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Computational text-level discourse analysis mostly happens within Rhetorical Structure Theory

(RST), whose structures have classically been presented as constituency trees, and relies on data

from the RST Discourse Treebank (RST-DT); as a result, the RST discourse parsing community

has largely borrowed from the syntactic constituency parsing community. The standard evalu-

ation procedure for RST discourse parsers is thus a simplified variant of PARSEVAL, and most

RST discourse parsers use techniques that originated in syntactic constituency parsing. In this

article, we isolate a number of conceptual and computational problems with the constituency

hypothesis.

We then examine the consequences, for the implementation and evaluation of RST dis-

course parsers, of adopting a dependency perspective on RST structures, a view advocated

so far only by a few approaches to discourse parsing. While doing that, we show the im-

portance of the notion of headedness of RST structures. We analyze RST discourse parsing

as dependency parsing by adapting to RST a recent proposal in syntactic parsing that relies

on head-ordered dependency trees, a representation isomorphic to headed constituency

trees. We show how to convert the original trees from the RST corpus, RST-DT, and their

binarized versions used by all existing RST parsers to head-ordered dependency trees. We

also propose a way to convert existing simple dependency parser output to constituent



trees. This allows us to evaluate and to compare approaches from both constituent-based and

dependency-based perspectives in a unified framework, using constituency and dependency

metrics.

We thus propose an evaluation framework to compare extant approaches easily and uni-

formly, something the RST parsing community has lacked up to now. We can also compare

parsers’ predictions to each other across frameworks. This allows us to characterize families

of parsing strategies across the different frameworks, in particular with respect to the notion

of headedness. Our experiments provide evidence for the conceptual similarities between de-

pendency parsers and shift-reduce constituency parsers, and confirm that dependency parsing

constitutes a viable approach to RST discourse parsing.

1. Introduction

Discourse analysis takes various forms in the NLP literature, from mostly local
relations between propositions in the Penn Discourse Treebank (Prasad et al. 2008)
to structures covering a whole document, for instance, constituent structures (trees)
in Rhetorical Structure Theory (RST) (Mann and Thompson 1988), or graphs between
discourse elements in Segmented Discourse Representation Theory (SDRT) (Asher
and Lascarides 2003) or Graphbank (Wolf and Gibson 2006). In this article, we re-
evaluate recent efforts to predict full discourse structures at the document level within
a constituency-based approach to discourse analysis. We argue that the problem is
more naturally formulated as the prediction of a dependency structure, on which
simpler parsing strategies can be competitively applied. We show how to evaluate
both families of discourse parsers in a constituent-based and a dependency-based
framework.

Discourse aspects are becoming more and more present in various NLP tasks.
Text-level structures are useful as a representation of the coherence of a text and its
topical organization, with applications to summarization (Marcu 2000; Louis, Joshi,
and Nenkova 2010; Hirao et al. 2013), sentiment analysis (Bhatia, Ji, and Eisenstein
2015), or document classification (Ji and Smith 2017). Most empirical approaches to
this problem focus on predicting structures following RST and are based on the cor-
responding RST-Discourse Treebank corpus (RST-DT), a large annotated resource of
texts for discourse analysis in English (Hernault et al., 2010; Feng and Hirst 2014; Ji
and Eisenstein 2014; Joty, Cartenini, and Ng 2015).

On the other hand, there is a need to examine in depth some of the representa-
tional choices made within the RST framework. Many discourse parsers for RST have
made simplifying assumptions with respect to the linguistic annotations for practical
purposes, and these choices affect the generality of the models and their evaluation.
We thus focus on the issue of predicting a structure for a text, comparing different
representations over the RST-DT. We will analyze the impact of the practical choices
one makes while doing discourse parsing, while taking into account specificities of the
discourse annotations provided in the corpus.

RST is a constituency-based theory: Discourse units combine with discourse re-
lations to form recursively larger units up to a global document unit. The linguistic
descriptions and pictorial representations of these structures implicate a similarity to the
constituents of phrase structure grammars. However, this similarity is more apparent
than real; discourse structure even in its RST format is a relational structure, formalized



as a set of “discourse constituents” together with a set of relations, instances of which 
hold between the constituents.

