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ABSTRACT

Small-scale events are emerging as attractive objects of research. 
On Twitter, small-scale events represent weak sensors that report 
things happening in specific times and places. While previous work 
addressed the issue of detecting such events, very little is known 
so far about their inherent properties. In this paper, our main objec-
tive was to analyse the spatio-temporal peculiarities of small-scale 
events w.r.t different levels of location granularity, and to under-
stand the general trend of their propagation along their lifetimes. 
Our findings suggest that (1) users involved in small-scale events 
mostly gravitate not significantly far from the geographical focus;
(2) events do not exhibit major peaks; and (3) there exists distinct 
events that we can identify from users’ posts that significantly dif-
fer from topic distribution, focus concentration and propagation 
distance perspectives across time.
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1 INTRODUCTION

Microblogging platforms such as Twitter provide active communi-

cation channels and a gold-mine of timely real-world information 
which has been shown to be highly effective for gaining knowledge 
about people’s profiles [22], and opinions [16] to cite just a few. 
In particular, for events such as festivals, political campaigns, 
pandemics and crisis situations, user-generated micro-posts 
play a crucial role as social sensors by allowing the monitoring 
of users’ activities and the provision of timely responses and

https://doi.org/10.1145/3209542.3209561

recommendations [12]. More speci"cally, event-related tweet

streams provide valuable spatio-temporal data such as text

messages with location mentions, the timestamp of the post

and the geolocation of the user who posted the tweet. With the

increasing connectivity of users through wireless networks and the

wide use of mobile devices, geo-tagged tweets are currently created

daily. This phenomena allowed the intensive use of Twitter data for

detecting and monitoring both large-scale events (eg., earthquakes

and epidemics) and small-scale events (eg., festivals, crimes and

protests). An important body of early research focused on detecting,

analysing and mining behavioural patterns from large-scale events

(also called global events), which are bursty in the entire stream,

impact a wide spatial area and trigger an important audience

[6, 23]. Recently, there has been a growing research interest in

detecting [1, 26, 30–32] and analysing [24, 25, 30] small-scale

events. Unlike large-scale events, small-scale events (also called

local or localized events) are generally micro-phenomena that

stimulate people to post a low number of messages for a certain

period of time in a local region. Such events play the roles of weak

signals which have potential in several applications such as public

order protection and tra%c road assistance. However, the literature

review reveals that very little has been understood so far about the

spatio-temporal dynamics of such events [24, 25, 30]. A prior study

[30] focused on the analysis of user physical network structure

during two micro-events, namely a parking garage collapse in

Atlanta and a church shooting in Wichita. The results mainly

revealed that the event-related structure of the networks is not

particularly more dense than the Twitter network structure and

that central Twitterers are geographically central particularly in

more spatially narrowed events. In [24, 25], authors examined the

users’ posts during two incidents which refer to small-scale events

that result in damage or injuries. The authors found that di#erent

types of users (eg., journalists, organisation and citizens) report

on the incidents and that citizens are generally faster than o%cial

sources in propagating tweet posts.

In this paper we pursue this line of research and report the "nd-

ings of analyses that are designed to investigate the spatio-temporal

dynamics of small-scale events. By using the focus and entropy

measures, we thoroughly study the spatial and timely tweet post

distributions of such events based on a wide set of event types

automatically identi"ed in geo-tagged tweet streams. Moreover, we

consider locations at varying levels of granularity, from the borough

to the Point Of Interest (POI) level. The key di#erences between

close previous work [24, 25, 30] and ours are the following: (1)

previous work focused on the analysis and comparison of network

structure in the Twitter network vs. event-related network [30] and



RQ1:What is the level of users’ narrowness while posting

small-scale event-related tweets?

RQ2: How do location and time bound tweet propagation

during small-scale events?

RQ3: Can we identify and characterize event types with the

tweet publications collected from users?

The remainder of this paper is organized as follows: Section 2

presents the related work. We detail the data and methods that are

used in our analyses in Section 3. In Section 4, we report the "ndings

of our studyw.r.t the aforementioned research questions.We discuss

the implications of our "ndings and conclude in Section 5.

2 RELATEDWORK

2.1 Large-scale vs. small-scale event detection

To the best of our knowledge, there is no consensual de"nition of

an ’event’ [20, 24]. One widely used de"nition has been introduced

by the Topic Detection and Tracking (TDT) project which de"nes

an event as ’an unique thing that happens at some point in time’ [13].

