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A B S T R A C T

Occupational stress is increasingly present in our society. Usually, it is detected too late, resulting in physical and mental health 
problems for the worker, as well as economic losses for the companies due to the consequent absenteeism, presenteeism, reduced 
motivation or staff turnover. Therefore, the development of early stress detection systems that allow individuals to take timely action 
and prevent irreversible damage is required. To address this need, we investigate a method to analyze changes in physiological and 
behavioral patterns using unobtrusively and ubiquitously gathered smart office data. The goal of this paper is to build models that 
predict self-assessed stress and mental workload scores, as well as models that predict workload conditions based on physiological and 
behavior data. Regression models were built for the prediction of the self-reported stress and mental workload scores from data based on 
real office work settings. Similarly, classification models were employed to detect workload conditions and change in these conditions. 
Specific algorithms to deal with class-imbalance (SMOTEBoost and RUSBoost) were also tested. Results confirm the predictability of 
behavioral changes for stress and mental workload levels, as well as for change in workload conditions. Results also suggest that 
computer-use patterns together with body posture and movements are the best predictors for this purpose. Moreover, the importance of 
self-reported scores' standardization and the suitability of the NASA Task Load Index test for workload assessment is noticed. This work 
contributes significantly towards the development of an unobtrusive and ubiquitous early stress detection system in smart office 
environments, whose implementation in the industrial environment would make a great beneficial impact on workers’ health status and 
on the economy of com-panies.

1. Introduction

The pace of modern-day life, the competitiveness in the workplace,

poor working conditions and the immense number of tasks with in-

accessible deadlines that are assigned to workers are causing work-re-

lated stress to become increasingly frequent in our work environment.

The International Labour Organization (ILO) defines stress as

the harmful physical and emotional response caused by insufficient

perceived resources and abilities of individuals to cope with the

perceived demands, and is determined by work organization, work

design and labour relations (I. L. O, 2016). It is the second most

frequent work-related health problem in Europe (European Agency

for Safety and Health at Work, 2013a), presenting in 2005 a pre-

valence of 22% among working Europeans. In a recent opinion poll

(European Agency for Safety and Health at Work, 2013b), 51% of

the workers confessed that stress is common in their workplace and

the 6th European Working Conditions Survey (European

Foundation for the Improvement of Living and Working Conditions,

2016) exposed that 36% of European workers deal “(almost) all of

the time” with high pressure to meet tight deadlines.

If timely action is not taken, occupational stress can provoke serious

physical and mental problems on the worker (Milczarek et al., 2009),

but also important economic losses in the companies. Musculoskeletal

disorders, depression, anxiety, increased probability of infections

(Wijsman et al., 2013), chronic fatigue syndrome, digestive problems,

diabetes, osteoporosis, stomach ulcers and coronary heart disease

(Marlen Cosmar et al., 2014; Peternel et al., 2012; Bickford, 2005) are

only a few examples of occupational stress’ long-term health con-

sequences. Occupational stress can also result in increased absenteeism

and presenteeism, reduced motivation, satisfaction and commitment,

along with a greater rate of staff turnover and intention to quit, costing

high amounts of money to the enterprises (Drivers and Barriers, 2012).

An estimate of €617 billion a year is what work-related depression costs

to European enterprises, including costs of absenteeism and pre-

senteeism (€272 billion), loss of productivity (€242 billion), healthcare

costs (€63 billion) and social welfare costs in the form of disability
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office environments to create stress prediction models (Dawadi et al.,

2015). This algorithm consists of the application of a sliding window to

extract five different time-series statistics from physiological and be-

havioral data, describing the change and variability of these patterns.

This allows the construction of models to predict self-assessed stress and

workload levels from the change features instead of using the usual

instantaneous feature values. Although it is out of the scope of this

work, the computation of these behavioral and physiological change

parameters not only provides a method to take the temporal nature of

stress into account, but it is also a way to standardize data coming from

different subjects, facilitating generalization of the models over a po-

pulation group.

As a second goal of this work, we also determine the possibility of

automatically detecting a workload condition change using these

changes in physiological and behavioral data.

The CAAB algorithm has been validated in other scenarios and has

been shown to be useful for cognitive state and everyday functioning

assessment (Dawadi et al., 2015). The validation of the approach for

early stress detection would result in a system that could alert both

workers and managers enabling to take timely action. Moreover, this

would define the path to follow towards the final development and

implementation of a global early detection system for disorders that

provoke behavioral changes, among which stress is just an example.

Therefore, the research questions we aim to address in this paper

are:

• Can we predict users' perceived stress and mental workload level

from changes in their unobtrusively collected behavioral and phy-

siological data?

• Which physiological or behavioral changes are the most informant

about stress and mental workload levels?

• Can physiological and behavioral variability as monitored by am-

bient sensors be used to detect the conditions under which a parti-

cipant is working, both from a predefined set of conditions and from

reliably differently perceived conditions?

• Can these data be used to detect a change in workload settings? Can

they also detect the direction of these changes? And a reliably

perceived workload change?

The main contributions of this paper are: 1) Use of the CAAB al-

gorithm to evaluate the possibility of measuring self-assessed and

standardized stress and mental workload from changes in unobtrusively

collected real-life smart office data. 2) Analysis of the predictability of a

wide variety of stress and mental workload assessment scores. 3) A

feature selection-based analysis of the contribution of each type of

behavioral and physiological change to the prediction of each of the

self-assessment test scores. 4) Analysis of the predictability of an ob-

jective and reliable workload condition, change in these conditions and

their directionality from unobtrusively collected data. 5) Testing of

specific algorithms (i.e. SMOTEBoost (Chawla et al., 2003) and RUS-

Boost (Seiffert et al., 2010)) to boost models’ sensitivity for mental

workload detection.

The remaining part of the paper proceeds as follows. First, Section 2,

begins by reviewing the related literature. Section 3 explains the

methods used for the data collection, preprocessing and model building

process. Next, in Section 4, prediction models’ results are presented.

Finally, in Section 5, results are discussed and the conclusions drawn

are presented.

2. Related work

Smart offices have already been implemented and used for a variety

of purposes, being the area of energy efficiency a highly popular field of

application (Akbar et al., 2015; Choi et al., 2015a, 2015b; Rottondi

et al., 2015). Moreover, research aimed at improving workers’ quality

of life based on this technology are also present in the literature

(Kaklauskas et al., 2011; Kiyokawa et al., 2012; McDuff et al., 2012).

To date, stress detection research has mainly focused on the use of

physiological signals that could objectively measure stress-levels while

replacing the well-accepted but highly inaccessible methods such as

salivary cortisol measurements. Even if a wide variety of physiological

signals have been analyzed, the most successful results have been

achieved with the monitoring of skin conductance levels (SCL), as well as

with heart rate (HR) and heart rate variability (HRV) extracted from

electrocardiograms (ECG) (Alberdi et al., 2015). Stress and emotions

have also been associated with some objectively-measured behaviors

(Sharma and Gedeon, 2012). These include computer use patterns

(Eijckelhof et al., 2014), posture (McDuff et al., 2012; Arnrich et al.,

2010), facial expressions (McDuff et al., 2012; Dinges et al., 2005),

speech (Kurniawan et al., 2013; Hagmueller et al., 2006; Lu et al., 2012),

mobile phone use (Sano and Picard, 2013; Muaremi et al., 2013), writing

patterns (Vizer et al., 2009; Saleem et al., 2012) and global activity-level

parameters measured in smart environments (Suryadevara et al., 2012).

Nonetheless, the reported conclusions do not result from real office-work

settings but from experiments under artificial conditions where partici-

pants were not performing their usual work and/or stress was elicited

with atypical stressors for an office worker.

benefit payments (€39 billion) (European Agency for Safety and Health 
at Work, 2013a). An estimate of 50–60% of all lost working days in 
European enterprises are due to work-related stress and psychosocial 
risks (European Agency for Safety and Health at Work, 2013a).

In this context, methods to detect occupational stress in time so as to 
take the required measures and to avoid its negative health-related and 
economic consequences are necessary. Often, stress levels are evaluated 
by means of self-reported questionnaires, which are performed from 
time to time, and therefore, are not adequate to detect subtle changes 
that might end up in a more serious problem (Alberdi et al., 2015). 
Usually, the diagnosis comes too late with these methods, when damage 
has been done. Moreover, self-reported questionnaires are subjective 
and rely on subjects’ recall abilities and awareness of the situations, 
which is not guaranteed (McDuff et al., 2012), leading sometimes to 
incorrect stress level measurements.