All of this suggests a different approach to discourse parsing—namely, “depen-
dency parsing,” which has gained some currency in the discourse parsing community 
(Muller et al. 2012; Hirao et al. 2013; Li et al. 2014). Discourse dependency parsing is 
analogous to syntactic dependency analysis, where units are directly related to each 
other without intermediate upper-level structures, to yield a directed tree structure 
over the discourse units of a text. Simple dependency structures are simplified rep-
resentations of more complex SDRT graph structures (Muller et al. 2012), or a sim-
plified representation of RST structures (Li et al. 2014), with some applications to 
specific tasks (Hirao et al. 2013). As we will show, this engenders some information 
loss. Once one takes the order of attachment into account, however, dependency rep-
resentations do not in principle imply a loss of information, as established in the 
syntactic domain by Fernández-González and Martins (2015), using the notion of head-
ordered dependency structures. Applying the head-ordered idea to discourse provides 
some advantages over the use of constituent structures, as head-ordered structures 
do not assume a higher abstraction level, a potentially contentious issue in discourse 
analysis (Hobbs et al. 1987). They also lend themselves to different computational 
models, as is also the case in syntactic parsing. We also relate this to how some 
work already makes use of a related notion of head constituent to inform discourse 
parsing.

Dependency structures are also more general, and allow for the different structures 
advocated by the various aforementioned theories: tree structures (projective or not) or 
graph structures. They can thus provide a common representation framework between 
the different existing corpora.

Dependency parsing also comes with different evaluation measures from those 
used in constituent-based parsing. We will discuss in detail the relationships between 
evaluation measures of these two approaches. Our discussion parallels those that 
emerged in the syntactic community about evaluations on constituents or grammatical 
relations (Carroll, Briscoe, and Sanfilippo 1998), even though discourse raises specific 
questions, which should benefit the discourse parsing community.

Our article is organized as follows: In Section 2 we present the traditional view of 
RST structures as constituency trees and point out specificities of the RST-DT treebank. 
Then in Section 3 we discuss the duality of discourse structures between constituency-
and dependency-based representations, and present translation procedures from one to 
the other.

In Section 4, we present an extensive evaluation of existing RST discourse parsers 
on the test section of the RST-DT, using both constituency and dependency metrics, thus 
providing a uniform framework for comparing extant approaches to discourse parsing. 
We also analyze empirically how diverse parsing strategies are related to each other. 
Section 5 concludes.

2. Constituent-Based Representations of RST Discourse Structures

Although several theories of discourse structure have been proposed for both text and 
dialogue, discourse parsing work has largely concentrated on the RST-DT (Carlson, 
Marcu, and Okurowski 2003). The annotations of the RST-DT follow the general frame-
work of RST (Mann and Thompson 1988).



❘

ATTRIBUTION

Interprovincial Pipe
Line Co. said

✠

REASON

SAME-UNIT

✠

RESTATEMENT-E

it will delay a
proposed two-
step, 830 mil-
lion dollar

(US$705.6 mil-
lion)

expansion of
its system

because Canada’s
output of crude oil
is shrinking.

Figure 1
Example (1) in the RST-DT variant of the RST framework. In accordance to RST conventions,
arrows point to the nucleus of the relation.

2.1 Original Representation of RST Structures

The traditional representation of discourse structure in RST is in the form of a tree
with an apparent constituent structure. Let us consider an example1 whose structure
is illustrated in Figure 1 in the original presentation form.

(1) [Interprovincial Pipe Line Co. said]π1 [it will delay a proposed two-step, 830 mil-
lion dollar]π2 [(US$705.6 million)]π3 [expansion of its system]π4 [because
Canada’s output of crude oil is shrinking.]π5 (wsj2363)

Brackets indicate what are considered as elementary discourse units (EDUs), which
represent for the most part clauses. The segmentation model of the RST-DT only allows
for continuous EDUs, hence intervening embedded clauses (parenthetical, appositive,
or non-restrictive relative clauses), effectively splitting what semantically is a unique
EDU into two or more fragments. In our example, π2 and π4 are two fragments of EDU

split by the parenthetical π3.
RST distinguishes between two types of relations on discourse units, depending on

the relative importance of its members for the understanding of the text: mononuclear

1 From the training section of the RST-DT.



relations link a unit of lesser importance, the satellite, to a unit of greater importance, 
the nucleus, and multinuclear relations link two or more units of similar importance, 
all nuclei. Relations constrain the recursive grouping of discourse units, from EDUs to 
a discourse unit spanning the entire text. A discourse unit is induced by either one 
multinuclear relation, or one or more mononuclear relations with the same nucleus; the 
subconstituents of a discourse unit are the members of its inducing relations. As a result, 
the discourse structure of a text in RST is a constituent tree of discourse units linked 
by relations. In the RST-DT, annotations are additionally constrained by the adjacency 
principle, whereby only neighboring units can be related. This implies that annotations 
in the RST-DT are continuous constituent trees.

