Ane Alberdi 
email: aalberdiar@mondragon.edu
  
Asier Aztiria 
email: aaztiria@mondragon.edu
  
Adrian Basarab 
email: basarab@irit.fr
  
Diane J Cook 
email: djcook@wsu.edu
  
Using smart offices to predict occupational stress

Keywords: 

Occupational stress is increasingly present in our society. Usually, it is detected too late, resulting in physical and mental health problems for the worker, as well as economic losses for the companies due to the consequent absenteeism, presenteeism, reduced motivation or staff turnover. Therefore, the development of early stress detection systems that allow individuals to take timely action and prevent irreversible damage is required. To address this need, we investigate a method to analyze changes in physiological and behavioral patterns using unobtrusively and ubiquitously gathered smart office data. The goal of this paper is to build models that predict self-assessed stress and mental workload scores, as well as models that predict workload conditions based on physiological and behavior data. Regression models were built for the prediction of the self-reported stress and mental workload scores from data based on real office work settings. Similarly, classification models were employed to detect workload conditions and change in these conditions. Specific algorithms to deal with class-imbalance (SMOTEBoost and RUSBoost) were also tested. Results confirm the predictability of behavioral changes for stress and mental workload levels, as well as for change in workload conditions. Results also suggest that computer-use patterns together with body posture and movements are the best predictors for this purpose. Moreover, the importance of self-reported scores' standardization and the suitability of the NASA Task Load Index test for workload assessment is noticed. This work contributes significantly towards the development of an unobtrusive and ubiquitous early stress detection system in smart office environments, whose implementation in the industrial environment would make a great beneficial impact on workers' health status and on the economy of com-panies.

Introduction

The pace of modern-day life, the competitiveness in the workplace, poor working conditions and the immense number of tasks with inaccessible deadlines that are assigned to workers are causing work-related stress to become increasingly frequent in our work environment.

The International Labour Organization (ILO) defines stress as the harmful physical and emotional response caused by insufficient perceived resources and abilities of individuals to cope with the perceived demands, and is determined by work organization, work design and labour relations (I. L. O, 2016). It is the second most frequent work-related health problem in Europe (European Agency for Safety and Health at Work, 2013a), presenting in 2005 a prevalence of 22% among working Europeans. In a recent opinion poll (European Agency for Safety and Health at Work, 2013b), 51% of the workers confessed that stress is common in their workplace and the 6th European Working Conditions Survey (European Foundation for the Improvement of Living and Working Conditions, 2016) exposed that 36% of European workers deal "(almost) all of the time" with high pressure to meet tight deadlines.

If timely action is not taken, occupational stress can provoke serious physical and mental problems on the worker [START_REF] Milczarek | OSH in Figures. Stress at Work. Facts and Figures[END_REF], but also important economic losses in the companies. Musculoskeletal disorders, depression, anxiety, increased probability of infections [START_REF] Wijsman | Wearable physiological sensors reflect mental stress state in office-like situations[END_REF], chronic fatigue syndrome, digestive problems, diabetes, osteoporosis, stomach ulcers and coronary heart disease [START_REF] Cosmar | Calculating the Cost of Work-related Stress and Psychosocial Risks[END_REF][START_REF] Peternel | A presence-based context-aware chronic stress recognition system[END_REF][START_REF] Bickford | Stress in the Workplace: a General Overview of the Cases, the Effects and the Solutions[END_REF] are only a few examples of occupational stress' long-term health consequences. Occupational stress can also result in increased absenteeism and presenteeism, reduced motivation, satisfaction and commitment, along with a greater rate of staff turnover and intention to quit, costing high amounts of money to the enterprises (Drivers and Barriers, 2012). An estimate of €617 billion a year is what work-related depression costs to European enterprises, including costs of absenteeism and presenteeism (€272 billion), loss of productivity (€242 billion), healthcare costs (€63 billion) and social welfare costs in the form of disability office environments to create stress prediction models [START_REF] Dawadi | Automated clinical assessment from smart home-based behavior data[END_REF]. This algorithm consists of the application of a sliding window to extract five different time-series statistics from physiological and behavioral data, describing the change and variability of these patterns. This allows the construction of models to predict self-assessed stress and workload levels from the change features instead of using the usual instantaneous feature values. Although it is out of the scope of this work, the computation of these behavioral and physiological change parameters not only provides a method to take the temporal nature of stress into account, but it is also a way to standardize data coming from different subjects, facilitating generalization of the models over a population group.

As a second goal of this work, we also determine the possibility of automatically detecting a workload condition change using these changes in physiological and behavioral data.

The CAAB algorithm has been validated in other scenarios and has been shown to be useful for cognitive state and everyday functioning assessment [START_REF] Dawadi | Automated clinical assessment from smart home-based behavior data[END_REF]. The validation of the approach for early stress detection would result in a system that could alert both workers and managers enabling to take timely action. Moreover, this would define the path to follow towards the final development and implementation of a global early detection system for disorders that provoke behavioral changes, among which stress is just an example.

Therefore, the research questions we aim to address in this paper are:

• Can we predict users' perceived stress and mental workload level from changes in their unobtrusively collected behavioral and physiological data?

• Which physiological or behavioral changes are the most informant about stress and mental workload levels?

• Can physiological and behavioral variability as monitored by am- bient sensors be used to detect the conditions under which a participant is working, both from a predefined set of conditions and from reliably differently perceived conditions?

• Can these data be used to detect a change in workload settings? Can they also detect the direction of these changes? And a reliably perceived workload change?

The main contributions of this paper are: 1) Use of the CAAB algorithm to evaluate the possibility of measuring self-assessed and standardized stress and mental workload from changes in unobtrusively collected real-life smart office data. 2) Analysis of the predictability of a wide variety of stress and mental workload assessment scores. 3) A feature selection-based analysis of the contribution of each type of behavioral and physiological change to the prediction of each of the self-assessment test scores. 4) Analysis of the predictability of an objective and reliable workload condition, change in these conditions and their directionality from unobtrusively collected data. 5) Testing of specific algorithms (i.e. SMOTEBoost [START_REF] Chawla | SMOTEBoost: Improving Prediction of the Minority Class in Boosting[END_REF] and RUS-Boost [START_REF] Seiffert | RUSBoost: a hybrid approach to alleviating class imbalance[END_REF]) to boost models' sensitivity for mental workload detection.

The remaining part of the paper proceeds as follows. First, Section 2, begins by reviewing the related literature. Section 3 explains the methods used for the data collection, preprocessing and model building process. Next, in Section 4, prediction models' results are presented. Finally, in Section 5, results are discussed and the conclusions drawn are presented.

Related work

Smart offices have already been implemented and used for a variety of purposes, being the area of energy efficiency a highly popular field of application [START_REF] Akbar | Contextual occupancy detection for smart office by pattern recognition of electricity consumption data[END_REF]Choi et al., 2015a[START_REF] Choi | Smart office energy-saving service using bluetooth low energy beacons and smart plugs[END_REF][START_REF] Rottondi | An energy management service for the smart office[END_REF]. Moreover, research aimed at improving workers' quality of life based on this technology are also present in the literature [START_REF] Kaklauskas | Web-based biometric computer mouse advisory system to analyze a User's emotions and work productivity[END_REF][START_REF] Kiyokawa | A context-aware multi-modal smart office chair in an ambient environment[END_REF][START_REF] Mcduff | AffectAura: an intelligent system for emotional memory[END_REF].