In recent years, technology to unobtrusively and ubiquitously 
monitor users' behavior is being developed as Smart Environments 
(Ramos et al., 2010). Future work environments are supposed to be 
intelligent, adaptive, intuitive and interactive (Strömberg et al., 1007). 
In this sense, a smart office has been defined as an environment that is 
able to adapt itself to the user's needs, release the users from routine 
tasks they should perform, change the environment to suit their pre-
ferences and access services available at each moment by customized 
interfaces (Marsá Maestre et al., 2006). In addition, we also see an 
opportunity based on its potential to avoid health-related problems for 
workers and improve their quality of life. As a great percentage of 
workers develop their tasks in an office environment, smart offices re-
present a useful infrastructure to continuously monitor workers' beha-
vior in a completely transparent way, gathering real work-life data 
throughout the working day and therefore, to overcome the main dis-
advantages of the usual assessment methods. The collected data can 
provide a complete view of workers' behavior in a real-world work 
environment, the efficiency and ecological validity of the resulting 
stress assessments and reducing stress detection delays.

Our goal in this paper is to build and validate stress and mental 
workload prediction models based on unobtrusively collected physio-
logical and behavioral data in a smart office environment. As all other 
disorders, stress progresses over time. Usually, in stress detection re-
search, the temporal nature of the disorder is not taken into account, 
and only a snapshot of the symptoms is considered for prediction. In 
contrast, in this work we hypothesize that changes over time of these 
symptoms can predict the mental states of the subjects and the condi-
tions they are undergoing.

To support this hypothesis, we propose the use of the Clinical 
Assessment using Activity Behavior (CAAB) approach adapted to smart



To overcome this obstacle and get to know stress in the most natural

environment possible, Koldijk et al. (2016) recently analyzed the pos-

sibility of detecting stressful situations and estimating mental states

from unobtrusively collected smart office physiological and behavioral

data. These data were collected in an experiment where the participants

performed real office-work and were being stressed with common real

office-related stressors such as time pressure and e-mail interruptions.

They succeeded in accepting their hypothesis and built both stress and

mental workload prediction models from the smart office data. They

also analyzed the importance of building individual stress detection

models instead of generic models, concluding that specialized models

for particular groups of people with similar characteristics might be

much more effective on this task. However, as most of the existing

literature does, these authors (Koldijk et al., 2016) ignored the temporal

nature of stress and only considered the use of instantaneous values of

the physiological and behavioral data to create the prediction models.

Given that stress is a disorder that progresses over time, we hypothesize

that stress-detection research would benefit from an approach based on

the use of time-series statistics describing physiological and behavioral

change over time.

3. Methods

3.1. Dataset

The SWELL Knowledge Work Dataset for Stress and User Modeling

Research (SWELL-KW) (Koldijk et al., 2014)1 collected in the ‘Smart

Reasoning for Well-being at Home and at Work’ (SWELL) project was

used for the current study. We decided to use this dataset for two

reasons. First, it reflects real office workers' state performing their

natural office work under real-life stressors, instead of being collected

in an experiment where they are asked to perform artificial tasks or

being submitted to non-common stressors. Second, the data gathered in

the experiment can be easily collected with unobtrusive and easily

accessible sensors that could be deployed in real office environments.

Thus, this could facilitate the exploitation of the results obtained from

this analysis.

SWELL-KW consists of multimodal data of 25 people who were

submitted to a real work-setting experiment in a smart office environ-

ment. The participants were asked to perform common office work

while they were being subjected to different workloads and different

stress levels elicited by means of e-mail interruptions and time pressure.

In addition to an initial relaxed state (R), three different conditions

were simulated: a neutral condition where the subjects were asked to

perform some ‘normal work’ without any stressors (N), a condition

where they were forced to work under time pressure (T), and a third

condition with e-mail interruptions as stressors (I). In the meanwhile,

their physiological signals, computer use patterns, facial expressions

and body posture were recorded by means of computer logging, video

recordings, a Kinect 3D sensor and specific minimally-intrusive body

sensors (namely, a Mobi (TMSI) device with self-adhesive electrodes to

record ECGs and Skin Conductance levels). Participants' perceived le-

vels of stress and mental workload were assessed once per condition by

a variety of self-reported questionnaires: Self Assessment Manikin

(SAM) (Lang, 1980), Rating Scale Mental Effort (RSME) (Zijlstra and

Van Doorn, 1985), NASA Task Load Index (NasaTLX) (Hart and

Staveland, 1988) and a stress level assessment by means of a visual

analog scale. Table 1 summarizes the data collected in SWELL-KW.

3.2. Preprocessing

3.2.1. Minute-level feature extraction

Physiological and behavioral data of the 25 participants were col-

lected continuously during the experiments, resulting in a raw data

collection of 138 min (3 × 6 min R + 45 min N + 45 min

I + 30 min T) for each one of the participants in the form of a computer

log file, a FaceReader (FaceReader, 2015; Kinect for Windows SDK 2.0)

log file, a Kinect SDK (Kinect for Windows SDK 2.0) joint coordinates

file and a log registering the angles of the upper body and physiological

data from Mobi (2016). Along with this raw dataset, SWELL-KW pro-

vided aggregated minute-length features as specified in Table 1 and

whose extraction is explained in detail in the literature (Koldijk et al.,

2014). In this study, we made use of these minute-level features, but

other time-window lengths for data aggregation could also be con-

sidered.

Modality Source Sensor Minute-length aggregated features

Physiology Body sensors (3 features) Mobi (TMSI) sensors with self-

adhesive electrodes for ECG and

Skin Conductance Level (SCL)

(TMSI, 2017)

Heart Rate (HR), Heart Rate Variability (HRV), SCL

Behavior Personal Computer (16 features) uLog key-logging application

(Noldus Information Technology,

2018)

Mouse use patterns (all mouse events, left clicks, right clicks,

double clicks, wheel scrolling, drag events, distance),

keyboard use patterns (all key events, n°of letter types, n°of

special keys, n°direction keys, n°error keys, n°shortcut keys,

n°of spaces typed) and applications (n°of app. changes, n°of

tabfocus changes)

Facial expressions (8 features) iDS uEye UI-1490RE USB camera

(IDS) and Philips SPC 900NC

webcam (Koninklijke Philips)

The degree of detection of the following emotions: neutrality,

happiness, sadness, anger, surprise, scare, disgust and valence

Head and facial movements (32

features)

iDS uEye UI-1490RE USB camera

and Philips SPC 900NC webcam

Head orientation (3), mouth opening, eye opening (2),

eyebrow raising (4), gaze direction (3) and amount of

activation of several facial points (20)

Body posture and movements (94

features)

Kinect 3D (Kinect for Windows SDK

2.0)

Proximity to the computer, forward inclination, shoulders'

state (2), relative skeletal angles' average values describing

the participants' posture (43) and standard deviations

describing movements (47)

Subjective/ Psychological Self-reported tests (12 features) – SAM scores (Valence, arousal, dominance), stress, RSME score

(mental effort), NasaTLX scores (mental demand, physical

demand, temporal demand, effort, performance, frustration

and global NasaTLX)

1 Available online at (M. M. T., et al., 2014).

Table 1
Raw-level and minute-level data available in the SWELL-KW dataset.



3.2.2. Behavior statistics’ computation

As mentioned previously, we had available a set of minute-length

physiological and behavioral features for each participant, as well as

the subjective levels of perceived stress and mental workload under

each condition for each participant. From this minute-level dataset, we

computed two different summarizing datasets with two different goals

using two different configurations for the CAAB algorithm.

In order to extract the physiological and behavioral statistics for each

participant under each condition, we implemented the CAAB (Dawadi et al.,

2015) algorithm adapted to smart office data in Matlab. The minute-length

physiological and behavioral data was processed using this algorithm as

follows. First, each participant's minute-length physiological and behavioral

features for each condition were extracted. Second, five summarizing time-

series statistics were computed for each physiological and behavioral feature

in this period using a sliding window of length (w) 5min with a skip size (s)

of 1min: variance, skewness, kurtosis, autocorrelation and change. In order

to stabilize data variance and remove the effect of non-stationary (e.g.

periodic) components, a log-transform followed by a linear detrending was

applied to each physiological and behavioral variable falling inside the

sliding window just before the computation of the summary statistics. While

the first four are well-known time-series processing methods (Dakos et al.,

1371), the change statistic was first introduced by Dawadi et al. (2015). In

brief, computation of the change feature is to apply a change detection

algorithm between the two halves of the piece of time-series data that falls

into the sliding window, so that we receive a ‘1’ if a significant change is

found between the two halves, and a ‘0’ otherwise. For this purpose, we

used an implementation of the Hotelling-T test (Hotelling, 1931) change

algorithm available for Matlab.2 Finally, the average of each time-series

statistic for the length of the condition period was computed. The set of

time-series statistics' averages was used for the final predictions. Note that

the sliding window length (w=5) was selected empirically in a preliminary

test, but other window sizes could also be considered. This process is

highlighted in Approach 1 of Fig. 1.