The main common facets of an event are time, place and audience

as introduced by authors in [7] who de"ne an event as a real-world

occurrence with an associated time period, time-ordered messages

discussing the occurrence during a period of time. According to

spatial and social impacts, we can distinguish between large-scale

events such as earthquakes and epidemics (also called global events)

and small-scale events such as crims, protests and festivals (also

called incidents, local or localized events). While the former give

rise to massive user-generated content and impact a wide spatial

region, the latter lead to the posting of a low amount of content

within a small region.

A number of early research work have investigated global event

detection in Twitter [6, 23]. Related approaches fall in the document-

based and feature-based categories. The key idea of document-based

approaches relies on the association between document cluster

based on a shared topic and the notion of event [2]. For instance,

authors in [2] built events as clusters based on content similarity

and user proximity. In feature-based approaches [11], the event de-

tection algorithm rather relies on bursty features such as keywords

and phrases. Such burstiness is captured as event signal wich is

"ltered and transformed (eg., using time-series) to identify events.

The high connectivity of users through wireless networks and the

wide availability of geo-tagged tweets nowadays gave rise to a re-

cent emerging interest toward small-scale event detection which

is particularly challenging given the low amount of induced posts

[1, 26, 32]. The driving idea behind small-scale event detection al-

gorithms is to identify joint geo-spatial and topical correlations in

Twitter streams. The main underlying assumption is that, topical

cohesion of even limited samples of tweets posted in a narrow ge-

ographical space, is a weak signal of event occurrence. Based on

this general assumption, authors in [1] proposed the EvenTweet

algorithm which detects small-scale events by running four main

stages: (1) determining time windows of bursty words; (2) iden-

tifying localized words by computing spatial entropy; (3) spatial

clustering of localized words; and (4) associating each cluster with

an event and then ranking events according to spatial coverage and

burstiness measures. In the same spirit, the GeoBurst algorithm

[32] relies on three main steps to detect small-scale events: (1) iden-

ti"es representative tweets (called pivots) and associated geo-topic

correlated tweets in slicing time windows; (2) compares the clusters

of tweets to historical streaming tweets to identify bursty clusters

of tweets among the candidate ones identi"ed in the "rst stage; and

(3) further identi"es new pivots in successive windows.

2.2 Analysing spatio-temporal Twitter data

The prevalence of social media services such as Facebook and Twit-

ter and the increasing use of mobile devices, have enabled the

availability of a powerful source of streamed user-generated con-

tent about location and regional human behaviour. This motivates

the spatio-temporal analysis of social media data for various pur-

poses such as crisis management [21] and future prediction [5]. On

Twitter, the literature review reveals that a large body of studies

investigated the analysis of spatio-temporal metadata for di#erent

purposes [4, 14, 18, 27]. A "rst category of work have analysed

the spatio-temporal properties of tweets to better understand their

di#usion [4, 14] or discover spatio-temporal dependent topics that

are addressed by Twitter users. For example, in [14], the authors

mainly observed the joint phenomena of the high-locality of hash-

tags and their high-speed propagation over time.

Another category of work have used spatio-temporal data from

Twitter to design web services such as automatic summarizers [19]

or monitoring systems [3]. For instance, in [19], the authors de-

veloped an event summarizer called CEST that exploits Twitter

the identi"cation of user types involved in the event [24, 25]. More-

over, the studies used limited samples of prior speci"c events (eg., 
incidents) in terms of number of tweets (655 event-related tweets 
used in [24, 25]), as well as number of events (2 events studied in 
[30]). In contrast, we deeply analyse the spatial narrowness of users 
involved in the events and study the propagation trend of their 
posts w.r.t varying levels of location; furthermore, our study relies 
on a signi"cant number of event-related tweets (22832) as well as 
a signi"cant number of events (410) belonging to a  set of event 
types automatically identi"ed from the users’ posts. (2) We also 
examine the spatio-temporal evolution of small-scale events along 
their lifetime while the temporal dimension has not been addressed 
in previous work [24, 25, 30].
More speci"cally, our study is mainly designed for answering the 
following general questions: What is a rough estimate of the ge-
ographical impact of small-scale events in terms of situational-
awarness among users? How do small-scale events evolve in time 
and space? Answering to these questions has many potential ap-
plications in improving the designing of better web tracking and 
searching services and helping both organisation and citizen better 
ful"ll their information needs. For example, modelling the timely 
propagation of small-scale events from their center of gravity en-
ables the development of more robust user’s location estimators 
over time which can be useful for "ne-grained location-based per-
sonalized information services [10] and designing more e#ective 
monitoring services allowing to better plan social events and of-
fer user facilities [3]. A better understanding of their evolving 
spatio-temporal dispersion enables richer retrieval models answer-
ing location-based queries (eg., What is happening at speci!c location 
X?) that could improve the spatial extent of users’ awarness dur-
ing crisis situations. The analyses performed in our work directly 
address the following research questions:



• The "rst dataset, which is referred to as NY2014, was released

by Zhang et al. [32]. It consists of a sample of 2.4 million of

tweets that were geo-tagged in New York and retrieved using

the Twitter Streaming API1 from 2014.08.01 to 2014.11.30.