In Figure 1, horizontal lines represent spans, discourse units that can be inter-
preted as being or as containing the arguments of discourse relations; labeled directed 
edges correspond to mononuclear relations where the source is the satellite and the 
target is the nucleus; vertical and diagonal lines link discourse units to their nuclei 
members. The name of each relation is indicated by a label attached either to a di-
rected edge for mononuclear relations, like ATTRIBUTION, or a set of vertical and 
diagonal lines originating from the same horizontal line for multinuclear relations, like 
SAME-UNIT.

The inventory and granularity of discourse relations varies in different views of 
RST. The original presentation of RST uses 24 relations (Mann and Thompson 1988), 
whereas the RST-DT annotation guide (Carlson, Marcu, and Okurowski 2003) lists 76 
“genuine” relations (53 mononuclear, 23 multinuclear), like ATTRIBUTION, REASON, 
and RESTATEMENT in Figure 1, plus two multinuclear pseudo-relations, TEXTUAL-
ORGANIZATION and SAME-UNIT, used to “patch up” the tree structure. SAME-UNIT 
compensates for the fact that RST does not allow embedded EDUs. It relates fragments 
of an EDU separated by an intervening parenthetical clause, appositive clause, or non-
restrictive relative clause. Intuitively in Example (1), “it will delay a proposed two-
step, 830 million dollar [...] expansion of its system” to form a unique discourse unit 
split by the parenthetical “(US$705.6 million)”; their semantics is incomplete and needs 
to be combined. TEXTUAL-ORGANIZATION, not represented in the example, encodes 
conventional relations between distinct blocks of text in the same document, like that 
between a title, a body of text, a date, and a signature. RST uses this pseudo-relation 
for all conventional textual layouts, even though in some cases one could construct 
relations that specified the semantic and rhetorical function of these components. The 
76 genuine relations are partitioned into 16 classes and each pseudo-relation has its own 
class, yielding the 18 classes of relations commonly used in RST discourse parsing. In 
the RST-DT corpus itself, some of the 53 mononuclear relations are further specialized 
to indicate that the relation is embedded, like RESTATEMENT-E in Figure 1, yielding a 
total of 112 labels.

2.2 The Semantics of RST Trees and the Reality of Constituents

Although such structures are familiar to most researchers on discourse structure, a 
rigorous, semantic interpretation of them was never part of RST, and is rarely discussed 
in computational linguistics.

The first thing to notice is a possible ambiguity in what might be the terms of 
a discourse relation; considering Example (1), the ATTRIBUTION relation might hold 
between the discourse constituent/span π1 on the left Interprovincial Pipe Line Co. 
said and the span consisting of the following four segmented units (π2, π3, π4, π5) or 
some subset of these. In the example at hand, it is obvious from the context that



Interprovincial Pipe Line Co. said that it will delay the expansion of its system, and
it is also quite probable that what they said did not include the content in which
830 million Canadian dollars are specified in U.S. dollar amounts. Concerning the last
discourse unit π5 because Canada’s output of crude oil is shrinking, it’s unclear whether this
was part of what Interprovincial Pipe Line Co. said or not.

In RST, we can only partially represent this ambiguity. We can get at the “core”
of the potential second argument of the ATTRIBUTION relation by making it the value
of iteratively seeking the nuclei of a span until one comes to basic spans that have no
discourse structure beneath them (EDUs). In our example, this idea, which is formalized
under the heading of the Nuclearity Principle (Marcu 1996), would net us only the
units (π2,π4)—corresponding to a fragmented EDU—it will delay a proposed two-step,
830 million dollar [...] expansion of its system. These “core” EDUs (π2,π4) constitute the
promotion set of the discourse unit [π2 . . . π5] (Marcu 2000). On the other hand, one
might choose not to use the Nuclearity Principle and accordingly take the entire span to
the right [π2 . . . π5] as the argument of the ATTRIBUTION relation.