For the second dataset, only the last two steps differed from the

previous process: after the application of the log-transform and linear

detrending, the same five summarizing time-series statistics were

computed, but this time, using a non-overlapping sliding window of

5min' length (s= 5, w=5). Condition-level averages were not com-

puted this time, and the 5min’-level dataset was considered as the final

version for the condition change detection (see Approach 2 in Fig. 1).

Thus, the resulting preprocessed datasets for further analysis were:

1) a collection 100 data instances of 780 (5 time-series statistics of 156

physiological and behavioral features) summary behavior statistics

modeling each one of the 25 participants who went through the four

conditions of the SWELL experiment (dataset A (see Fig. 1)), and 2) a

collection of 616 data instances of 780 summary behavior statistics

describing the physiological and behavioral output of the 25 partici-

pants for 5min non-overlapping intervals during the length of the

whole experiment (dataset B)).

We made sure that none of the variables in any of the two datasets

exceeded 30% of missing data, to remove the whole variable from the

analysis if it was so. The remaining missing values (variables with

<30% missing data) were imputed by the mean value for each attribute

using the ‘ReplaceMissingValues’ filter in Weka.

Fig. 1. Flow-chart of the whole preprocessing method. Post-processed self-assessed stress levels used as prediction labels are numbered from 1 to 8, whereas post-

processed datasets containing physiological and behavioral data are called A, APC and B.

2 Available online at https://github.com/brian-lau/multdist.



3.2.3.4. Reliable change in perceived workload levels. Despite the more

ecologically valid experimental conditions that are used, the objectively

measured condition might not necessarily be reflecting a significant

workload change for all of the participants. To standardize the effect of

each condition on the perceived task load for each participant, we

computed the Reliable Change Indexes (RCI) (Christensen and

Mendoza, 1986) for the NasaTLX scores. RCI informs whether a

participant's perception (in this case, perceived workload levels) has

experienced a significant change in an assessment score based on his/

her own previous perception. RCI discards changes that might have

appeared due to reasons other than an actual change in scores (such as

measurement unreliability, repeated-testing or practice effects) by

applying a threshold to the scores' differences. We looked for two

different RCIs, one for each post-processed dataset. For the first case, we

computed whether each participant was reporting a reliable change in

the perceived task loads for each condition compared to the relaxed

state (‘R’) (label 7). We assumed the NasaTLX score to be null for that

initial condition. The reliable change index per condition and subject

was computed as shown in Equation (1),

=
−

RCI i
Nasa i Nasa R

S Em
( )

( ) ( )

2
baseline

TLX TLX

NasaTLX (1)

where Nasa i( )TLX and Nasa R( )TLX are the self-reported task-load level

for the condition i and for the relaxed condition respectively, and

SEmNasaTLX or Standard Error of Measurement represents the expected

variation of the observed NasaTLX scores due to measurement error,

being computed as shown in Equation (2),

= −SEm SD r1Nasa Nasa NasaTLX TLX TLX (2)

where rNasaTLX is the test-retest reliability measuring the consistency of

the NasaTLX scores over time. Test-retest reliability parameters for the

NasaTLX scores can be found in Table 2.

For the second case, we analyzed whether the participants were

undergoing a significant workload change in each 5-min length period

(label 8). For this purpose, we computed the RCI in self-reported

NasaTLX scores at the beginning and at the end of each consecutive 5-

min time slot. This change was computed as shown in Equation (3),

=
−

RCI j
Nasa j Nasa j

S Em
( )

( ) ( )

2
cons

TLX end TLX init

Nasa
.

TLX (3)

where Nasa j( )TLX end is the self-reported task-load index at the end of the

5-min length period j and Nasa j( )TLX init is the self reported task-load

index at the beginning of the 5-min length period j.

A summary of the whole preprocessing task is given in Fig. 1.

Fig. 2. Two examples for the standardization of the ‘condition’ (C) label. The C variable shows the objective condition the participant is undergoing, whereas stress

variable shows the perceived stress levels for that condition by the participant. Cstd represents the standardized condition value calculated from the user's perceived

stress level in each condition.

3.2.3. Stress and mental workload assessment scores’ set up
The goal of this paper is to create prediction models that map physio-

logical and behavioral changes of data collected in a smart office to the 
subjective stress and mental workload ratings self-reported by the partici-
pants, as well as to objectively measure working conditions and condition 
changes. Our target variables are therefore defined as explained hereafter.

3.2.3.1. Self-reported stress and workload levels. The self-reported 
valence, arousal and dominance levels measured by the SAM test, the 
stress level, the mental effort measured by the RSME questionnaire, and 
the mental demand, the physical demand, the temporal demand, the 
effort, the performance, the frustration and the global task load levels 
measured by the NasaTLX questionnaire were all collected once for 
each condition setting (label 1 (see Fig. 1)). As self-reported 
questionnaires might be very subject-dependent, we also computed 
the standardized version of the ratings by applying min-max 
normalization per subject to the questionnaire responses (label 2).

3.2.3.2. Simulated workload condition settings. Moreover, a label 
objectively indicating the condition under which the data were 
collected was used (label 3). This one takes the form of a four-class 
nominal variable, representing the four workload condition settings 
implemented during the experiments: R, N, T and I. Nonetheless, the 
effect provoked by each condition setting may depend on each subject, 
i.e. a participant might feel much more stressed under time pressure (T) 
than under a condition with frequent e-mail interruptions (I) while 
another one feels the opposite. To reduce this type of inter-subject 
variability, we computed the standardized versions of the condition 
settings (Cstd) (label 4). For this purpose, we ordered the conditions from 
the least to the most stressful for each participant (as measured by the 
‘stress’ label) and assigned corresponding numbers: ‘0’ for the least 
stressful and ‘3’ for the most stressful one (see Fig. 2).

3.2.3.3. Change in workload condition settings. In this case, a condition 
change variable was computed, indicating whether the subject was 
being submitted to a workload condition change in each one of the five-
minute length data instances (label 5). Data were labeled with ‘1’ if this 
was true and with a ‘0’ otherwise. Finally, we also decided to make an 
attempt on detecting the directions of these condition changes, i.e.: for 
each 5-min period, we computed whether the user was increasing 
(positive label), decreasing (negative label) or maintaining (neutral 
label) his/her self-reported perceived workload levels (as measured by 
the ‘NasaTLX’ label), and assigned ‘-1’, ‘0’ or ‘1’ to each data instance 
(label 6).



3.3. Stress and mental workload prediction

The preprocessed datasets resulting from the previous steps were

analyzed using Weka (Frank et al., 2016).

3.3.1. Self-reported stress and workload levels

First, a regression analysis between the self-assessed stress and

mental workload levels and smart office based physiological and beha-

vioral data was performed (prediction of ‘labels 1’ with ‘dataset A’). The

models utilized radial basis function (RBF) kernel support vector ma-

chines (SVM). For this purpose, a model was built for each self-assessed

score using all features extracted from the experiment data. The models

were validated following a 10-fold CV approach and their correlation

coefficients (r) and Mean Absolute Errors (MAE) were compared. The 10-

fold CV approach consists of performing a cross validation 10 different

times, each time using a different partitioning of the data into training

and validation sets, and then averaging the results (Gust, 2009). We

searched for statistical predictability of the smart office data models

comparing the results to a baseline model based on the ZeroR algorithm

with a paired t-test. ZeroR is an algorithm aimed at creating prediction

models based only on the distribution of the response variable and ig-

noring the data attributes (Witten et al., 2011). It is commonly used as a

basis of comparison for the other algorithms that have to overcome its

performance to be considered useful. When it is being used for regression

purposes, its error metric must be beaten. Adjusted p-values (*p<0.01,

**p<0.001) were used to check for statistical significance in order to

avoid Type 1 error rate due to the number of correlation analyses being

run. Unless otherwise stated, the same validation approach based on 10-

fold CV and t-test comparison to the corresponding ZeroR baseline

classifier was used for all models in this work.

We then performed feature selection by analyzing the predictive

power of each type of feature for each self-assessment score. For that

purpose, we built source-specific models based on only: (1) physiolo-

gical features, (2) computer use patterns, (3) facial expressions, (4)

head and facial movements, and (5) body posture and movements. A

RBF SVM algorithm was used to build the models.

Next, all the previous steps were repeated to build prediction

models of the standardized self-assessment scores (prediction of ‘labels 2’

with ‘dataset A’). Models using all the collected data and source-specific

models were created and validated.

The huge number of features coming from only five sources that are

being used as attributes in this work, might result in highly collinear

models which have the risk of not being optimal. To avoid this issue, we

computed a Principal Component (PC) based reduced dataset ex-

plaining the 95% of the variability of the whole dataset. We built and

evaluated the prediction models for this PC-reduced dataset (prediction

of ‘labels 1’ with ‘dataset APCA ’).