• The second dataset was obtained by constantly monitoring

the Twitter streams from 2016.06.18 to 2016.12.08 for 116

1https://developer.twitter.com/

cities around the world, which included more than 65 million

geo-tagged tweets. For this study, we extracted a sub-dataset,

which is referred to as NY2016, that contains only geo-tagged

tweets published in New York from 2016.10.01 to 2016.11.30.

It contains approximately 2.98 million tweets.

3.1.2 Event labelling. The process of building a pool of small-

scale events from the two datasets consisted in a 2-step task:

• Step 1: Generating candidate small-scale events. The objec-

tive of this step was to extract from the Twitter datasets

clusters of representative event-related tweets. To achieve

this objective without bias induced by the event detection

algorithm, we used two state-of-the art event detection al-

gorithms, namely the EvenTweet [1] and GeoBurst algo-

rithms [32]. In addition to our con"dence in their e#ective-

ness and e%ciency, the main advantage of these algorithms

is that they provide clusters of tweets and/or authoritative

words that facilitate further human annotation. The genera-

tion of candidate small-scale events was run as follows:

(1) Apply separately each of the EvenTweet and GeoBurst

algorithm on each dataset, namely the NY2014 andNY2016

datasets. More speci"cally: (i) we ran the GeoBurst al-

gorithm using very similar parameters to those used by

Zhang et al. [32]. More precisely, the kernel bandwith

h = 0.01, the ranking parameter for balancing spatial

and temporal burstiness η = 0.5 and the RWR similar-

ity threshold δ = 0.01 with sliding time windows of 6

hours, including 3 hours of overlapping time. (ii) we ran

the EvenTweet algorithm based on the partitioning of

the whole space into NxN small grids with N = 50. At

the end of this stage we obtained a pair of ranked lists of

word clusters for each dataset.

(2) With respect to our goal which consists in avoiding

the bias induced by the event detection algorithm on the

spatio-temporal properties of the tweets, we only selected

a subset of common events that were detected by both

algorithms as relevant candidate events. Instead of apply-

ing exact matching which is highly unlikely given the

di#erence in the techniques used by the GeoBurst and

EvenTweet algorithms for tweet clustering, we applied

an approximate matching based on a clustering similar-

ity constrained by a threshold: the Szymkiewicz-Simpson

overlap coe%cient with a threshold set up to 0.5.

This "rst step resulted in 1163 and 1802 event clusters for

the NY2014 and NY2016 datasets respectively.

• Step 2: Building the ground truth event datasets. In the previ-

ous step we obtained a set of candidate small-scale events.

However, given that the precision of each of the GeoBurst

and EvenTweet is less than 100%, human annotation was

required to build the gold dataset. To this end, we set up a

crowdsourced annotation tasks using CrowdFlower2, which

is a popular crowdsourcing platform. The objective of this

task was to build the gold set of small-scale events from

the candidate events which were represented as clusters of

2http://www.crowd&ower.com/

geographical metadata mainly including POI. Once the event is 
detected, the CEST system provides a high-level picture of the spa-
tial extent of the event as well as the distribution of positive vs. 
negative opinions embedded in the event-related tweets.
An other important category of work focused on mining from large-
scale or small-scale events. Early work studied large-scale events 
through the examination of the regional trends and temporal pat-
terns of users’ behaviour to address medical concerns [18] or better 
manage emergency situations [27]. Lee et al. [18] designed a surveil-
lance system for early prediction of seasonal disease outbreaks such 
as &u. Using tweet analytics about the timeline and geographical 
distribution of disease symptoms, the system can facilitate the mon-