To date, stress detection research has mainly focused on the use of physiological signals that could objectively measure stress-levels while replacing the well-accepted but highly inaccessible methods such as salivary cortisol measurements. Even if a wide variety of physiological signals have been analyzed, the most successful results have been achieved with the monitoring of skin conductance levels (SCL), as well as with heart rate (HR) and heart rate variability (HRV) extracted from electrocardiograms (ECG) [START_REF] Alberdi | Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review[END_REF]. Stress and emotions have also been associated with some objectively-measured behaviors [START_REF] Sharma | Objective measures, sensors and computational techniques for stress recognition and classification: a survey[END_REF]. These include computer use patterns [START_REF] Eijckelhof | Office workers' computer use patterns are associated with workplace stressors[END_REF]), posture (McDuff et al., 2012;[START_REF] Arnrich | What does your chair know about your stress level?[END_REF]), facial expressions (McDuff et al., 2012;[START_REF] Dinges | Drivers and Barriers for Psychosocial Risk Management: an Analysis of Findings of the European Survey of Enterprises on New and Emerging Risks[END_REF], speech [START_REF] Kurniawan | Stress detection from speech and galvanic skin response signals[END_REF][START_REF] Hagmueller | Evaluation of the Human Voice for Indications of Workload Induced Stress in the Aviation Environment[END_REF][START_REF] Lu | StressSense: detecting stress inUnconstrained acoustic environments using smartphones[END_REF], mobile phone use [START_REF] Sano | Stress recognition using wearable sensors and mobile phones[END_REF][START_REF] Muaremi | Towards measuring stress with smartphones and wearable devices during workday and sleep[END_REF], writing patterns [START_REF] Vizer | Automated stress detection using keystroke and linguistic features: an exploratory study[END_REF][START_REF] Saleem | Automatic detection of psychological distress indicators and severity assessment from online forum posts[END_REF] and global activity-level parameters measured in smart environments [START_REF] Suryadevara | Smart sensing system for human emotion and behaviour recognition[END_REF]. Nonetheless, the reported conclusions do not result from real office-work settings but from experiments under artificial conditions where participants were not performing their usual work and/or stress was elicited with atypical stressors for an office worker. benefit payments (€39 billion) (European Agency for Safety and Health at Work, 2013a). An estimate of 50-60% of all lost working days in European enterprises are due to work-related stress and psychosocial risks (European Agency for Safety and Health at Work, 2013a).

In this context, methods to detect occupational stress in time so as to take the required measures and to avoid its negative health-related and economic consequences are necessary. Often, stress levels are evaluated by means of self-reported questionnaires, which are performed from time to time, and therefore, are not adequate to detect subtle changes that might end up in a more serious problem [START_REF] Alberdi | Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review[END_REF]. Usually, the diagnosis comes too late with these methods, when damage has been done. Moreover, self-reported questionnaires are subjective and rely on subjects' recall abilities and awareness of the situations, which is not guaranteed [START_REF] Mcduff | AffectAura: an intelligent system for emotional memory[END_REF], leading sometimes to incorrect stress level measurements.

In recent years, technology to unobtrusively and ubiquitously monitor users' behavior is being developed as Smart Environments [START_REF] Ramos | Smart offices and intelligent decision rooms[END_REF]. Future work environments are supposed to be intelligent, adaptive, intuitive and interactive (Strömberg et al., 1007). In this sense, a smart office has been defined as an environment that is able to adapt itself to the user's needs, release the users from routine tasks they should perform, change the environment to suit their preferences and access services available at each moment by customized interfaces [START_REF] Marsá Maestre | A hierarchical, agent-based approach to security in smart O ces[END_REF]. In addition, we also see an opportunity based on its potential to avoid health-related problems for workers and improve their quality of life. As a great percentage of workers develop their tasks in an office environment, smart offices represent a useful infrastructure to continuously monitor workers' behavior in a completely transparent way, gathering real work-life data throughout the working day and therefore, to overcome the main disadvantages of the usual assessment methods. The collected data can provide a complete view of workers' behavior in a real-world work environment, the efficiency and ecological validity of the resulting stress assessments and reducing stress detection delays.

Our goal in this paper is to build and validate stress and mental workload prediction models based on unobtrusively collected physiological and behavioral data in a smart office environment. As all other disorders, stress progresses over time. Usually, in stress detection research, the temporal nature of the disorder is not taken into account, and only a snapshot of the symptoms is considered for prediction. In contrast, in this work we hypothesize that changes over time of these symptoms can predict the mental states of the subjects and the conditions they are undergoing.

To support this hypothesis, we propose the use of the Clinical Assessment using Activity Behavior (CAAB) approach adapted to smart To overcome this obstacle and get to know stress in the most natural environment possible, [START_REF] Koldijk | Detecting work stress in offices by combining unobtrusive sensors[END_REF] recently analyzed the possibility of detecting stressful situations and estimating mental states from unobtrusively collected smart office physiological and behavioral data. These data were collected in an experiment where the participants performed real office-work and were being stressed with common real office-related stressors such as time pressure and e-mail interruptions. They succeeded in accepting their hypothesis and built both stress and mental workload prediction models from the smart office data. They also analyzed the importance of building individual stress detection models instead of generic models, concluding that specialized models for particular groups of people with similar characteristics might be much more effective on this task. However, as most of the existing literature does, these authors [START_REF] Koldijk | Detecting work stress in offices by combining unobtrusive sensors[END_REF] ignored the temporal nature of stress and only considered the use of instantaneous values of the physiological and behavioral data to create the prediction models. Given that stress is a disorder that progresses over time, we hypothesize that stress-detection research would benefit from an approach based on the use of time-series statistics describing physiological and behavioral change over time.

Methods

Dataset

The SWELL Knowledge Work Dataset for Stress and User Modeling Research (SWELL-KW) [START_REF] Koldijk | The SWELL Knowledge work dataset for stress and user modeling research[END_REF] 1 collected in the 'Smart Reasoning for Well-being at Home and at Work' (SWELL) project was used for the current study. We decided to use this dataset for two reasons. First, it reflects real office workers' state performing their natural office work under real-life stressors, instead of being collected in an experiment where they are asked to perform artificial tasks or being submitted to non-common stressors. Second, the data gathered in the experiment can be easily collected with unobtrusive and easily accessible sensors that could be deployed in real office environments. Thus, this could facilitate the exploitation of the results obtained from this analysis. SWELL-KW consists of multimodal data of 25 people who were submitted to a real work-setting experiment in a smart office environment. The participants were asked to perform common office work while they were being subjected to different workloads and different stress levels elicited by means of e-mail interruptions and time pressure. In addition to an initial relaxed state (R), three different conditions were simulated: a neutral condition where the subjects were asked to perform some 'normal work' without any stressors (N), a condition where they were forced to work under time pressure (T), and a third condition with e-mail interruptions as stressors (I). In the meanwhile, their physiological signals, computer use patterns, facial expressions and body posture were recorded by means of computer logging, video recordings, a Kinect 3D sensor and specific minimally-intrusive body sensors (namely, a Mobi (TMSI) device with self-adhesive electrodes to record ECGs and Skin Conductance levels). Participants' perceived levels of stress and mental workload were assessed once per condition by a variety of self-reported questionnaires: Self Assessment Manikin (SAM) [START_REF] Lang | Behavioral Treatment and Bio-behavioral Assessment: Computer Applications[END_REF], Rating Scale Mental Effort (RSME) [START_REF] Zijlstra | The Construction of a Scale to Measure Subjective Effort[END_REF], NASA Task Load Index (NasaTLX) [START_REF] Hart | Development of NASA-tlx (Task Load Index): Results of Empirical and Theoretical Research[END_REF]) and a stress level assessment by means of a visual analog scale. Table 1 summarizes the data collected in SWELL-KW.

Preprocessing

Minute-level feature extraction

Physiological and behavioral data of the 25 participants were collected continuously during the experiments, resulting in a raw data collection of 138 min (3 × 6 min R + 45 min N + 45 min I + 30 min T) for each one of the participants in the form of a computer log file, a FaceReader (FaceReader, 2015; Kinect for Windows SDK 2.0) log file, a Kinect SDK (Kinect for Windows SDK 2.0) joint coordinates file and a log registering the angles of the upper body and physiological data from [START_REF] Mobi | [END_REF]. Along with this raw dataset, SWELL-KW provided aggregated minute-length features as specified in Table 1 and whose extraction is explained in detail in the literature [START_REF] Koldijk | The SWELL Knowledge work dataset for stress and user modeling research[END_REF]. In this study, we made use of these minute-level features, but other time-window lengths for data aggregation could also be considered. 1 Available online at (M. M. T., et al., 2014).

Table 1 Raw-level and minute-level data available in the SWELL-KW dataset.

Behavior statistics' computation

As mentioned previously, we had available a set of minute-length physiological and behavioral features for each participant, as well as the subjective levels of perceived stress and mental workload under each condition for each participant. From this minute-level dataset, we computed two different summarizing datasets with two different goals using two different configurations for the CAAB algorithm.

