j = p and we set qj = k. In this way, every model
v such that v(p) = 1 is a model of ψi for all i ∈ N , and we
can thus count if there are at least k models of each ψi, which
give TrShµ(Γ)p = 1.

While it would be easy to adapt this proof to deal with dif-
ferent values for the individual weights wi (to be multiplied
with the ki’s), for model weights as the ones in EQuota rules
it would be necessary to compute the number of models of
each goal, thus making it a more difficult problem.

4.4 Majority Rules

We now study the complexity of majority rules. We introduce
the complexity class PP, for Probabilistic Polynomial Time, a
class of problems that has rarely been encountered in the lit-
erature on computational social choice, and we show that the
three versions of the majority rule are PP-hard. Membership
is an open problem for future work.

Let PP be the class of decision problems solvable by a non-
deterministic Turing machine that accepts in strictly more
than half of all non-deterministic choices if and only if the
answer to the problem is yes [Papadimitriou, 2003]. Consider
the following problem:

MAJ-SAT-p
Input: propositional formula ϕ, variable p of ϕ
Question: Is it the case that |Mod(ϕ ∧ p)| > |Mod(ϕ ∧ ¬p)|?

We first show that MAJ-SAT-p is PP-complete by reduc-
ing from the PP-complete MAJ-SAT, the problem of deciding
whether a formula ϕ has more models than its negation.

Lemma 2. MAJ-SAT-p is PP-complete.

Proof. We start by showing membership in PP. Consider the
non-deterministic Turing machine that guesses a model v for
ϕ. Then, if v 6|= ϕ the machine accepts with probability 1

2 .
If v |= ϕ ∧ p the machine accepts with probability 1 and if
v |= ϕ ∧ ¬p the machine accepts with probability 0.

For completeness, we reduce from MAJ-SAT. Consider
the formula ϕ as our instance of MAJ-SAT, and now let ψ =
(ϕ∧p)∨(¬ϕ∧¬p) for p a fresh variable. We can now observe
that ϕ has more models than ¬ϕ if and only if ψ∧p has more
models than ψ ∧ ¬p, concluding the reduction.

The next theorem gives a lower bound to computing the
outcome of the majority rules. Note that for TrueMaj we
study a (strict) resolute version TrueMaj r.

Theorem 5. WINDET(2sMaj ), WINDET(EMaj ) and
WINDET(TrueMaj r) are PP-hard.

Proof. The proof is analogous for the three rules, so we only
prove it for 2sMaj . We reduce from MAJ-SAT-p. Consider
the formula ϕ and the variable p of ϕ as our instance of MAJ-
SAT-p. Consider now a profile Γ for a single agent such that
γ1 = ϕ. Since we are dealing with resolute rules, we sim-
ply have to fix an issue and ask whether the goal-based vot-
ing rule will accept or reject the issue. Given that there is a
single agent 1, we have that 2sMaj (Γ)p = 1 if and only if
the set of models of γ1 accepts p more often than reject it.
Therefore, ϕ ∧ p has more models than ϕ ∧ ¬p if and only if
2sMaj (Γ)p = 1, completing the reduction.

While PP is the hardest class studied in this paper, the ax-
iomatic analysis of Section 3 as well as their intuitive def-
initions make us champion our majority-based rules, and
TrueMaj in particular. We argue that the class PP is per-
vasive in propositional goal-based reasoning, calling for the
development of good algorithms for problems in this class.

5 Conclusions and Future Work

Starting from the observation that classical judgment aggre-
gation falls short in many examples of collective decision-
making in multi-issue domains, such as creating a shared
travel plan or collective product configuration, we introduced
new rules to aggregate a set of propositional goals into a col-
lectively satisfying alternative. In a quest for resolute rules,
we introduced three adaptations of the classical majority rule,
as well as other goal-based voting rules, providing an ax-
iomatic characterisation in line with the literature on Social
Choice Theory for one of them (TrueMaj ). We concluded
by investigating the computational complexity of determin-
ing the outcome of our rules, showing that the use of propo-
sitional goals entails harder complexity classes.

Our results open several paths for future research, most no-
tably in studying restrictions on the language of goals that
might determine islands of tractability for the winner deter-
mination problem, or develop tractable approximations for
their computation. Moreover, the quest for more resolute and
decisive rules may suggest novel voting procedures in related
areas such as non-binary combinatorial domains and more ex-
pressive compact languages for preference representation. Fi-
nally, we focused on the basic case of no integrity constraints,
but it would be interesting to study classes of constraints for
which our rules always return consistent results.
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