itoring of health resource allocation during epidemics. In [27], the 
authors analysed users’ micro-posts across two disaster events that 
took place in the US: the Red River Floods and the Oklahoma Grass-
"res. They outlined that unlike in the overall tweet stream, there 
were a high proportion (more than 78%) of both geo-tagged tweets 
and location mentions in tweet texts during natural disasters which 
suggests that users are aware of the importance of geo-location in-
formation in collaboratively managing an emergency. Moreover, the 
analysis of the event time-line showed a clear picture of the spread 
of situational awareness among Twitterers. Other work, more close 
to ours focused on small-scale events, also called incidents in the 
speci"c case where they induce damage and injuries [24, 25, 30]. 
Their analysis mainly concerned the study of the impact of such 
events on the network structure [30] and the categorisation of user 
pro"les (eg., organization, citizen) according to prede"ned event 
types such as crash and "re [24, 25]. The "ndings revealed that 
in&uencial users kept their roles in event-related networks [30] and 
that citizen were more importantly involved than o%cials in the 
event spread [24, 25].

3 STUDY DESIGN
3.1 Data

3.1.1 Twi!er d atasets. We a nalysed t wo c ollections o f geo-
tagged tweets related to New York City, and restricted our study to 
English-language tweets. The geotag provides latitude-longitude 
coordinates about the physical location of the associated Twitter 
user. To facilitate the analysis of multiple levels of location gran-
ularity, we used the latitude-longitude coordinates and mapped 
them to the borough and neighbourhood and to the most likely 
Place Of Interest (POI). To perform this mapping, we used a recent 
state-of-the art POI annotation method that relies on geo-tagged 
tweets [33]. We have particularly choosen New York City as the 
main location for a couple of reasons: (1) given the high number 
and the diversity of event types that might occur in New York; (2) 
the availability of rich resources that provide POI descriptions in 
New York City. The characteristics of the datasets are the following.



Table 1: Descriptive statistics of the NY2014 and NY2016

datasets.

NY2014 NY2016

# small-scale events 278 132

Top 3 POIs

Metlife Stadium

Yankee Stadium

Barclays Center

Trump Tower

avits Center Shuttle

Barclays Center

Average duration 5h45 5h43

Duration standard deviation 2h25 2h24

authoritative tweets from the previous step. For this aim,

we provided the crowdworkers with clusters of the 5 tweets

with the highest authority scores and with the 10 most rep-

resentative keywords. We asked them to judge whether each

set of tweets corresponds to an event, and, if so, to judge

whether it is a small-scale event. For the latter judgement,

crowdworkers were instructed to follow the de"nition of a

small-scale event that is given in [33] (called local event):

"a local event is a speci!c thing that occurs at a speci!c time

and restricted to a narrow area (e.g., protest march, house !re,

tra#c jam"). To ensure reliable task outcomes, we submitted

the tasks to experienced crowdworkers with a high level of

performance (Level = 3). The performance was assessed by

the platform using an average measure of the correctness

of their answers to the test questions over all the tasks they

have performed. For additional quality control, for each task,

we included prede"ned question-answer pairs as the gold

standard. Only crowdworkers who achieved no less than

80% on the ground truth were "nally recruited. Moreover,

since it is likely that di#erent workers have di#erent levels

of agreements, we assigned each task to 3 workers. The ma-

jority voting strategy was used to generate the "nal answer.

We o#ered a payment of $0.05 per respondent for completing

the survey.

At this stage, the gold set3 for the NY2014 dataset (resp. the

NY2016 dataset) consists of 378 (resp. 219) events including

278 small-scale events (resp. 132). More detailed statistics

of the datasets are given in Table 1. Since the two datasets

have similar values of both average duration and standard

deviation, we pooled them into one dataset. Table 2 provides

further statistics about a sample of human-annotated events.

3.2 Metrics

We detail below the metrics that were used in our study (which are

similar to those used for analysing the geographic characteristics

of YouTube videos [9]). It is worth to mention that the datasets

contain geo-tagged tweets which provide spatial location of the

Twitter users. Accordingly, tweet location mentioned below also

refers to the location of the user who posted the tweet.

3.2.1 Geographical focus. Focus is concerned with how narrow

the geographical space the event tweets deal with. For each event

e and each location l ∈ L, we de"ne the geographic focus, as the

maximal probability of observing a tweet that is posted from or

3Dataset is available at https://doi.org/10.6084/m9."gshare.c.4089605

Table 2: A sample of small-scale events identi!ed in the

pooled dataset.

Event Dataset Duration # Tweets

NY Thanksgiving Parade NY2014 17h30 723

Box "ght (WWE) NY2014 14h30 151

Hockey match NY2016 5h16 28

Billy Joel concert NY2016 3h27 10

discusses about a single location l .