In order to extract the physiological and behavioral statistics for each participant under each condition, we implemented the CAAB [START_REF] Dawadi | Automated clinical assessment from smart home-based behavior data[END_REF] algorithm adapted to smart office data in Matlab. The minute-length physiological and behavioral data was processed using this algorithm as follows. First, each participant's minute-length physiological and behavioral features for each condition were extracted. Second, five summarizing timeseries statistics were computed for each physiological and behavioral feature in this period using a sliding window of length (w) 5 min with a skip size (s) of 1 min: variance, skewness, kurtosis, autocorrelation and change. In order to stabilize data variance and remove the effect of non-stationary (e.g. periodic) components, a log-transform followed by a linear detrending was applied to each physiological and behavioral variable falling inside the sliding window just before the computation of the summary statistics. While the first four are well-known time-series processing methods (Dakos et al., 1371), the change statistic was first introduced by [START_REF] Dawadi | Automated clinical assessment from smart home-based behavior data[END_REF]. In brief, computation of the change feature is to apply a change detection algorithm between the two halves of the piece of time-series data that falls into the sliding window, so that we receive a '1' if a significant change is found between the two halves, and a '0' otherwise. For this purpose, we used an implementation of the Hotelling-T test [START_REF] Hotelling | The generalization of Student's ratio[END_REF] change algorithm available for Matlab.2 Finally, the average of each time-series statistic for the length of the condition period was computed. The set of time-series statistics' averages was used for the final predictions. Note that the sliding window length (w = 5) was selected empirically in a preliminary test, but other window sizes could also be considered. This process is highlighted in Approach 1 of Fig. 1.

For the second dataset, only the last two steps differed from the previous process: after the application of the log-transform and linear detrending, the same five summarizing time-series statistics were computed, but this time, using a non-overlapping sliding window of 5 min' length (s = 5, w = 5). Condition-level averages were not computed this time, and the 5 min'-level dataset was considered as the final version for the condition change detection (see Approach 2 in Fig. 1).

Thus, the resulting preprocessed datasets for further analysis were: 1) a collection 100 data instances of 780 (5 time-series statistics of 156 physiological and behavioral features) summary behavior statistics modeling each one of the 25 participants who went through the four conditions of the SWELL experiment (dataset A (see Fig. 1)), and 2) a collection of 616 data instances of 780 summary behavior statistics describing the physiological and behavioral output of the 25 participants for 5 min non-overlapping intervals during the length of the whole experiment (dataset B)).

We made sure that none of the variables in any of the two datasets exceeded 30% of missing data, to remove the whole variable from the analysis if it was so. The remaining missing values (variables with <30% missing data) were imputed by the mean value for each attribute using the 'ReplaceMissingValues' filter in Weka. 3.2.3.4. Reliable change in perceived workload levels. Despite the more ecologically valid experimental conditions that are used, the objectively measured condition might not necessarily be reflecting a significant workload change for all of the participants. To standardize the effect of each condition on the perceived task load for each participant, we computed the Reliable Change Indexes (RCI) [START_REF] Christensen | A method of assessing change in a single subject: an alteration of the RC index[END_REF] for the NasaTLX scores. RCI informs whether a participant's perception (in this case, perceived workload levels) has experienced a significant change in an assessment score based on his/ her own previous perception. RCI discards changes that might have appeared due to reasons other than an actual change in scores (such as measurement unreliability, repeated-testing or practice effects) by applying a threshold to the scores' differences. We looked for two different RCIs, one for each post-processed dataset. For the first case, we computed whether each participant was reporting a reliable change in the perceived task loads for each condition compared to the relaxed state ('R') (label 7). We assumed the NasaTLX score to be null for that initial condition. The reliable change index per condition and subject was computed as shown in Equation ( 1),
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where r NasaTLX is the test-retest reliability measuring the consistency of the NasaTLX scores over time. Test-retest reliability parameters for the NasaTLX scores can be found in Table 2.

For the second case, we analyzed whether the participants were undergoing a significant workload change in each 5-min length period (label 8). For this purpose, we computed the RCI in self-reported NasaTLX scores at the beginning and at the end of each consecutive 5min time slot. This change was computed as shown in Equation ( 3 where Nasa j ( ) TLX end is the self-reported task-load index at the end of the 5-min length period j and Nasa j ( ) TLX init is the self reported task-load index at the beginning of the 5-min length period j.

A summary of the whole preprocessing task is given in Fig. 1.

Fig. 2. Two examples for the standardization of the 'condition' (C) label. The C variable shows the objective condition the participant is undergoing, whereas stress variable shows the perceived stress levels for that condition by the participant. C std represents the standardized condition value calculated from the user's perceived stress level in each condition.

Stress and mental workload assessment scores' set up

The goal of this paper is to create prediction models that map physiological and behavioral changes of data collected in a smart office to the subjective stress and mental workload ratings self-reported by the participants, as well as to objectively measure working conditions and condition changes. Our target variables are therefore defined as explained hereafter.

3.2.3.1. Self-reported stress and workload levels. The self-reported valence, arousal and dominance levels measured by the SAM test, the stress level, the mental effort measured by the RSME questionnaire, and the mental demand, the physical demand, the temporal demand, the effort, the performance, the frustration and the global task load levels measured by the NasaTLX questionnaire were all collected once for each condition setting (label 1 (see Fig. 1)). As self-reported questionnaires might be very subject-dependent, we also computed the standardized version of the ratings by applying min-max normalization per subject to the questionnaire responses (label 2).

3.2.3.2. Simulated workload condition settings. Moreover, a label objectively indicating the condition under which the data were collected was used (label 3). This one takes the form of a four-class nominal variable, representing the four workload condition settings implemented during the experiments: R, N, T and I. Nonetheless, the effect provoked by each condition setting may depend on each subject, i.e. a participant might feel much more stressed under time pressure (T) than under a condition with frequent e-mail interruptions (I) while another one feels the opposite. To reduce this type of inter-subject variability, we computed the standardized versions of the condition settings (C std ) (label 4). For this purpose, we ordered the conditions from the least to the most stressful for each participant (as measured by the 'stress' label) and assigned corresponding numbers: '0' for the least stressful and '3' for the most stressful one (see Fig. 2).

3.2.3.3. Change in workload condition settings. In this case, a condition change variable was computed, indicating whether the subject was being submitted to a workload condition change in each one of the fiveminute length data instances (label 5). Data were labeled with '1' if this was true and with a '0' otherwise. Finally, we also decided to make an attempt on detecting the directions of these condition changes, i.e.: for each 5-min period, we computed whether the user was increasing (positive label), decreasing (negative label) or maintaining (neutral label) his/her self-reported perceived workload levels (as measured by the 'NasaTLX' label), and assigned '-1', '0' or '1' to each data instance (label 6).

Stress and mental workload prediction

The preprocessed datasets resulting from the previous steps were analyzed using Weka [START_REF] Frank | The WEKA Workbench. Online Appendix for[END_REF].

Self-reported stress and workload levels

First, a regression analysis between the self-assessed stress and mental workload levels and smart office based physiological and behavioral data was performed (prediction of 'labels 1' with 'dataset A'). The models utilized radial basis function (RBF) kernel support vector machines (SVM). For this purpose, a model was built for each self-assessed score using all features extracted from the experiment data. The models were validated following a 10-fold CV approach and their correlation coefficients (r) and Mean Absolute Errors (MAE) were compared. The 10fold CV approach consists of performing a cross validation 10 different times, each time using a different partitioning of the data into training and validation sets, and then averaging the results [START_REF] Gust | Machine Learning[END_REF]. We searched for statistical predictability of the smart office data models comparing the results to a baseline model based on the ZeroR algorithm with a paired t-test. ZeroR is an algorithm aimed at creating prediction models based only on the distribution of the response variable and igthe data attributes [START_REF] Witten | Data Mining: Practical Machine Learning Tools and Techniques[END_REF]. It is commonly used as a basis of comparison for the other algorithms that have to overcome its performance to be considered useful. When it is being used for regression purposes, its error metric must be beaten. Adjusted p-values (*p<0.01, **p<0.001) were used to check for statistical significance in order to avoid Type 1 error rate due to the number of correlation analyses being run. Unless otherwise stated, the same validation approach based on 10fold CV and t-test comparison to the corresponding ZeroR baseline classifier was used for all models in this work.

We then performed feature selection by analyzing the predictive power of each type of feature for each self-assessment score. For that purpose, we built source-specific models based on only: (1) physiological features, (2) computer use patterns, (3) facial expressions, (4) head and facial movements, and (5) body posture and movements. A RBF SVM algorithm was used to build the models.