3.3.2. Simulated workload condition settings

Regarding the detection of the objective mental-workload condi-

tions from smart office data, we built and evaluated several classifica-

tion algorithms (prediction of ‘labels 3’ with ‘dataset A’). In this case, as

subjects were submitted to four different workload conditions, we were

facing a multi-class classification problem, where a random guess

classifier would yield 25% accuracy. Naïve Bayes, linear SVM,

AdaBoost and C4.5 tree algorithms were selected for this purpose. As all

the four conditions were considered of equal importance, the weighted

versions of the area under the Receiver Operating Characteristic (ROC)

curve (wROCAUC), the area under the precision-recall curve (wPRCAUC),

and F-score (wFscore) were computed for comparison, as well as the

overall accuracy (Acc.) of the models. We considered the classification

models useful when they beat baseline models' accuracy and ROCAUC
values. This process was then repeated for the standardized condition

labels (prediction of ‘labels 4’ with ‘dataset A’).

3.3.3. Change in workload condition settings

In the second approach, there were very few data instances re-

presenting a workload condition change available: only 17.8% of all

data instances were of this type, resulting in highly imbalanced data.

This is a very common problem in health-related machine learning

tasks, where a disease is a rare event, and it is very difficult to collect

enough data instances representing the affected class. Usual machine

learning algorithms tend to create biased models towards the majority

class when being applied to imbalanced datasets, resulting in high

prediction accuracies but, very low sensitivity. Notwithstanding, the

main goal is often to detect the rare event, i.e. the presence of the

disease or disorder.

To overcome this imbalanced data issue, alternative machine

learning approaches must be used. In this work, in addition to some

usual machine learning algorithms, two alternative algorithmic ap-

proaches called SMOTEBoost and RUSBoost were tested aiming at im-

proving models’ sensitivity. SMOTEBoost (Chawla et al., 2003), is a

method that combines boosting techniques with SMOTE (Chawla et al.,

2002) oversampling techniques. The objective of boosting is to create a

“strong” classifier using a set of “weak” classifiers while SMOTE aims at

reducing class imbalance by creating synthetic data instances to over-

sample the minority class. By combining these processes iteratively,

SMOTEBoost often improves the sensitivity of the models without af-

fecting the overall accuracy of the models.

In contrast, the second approach, uses the combination of boosting

and RUS undersampling technique to reduce class imbalance (Seiffert

et al., 2010). RUS, randomly removes data instances from the majority

class until a desired balance is achieved, resulting in training datasets of

smaller size, and thus, greatly reducing complexity and training time of

the models. Despite its simplicity, RUSBoost has demonstrated its ef-

fectiveness in previous works (Van Hulse et al., 2007). Therefore, we

first built condition change prediction models using usual machine

learning algorithms (prediction of ‘labels 5’ with ‘dataset B’), namely,

Naïve Bayes, linear SVM, AdaBoost and C4.5 tree. We evaluated the

accuracy, ROCauc, PRauc, Fscore and sensitivity metrics of the models by

means of a 10-fold CV approach. Next, we built models based on

SMOTEBoost and RUSBoost algorithms using linear SVM and C4.5 tree

as weak classifiers. This time, a 5-fold CV was used for validation

purposes and the performance of the models was compared to a base-

line algorithm by means of a McNemar's test.

Not all condition changes aimed to detect in the previous part imply

the same risks: whereas a condition change from neutral or relaxed to

stressful is an event of “high risk”, the change in the opposite direction

means an improvement in the workers' status. Both events are of in-

terest, being the first one necessary to be detected in order to take

preventive measures, and the second one, useful to track workers'

status. Thus, we aimed at detecting the direction of the condition

changes previously modeled (prediction of ‘labels 6’ with ‘dataset B’). For

that purpose, we built models based on Naïve Bayes, linear SVM,

AdaBoost and C4.5 tree algorithms to solve the three-class classification

problem (negative class: change to a more stressful condition, neutral

class: no change, positive class: change to a less-stressful condition).

3.3.4. Reliable change in perceived workload levels

Finally, we performed the detection analyses for the RCIs in per-

ceived task-loads for each participant. First, we built and evaluated

prediction models for the reliable NasaTLX score changes from baseline

(prediction of ‘labels 7’ with ‘dataset A’) (i.e. classification of data in-

stances representing relaxed states vs. significant workload states) using

unobtrusively collected smart office data and Naïve Bayes, linear SVM,

r SD

NasaTLX (Battiste and Bortolussi, 1988) 0.77 14.6

Table 2
Test-retest reliability (r) and standard deviation (SD) of the NasaTLX scores.



AdaBoost and C4.5 tree algorithms. We repeated the process for source-

specific models. Second, we performed reliable perceived task-load

change detection among consecutive 5min-length time periods using

unobtrusively collected physiological and behavioral smart office data

and the same algorithmic approaches as in the previous case (prediction

of ‘labels 8’ with ‘dataset B’).

4. Results

This section presents the results obtained from the regression and

classification models described in Section 3.3, which analyze the pre-

dictability of the self-reported and objective stress and workload con-

dition levels from smart office data.

4.1. Self-reported stress and workload levels

Table 3 (a) shows the results of the regression analyses for the self-

reported scores using all features available in the first-approach dataset

(prediction of ‘labels 1’ with ‘dataset A’). Valence, mental effort, effort and

global NasaTLX scores were found to be strongly correlated to the smart

office data while dominance and mental demand were showing mod-

erate to strong correlations. Arousal, physical demand, temporal de-

mand and frustration were moderately correlated to the unobtrusively

collected data, whereas correlation for performance label was weak to

moderate and for stress only weak. In fact, for these last two scores,

enough statistical significance was not found after adjusting the p-va-

lues, and therefore, they can not be considered to be predictable from

the collected data.

Table 3 (b) shows the prediction results for the self-assessed scores

from the dataset of 82 PCs explaining the 95% of the variance of the

whole dataset (prediction of ‘labels 1’ with ‘dataset APCA’). Overall, cor-

relation results are low, and none of the MAE values has shown enough

statistical significance to be considered a useful model.

Table 3 (c) shows the results for the regression analyses on the

standardized self-reported scores (prediction of ‘labels 2’ with ‘dataset A’).

Generally speaking, the correlations obtained by these standardized

scores are higher than the ones obtained using absolute values. Effort

raised up to very strong correlation levels, while dominance raised to

strong correlation levels. Valence, mental effort and NasaTLX were also

found to be strongly correlated to the collected data. Moderate to strong

correlation were found for arousal, mental demand, physical demand,

temporal demand and performance, while frustration was only showing

moderate correlations. Stress was the score showing the lowest corre-

lations, but this time was found to correlate weak to moderately.

Moreover, this time, all the scores showed statistically significant

All features with

self-reported scores

(a)

All PCs with self-

reported scores

(b)

All features with

standardized scores

(c)

r MAE r MAE r MAE

SAM

Valence 0.71** 1.75** 0.12 2.60 0.74** 22.02**

Arousal 0.56** 1.91* 0.00 2.40 0.64** 25.52**

Dominance 0.66** 1.83** 0.04 2.45 0.72** 23.06**

Stress

Stress 0.35** 1.78 0.11 1.93 0.51** 30.80**

RSME

MentalEffort 0.68** 2.06** 0.06 2.75 0.73** 23.27**

NasaTLX

MentalDemand 0.62** 1.86** 0.01 2.45 0.68** 24.61**

PhysicalDemand 0.49** 1.23** 0.16 1.40 0.61** 27.17**

TemporalDemand 0.59** 2.37** 0.03 3.03 0.63** 26.83**

Effort 0.75** 1.70** 0.24* 2.51 0.81** 20.24**

Performance 0.50** 2.37 0.08 2.80 0.62** 26.92**

Frustration 0.50** 1.70* 0.15 2.03 0.57** 28.71**

NasaTLX 0.71** 16.41** 0.07 22.35 0.70** 23.23**

Table 4

Regression results for the absolute test scores by behavioral feature type for 10-fold CV and RBF SVM (statistically significant improvement (adjusted

*p < 0.01,**p < 0.001) in comparison to a baseline algorithm).