F e = max
l ∈L

ple ; ple =
| T le |

| T e |
(1)

whereT l is the set of tweet events that are geo-tagged at location

l , T e is the set of tweets related to event e and T le is the subset of

event tweets that are related to event e and geo-tagged at location l .

The geographic focus inherently decreases with the propagation of

the tweets that deal with event e . It is worth noting that an event

for which the entire set of tweets are posted from the same location

has a focus of 1.0. We can also measure the geographical focus over

a time interval t , denoted as F e (t).

3.2.2 Event entropy. The entropy is concernedwith how diverse

the entire spatial distribution of the event is. The higher the entropy

is, the more diverse the range of locations that are covered by the

event. For instance, an event for which the entire set of tweets

are posted from the single location has an entropy of 0.0. More

generally, an event entropy value of He indicates that the event

propagated almost evenly to 2H
e

locations.

He
= −

∑

l ∈L

ple loд2 p
l
e (2)

Similar to the focus, we can measure the event entropy over a

time interval t , denoted He (t).

4 FINDINGS

4.1 Spatial coverage of users (RQ1)

Our objective here is to analyse the extent to which small-scale

events have a meaningful geographical focus and how they prop-

agate spatially w.r.t the di#erent levels of spatial granularity: bor-

ough, neighbourhood and POI. To achieve this objective, we com-

pute for each event the focus value F e at each level. Figure 1(a)

shows the related cumulative distributions (CDF) of focus values.

By observing the two coarsest levels, namely, neighbourhood and

borough, we conjecture that the users involved in the events are

almost all restricted to the same borough and to very few neigh-

bourhoods. Indeed, for 97% of events, at least 90% of the tweets

are posted from the same borough (F e ≥ 0.90), and for half (49%)

of the events, at least 90% of the tweets originate from a single

neighbourhood (F e ≥ 0.90). However, at the POI level, tweets are

more di#use. Only 70% of events have at least half of their tweets

posted from a single POI (F e ≥ 0.50); more generally, with the dis-

tribution being nearly linear, the focus values seem to be uniformly

distributed.
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Figure 1: Cumulative Distribution Function (CDF) of event focus, entropy and average distance.
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Figure 2: Correlation between Focus, Entropy and Distance at POI level.

Beyond the focus, we analyse the event propagation across loca-

tions. To do so, we examine the event entropy values, He , which

are plotted in Figure 1(b). As can be observed, events are mostly

limited to a single neighbourhood (75%) or borough (99%). At the

POI level, approximately 42% of the events mainly involve a single

POI (He
< 1). Thus, the majority of small-scale events (53%) in-

volves from 2 to 16 POIs, (1 ≤ He ≤ 4). This observation con"rms

our previous result about the spatial narrowness of the users.

So far, we used focus and entropy metrics to provide insights

into event epicentres and propagation trends. However, no clues are

provided about the geographic area over which events propagate.

To "ll this gap, we compute for each event both the user-user

distance and the user-focus distance using the standard Haversine

distance tailored for longitude-latitude coordinates4. Figure 1(c)

reports the cumulative distribution of the average distance values

w.r.t user-user distance (dashed line) and focus-user distance (solid

line). Looking at the user-user average distances, we can see that

80% of the events have an average distance of less than 500 metres.

Thus, users’ locations are mostly very close to one another which

con"rms the narrowness of the in&uence areas of small-scale events.

From the examination of the focus-user distance values, we can

note that 88.3% of tweets are posted less than 500 metres from the

focus, and only 4.85% are posted from more than 1,000 metres away.

To sum up, the further away from the focus users are, the fewer

4http://www.movable-type.co.uk/scripts/latlong.html

posted tweets there are. This suggests that most of users who post

event tweets gravitate around the geographical focus.

We "nally analyse the potential relationships between the event

geographical in&uence which is represented by the focus, the event

propagation, which is represented by the entropy and the spatial

proximity of users, represented by the distance. Building on previ-

ous results that indicated that event dispersion over POI is more

important, we plotted the correlations between those measures w.r.t

POI. Figure 2 reports the pairwise correlations between these met-

rics which were computed using the Pearson coe%cient. Figure 2(a)

shows a strong negative correlation (-0.92) between entropy and

focus as can be expected from the previous observations about the

narrowness of the event-related area around the focus. Turning

our attention to the correlations between focus and distance (Fig-

ure 2(b)) and between entropy and distance (Figure 2(c)), we note

that when the distance between users increases, the intensity of the

focus decreases, which leads to a negative correlation (-0.64), and

the entropy increases, which leads to a positive correlation (0.69).