There is no mechanism in RST, however, that would yield as the second argument
of the ATTRIBUTION relation the content given by EDUs (π2,π4,π5) in the current
annotation. One could make the REASON relation that holds between [π2, . . . ,π4] and π5

multinuclear, and one could have a version of the Nuclearity Principle which gathered
then (π2,π4,π5) into a complex discourse unit (CDU) that was the argument of the
EXPLANATION relation. But this CDU would not correspond to a well-formed RST tree,
because it does not correspond to a contiguous span. Although such structures are
studied in other frameworks like SDRT (Venant et al. 2013; Perret et al. 2016), they have
not been studied computationally nor even theoretically within the RST framework as
far as we know. This simple example already points to a potential empirical problem
with RST’s conception of structure.

The relative unclarity of how to determine the arguments of discourse relations in
an RST tree complicates efforts to capture semantically relevant information in these
structures, and thus undermines a semantic argument for analyzing discourse in terms
of constituent structures like RST tree structures. On the other hand, although most
computational approaches have eschewed a principled answer to this question, almost
all proposals agree that the EDUs should play a part in the relational structure, as should
the relations that link them. But we need some sort of Nuclearity Principle in addition to
RST trees to get at the relations between EDUs that are intuitively present. Only Venant
et al. (2013), to our knowledge, in NLP circles has argued in favor of multiple EDUs or
yet again substructures of the complete graph to be arguments of discourse relations,
though Asher (1993) and Asher and Lascarides (2003) argue for this claim on linguistic
grounds. But once again, as we have seen, these do not necessarily correspond to RST
tree constituents.

If we compare complex constituents of syntactic structures and RST trees, syn-
tactic constituents typically follow some sort of projection hypothesis and have a
maximal type of structure for each basic category—namely, NP for N(ouns), DP for
D(eterminers), VP for V(erbs), IP for I(inflection), and so on. And the nodes labeled
with a basic category are the heads of the more complex constituent; thus, a node
labeled N is the head of the complex constituent NP, and so on. Psycholinguists and
linguists have adduced considerable evidence for the linguistic and cognitive reality
of such projections by looking at phenomena like movement and extraction. But no
such movement or extraction data exists for discourse structures, and in particular for
RST trees or their complex constituents. Moreover, RST theory does not make non-
elementary RST trees the projections of any head. As we will see, however, the notion



of a constituent’s head is crucial for RST parsing, and will be central for showing 
equivalences between discourse constituency-based representations (henceforth c-trees) 
and dependency-based representations (d-trees).

2.3 Specificities of RST Constituent Trees

We present here a few important aspects of practical efforts to deal with RST structures, 
going beyond the theoretical model.

Labeled tree structure encoding. In the RST-DT corpus, RST trees are stored as constituent 
trees, where each constituent has a label that can contain a relation name and nuclearity 
status. The satellite of a mononuclear relation carries the name of the relation and has 
nuclearity Satellite, while the nucleus of a mononuclear relation is labeled SPAN and 
Nucleus. All nuclei of a mononuclear relation are labeled with the name of the relation 
and have nuclearity Nucleus. The root node does not carry any relation name; we denote 
it with the empty word ǫ, and assign it nuclearity Root; The RST tree from Figure 1 can 
be alternatively represented as the “pure” constituent tree in Figure 2, where nuclearity 
statuses are represented by their initial letter (N, S, and R for Nucleus, Satellite, and 
Root).

Marcu (2000) introduced this encoding of RST trees to represent RST trees of arbi-
trary arity, including discourse units consisting of a nucleus independently modified 
by two satellites via different relations, in a format suitable for training and evaluating 
parsers. Without these specific constructs, however, a more natural encoding would 
have put the relations labels higher up, on the node dominating the related constituents. 
This raises problems we will come back to in Section 2.4. The standard evaluation pro-
cedure for RST discourse parsers is Marcu’s (2000) adaptation of the Parseval procedure 
to this encoding, which we name RST-Parseval.