Next, all the previous steps were repeated to build prediction models of the standardized self-assessment scores (prediction of 'labels 2' with 'dataset A'). Models using all the collected data and source-specific models were created and validated.

The huge number of features coming from only five sources that are being used as attributes in this work, might result in highly collinear models which have the risk of not being optimal. To avoid this issue, we computed a Principal Component (PC) based reduced dataset explaining the 95% of the variability of the whole dataset. We built and evaluated the prediction models for this PC-reduced dataset (prediction of 'labels 1' with 'dataset A PCA ').

Simulated workload condition settings

Regarding the detection of the objective mental-workload conditions from smart office data, we built and evaluated several classification algorithms (prediction of 'labels 3' with 'dataset A'). In this case, as subjects were submitted to four different workload conditions, we were facing a multi-class classification problem, where a random guess classifier would yield 25% accuracy. Naïve Bayes, linear SVM, AdaBoost and C4.5 tree algorithms were selected for this purpose. As all the four conditions were considered of equal importance, the weighted versions of the area under the Receiver Operating Characteristic (ROC) curve (wROC AUC ), the area under the precision-recall curve (wPRC AUC ), and F-score (wFscore) were computed for comparison, as well as the overall accuracy (Acc.) of the models. We considered the classification models useful when they beat baseline models' accuracy and ROC AUC values. This process was then repeated for the standardized condition labels (prediction of 'labels 4' with 'dataset A').

Change in workload condition settings

In the second approach, there were very few data instances representing a workload condition change available: only 17.8% of all data instances were of this type, resulting in highly imbalanced data. This is a very common problem in health-related machine learning tasks, where a disease is a rare event, and it is very difficult to collect enough data instances representing the affected class. Usual machine learning algorithms tend to create biased models towards the majority class when being applied to imbalanced datasets, resulting in high prediction accuracies but, very low sensitivity. Notwithstanding, the main goal is often to detect the rare event, i.e. the presence of the disease or disorder.

To overcome this imbalanced data issue, alternative machine learning approaches must be used. In this work, in addition to some usual machine learning algorithms, two alternative algorithmic approaches called SMOTEBoost and RUSBoost were tested aiming at improving models' sensitivity. SMOTEBoost [START_REF] Chawla | SMOTEBoost: Improving Prediction of the Minority Class in Boosting[END_REF], is a method that combines boosting techniques with SMOTE [START_REF] Chawla | SMOTE: synthetic minority over-sampling technique[END_REF] oversampling techniques. The objective of boosting is to create a "strong" classifier using a set of "weak" classifiers while SMOTE aims at reducing class imbalance by creating synthetic data instances to oversample the minority class. By combining these processes iteratively, SMOTEBoost often improves the sensitivity of the models without affecting the overall accuracy of the models.

In contrast, the second approach, uses the combination of boosting and RUS undersampling technique to reduce class imbalance [START_REF] Seiffert | RUSBoost: a hybrid approach to alleviating class imbalance[END_REF]. RUS, randomly removes data instances from the majority class until a desired balance is achieved, resulting in training datasets of smaller size, and thus, greatly reducing complexity and training time of the models. Despite its simplicity, RUSBoost has demonstrated its effectiveness in previous works [START_REF] Van Hulse | Experimental perspectives on learning from imbalanced data[END_REF]. Therefore, we first built condition change prediction models using usual machine learning algorithms (prediction of 'labels 5' with 'dataset B'), namely, Naïve Bayes, linear SVM, AdaBoost and C4.5 tree. We evaluated the accuracy, ROC auc , PR auc , Fscore and sensitivity metrics of the models by means of a 10-fold CV approach. Next, we built models based on SMOTEBoost and RUSBoost algorithms using linear SVM and C4.5 tree as weak classifiers. This time, a 5-fold CV was used for validation purposes and the performance of the models was compared to a baseline algorithm by means of a McNemar's test.

Not all condition changes aimed to detect in the previous part imply the same risks: whereas a condition change from neutral or relaxed to stressful is an event of "high risk", the change in the opposite direction means an improvement in the workers' status. Both events are of interest, being the first one necessary to be detected in order to take preventive measures, and the second one, useful to track workers' status. Thus, we aimed at detecting the direction of the condition changes previously modeled (prediction of 'labels 6' with 'dataset B'). For that purpose, we built models based on Naïve Bayes, linear SVM, AdaBoost and C4.5 tree algorithms to solve the three-class classification problem (negative class: change to a more stressful condition, neutral class: no change, positive class: change to a less-stressful condition).

Reliable change in perceived workload levels

Finally, we performed the detection analyses for the RCIs in perceived task-loads for each participant. First, we built and evaluated prediction models for the reliable NasaTLX score changes from baseline (prediction of 'labels 7' with 'dataset A') (i.e. classification of data instances representing relaxed states vs. significant workload states) using unobtrusively collected smart office data and Naïve Bayes, linear SVM, r SD

NasaTLX [START_REF] Battiste | Transport pilot workload: a comparison of two subjective techniques[END_REF] 0.77 14.6

Table 2

Test-retest reliability (r) and standard deviation (SD) of the NasaTLX scores.

AdaBoost and C4.5 tree algorithms. We repeated the process for sourcespecific models. Second, we performed reliable perceived task-load change detection among consecutive 5 min-length time periods using unobtrusively collected physiological and behavioral smart office data and the same algorithmic approaches as in the previous case (prediction of 'labels 8' with 'dataset B').

Results

This section presents the results obtained from the regression and classification models described in Section 3.3, which analyze the predictability of the self-reported and objective stress and workload condition levels from smart office data.

4.1. Self-reported stress and workload levels Table 3 (a) shows the results of the regression analyses for the selfreported scores using all features available in the first-approach dataset (prediction of 'labels 1' with 'dataset A'). mental effort, effort and global NasaTLX scores were found to be strongly correlated to the smart office data while dominance and mental demand were showing moderate to strong correlations. Arousal, physical demand, temporal demand and frustration were moderately correlated to the unobtrusively collected data, whereas correlation for performance label was weak to moderate and for stress only weak. In fact, for these last two scores, enough statistical significance was not found after adjusting the p-values, and therefore, they can not be considered to be predictable from the collected data.

Table 3 (b) shows the prediction results for the self-assessed scores from the dataset of 82 PCs explaining the 95% of the variance of the whole dataset (prediction of 'labels 1' with 'dataset A PCA '). Overall, cor- relation results are low, and none of the MAE values has shown enough statistical significance to be considered a useful model.

Table 3 (c) shows the results for the regression analyses on the standardized self-reported scores (prediction of 'labels 2' with 'dataset A'). Generally speaking, the correlations obtained by these standardized scores are higher than the ones obtained using absolute values. Effort raised up to very strong correlation levels, while dominance raised to strong correlation levels. Valence, mental effort and NasaTLX were also found to be strongly correlated to the collected data. Moderate to strong correlation were found for arousal, mental demand, physical demand, temporal demand and performance, while frustration was only showing moderate correlations. Stress was the score showing the lowest correlations, but this time was found to correlate weak to moderately. Moreover, this time, all the scores showed statistically significant Table 3 Regression results for the self-reported test scores using RBF SVM algorithm for 10-fold CV (statistically significant improvement (adjusted *p < 0.01,**p < 0.001) in comparison to a baseline algorithm).

body posture and movements gained importance, as all subscores as well as the global task load index showed highest correlations with this feature type. The global score followed the same trend as the nonstandardized scores, but correlations were slightly improved. Standardized mental demand was found to be only predictable by body posture and movements, and physical demand became most predictable with body posture and movements, followed by computer use patterns and facial and head movements. Standardized temporal demand and effort were most correlated to body posture and movements followed by computer use patterns as in the non-standardized case, but effort also showed enough statistical significance to be considered predictable by means of facial and head movements. Standardized performance scores became only predictable by the body posture and movement-based model whereas frustration gained enough statistical significance to be considered predictable by body posture and movements, computer use patterns and facial and head movements, in decreasing correlation order.

Simulated workload condition settings

Table 6 shows the results for the objective (prediction of 'labels 3' with 'dataset A') and standardized (prediction of 'labels 4' with 'dataset A') workload condition detection models using all physiological and behavioral features and by feature type. Regarding the objective scores, overall, Naïve Bayes and AdaBoost based models were achieving the highest accuracies and the highest number of models with enough statistical significance. In fact, Naïve Bayes based models using all features, only computer use patters, only facial expressions and only body posture and movements were able to predict the workload condition. In the case of AdaBoost, physiological data-based models also showed statistical significance for prediction but facial expressionbased model didn't. Linear SVM based models were only useful using body posture and movement data, whereas C4.5 tree algorithm only resulted in statistically significant models using computer use patterns and the combination of all features.