In summary, the more scattered an event is, the less the users con-

centrate around a single POI, and the more tweets are propagated

over several locations.

4.2 Spatio-temporal dynamic trends (RQ2)

Here, we cross the spatial and temporal perspectives with the aim of

investigating the evolving spatial properties of events across their

lifetimes. Our practical objective is to provide some insights into

how quickly and how long small-scale events propagate. To achieve



Table 3: Ratio of events w.r.t their duration.

Duration Percentage

0 – 3 h 6.59%

3 – 6 h 66.83%

6 – 9 h 20.00%

9 + h 6.58%
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Figure 3: Ratio of peak occurrence in non-stationary events.

this objective, "rst we focus on the study of event temporalities to

investigate the presence vs. absence of di#erences in event lifetimes

and then cross the spatial and temporal dimensions to understand

the event propagation trend.

4.2.1 Analysis of event temporalities. Our aim here is to analyse

the temporal evolution of events. Accordingly, we "rst identify the

relevant temporal window to be used in the study. Based on the

average duration of events (∼ 5h) and standard deviation (∼ 2h),

we split the events into intervals of 3h durations, as shown in

Table 3. The results show that most events (66.83%) last between 3h

and 6h and that very few are short (6.59%) or very long (6.58%). By

cross-looking at the event size -in terms of number of posted tweets-

per range of duration, we found a moderate positive correlation

(Pearson coe%cient correlation = 0.613). This suggests that tweet

publications during an event have the same trend as the event does.

To gain a clear understanding of this observation, we split each

event into 10 windows of equal-size and then, for each window,

computed the number of tweets that were posted during the tempo-

ral interval. We studied the stationarity of the resulting time series

using the Kwiatkowski Phillips Schmidt Shin (KPSS) test [17]. We

found that only 28% of events are non-stationary (p < 0.05) which

suggests the presence of peaks. For those non-stationary tempo-

ral series, we further determined the temporal windows within

which the peaks occur (Figure 3). We can see that approximately

35% of the candidate peaks (which represent ∼ 9% of the overall

events) appear at the birth of the event. This observation seems to

be quite obvious because the latter is mechanically used to detect

the event itself. To check this feeling, we computed the statistical

di#erences in the propagation trends of events with peaks and those

without peaks using focus, entropy and location-based feature val-

ues. We used the Welch’s t-test [28] which does not assume equal

population variance. Table 4 provides a summary of these feature

values and the associated standard statistical indicators. The signif-

icance of the di#erence between feature means as determined by

the obtained p-value and the level of signi"cance are respectively

reported in the last two rows of Table 4. We can observe that no

signi"cant di#erence has been reported for each of the studied

features. Combining all these observations about temporal users’

tweet publication, we hypothesize that, unlike for global events, the

notion of peaks does not really make sense for small-scale events.

Thus we consider all the events at the same level of interest in the

following spatio-temporal analysis.

Table 4: Comparison of events with peak vs. without peak.

Level POI # Events Focus Entropy
Distance Distance

User - User Focus - User

Events with peak 113 0.65 1.78 0.313 0.201

Events without peak 297 0.66 1.52 0.271 0,169

t-test
p-value - 0.803 0.108 0.401 0.386

Test signi!cance - = = = =

4.2.2 Analysis of spatio-temporal event trends. Our objective

at this stage is to understand the spatio-temporal dynamics of

events. In light of our objective, we split the events into 10 win-

dows of equal-size and calculate the average entropy, He (t), and

focus, F e (t), for each temporal window. The results are shown in

Figure 4. Looking speci"cally "rst at the entropy, we observe at the

neighbourhood level, the entropy slightly increases (from 0.31 to

0.64) which indicates that small-scale events do not really propa-

gate through di#erent neighbourhoods. Therefore, events remain

con"ned within less than 2 neighbourhoods, on average. At the POI

level, when the events begin, tweets are posted from a limited num-

ber of POIs (less than 2 POIs on average since He (0) = 0.59). Then,

the events tend to quickly propagate to approximately 2 locations in

the "rst half of the event duration (He (5) = 1.13), before stabilizing

thereafter at approximately 3 POIs (He (9) = 1.59). To measure the

impact of the entropy increase on the concentration of tweets that

are published within the same location, we turn our attention to

the evolution of the average geographical focus. At the beginning

of an event (i.e., during the "rst temporal window), the focus values

are high: 88% and 78% at the neighbourhood and POI levels respec-

tively. They slightly decrease as the event unfolds and stabilizes

Figure 4: Average event entropy He (t) and focus F e (t) evolu-

tion over time.
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ues at POI level.