Physiology Computer use Facial expressions Facial and head movements Body posture and movements

r MAE r MAE r MAE r MAE r MAE

SAM

Valence 0.21 2.55 0.55** 2.35* 0.10 2.64 0.38** 2.48 0.71** 1.75**

Arousal 0.17 2.33 0.55** 2.03** 0.03 2.38 0.42** 2.20 0.47** 2.05

Dominance 0.29 2.34* 0.53** 2.28* 0.00 2.42 0.42** 2.25* 0.64** 1.85**

Stress

Stress 0.17 1.88 0.50** 1.63** 0.14 1.91 0.33** 1.81 0.25 1.85

RSME

MentalEffort 0.21 2.70 0.58** 2.46** 0.16 2.71 0.45** 2.54 0.62** 2.22*

NasaTLX

NasaTLX 0.39** 21.45 0.64** 19.6** 0.03 22.58 0.47** 21.15 0.67** 16.22**

MentalDemand 0.35** 2.30 0.52** 2.16* 0.05 2.44 0.35** 2.29 0.59** 1.84**

PhysicalDemand 0.19 1.40 0.36** 1.28* 0.03 1.44 0.49** 1.26* 0.41** 1.26*

TemporalDemand 0.33** 2.93 0.53** 2.66** 0.04 3.03 0.42** 2.80 0.56** 2.38**

Effort 0.31* 2.46 0.64** 2.14** 0.08 2.52 0.55** 2.20** 0.70** 1.79**

Performance 0.17 2.75 0.57** 2.45** 0.08 2.83 0.25* 2.72 0.53** 2.28*

Frustration 0.19 1.99 0.46** 1.75** 0.16 2.03 0.48** 1.76* 0.40** 1.84

Table 3
Regression results for the self-reported test scores using RBF SVM algorithm for 
10-fold CV (statistically significant improvement (adjusted *p < 0.01,**p < 
0.001) in comparison to a baseline algorithm).



body posture and movements gained importance, as all subscores as

well as the global task load index showed highest correlations with this

feature type. The global score followed the same trend as the non-

standardized scores, but correlations were slightly improved. Standar-

dized mental demand was found to be only predictable by body posture

and movements, and physical demand became most predictable with

body posture and movements, followed by computer use patterns and

facial and head movements. Standardized temporal demand and effort

were most correlated to body posture and movements followed by

computer use patterns as in the non-standardized case, but effort also

showed enough statistical significance to be considered predictable by

means of facial and head movements. Standardized performance scores

became only predictable by the body posture and movement-based

model whereas frustration gained enough statistical significance to be

considered predictable by body posture and movements, computer use

patterns and facial and head movements, in decreasing correlation

order.

4.2. Simulated workload condition settings

Table 6 shows the results for the objective (prediction of ‘labels 3’

with ‘dataset A’) and standardized (prediction of ‘labels 4’ with ‘dataset A’)

workload condition detection models using all physiological and be-

havioral features and by feature type. Regarding the objective scores,

overall, Naïve Bayes and AdaBoost based models were achieving the

highest accuracies and the highest number of models with enough

statistical significance. In fact, Naïve Bayes based models using all

features, only computer use patters, only facial expressions and only

body posture and movements were able to predict the workload con-

dition. In the case of AdaBoost, physiological data-based models also

showed statistical significance for prediction but facial expression-

based model didn't. Linear SVM based models were only useful using

body posture and movement data, whereas C4.5 tree algorithm only

resulted in statistically significant models using computer use patterns

and the combination of all features.

For the standardized scores, models show improved prediction ac-

curacy compared to the non-standardized scores, and more statistical

significances are found. In addition to those significances found for the

Table 5

Regression results for the standardized test scores by behavioral feature type for 10-fold CV and RBF SVM (statistically significant improvement (adjusted

*p < 0.01,**p < 0.001) in comparison to a baseline algorithm).

Physiology Computer use Facial expressions Facial and head movements Body posture and movements

r MAE r MAE r MAE r MAE r MAE

SAM

Valence 0.17 33.48 0.60** 31.13* 0.06 34.06 0.41** 32.08 0.72** 22.58**

Arousal 0.21 32.56 0.57** 31.08* 0.12 32.40 0.40** 31.26 0.62** 25.39**

Dominance 0.22 32.77 0.59** 31.30* 0.04 33.96 0.43** 31.21* 0.73** 22.67**

Stress

Stress 0.12 38.74 0.56** 34.07** 0.07 38.86 0.25 37.55 0.46** 31.86*

RSME

MentalEffort 0.19 31.64 0.63** 30.11* 0.13 31.76 0.46** 29.71* 0.70** 24.06**

NasaTLX

NasaTLX 0.29* 30.80 0.59** 29.25* 0.13 32.06 0.36* 31.40 0.69** 22.80**

MentalDemand 0.27* 33.88 0.54** 32.30 0.04 35.13 0.42** 32.58 0.67** 24.11**

PhysicalDemand 0.02 38.06 0.48** 34.65* 0.05 37.58 0.38** 34.67* 0.61** 27.16**

TemporalDemand 0.26 35.11 0.54** 32.37* 0.06 35.89 0.38** 34.00 0.61** 26.64**

Effort 0.34* 31.99 0.66** 27.59** 0.04 33.66 0.52** 30.05** 0.77** 20.60**

Performance 0.14 35.30 0.56** 32.88 0.08 36.07 0.36** 33.39 0.63** 26.41**

Frustration 0.20 35.85 0.51** 32.14** 0.07 36.94 0.45** 33.00* 0.58** 28.09**

improvement in terms of prediction error compared to a baseline 
classifier, concluding that all scores can be predicted from smart office 
data after standardization.

Table 4 shows the results of the feature selection analysis for the 
self-reported scores (prediction of ‘labels 1’ with ‘dataset A’). Valence and 
dominance were best predicted by body posture and movements fol-
lowed by computer use patterns. Dominance was also predictable by 
facial and head movements, and arousal only showed enough statistical 
significance for the computer use pattern-based models. Self reported 
stress was only found to be predictable by computer use patterns, 
beating the results obtained with the whole set of features. Mental effort 
measured by the RSME test was best predicted by the body posture and 
movement parameters, but was also statistically significant for the 
model based on computer use patters.

Next, regression results for the self-reported NasaTLX score and 
subscores are reviewed. The global score was best predicted by body 
posture and movements, followed by computer use patterns, as well as 
the mental and temporal demand. Performance was also predictable by 
computer use patterns and body posture and movements, in decreasing 
order. Physical demand was most correlated to facial and head move-

ments, followed by body posture and movements and computer use 
patterns whereas effort was best predicted body posture and move-
ments, computer use and facial and head movements. Finally, frustra-
tion was found to be only predictable by facial and head movements, 
followed by computer use patterns.

Table 5 shows the results of the feature selection analysis for the 
standardized scores (prediction of ‘labels 2’ with ‘dataset A’). Overall, 
results improved, but follow the same trend. In this case, arousal be-
came more predictable by means of body posture and movement-based 
models instead of computer use pattern-based models as in the previous 
case, which now occupies the second place. Standardized stress scores 
also showed statistically significant predictability using RBF SVM 
models based on only body posture and movements in addition to the 
one built using only computer use patterns. Standardized mental effort 
as measured by the RSME score was found to be predictable using only 
body posture and movement-, computer use pattern- and facial and 
head movement-based models, in decreasing order of performance. For 
the standardized NasaTLX questionnaire responses, models based on



non-standardized case, computer use pattern-based linear SVM and

facial expression-based AdaBoost also showed prediction power.

AdaBoost seems to be the best working algorithm for this case.

4.3. Change in workload condition settings

Table 7 shows the results for the workload condition change de-

tection using the usual machine-learning algorithms, whereas Table 8

shows the results for the SMOTEBoost and RUSBoost algorithms aimed

at dealing with class imbalance (prediction of ‘labels 5’ with ‘dataset B’).

Usual algorithms gave better results than expected. Whereas some of

the models showed too low sensitivities for the negative class, others

where able to detect these events within an acceptable rate (≥0.60). A

computer use pattern-based Naïve Bayes model showed enough statis-

tical significance to accept predictability of the objective workload

changes, with a good sensitivity for the negative class. AdaBoost

showed predictability of the target variable for all feature-, computer

use pattern-, and body posture and movement-based models, in de-

creasing order of accuracy and sensitivity. C4.5 tree was the best in

predicting the condition changes with a computer-use pattern-based

model, followed by a model built using all the features. Linear SVM was

not showing enough statistical significance in terms of accuracy to ac-

cept it was working better than a baseline model. Regarding SMOTE-

Boost and RUSBoost models, overall, we achieved higher sensitivity

rates towards the negative class: some models even yielded 100%

sensitivity. Nonetheless, only two of them showed enough statistical

significance to accept predictability of the workload change, which

were a SMOTEBoost based model using computer use patterns and a

C4.5 tree as weak classifier, and a RUSBoost based model using the

combination of all features and a C4.5 tree algorithm as weak classifier.

Table 6

Classification results for the actual and standardized workload conditions by behavioral feature type for 10-fold CV (statistically significant improvement (adjusted

*p<0.01, **p<0.001) in comparison to a baseline algorithm)).