For the standardized scores, models show improved prediction accuracy compared to the non-standardized scores, and more statistical significances are found. In addition to those significances found for the improvement in terms of prediction error compared to a baseline classifier, concluding that all scores can be predicted from smart office data after standardization. Table 4 shows the results of the feature selection analysis for the self-reported scores (prediction of 'labels 1' with 'dataset A'). Valence and dominance were best predicted by body posture and movements followed by computer use patterns. Dominance was also predictable by facial and head movements, and arousal only showed enough statistical significance for the computer use pattern-based models. Self reported stress was only found to be predictable by computer use patterns, beating the results obtained with the whole set of features. Mental effort measured by the RSME test was best predicted by the body posture and movement parameters, but was also statistically significant for the model based on computer use patters.

Next, regression results for the self-reported NasaTLX score and subscores are reviewed. The global score was best predicted by body posture and movements, followed by computer use patterns, as well as the mental and temporal demand. Performance was also predictable by computer use patterns and body posture and movements, in decreasing order. Physical demand was most correlated to facial and head movements, followed by body posture and movements and computer use patterns whereas effort was best predicted body posture and movements, computer use and facial and head movements. Finally, frustration was found to be only predictable by facial and head movements, followed by computer use patterns.

Table 5 shows the results of the feature selection analysis for the standardized scores (prediction of 'labels 2' with 'dataset A'). Overall, results improved, but follow the same trend. In this case, arousal became more predictable by means of body posture and movement-based models instead of computer use pattern-based models as in the previous case, which now occupies the second place. Standardized stress scores also showed statistically significant predictability using RBF SVM models based on only body posture and movements in addition to the one built using only computer use patterns. Standardized mental effort as measured by the RSME score was found to be predictable using only body posture and movement-, computer use pattern-and facial and head movement-based models, in decreasing order of performance. For the standardized NasaTLX questionnaire responses, models based on non-standardized case, computer use pattern-based linear SVM and facial expression-based AdaBoost also showed prediction power. AdaBoost seems to be the best working algorithm for this case.

Change in workload condition settings

Table 7 shows the results for the workload condition change detection using the usual machine-learning algorithms, whereas Table 8 shows the results for the SMOTEBoost and RUSBoost algorithms aimed at dealing with class imbalance (prediction of 'labels 5' with 'dataset B'). Usual algorithms gave better results than expected. Whereas some of the models showed too low sensitivities for the negative class, others where able to detect these events within an acceptable rate (≥0.60). A computer use pattern-based Naïve Bayes model showed enough statistical significance to accept predictability of the objective workload changes, with a good sensitivity for the negative class. AdaBoost showed predictability of the target variable for all feature-, computer use pattern-, and body posture and movement-based models, in decreasing order of accuracy and sensitivity. C4.5 tree was the best in predicting the condition changes with a computer-use pattern-based model, followed by a model built using all the features. Linear SVM was not showing enough statistical significance in terms of accuracy to accept it was working better than a baseline model. Regarding SMOTE-Boost and RUSBoost models, overall, we achieved higher sensitivity rates towards the negative class: some models even yielded 100% sensitivity. Nonetheless, only two of them showed enough statistical significance to accept predictability of the workload change, which were a SMOTEBoost based model using computer use patterns and a C4.5 tree as weak classifier, and a RUSBoost based model using the combination of all features and a C4.5 tree algorithm as weak classifier.

Table 6

Classification results for the actual and standardized workload conditions by behavioral feature type for 10-fold CV (statistically significant improvement (adjusted *p<0.01, **p<0.001) in comparison to a baseline algorithm)). Note that these significances were tested by means of a McNemar's test instead of the t-test as in the other models. However, these models were not highly improving the results obtained previously with the usual algorithms.

Table 9 shows the results for the task load change directionality detection (prediction of 'labels 6' with 'dataset B'). AdaBoost algorithm was performing worst, as all models based on this algorithm were biased towards the majority class. Some other models were showing statistically significant improvement in terms of accuracy compared to a baseline classifier, but were performing very poor in terms of F-score and/or sensitivity, making them useless for our purpose. Only a Naïve Bayes-and a linear SVM-based model built using the combination of all features showed statistical significance for all metrics, leading us to accept their prediction power for the positive, negative and null task load changes. Nonetheless, these models were yet showing low sensitivity rates.

Reliable change in perceived workload levels

Table 10 shows the results for the reliable perceived task load index change detection (prediction of 'labels 7' with 'dataset A' and 'labels 8' with 'dataset B'). The reliably different task-loads from baseline situation (relaxing vs. stressful) were found to be detectable using models based on all features, computer use patters and body posture and movements, whereas physiology-, facial and head movement-and facial expression-based models did not show enough statistical significance to accept the hypothesis. The highest accuracies were achieved by means of Ada-Boost and Naïve Bayes-based models, and regarding feature selection, computer use patterns were found to be more useful than body posture and movement based models. A reliable change between consecutive 5min periods was harder to detect and fewer useful models were found. Naïve Bayes classifier was performing best by means of body posture and movement-based models, followed by computer use and facial and head movement based models. Models built using linear SVM, Ada-Boost and C4.5 algorithms were not significantly improving the detection accuracy achieved by a baseline classifier.

Discussions and conclusion

In this paper, we analyzed the possibility of predicting workers' stress and workload levels, as well as changes in these conditions, by means of time-series statistics computed from unobtrusively collected physiological and behavioral data in a smart office environment. The research questions in hands are of great interest to today's society where stress is becoming increasingly present and harmful, but are also pertinent to the current state of the art in ambient intelligence and smart environments. Unobtrusive monitoring of peoples' behavior and physiology is already possible, but we yet need to associate these patterns to the disorder of interest. Moreover, it is still necessary to clarify and limit the use of the proposed system to avoid ethical and privacy issues Table 8 Classification results for the workload condition change by behavioral feature type for 5-fold CV using SMOTEBoost and RUSBoost algorithms (statistically significant improvement (adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm). [START_REF] Alberdi | Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review[END_REF]. Results show that the prediction of perceived stress and workload levels is possible using change and variability patterns of data collected unobtrusively from smart offices.

A regression analysis of the target scores from smart office data showed many statistically significant results, enforcing the hypothesis that this kind of collected data can actually predict the perceived stress and workload levels. The correlations found by this analysis vary from moderate to strong, depending on the nature of the objective label. NasaTLX scores, together with effort, mental effort and valence were the best-predicted scores, whereas self-reported stress and performance didn't show enough statistical significance to be considered predictable. In case of stress prediction, this is not surprising, as this label was acquired by means of a single-question visual analog scale, which unlike NasaTLX, RSME or VAS questionnaires, is not a questionnaire whose reliability has been verified and might be too subjective to be well capturing the real perceived stress levels of the users. Nonetheless, the analyses on the standardized scores improved the previous results, even demonstrating predictability for the self-reported stress and performance levels. This reasserts the fact that there is some inter-subject variability present on every score used for the study, but also suggests that controlling for this variability by means of standardization methods, can make their prediction possible.

A reduced dataset using Principal Component approach showed a highly decreased performance on the predictability of the models. This might be due to several reasons. On one hand, it suggests that actual feature values are much more correlated to the self-reported scores than the PCs representing this data. On the other hand, it might also suggest that there is no much collinearity among the initial set of features. Nonetheless, the reason can also be an excessive standardization of the input data which might have provoked the loss of machine-learning algorithms' mapping ability to subject-specific response data. This can be verified by validating the previous models based on actual feature values following a Leave-One-Subject-Out Cross-Validation (LOSOCV), which is a well-known procedure in the field. LOSOCV consists of excluding one participant at each time from the model-training step, while using their data in the model-testing part. This process is repeated until all users' data is used both for training and for testing, and models' average performance is computed. This would allow to verify the usability of the current approach to detect stress and workload levels of new workers without the need of collecting their data. The literature shows that LOSOCV based validation usually gives much more moderate results [START_REF] Koldijk | The SWELL Knowledge work dataset for stress and user modeling research[END_REF]. Hence, the importance of building user-specific models, models based on data from a small group of people which is as similar as possible to the final user or to build general models that can benefit from users' feedback to adapt gradually to each of them.