discussed in the Twitter stream. Given that the datasets used in our

study are geo-tagged in New York City and that we are interested

in event topics, we used the topic labels of the NY Times medium as

already done in previous work on Twitter datasets [34]. The topic

categories are Arts, World, Business, Sports, Style, Technology and

Science, Health, Education and Travel. To perform the topic labelling

task, we "rst built 3 event groups (Group A, Group B, Group C)

by splitting the original event dataset per event type identi"ed

previously. Thenwe applied in each event group the Latent Dirichlet

Allocation (LDA) model [8] to the meta-documents built from the

tweets belonging to each event and then tuned the optimal number

of topics using the perplexity measure [8]. We reached a minimal

perplexity value of 27.6, 20.1 and 17.3 at 30 topics respectively for

Group A,Group B andGroup C. Each topic from the 90 automatically

extracted LDA topics (30 topics extracted from each group) was

labeled by 4 human assessors who were instructed to de"ne topic

labels w.r.t the NY Times topic categories if relevant and to assign to

the ’Other’ topic category if no relevant NY topic category matched

the LDA topic. Assessors’ agreement was estimated using the Fleiss

Kappa cœ%cient and revealed a moderate agreement with value

of 59.68%. A "nal topic category has been assigned to each event

by applying the majority voting strategy. To have a picture of

the group characteristics at the event level, we mapped the group

topics to event topics by using the LDA inference algorithm [8]

and then computed for each group the distribution of events and

audience w.r.t each topic category, as shown in Figure 6. From a

general view, we can see that apart from the ’Other’ category, the

topics extracted from all the event groups are mostly related to

Arts (resp. 48%, 28%, 28% for group A, B and C) and Sports (resp.

14%, 21%, 52% for group A, B and C). The observation about the

relative high size of the ’Other’ category is consistent with previous

work which have shown that Twitter streams give rise to speci"c

topics that do not always "t with standard categorical topics [29, 34].

Thus, we further asked the annotators to assign Twitter labels as

provided in [34] to the events belonging to the ’Other’ category.

The annotation performed with a moderate Fleiss Kappa agreement

of 56.87% showed that most of the topics belong to the ’Family and

life’ category (resp. 55%, 56% and 97% events for Group A, B, and C)

which is one of top hot topics addressed in Twitter including highly

when reaching half of the event duration. Finally, 83% (resp. 66%) of 
tweets are posted from the focus at the neighbourhood (resp. POI) 
level. Moreover, we note that the coarser the level, the faster the 
focus values stabilize. Despite this drop in focus, the latter is still 
informative at any time of the event since it systematically attracts 
more than 50% of tweets (F e ≥ 0.5) regardless of the spatial level or 
the temporal window. Combining our observations about entropy 
and focus dynamics as highlighted from results, we conjecture that 
the more scattered an event is, the less a single location draws most 
of the users’ attention.

4.3 Event types (RQ3)
Our practical objective here is twofold: (1) investigate wether spe-
ci"c types of events can emerge from the users’ posts; (2) charac-
terise the event types (if present) w.r.t topical and audience features.

4.3.1 Identification of event types. Building on previous results, 
we consider results at POI level only, and use the focus as a criterion 
for event categorization. More speci"cally, we split the events into 
5 clusters according to their focus values and compute the average 
entropy and distance per event cluster and per temporal window as 
shown in Figure 5. Points labelled with 0 are associated with the "rst 
temporal window whereas points labelled with 9 are associated with 
the last window5. At a general glance, we can see that the clusters 
follow the same pattern: the distance values slightly increase during 
the event lifetime whereas the entropy quickly increases until half 
of the event duration and then remains stable. However a deeper 
analysis identi"es three types of events from this result. The "rst 
type (solid line) consists of the 21% of events belonging to the 2 
top clusters in Figure 5 that are associated with low focus values 
(0 ≤ F e ≤ 0.4) and labelled as Group A. Events belonging to this 
type are spread between approximately 2 POIs from the beginning 
(He (0) > 1.11) and continue to propagate across 8 to 20 POIs during 
their lifetimes (3.05 < He (9) < 4.34). Moreover, they also spatially 
spread based on the increase in the average distance between users. 
These events are dynamic events that reach a wide audience since 
they propagate to both multiple locations and multiple geographic 
areas. The second type of events (dashed line) consists of the 37% of 
events belonging to the 2 median event clusters in Figure 5 that are 
associated with moderate focus values (0.4 ≤ F e ≤ 0.8) and labelled 
as Group B. They globally remain concentrated within the same 
area, i.e., the distance slightly increases, but they spread over several 
locations. They arise in less than 2 POIs (He (0) < 1) and propagate 
quickly across 2 to 4 POIs (1.14 < He (3) < 1.71) for the "rst third 
of the event duration. For the remaining lifetimes, the events no 
longer propagate (i.e., their entropies remain stable). Finally, the 
third type of events (no line) consists of the 42% of events belonging 
to the cluster at the bottom in Figure 5 that have high focus values 
(0.8 ≤ F e ≤ 1) and labelled as Group C. Events that fall within this 
group are very localized bringing people together in a single POI. 
Their entropies and distances do not change during the event.