Non-standardized Standardized

Acc. wROCauc wPRauc wFscore Acc. wROCauc wPRauc wFscore

Naïve Bayes All features 45.10** 0.71** 0.58** 0.44** 39.10** 0.67** 0.55** 0.38**

Physiology 27.10 0.54 0.45** 0.27** 30.70 0.59 0.50** 0.30**

Computer use 41.60** 0.66** 0.57** 0.41** 47.20** 0.68** 0.60** 0.46**

Facial expressions 35.70* 0.63* 0.53** 0.34** 38.60** 0.63* 0.54** 0.36**

Face and head movements 26.00 0.55 0.46** 0.25** 23.40 0.53 0.45** 0.22**

Body posture and movements 51.90** 0.77** 0.63** 0.48** 39.50** 0.68** 0.54** 0.35**

Linear SVM All features 34.90** 0.58 0.45** 0.34** 40.10** 0.61 0.47** 0.39**

Physiology 28.80 0.54 0.38** 0.25** 34.50* 0.58 0.40** 0.31**

Computer use 41.00** 0.61 0.47** 0.39** 44.30** 0.62* 0.47** 0.42**

Facial expressions 33.20* 0.55 0.38** 0.30** 22.90 0.50 0.33* 0.20*

Face and head movements 24.50 0.50 0.38** 0.23* 26.10 0.52 0.39** 0.25**

Body posture and movements 40.60** 0.63** 0.46** 0.38** 36.60** 0.63** 0.45** 0.35**

AdaBoost All features 45.40** 0.70** 0.54** 0.41** 55.40** 0.79** 0.65** 0.52**

Physiology 35.30** 0.63** 0.39** 0.26** 39.90** 0.64** 0.41** 0.29**

Computer use 45.40** 0.70** 0.54** 0.40** 55.40** 0.79** 0.65** 0.52**

Facial expressions 22.50 0.47 0.27 0.12 35.80** 0.60** 0.37** 0.24**

Face and head movements 29.30* 0.57 0.34** 0.20** 31.40* 0.58 0.34* 0.21**

Body posture and movements 36.30** 0.62** 0.39** 0.26** 35.40** 0.63** 0.39** 0.25**

C4.5 All features 40.90** 0.67** 0.55** 0.39** 46.60** 0.70** 0.59** 0.45**

Physiology 37.60* 0.61 0.48** 0.35** 35.30* 0.59 0.48** 0.32**

Computer use 38.70** 0.61* 0.52** 0.38** 46.90** 0.68** 0.57** 0.45**

Facial expressions 25.20 0.50 0.37** 0.23** 34.80* 0.55 0.43** 0.32**

Face and head movements 31.00 0.57 0.45** 0.30** 27.70 0.54 0.43** 0.26**

Body posture and movements 30.70 0.53 0.39** 0.29** 27.60 0.53 0.38** 0.25**

Table 7

Classification results for the workload condition change by behavioral feature type for 10-fold CV (statistically significant improvement (adjusted *p < 0.01,

**p < 0.001) in comparison to a baseline algorithm).

Naïve Bayes Linear SVM

Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

All features 83.30 0.80** 0.47** 0.57** 0.62** 84.84 0.74** 0.42** 0.57** 0.57**

Physiology 81.62 0.56 0.30** 0.23** 0.16** 82.20 0.50 0.18 0.00 0.00

Computer use 88.02** 0.89** 0.73** 0.70** 0.78** 84.02 0.63** 0.33** 0.40** 0.31**

Facial expressions 78.24 0.62** 0.31** 0.24** 0.20** 82.17 0.50 0.18 0.00 0.00

Facial and head movements 73.05 0.63** 0.32** 0.28** 0.30** 80.91 0.55* 0.23 0.21** 0.15**

Body posture and movements 80.58 0.75** 0.41** 0.46** 0.48** 79.50 0.66** 0.31** 0.44** 0.46**

AdaBoost C4.5

Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

All features 89.29** 0.90** 0.77** 0.66** 0.60** 86.56* 0.77** 0.56** 0.60** 0.58**

Physiology 82.01 0.64** 0.32** 0.01 0.00 81.60 0.52 0.22 0.06 0.04

Computer use 87.24** 0.86** 0.66** 0.58** 0.51** 90.44** 0.84** 0.69** 0.71** 0.66**

Facial expressions 81.13 0.63** 0.31** 0.15** 0.05 78.27 0.53 0.24* 0.15** 0.12**

Facial and head movements 80.65 0.65** 0.32** 0.11 0.08 81.00 0.56 0.23 0.06 0.04

Body posture and movements 86.53** 0.85** 0.64** 0.55** 0.48** 83.35 0.69** 0.45** 0.52** 0.50**



Note that these significances were tested by means of a McNemar's test

instead of the t-test as in the other models. However, these models were

not highly improving the results obtained previously with the usual

algorithms.

Table 9 shows the results for the task load change directionality

detection (prediction of ‘labels 6’ with ‘dataset B’). AdaBoost algorithm

was performing worst, as all models based on this algorithm were

biased towards the majority class. Some other models were showing

statistically significant improvement in terms of accuracy compared to

a baseline classifier, but were performing very poor in terms of F-score

and/or sensitivity, making them useless for our purpose. Only a Naïve

Bayes- and a linear SVM-based model built using the combination of all

features showed statistical significance for all metrics, leading us to

accept their prediction power for the positive, negative and null task

load changes. Nonetheless, these models were yet showing low sensi-

tivity rates.

4.4. Reliable change in perceived workload levels

Table 10 shows the results for the reliable perceived task load index

change detection (prediction of ‘labels 7’ with ‘dataset A’ and ‘labels 8’

with ‘dataset B’). The reliably different task-loads from baseline situation

(relaxing vs. stressful) were found to be detectable using models based

on all features, computer use patters and body posture and movements,

whereas physiology-, facial and head movement- and facial expression-

based models did not show enough statistical significance to accept the

hypothesis. The highest accuracies were achieved by means of Ada-

Boost and Naïve Bayes-based models, and regarding feature selection,

computer use patterns were found to be more useful than body posture

and movement based models. A reliable change between consecutive 5-

min periods was harder to detect and fewer useful models were found.

Naïve Bayes classifier was performing best by means of body posture

and movement-based models, followed by computer use and facial and

head movement based models. Models built using linear SVM, Ada-

Boost and C4.5 algorithms were not significantly improving the de-

tection accuracy achieved by a baseline classifier.

5. Discussions and conclusion

In this paper, we analyzed the possibility of predicting workers'

stress and workload levels, as well as changes in these conditions, by

means of time-series statistics computed from unobtrusively collected

physiological and behavioral data in a smart office environment. The

research questions in hands are of great interest to today's society where

stress is becoming increasingly present and harmful, but are also per-

tinent to the current state of the art in ambient intelligence and smart

environments. Unobtrusive monitoring of peoples' behavior and phy-

siology is already possible, but we yet need to associate these patterns

to the disorder of interest. Moreover, it is still necessary to clarify and

limit the use of the proposed system to avoid ethical and privacy issues

Table 8

Classification results for the workload condition change by behavioral feature type for 5-fold CV using SMOTEBoost and RUSBoost algorithms (statistically significant

improvement (adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm).

SMOTEBoost RUSBoost

Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

Linear SVM All features 0.86 0.88 0.61 0.57 0.61 0.83 0.86 0.52 0.60 0.53

Physiology 0.74 0.56 0.22 0.26 0.26 0.83 0.51 0.46 0.04 1.00

Computer use 0.87 0.89 0.62 0.68 0.61 0.85 0.89 0.26 0.66 0.55

Facial expressions 0.68 0.56 0.22 0.33 0.27 0.78 0.62 0.27 0.23 0.31

Face and head movements 0.72 0.62 0.24 0.28 0.26 0.73 0.63 0.26 0.34 0.30

Body movements 0.75 0.64 0.26 0.30 0.30 0.76 0.67 0.29 0.38 0.35

C4.5 All features 0.85 0.89 0.65 0.58 0.59 0.86** 0.88** 0.60** 0.64** 0.60**

Physiology 0.77 0.65 0.28 0.25 0.30 0.78 0.62 0.29 0.36 0.38

Computer use 0.87** 0.91** 0.74** 0.66** 0.60** 0.87 0.86 0.60 0.66 0.64

Facial expressions 0.69 0.54 0.19 0.20 0.18 0.75 0.62 0.25 0.36 0.33

Face and head movements 0.73 0.63 0.23 0.22 0.23 0.74 0.64 0.25 0.26 0.26

Body movements 0.83 0.81 0.53 0.54 0.51 0.81 0.83 0.45 0.53 0.48

Table 9

Classification results for the positive, negative and null workload condition change by behavioral feature type for 10-fold CV (statistically significant improvement

(adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm).