Regarding feature selection analyses performed in the regression models, computer use patterns and body posture and movements are the most correlated type of behavior, followed by head and facial movements. These results agree with previous research that report a relationship between perceived stress levels and computer-use patterns [START_REF] Liao | A real-time human stress monitoring system using dynamic bayesian network[END_REF][START_REF] Vizer | Automated stress detection using keystroke and linguistic features: an exploratory study[END_REF][START_REF] Kolakowska | A review of emotion recognition methods based on keystroke dynamics and mouse movements[END_REF][START_REF] Eijckelhof | Office workers' computer use patterns are associated with workplace stressors[END_REF], body posture [START_REF] Arnrich | What does your chair know about your stress level?[END_REF] and head and facial movements [START_REF] Liao | A real-time human stress monitoring system using dynamic bayesian network[END_REF]. In fact, models based on only physiological measurements and facial expressions were never significant by themselves, while literature affirms the predictability of stress levels both from facial expressions [START_REF] Dinges | Drivers and Barriers for Psychosocial Risk Management: an Analysis of Findings of the European Survey of Enterprises on New and Emerging Risks[END_REF][START_REF] Otsu | Analysis of psychological stress factors and facial parts effect on intentional facial expressions[END_REF][START_REF] Das | Evaluating instantaneous psychological stress from emotional composition of a facial expression[END_REF] and physiological signals [START_REF] Hjortskov | The effect of mental stress on heart rate variability and blood pressure during computer work[END_REF][START_REF] Zhai | Stress detection in computer users based on digital signal processing of noninvasive physiological variables[END_REF][START_REF] Al Osman | U-biofeedback: a multimedia-based reference model for ubiquitous biofeedback systems[END_REF][START_REF] Sharma | Hybrid genetic algorithms for stress recognition in reading[END_REF][START_REF] Wijsman | Wearable physiological sensors reflect mental stress state in office-like situations[END_REF]. This is an important finding, as physiological measurements based on SCL and ECGs are the most widely used signals in stress detection [START_REF] Alberdi | Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review[END_REF]. These results suggest that behavior might be much better in predicting stress under the circumstances of this case study. However, we must first understand the nature of the experiment used to collect the data of the current study and the steps taken to process it, to interpret the results consequently. The reason why physiological signals might not be showing high correlations as usual, can be that the time-series statistics extracted from them are not reflecting an increase or decrease in the signals but the amount of absolute change.

The directionality of the change in physiological signals might be very important as far as stress detection is concerned. For example, it is well known that stress provokes an increase in SCL signals, or a Regarding objective condition change detection, overall, usual algorithms were performing better or similar than the SMOTEBoost and RUSBoost class-imbalance specialized algorithms. Notwithstanding, a significant improvement in the sensitivity of the models was noticed with these latter algorithms, as promised. Useful prediction models were achieved for computer use pattern-based models, as well as for models based on the combination of all features and on only using body posture and movement features. As for the detection of the direction of these changes, models' performance is worsened. Only models built using all features extracted from the experiments were showing enough prediction power, along with a fairly reduced sensitivity. This is not surprising, because, on one hand, the three-class classification problem that poses the detection of changes' directionality is more complex than the two-class classification problem of the absolute changes' detection, both due to an added class to classify and to the reduced number of instances available for each class. On the other hand, the time-series statistics extracted from the data are not necessarily reflecting the directionality of the physiological and behavioral features, but an absolute change. As the directionality of some of the features used in the study can be directly related to the outputs' directionality (e.g., increased SCL levels to increased stress levels), the use of only absolute change statistics might difficult the resolution of this problem.

Reliable change detection was found to be predictable both from a relaxed state and between consecutive 5-min time intervals. For the first case, we saw that the best predictors were computer use patterns followed by body posture and movement features. The rest of the source-specific models didn't show enough statistical significance to accept their predictability of this target, but the combination of all features also showed to be useful for this purpose. Regarding reliable change detection between consecutive 5-min time intervals, we found less significances, thus a harder problem to solve. Also, we noticed a decrease in the sensitivity of the models for this detection problem compared to the previous approach. Nevertheless, computer use patterns, body posture and movements and head and facial movements were predicting this change. Surprisingly, the combination of all features was yielding lower and not statistically significant results.

Note that, in order to keep the paper-length reasonable, we only performed all our analyses with a single time-window length combination (1 min for data aggregation, 5 min for time-series statistics' computation). Results might vary depending on the length of these temporal windows, and therefore, an analysis of the effects of these window-size choices and the estimation of the best values to use would be highly required.

This paper has focused on the possibility of detecting office workers' stress from unobtrusivelly collected physiological and behavioral data. Nonetheless, there is still some work to do regarding the implementation of such a system in a real office environment [START_REF] Alberdi | Towards an automatic early stress recognition system for office environments based on multimodal measurements: a review[END_REF]. First, quality of the collected data must be ensured, as this is essential for the correct assessment of workers' stress levels. This might not be guaranteed, as noisy or incomplete data may appear due to sensor failure or transmission errors. Sensor failure detection systems could help in avoiding this issues [START_REF] Hussain | Sensor failure detection, identification, and accommodation using fully connected cascade neural network[END_REF]. Furthermore, obtrusiveness of the proposed method could be minimized by reducing the amount of installed sensors. Our study has shown that it possible to deduce the stress levels using only computer-and posture-based behavioral patterns. Limiting the monitored patterns to these data highly increases the unobtrusivity of the system and reduces the 'Big Data' issues. Even so, the amount of data that will be collected will be very large, so the required infrastructure for data ingestion, storage and visualization must be implemented [START_REF] Fang | Computational health informatics in the big data age[END_REF]. Nevertheless, the deployment of the approach in an office environment facilitates this work, since they are closed and limited environments, with a limited but frequent number of users, and equipped with several computer systems. In addition, in order to ensure the reliability and quality of the stress level assessment system being proposed herein, a learning period for the system must first be launched for every new worker. Despite the reduction on the Heart Rate Variability. Due to the data processing approach used herein, we might be missing this valuable information. Furthermore, the amount of imputed data in physiological signals was higher than in the behavioral statistics, which might have also blurred the correlations in this domain causing a significance loss. Moreover, results based on the computer use patterns must be interpreted carefully: i.e., due to the nature of the experiment, where the participants were asked to perform a set of specific computer tasks under each condition and then evaluate the perceived stress and workload levels per condition too, results based on computer use patterns are much more likely to be correlated to the self-reported scores.

Unlike body posture and movements, facial expressions, head and facial movements and physiological signals, computer use patterns were not varying completely freely but were being conditioned by the tasks that had been assigned to the participants. It would be interesting to analyze whether the same patterns of behavior are repeated in an experiment where other methods are used to induce stress in the users, or in a longitudinally collected dataset where no stress is being induced in the participant nor is being subjected to any special condition, but all their behavior only depends on their daily work and hypothetically, their stress levels. Another solution would be to use alternative statistical analysis methods to control the variability on the behavioral data caused by the condition to which the participants are subjected and to quantify the part of behavioral variability that corresponds to the level of stress suffered. Moreover, the insufficient predictability of facial expressions for the self-reported stress and workload levels might not be due to the lack of correlation among the two but to the lack of reliability of the method used to estimate the facial expressions from video recordings. Other methods to map each segment of the recordings to a facial expression should first be tested before discarding an existing useful correlation between these data.

Following with feature selection, self-reported stress levels were found to be best predicted by computer use patterns, even better than using the whole set of features, to the point of becoming a statistically significant prediction model. As mentioned, this is something to be interpreted cautiously. The rest of the labels were best predicted by models based on the whole set of physiological and behavioral features.

Examining the results of the feature analysis performed on the standardized self-reported scores, in addition to finding higher correlations than in the non-standardized case, the use of body posture and movements to build prediction models showed improved results. In fact, self-reported stress showed enough statistical significance to be considered predictable by means of these measures. Interestingly, all NasaTLX questionnaire-based responses showed to be best predicted by body posture and movements, above models based on computer use and facial and head movements. Again, physiological measurements and facial expressions by themselves were not found to be useful to create prediction models for the target labels.