4.3.2 Characterisation of event types. To gain better insights 
from the event types identi"ed f rom t he previous analysis, we 
performed a qualitative analysis at the topical level enhanced with 
a quantitative analysis of audience (in terms of number of users 
involved in events). Basically speaking, a topic is a common subject
5For the sake of readability, labels associated with intermediate windows are omitted.
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personal and opinionated tweets. We can also observe from Figure 6

the following: (1) Group A is characterised with the lowest number

of events (21%) and the highest average audience per event6 (74).

Group A seems to represent a set of few important events since they

are moreover spatially spread as shown in the previous analysis. (2)

InGroup B, the average audience is less important (45) than inGroup

A but users are involved in a higher number of events (37%) and

address more diverse topics including Art, Sport, Politic and Other.

Combining this observation with the spatial analysis, we expect

that events in this group are more likely to be less important events

in wide-open spaces. (3) Group C includes the highest proportion

of events (42%) with an average audience per event higher than

in Group B (56, but still lower than in Group A), with however

comparable topic diversity. Combining these observations with

the spatial narrowness of users involved in this group of events

suggests that Group C includes numerous and topically diverse

micro-events with a low spatial impact. A qualitative annotation

of a sample of events allowed us to con"rm our expectations. For

instance the Global citizen festival and the Race of the cure events

which are well known periodic events in the US fall into the Group

A, the Tennis US Open and the NY Comic Con fall into the Group B,

while we found numerous private concerts and soccer matches in

the Group C.

5 CONCLUSION AND IMPLICATIONS

In this paper, we analysed the spatio-temporal dynamics of small-

scale events. Our primary objective was to determine the perimeters

of their geographical social impacts at di#erent levels of location

granularity, and to gain understanding of their audience and the

general trends of their propagation along their lifetimes. Our results

suggest the following trends:

• In response to RQ1, the results show that the focus is a sig-

ni"cant origin location from which users post their tweets,

particularly at coarser levels of location granularity. More-

over, even if events propagate over several locations, they

mostly reach narrow regions. Building on these "ndings, one

relevant practical implication that we envision is the design

of information seeking algorithms that are able to timely

and automatically enlarge the event propagation diameter

6Ratio between total number of users and total number of events in the group.

by rooting event mentions to users who are located in nar-

rowed regions. User’s location, if not explicitly provided,

could either be inferred using improved state-of-the art algo-

rithms for tweet geo-location [15]. This would increase the

situational awareness particularly during security incidents.

• In response to RQ2, we found that the temporal series of

events are mostly stable which suggests the absence of signif-

icant peaks. We also found that evently timely evolve from

diverse locations and quickly stabilize not signi"cantly far

from the focus. A relevant research opportunity that arises

from this study is to examine these "ndings alongside previ-

ous research "ndings about large-scale event detection [6]

to design novel algorithms that can jointly detect both weak

and strong signals in Twitter streams considering appropri-

ate spatio-temporal distribution and density of posts. Such

general detectors can provide means for monitoring people’

activities (eg., for public order maintenance purpose).

• In response to RQ3, we found that we can detect distinct

types of events with evolutions that are signi"cantly di#erent

according to audience, focus concentration and propagation

distance trends over time. Based on these "ndings, the im-

plications for further theoretical investigation is to develop

models for predicting event type based on the event-related

features. Event type prediction would be a prior step to the

development of an automatic visual summarization method

that would give a high-level picture of what is happening in

a region.

Our study has some limitations. First, we only used the focus, en-

tropy and distance metrics to report the analysis results. Although

these measures are the primary metrics that are used for the spatio-

temporal analysis of events, they are still insu%cient for revealing

other relevant facets such as propagation rate. Second, enlarging

the spatio-temporal scope of our study to other cities and during dif-

ferent periods might give better insights about the generalisability

of our "ndings. This investigation is planned for future work.
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