Naïve Bayes Linear SVM

Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

All features 90.49** 0.89** 0.44** 0.37** 0.35** 91.54** 0.83** 0.26** 0.35** 0.36**

Physiology 93.53** 0.93** 0.47** 0.14 0.09 93.19** 0.94** 0.38** 0.00 0.00

Computer use 79.77 0.78** 0.34** 0.31** 0.36** 82.43 0.49 0.08 0.01 0.01

Facial expressions 74.01 0.62 0.17* 0.11 0.13 82.17 0.52 0.08 0.00 0.00

Face and head movements 69.11 0.56 0.20* 0.14* 0.16* 81.18 0.54 0.13 0.13 0.10

Body posture and movements 77.08 0.57 0.20* 0.21* 0.22* 76.97 0.54 0.10 0.10 0.11

AdaBoost C4.5

Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

All features 93.19** 0.94** 0.38** 0.00 0.00 90.84** 0.91** 0.42** 0.20* 0.19

Physiology 93.19** 0.94** 0.38** 0.00 0.00 92.92** 0.94** 0.38** 0.01 0.01

Computer use 82.38 0.84** 0.28** 0.00 0.00 85.27* 0.87** 0.40** 0.13 0.10

Facial expressions 82.17 0.60 0.11 0.00 0.00 74.55 0.48 0.16 0.15* 0.15

Face and head movements 82.17 0.58 0.09 0.00 0.00 80.84 0.50 0.09 0.00 0.00

Body posture and movements 81.56 0.78** 0.26** 0.00 0.00 80.78 0.52 0.20* 0.24** 0.23*



before is implementation (Alberdi et al., 2015). Results show that the

prediction of perceived stress and workload levels is possible using

change and variability patterns of data collected unobtrusively from

smart offices.

A regression analysis of the target scores from smart office data

showed many statistically significant results, enforcing the hypothesis

that this kind of collected data can actually predict the perceived stress

and workload levels. The correlations found by this analysis vary from

moderate to strong, depending on the nature of the objective label.

NasaTLX scores, together with effort, mental effort and valence were

the best-predicted scores, whereas self-reported stress and performance

didn't show enough statistical significance to be considered predictable.

In case of stress prediction, this is not surprising, as this label was ac-

quired by means of a single-question visual analog scale, which unlike

NasaTLX, RSME or VAS questionnaires, is not a questionnaire whose

reliability has been verified and might be too subjective to be well

capturing the real perceived stress levels of the users. Nonetheless, the

analyses on the standardized scores improved the previous results, even

demonstrating predictability for the self-reported stress and perfor-

mance levels. This reasserts the fact that there is some inter-subject

variability present on every score used for the study, but also suggests

that controlling for this variability by means of standardization

methods, can make their prediction possible.

A reduced dataset using Principal Component approach showed a

highly decreased performance on the predictability of the models. This

might be due to several reasons. On one hand, it suggests that actual

feature values are much more correlated to the self-reported scores than

the PCs representing this data. On the other hand, it might also suggest

that there is no much collinearity among the initial set of features.

Nonetheless, the reason can also be an excessive standardization of the

input data which might have provoked the loss of machine-learning

algorithms' mapping ability to subject-specific response data. This can

be verified by validating the previous models based on actual feature

values following a Leave-One-Subject-Out Cross-Validation (LOSOCV),

which is a well-known procedure in the field. LOSOCV consists of ex-

cluding one participant at each time from the model-training step,

while using their data in the model-testing part. This process is repeated

until all users' data is used both for training and for testing, and models'

average performance is computed. This would allow to verify the us-

ability of the current approach to detect stress and workload levels of

new workers without the need of collecting their data. The literature

shows that LOSOCV based validation usually gives much more mod-

erate results (Koldijk et al., 2014). Hence, the importance of building

user-specific models, models based on data from a small group of

people which is as similar as possible to the final user or to build

general models that can benefit from users’ feedback to adapt gradually

to each of them.

Regarding feature selection analyses performed in the regression

models, computer use patterns and body posture and movements are

the most correlated type of behavior, followed by head and facial

movements. These results agree with previous research that report a

relationship between perceived stress levels and computer-use patterns

(Liao et al., 2005; Vizer et al., 2009; Kolakowska, 2013; Eijckelhof

et al., 2014), body posture (Arnrich et al., 2010) and head and facial

movements (Liao et al., 2005). In fact, models based on only physio-

logical measurements and facial expressions were never significant by

themselves, while literature affirms the predictability of stress levels

both from facial expressions (Dinges et al., 2005; Otsu et al., 2012; Das

and Yamada) and physiological signals (Hjortskov et al., 2004; Zhai and

Barreto, 2006; Al Osman et al., 2013; Sharma et al., 2013; Wijsman

et al., 2013). This is an important finding, as physiological measure-

ments based on SCL and ECGs are the most widely used signals in stress

detection (Alberdi et al., 2015). These results suggest that behavior

might be much better in predicting stress under the circumstances of

this case study. However, we must first understand the nature of the

experiment used to collect the data of the current study and the steps

taken to process it, to interpret the results consequently. The reason

why physiological signals might not be showing high correlations as

usual, can be that the time-series statistics extracted from them are not

reflecting an increase or decrease in the signals but the amount of ab-

solute change.

The directionality of the change in physiological signals might be

very important as far as stress detection is concerned. For example, it is

well known that stress provokes an increase in SCL signals, or a

Table 10

Classification results for the Reliable Task Load Index Change from the relaxed state and from the previous state by feature type for 10-fold CV (statistically

significant improvement (adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm).

RCIbaseline RCIconsecutive

Acc. ROCauc PRauc Fscore Sens. Acc. ROCauc PRauc Fscore Sens.

Naïve Bayes All features 96.00** 1.00** 1.00** 0.88** 0.84** 85.77 0.79** 0.35** 0.45** 0.55**

Physiology 80.30 0.74** 0.65** 0.42** 0.35** 87.49 0.55 0.20* 0.14* 0.11

Computer use 95.00** 1.00** 1.00** 0.85** 0.79** 83.55** 0.81** 0.47** 0.47** 0.68**

Facial expressions 84.00 0.85** 0.79** 0.60** 0.59** 85.42** 0.51 0.17 0.09 0.07

Head and facial movements 82.90 0.80** 0.75** 0.57** 0.56** 78.87** 0.61* 0.23** 0.21** 0.26**

Body posture and movements 87.70* 0.92** 0.76** 0.77** 0.85** 84.46* 0.73** 0.33** 0.36** 0.41**

Linear SVM All features 93.00** 0.86** 0.79** 0.79** 0.72** 87.04 0.63** 0.22* 0.34** 0.33**

Physiology 77.20 0.54 0.31 0.11 0.08 89.29 0.50 0.11 0.00 0.00

Computer use 90.80** 0.84** 0.72** 0.76** 0.70** 89.31 0.50 0.11 0.00 0.00

Facial expressions 73.60 0.51 0.28 0.07 0.05 89.31 0.50 0.11 0.00 0.00

Head and facial movements 79.90 0.66* 0.45* 0.41** 0.38* 88.51 0.51 0.13 0.05 0.03

Body posture and movements 89.80** 0.82** 0.71** 0.72** 0.65** 86.99 0.57* 0.17* 0.23** 0.19**

AdaBoost All features 97.00** 0.98** 0.92** 0.95** 1.00** 90.39 0.88** 0.58** 0.46** 0.41**

Physiology 79.90 0.75** 0.65** 0.51** 0.50** 89.19 0.71** 0.28** 0.01 0.01

Computer use 97.00** 0.98** 0.92** 0.95** 1.00** 89.04 0.81** 0.42** 0.19* 0.15

Facial expressions 73.30 0.52 0.42* 0.17 0.14 89.03 0.62** 0.20** 0.01 0.01

Head and facial movements 81.20 0.85** 0.75** 0.48** 0.43** 89.03 0.65** 0.20** 0.01 0.01

Body posture and movements 84.00 0.89** 0.81** 0.58** 0.54** 88.36 0.73** 0.33** 0.17* 0.13*

C4.5 All features 92.50** 0.99** 0.97** 0.80** 0.72** 87.70 0.67* 0.31** 0.26** 0.22**

Physiology 81.70 0.75** 0.61** 0.54** 0.52** 89.13 0.51 0.11 0.01 0.01

Computer use 93.00** 1.00** 0.99** 0.80** 0.71** 89.03 0.55 0.15 0.01 0.01

Facial expressions 69.40 0.58 0.43* 0.32* 0.33* 85.56* 0.47 0.13 0.04 0.04

Head and facial movements 73.20 0.68* 0.52* 0.35** 0.34** 89.18 0.51 0.11 0.00 0.00

Body posture and movements 73.80 0.63 0.45* 0.45** 0.49** 84.60** 0.54 0.21* 0.21** 0.20**



Regarding objective condition change detection, overall, usual al-

gorithms were performing better or similar than the SMOTEBoost and

RUSBoost class-imbalance specialized algorithms. Notwithstanding, a

significant improvement in the sensitivity of the models was noticed

with these latter algorithms, as promised. Useful prediction models

were achieved for computer use pattern-based models, as well as for

models based on the combination of all features and on only using body

posture and movement features. As for the detection of the direction of

these changes, models' performance is worsened. Only models built

using all features extracted from the experiments were showing enough

prediction power, along with a fairly reduced sensitivity. This is not

surprising, because, on one hand, the three-class classification problem

that poses the detection of changes' directionality is more complex than

the two-class classification problem of the absolute changes' detection,

both due to an added class to classify and to the reduced number of

instances available for each class. On the other hand, the time-series

statistics extracted from the data are not necessarily reflecting the di-

rectionality of the physiological and behavioral features, but an abso-

lute change. As the directionality of some of the features used in the

study can be directly related to the outputs’ directionality (e.g., in-

creased SCL levels to increased stress levels), the use of only absolute

change statistics might difficult the resolution of this problem.