In terms of objective condition detection from smart office data, results show a highly significant prediction ability of the models. The Naïve Bayes and AdaBoost algorithms appear to be the best algorithms for this problem. In this case, both facial expressions and physiological features also showed prediction ability, whereas head and facial movements didn't. Therefore, we notice a difference in features' ability to predict self-reported stress and workload levels to objective condition settings' prediction. However, as in previous cases, the most repeated feature sets in terms of statistical significance are computer use patterns, body posture and movements and the whole set of features.

Results for the standardized condition detection case were improved in comparison to the non-standardized versions. In terms of algorithms, AdaBoost was found to be the most effective for this purpose, and regarding feature types, all except head and facial movement-based models were found to be statistically significantly predicting the target labels. Note that the standardization technique used for this purpose is similar to performing a discretization of the self-reported stress values. Therefore, results are transferable to the prediction of these scores. office environment. This dataset will be used to validate the results presented in this paper. The collection of more data will also allow the completion and improvement of the results, by selecting the best algorithmic approaches to use and by performing a more in-depth feature selection analysis. Additionally, a thorough analysis on the sliding temporal-window length (w) selection should be performed. In addition, research on the best strategy to follow to build models for the general office-worker population will be performed.

work that this may entail at the beginning, it won't be necessary anymore after the initial stage, and will allow to personalize and adapt the general stress detection model to each individual, ensuring the required accuracy. Privacy, security and ethical issues should also be taken into account [START_REF] Costa | Big data in biomedicine[END_REF]. Workers must acknowledge and accept their work-day activity to be monitored, and the necessary security implementations must be done in order to avoid the data being used for purposes other than preventing health-related problems caused by stress.

Summing up, this work has demonstrated the possibility of predicting the perceived stress and workload levels of office workers, as well as the objectively measured conditions they might be undergoing or the significant workload condition changes that they might be suffering from changes in unobtrusively collected smart office-based physiological and behavioral data. Three main conclusions can be drawn from all these analyses: first, the importance of the use of standardization methods to reduce the intrinsic inter-subject variability of stress and workload assessment methods. Overall, all analyses of this work found improved results for these type of labels. Second, the repeated statistical significance of the computer use patterns and body posture and movements suggest the relevance of these data for stress and workload prediction, while surprisingly, physiological measurements didn't highly contribute to the task. Nonetheless, as previously mentioned, computer use patterns might be biased due to the experiment's nature and must, therefore, be verified with alternative datasets or data analysis methods. Also, physiological signals might better reflect users' stress levels when time-series statistics that take into account the directionality of their change are used. Finally, the importance of the use of highly-reliable and well-established stress and/or mental workload assessment methods must be ensured to build the final models. Results presented herein suggest that NasaTLX questionnaire captures in a relatively objective way the perceived mental workload levels of the workers and thus, is a good candidate for this purpose.

Future work will focus on collecting a longitudinal behavioral stress dataset which won't be biased by a stress-inducing method in a smart

Fig. 1 .

 1 Fig. 1. Flow-chart of the whole preprocessing method. Post-processed self-assessed stress levels used as prediction labels are numbered from 1 to 8, whereas postprocessed datasets containing physiological and behavioral data are called A, A PC and B.

Table 4

 4 Regression results for the absolute test scores by behavioral feature type for 10-fold CV and RBF SVM (statistically significant improvement (adjusted *p < 0.01,**p < 0.001) in comparison to a baseline algorithm).

		All features with	All PCs with self-	All features with				
		self-reported scores	reported scores	standardized scores				
		(a)		(b)		(c)					
		r	MAE	r	MAE	r	MAE				
			SAM							
	Valence	0.71**	1.75**	0.12	2.60	0.74**	22.02**				
	Arousal	0.56**	1.91*	0.00	2.40	0.64**	25.52**				
	Dominance	0.66**	1.83**	0.04	2.45	0.72**	23.06**				
			Stress							
	Stress	0.35**	1.78	0.11	1.93	0.51**	30.80**				
			RSME							
	MentalEffort	0.68**	2.06**	0.06	2.75	0.73**	23.27**				
			NasaTLX							
	MentalDemand	0.62**	1.86**	0.01	2.45	0.68**	24.61**				
	PhysicalDemand	0.49**	1.23**	0.16	1.40	0.61**	27.17**				
	TemporalDemand 0.59**	2.37**	0.03	3.03	0.63**	26.83**				
	Effort	0.75**	1.70**	0.24*	2.51	0.81**	20.24**				
	Performance	0.50**	2.37	0.08	2.80	0.62**	26.92**				
	Frustration	0.50**	1.70*	0.15	2.03	0.57**	28.71**				
	NasaTLX	0.71**	16.41**	0.07	22.35	0.70**	23.23**				
		Physiology	Computer use	Facial expressions	Facial and head movements	Body posture and movements
		r	MAE	r		MAE	r	MAE	r	MAE	r	MAE
								SAM			
	Valence	0.21	2.55	0.55**	2.35*	0.10	2.64	0.38**	2.48	0.71**	1.75**
	Arousal	0.17	2.33	0.55**	2.03**	0.03	2.38	0.42**	2.20	0.47**	2.05
	Dominance	0.29	2.34*	0.53**	2.28*	0.00	2.42	0.42**	2.25*	0.64**	1.85**
								Stress			
	Stress	0.17	1.88	0.50**	1.63**	0.14	1.91	0.33**	1.81	0.25	1.85
								RSME			
	MentalEffort	0.21	2.70	0.58**	2.46**	0.16	2.71	0.45**	2.54	0.62**	2.22*
								NasaTLX			
	NasaTLX	0.39**	21.45	0.64**	19.6**	0.03	22.58	0.47**	21.15	0.67**	16.22**
	MentalDemand	0.35**	2.30	0.52**	2.16*	0.05	2.44	0.35**	2.29	0.59**	1.84**
	PhysicalDemand	0.19	1.40	0.36**	1.28*	0.03	1.44	0.49**	1.26*	0.41**	1.26*
	TemporalDemand	0.33**	2.93	0.53**	2.66**	0.04	3.03	0.42**	2.80	0.56**	2.38**
	Effort	0.31*	2.46	0.64**	2.14**	0.08	2.52	0.55**	2.20**	0.70**	1.79**
	Performance	0.17	2.75	0.57**	2.45**	0.08	2.83	0.25*	2.72	0.53**	2.28*
	Frustration	0.19	1.99	0.46**	1.75**	0.16	2.03	0.48**	1.76*	0.40**	1.84

Table 5

 5 Regression results for the standardized test scores by behavioral feature type for 10-fold CV and RBF SVM (statistically significant improvement (adjusted *p < 0.01,**p < 0.001) in comparison to a baseline algorithm).

		Physiology		Computer use	Facial expressions	Facial and head movements	Body posture and movements
		r	MAE	r	MAE	r	MAE	r	MAE	r	MAE
							SAM				
	Valence	0.17	33.48	0.60**	31.13*	0.06	34.06	0.41**	32.08	0.72**	22.58**
	Arousal	0.21	32.56	0.57**	31.08*	0.12	32.40	0.40**	31.26	0.62**	25.39**
	Dominance	0.22	32.77	0.59**	31.30*	0.04	33.96	0.43**	31.21*	0.73**	22.67**
							Stress				
	Stress	0.12	38.74	0.56**	34.07**	0.07	38.86	0.25	37.55	0.46**	31.86*
							RSME				
	MentalEffort	0.19	31.64	0.63**	30.11*	0.13	31.76	0.46**	29.71*	0.70**	24.06**
							NasaTLX				
	NasaTLX	0.29*	30.80	0.59**	29.25*	0.13	32.06	0.36*	31.40	0.69**	22.80**
	MentalDemand	0.27*	33.88	0.54**	32.30	0.04	35.13	0.42**	32.58	0.67**	24.11**
	PhysicalDemand	0.02	38.06	0.48**	34.65*	0.05	37.58	0.38**	34.67*	0.61**	27.16**
	TemporalDemand	0.26	35.11	0.54**	32.37*	0.06	35.89	0.38**	34.00	0.61**	26.64**
	Effort	0.34*	31.99	0.66**	27.59**	0.04	33.66	0.52**	30.05**	0.77**	20.60**
	Performance	0.14	35.30	0.56**	32.88	0.08	36.07	0.36**	33.39	0.63**	26.41**
	Frustration	0.20	35.85	0.51**	32.14**	0.07	36.94	0.45**	33.00*	0.58**	28.09**

Table 7

 7 Classification results for the workload condition change by behavioral feature type for 10-fold CV (statistically significant improvement (adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm).