Reliable change detection was found to be predictable both from a

relaxed state and between consecutive 5-min time intervals. For the

first case, we saw that the best predictors were computer use patterns

followed by body posture and movement features. The rest of the

source-specific models didn't show enough statistical significance to

accept their predictability of this target, but the combination of all

features also showed to be useful for this purpose. Regarding reliable

change detection between consecutive 5-min time intervals, we found

less significances, thus a harder problem to solve. Also, we noticed a

decrease in the sensitivity of the models for this detection problem

compared to the previous approach. Nevertheless, computer use pat-

terns, body posture and movements and head and facial movements

were predicting this change. Surprisingly, the combination of all fea-

tures was yielding lower and not statistically significant results.

Note that, in order to keep the paper-length reasonable, we only

performed all our analyses with a single time-window length combi-

nation (1min for data aggregation, 5min for time-series statistics’

computation). Results might vary depending on the length of these

temporal windows, and therefore, an analysis of the effects of these

window-size choices and the estimation of the best values to use would

be highly required.

This paper has focused on the possibility of detecting office workers'

stress from unobtrusivelly collected physiological and behavioral data.

Nonetheless, there is still some work to do regarding the implementa-

tion of such a system in a real office environment (Alberdi et al., 2015).

First, quality of the collected data must be ensured, as this is essential

for the correct assessment of workers' stress levels. This might not be

guaranteed, as noisy or incomplete data may appear due to sensor

failure or transmission errors. Sensor failure detection systems could

help in avoiding this issues (Hussain et al., 2015). Furthermore, ob-

trusiveness of the proposed method could be minimized by reducing the

amount of installed sensors. Our study has shown that it possible to

deduce the stress levels using only computer- and posture-based be-

havioral patterns. Limiting the monitored patterns to these data highly

increases the unobtrusivity of the system and reduces the ‘Big Data’

issues. Even so, the amount of data that will be collected will be very

large, so the required infrastructure for data ingestion, storage and vi-

sualization must be implemented (Fang et al., 2016). Nevertheless, the

deployment of the approach in an office environment facilitates this

work, since they are closed and limited environments, with a limited

but frequent number of users, and equipped with several computer

systems. In addition, in order to ensure the reliability and quality of the

stress level assessment system being proposed herein, a learning period

for the system must first be launched for every new worker. Despite the

reduction on the Heart Rate Variability. Due to the data processing 
approach used herein, we might be missing this valuable information. 
Furthermore, the amount of imputed data in physiological signals was 
higher than in the behavioral statistics, which might have also blurred 
the correlations in this domain causing a significance loss. Moreover, 
results based on the computer use patterns must be interpreted care-
fully: i.e., due to the nature of the experiment, where the participants 
were asked to perform a set of specific computer tasks under each 
condition and then evaluate the perceived stress and workload levels 
per condition too, results based on computer use patterns are much 
more likely to be correlated to the self-reported scores.

Unlike body posture and movements, facial expressions, head and 
facial movements and physiological signals, computer use patterns 
were not varying completely freely but were being conditioned by the 
tasks that had been assigned to the participants. It would be interesting 
to analyze whether the same patterns of behavior are repeated in an 
experiment where other methods are used to induce stress in the users, 
or in a longitudinally collected dataset where no stress is being induced 
in the participant nor is being subjected to any special condition, but all 
their behavior only depends on their daily work and hypothetically, 
their stress levels. Another solution would be to use alternative statis-
tical analysis methods to control the variability on the behavioral data 
caused by the condition to which the participants are subjected and to 
quantify the part of behavioral variability that corresponds to the level 
of stress suffered. Moreover, the insufficient predictability of facial 
expressions for the self-reported stress and workload levels might not be 
due to the lack of correlation among the two but to the lack of relia-
bility of the method used to estimate the facial expressions from video 
recordings. Other methods to map each segment of the recordings to a 
facial expression should first be tested before discarding an existing 
useful correlation between these data.

Following with feature selection, self-reported stress levels were 
found to be best predicted by computer use patterns, even better than 
using the whole set of features, to the point of becoming a statistically 
significant prediction model. As mentioned, this is something to be 
interpreted cautiously. The rest of the labels were best predicted by 
models based on the whole set of physiological and behavioral features.

Examining the results of the feature analysis performed on the 
standardized self-reported scores, in addition to finding higher corre-
lations than in the non-standardized case, the use of body posture and 
movements to build prediction models showed improved results. In 
fact, self-reported stress showed enough statistical significance to be 
considered predictable by means of these measures. Interestingly, all 
NasaTLX questionnaire-based responses showed to be best predicted by 
body posture and movements, above models based on computer use and 
facial and head movements. Again, physiological measurements and 
facial expressions by themselves were not found to be useful to create 
prediction models for the target labels.

In terms of objective condition detection from smart office data, 
results show a highly significant prediction ability of the models. The 
Naïve Bayes and AdaBoost algorithms appear to be the best algorithms 
for this problem. In this case, both facial expressions and physiological 
features also showed prediction ability, whereas head and facial 
movements didn't. Therefore, we notice a difference in features' ability 
to predict self-reported stress and workload levels to objective condi-
tion settings' prediction. However, as in previous cases, the most re-
peated feature sets in terms of statistical significance are computer use 
patterns, body posture and movements and the whole set of features.

Results for the standardized condition detection case were improved 
in comparison to the non-standardized versions. In terms of algorithms, 
AdaBoost was found to be the most effective for this purpose, and re-
garding feature types, all except head and facial movement-based 
models were found to be statistically significantly predicting the target 
labels. Note that the standardization technique used for this purpose is 
similar to performing a discretization of the self-reported stress values. 
Therefore, results are transferable to the prediction of these scores.



office environment. This dataset will be used to validate the results

presented in this paper. The collection of more data will also allow the

completion and improvement of the results, by selecting the best al-

gorithmic approaches to use and by performing a more in-depth feature

selection analysis. Additionally, a thorough analysis on the sliding

temporal-window length (w) selection should be performed. In addi-

tion, research on the best strategy to follow to build models for the

general office-worker population will be performed.
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more after the initial stage, and will allow to personalize and adapt the 
general stress detection model to each individual, ensuring the required 
accuracy. Privacy, security and ethical issues should also be taken into 
account (Costa, 2014). Workers must acknowledge and accept their 
work-day activity to be monitored, and the necessary security im-

plementations must be done in order to avoid the data being used for 
purposes other than preventing health-related problems caused by 
stress.

Summing up, this work has demonstrated the possibility of pre-
dicting the perceived stress and workload levels of office workers, as 
well as the objectively measured conditions they might be undergoing 
or the significant workload condition changes that they might be suf-
fering from changes in unobtrusively collected smart office-based 
physiological and behavioral data. Three main conclusions can be 
drawn from all these analyses: first, the importance of the use of stan-
dardization methods to reduce the intrinsic inter-subject variability of 
stress and workload assessment methods. Overall, all analyses of this 
work found improved results for these type of labels. Second, the re-
peated statistical significance of the computer use patterns and body 
posture and movements suggest the relevance of these data for stress 
and workload prediction, while surprisingly, physiological measure-

ments didn't highly contribute to the task. Nonetheless, as previously 
mentioned, computer use patterns might be biased due to the experi-
ment's nature and must, therefore, be verified with alternative datasets 
or data analysis methods. Also, physiological signals might better re-
flect users' stress levels when time-series statistics that take into account 
the directionality of their change are used. Finally, the importance of 
the use of highly-reliable and well-established stress and/or mental 
workload assessment methods must be ensured to build the final 
models. Results presented herein suggest that NasaTLX questionnaire 
captures in a relatively objective way the perceived mental workload 
levels of the workers and thus, is a good candidate for this purpose.

Future work will focus on collecting a longitudinal behavioral stress 
dataset which won't be biased by a stress-inducing method in a smart
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