			Non-standardized					Standardized		
		Acc.	wROC auc	wPR auc	wFscore	Acc.	wROC auc	wPR auc	wFscore	
	Naïve Bayes	All features	45.10**	0.71**	0.58**	0.44**	39.10**	0.67**	0.55**	0.38**
		Physiology	27.10	0.54	0.45**	0.27**	30.70	0.59	0.50**	0.30**
		Computer use	41.60**	0.66**	0.57**	0.41**	47.20**	0.68**	0.60**	0.46**
		Facial expressions	35.70*	0.63*	0.53**	0.34**	38.60**	0.63*	0.54**	0.36**
		Face and head movements	26.00	0.55	0.46**	0.25**	23.40	0.53	0.45**	0.22**
		Body posture and movements	51.90**	0.77**	0.63**	0.48**	39.50**	0.68**	0.54**	0.35**
	Linear SVM	All features	34.90**	0.58	0.45**	0.34**	40.10**	0.61	0.47**	0.39**
		Physiology	28.80	0.54	0.38**	0.25**	34.50*	0.58	0.40**	0.31**
		Computer use	41.00**	0.61	0.47**	0.39**	44.30**	0.62*	0.47**	0.42**
		Facial expressions	33.20*	0.55	0.38**	0.30**	22.90	0.50	0.33*	0.20*
		Face and head movements	24.50	0.50	0.38**	0.23*	26.10	0.52	0.39**	0.25**
		Body posture and movements	40.60**	0.63**	0.46**	0.38**	36.60**	0.63**	0.45**	0.35**
	AdaBoost	All features	45.40**	0.70**	0.54**	0.41**	55.40**	0.79**	0.65**	0.52**
		Physiology	35.30**	0.63**	0.39**	0.26**	39.90**	0.64**	0.41**	0.29**
		Computer use	45.40**	0.70**	0.54**	0.40**	55.40**	0.79**	0.65**	0.52**
		Facial expressions	22.50	0.47	0.27	0.12	35.80**	0.60**	0.37**	0.24**
		Face and head movements	29.30*	0.57	0.34**	0.20**	31.40*	0.58	0.34*	0.21**
		Body posture and movements	36.30**	0.62**	0.39**	0.26**	35.40**	0.63**	0.39**	0.25**
	C4.5	All features	40.90**	0.67**	0.55**	0.39**	46.60**	0.70**	0.59**	0.45**
		Physiology	37.60*	0.61	0.48**	0.35**	35.30*	0.59	0.48**	0.32**
		Computer use	38.70**	0.61*	0.52**	0.38**	46.90**	0.68**	0.57**	0.45**
		Facial expressions	25.20	0.50	0.37**	0.23**	34.80*	0.55	0.43**	0.32**
		Face and head movements	31.00	0.57	0.45**	0.30**	27.70	0.54	0.43**	0.26**
		Body posture and movements	30.70	0.53	0.39**	0.29**	27.60	0.53	0.38**	0.25**

Table 9

 9 Classification results for the positive, negative and null workload condition change by behavioral feature type for 10-fold CV (statistically significant improvement (adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm).

				SMOTEBoost				RUSBoost		
			Acc.	ROC auc	PR auc	Fscore	Sens.	Acc.	ROC auc	PR auc	Fscore	Sens.
	Linear SVM	All features	0.86	0.88	0.61	0.57	0.61	0.83	0.86	0.52	0.60	0.53
		Physiology	0.74	0.56	0.22	0.26	0.26	0.83	0.51	0.46	0.04	1.00
		Computer use	0.87	0.89	0.62	0.68	0.61	0.85	0.89	0.26	0.66	0.55
		Facial expressions	0.68	0.56	0.22	0.33	0.27	0.78	0.62	0.27	0.23	0.31
		Face and head movements	0.72	0.62	0.24	0.28	0.26	0.73	0.63	0.26	0.34	0.30
		Body movements	0.75	0.64	0.26	0.30	0.30	0.76	0.67	0.29	0.38	0.35
	C4.5	All features	0.85	0.89	0.65	0.58	0.59	0.86**	0.88**	0.60**	0.64**	0.60**
		Physiology	0.77	0.65	0.28	0.25	0.30	0.78	0.62	0.29	0.36	0.38
		Computer use	0.87**	0.91**	0.74**	0.66**	0.60**	0.87	0.86	0.60	0.66	0.64
		Facial expressions	0.69	0.54	0.19	0.20	0.18	0.75	0.62	0.25	0.36	0.33
		Face and head movements	0.73	0.63	0.23	0.22	0.23	0.74	0.64	0.25	0.26	0.26
		Body movements	0.83	0.81	0.53	0.54	0.51	0.81	0.83	0.45	0.53	0.48

Table 10

 10 Classification results for the Reliable Task Load Index Change from the relaxed state and from the previous state by feature type for 10-fold CV (statistically significant improvement (adjusted *p < 0.01, **p < 0.001) in comparison to a baseline algorithm).

					RCI baseline					RCI consecutive		
			Acc.	ROC auc	PR auc	Fscore	Sens.	Acc.	ROC auc	PR auc	Fscore	Sens.
	Naïve Bayes	All features	96.00**	1.00**	1.00**	0.88**	0.84**	85.77	0.79**	0.35**	0.45**	0.55**
		Physiology	80.30	0.74**	0.65**	0.42**	0.35**	87.49	0.55	0.20*	0.14*	0.11
		Computer use	95.00**	1.00**	1.00**	0.85**	0.79**	83.55**	0.81**	0.47**	0.47**	0.68**
		Facial expressions	84.00	0.85**	0.79**	0.60**	0.59**	85.42**	0.51	0.17	0.09	0.07
		Head and facial movements	82.90	0.80**	0.75**	0.57**	0.56**	78.87**	0.61*	0.23**	0.21**	0.26**
		Body posture and movements	87.70*	0.92**	0.76**	0.77**	0.85**	84.46*	0.73**	0.33**	0.36**	0.41**
	Linear SVM	All features	93.00**	0.86**	0.79**	0.79**	0.72**	87.04	0.63**	0.22*	0.34**	0.33**
		Physiology	77.20	0.54	0.31	0.11	0.08	89.29	0.50	0.11	0.00	0.00
		Computer use	90.80**	0.84**	0.72**	0.76**	0.70**	89.31	0.50	0.11	0.00	0.00
		Facial expressions	73.60	0.51	0.28	0.07	0.05	89.31	0.50	0.11	0.00	0.00
		Head and facial movements	79.90	0.66*	0.45*	0.41**	0.38*	88.51	0.51	0.13	0.05	0.03
		Body posture and movements	89.80**	0.82**	0.71**	0.72**	0.65**	86.99	0.57*	0.17*	0.23**	0.19**
	AdaBoost	All features	97.00**	0.98**	0.92**	0.95**	1.00**	90.39	0.88**	0.58**	0.46**	0.41**
		Physiology	79.90	0.75**	0.65**	0.51**	0.50**	89.19	0.71**	0.28**	0.01	0.01
		Computer use	97.00**	0.98**	0.92**	0.95**	1.00**	89.04	0.81**	0.42**	0.19*	0.15
		Facial expressions	73.30	0.52	0.42*	0.17	0.14	89.03	0.62**	0.20**	0.01	0.01
		Head and facial movements	81.20	0.85**	0.75**	0.48**	0.43**	89.03	0.65**	0.20**	0.01	0.01
		Body posture and movements	84.00	0.89**	0.81**	0.58**	0.54**	88.36	0.73**	0.33**	0.17*	0.13*
	C4.5	All features	92.50**	0.99**	0.97**	0.80**	0.72**	87.70	0.67*	0.31**	0.26**	0.22**
		Physiology	81.70	0.75**	0.61**	0.54**	0.52**	89.13	0.51	0.11	0.01	0.01
		Computer use	93.00**	1.00**	0.99**	0.80**	0.71**	89.03	0.55	0.15	0.01	0.01
		Facial expressions	69.40	0.58	0.43*	0.32*	0.33*	85.56*	0.47	0.13	0.04	0.04
		Head and facial movements	73.20	0.68*	0.52*	0.35**	0.34**	89.18	0.51	0.11	0.00	0.00
		Body posture and movements	73.80	0.63	0.45*	0.45**	0.49**	84.60**	0.54	0.21*	0.21**	0.20**

Available online at https://github.com/brian-lau/multdist.
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