Binarization. It is standard practice since the first proposals on RST discourse pars-
ing (Reitter 2003; Soricut and Marcu 2003) to train and evaluate parsers on a right-heavy

(ǫ, R)

(SPAN, N)

(REASON, S)

π5

(SPAN, N)

(SAME-UNIT, N)

π4

(SAME-UNIT, N)

(RESTATEMENT-E, S)

π3

(SPAN, N)

π2

(ATTRIBUTION, S)

π1

Figure 2
Constituent tree corresponding to the RST tree in Figure 1.



binarized version of the c-trees from the RST-DT. This is mostly accidental: constituency-
based RST discourse parsers inherit a limitation shared by most syntactic constituency-
based parsers that operate better, if not only, on binary trees.

Such binarization is, however, not a theoretically innocent choice, because it can
introduce new intermediary nodes that change the semantic interpretation of the
trees (van der Vliet and Redeker 2011). The structural changes induced in the tree
structure and the number of nodes also affect the evaluation metrics that are used to
assess the performance of discourse parsers, as we will see in Section 4. Even though
n-ary trees are not so frequent in the RST-DT corpus, binarization applied high up in
the original tree can drastically change an evaluation score. Figure 8 later in this article
shows what happens when binarized structures differ (left vs. right): all relevant ar-
guments’ substructures have different spans, generating multiple errors down the tree.
Theoretically and empirically, the binarization of RST c-trees is not trivially reversible, a
point that is overlooked in most studies except Sagae (2009) and Hernault et al. (2010).

Headed RST c-trees. In the formal presentation of RST trees by Marcu (2000), each node
is assigned a promotion set containing its most important EDUs, in accordance with the
Nuclearity Principle. The promotion set of a node is recursively defined as the union
of the promotion sets of its nuclei, the promotion set of each leaf (EDU) being the EDU

itself. Semantically, promotion sets are said to provide a validation criterion for relations
between wider discourse units: A relation can hold between two discourse units if it
also holds between their promotion sets. This leads Marcu to use the promotion set of
(non-elementary) discourse units as a proxy to extract semantic similarity (WordNet)-
based features between these units, in his early shift-reduce RST discourse parser
(Marcu 2000).

Sagae pursued Marcu’s line of work by adapting the shift-reduce parser he had
developed for syntactic parsing (Sagae and Lavie 2005) to RST discourse parsing (Sagae
2009). Sagae’s syntactic parser is a lexicalized shift-reduce parser that simultaneously
produces both a dependency and a constituent structure, using features related to either
of the two types of structures being built. Building an RST tree from EDUs is essentially
similar to building a syntactic tree from tokens, save for the fact that discourse units
have a promotion set rather than a unique head, because discourse relations can relate
two or more nuclei of equal importance whereas syntactic dependencies (usually)
asymmetrically relate a head and a dependent. To adapt his parser to RST parsing,
Sagae therefore defined a variant of RST trees where each discourse unit has a head
EDU in its span, recursively defined as the head EDU of its leftmost nucleus. The notion
of head EDU is instrumental to the formal equivalence between c-trees and d-trees we
show in Section 3.3. Its importance in parser design explains the structural similar-
ity between the predictions of constituency shift-reduce parsers, for example (Ji and
Eisenstein 2014; Braud, Coavoux, and Søgaard 2017), and dependency parsers, as we
will see in Section 4. However, two different sequences of (shift or reduce) actions can
produce the same set of dependencies but different constituent trees, reflecting different
orders of attachment of dependents to their heads; hence to fully reflect constituent
structures, a dependency structure must incorporate a notion of order, as we will see in
Section 3.3.

2.4 Evaluation Procedures

We present here the different evaluation measures used in the discourse parsing lit-
erature, focusing on constituent-based approaches. We will see that even within that



framework there are variants, which can lead to potential confusions when comparing 
different approaches. We will consider dependency-based evaluation in Sections 3.5 
and 3.6, and see how they differ in the kind of information they measure. The dif-
ferences partially reflect similar discussions within the syntactic community, where 
dependency structures have been advocated in part because of issues with constituent-
based evaluation (Carroll, Briscoe, and Sanfilippo 1998; Carroll, Minnen, and Briscoe 
1999). Constituency-based approaches naturally lend themselves to evaluation proce-
dures that originated in the syntactic parsing literature.

The most common evaluation procedure is Parseval (Black et al. 1991), which com-
bines precision and recall on (typed) constituents, plus a Crossing Parentheses score, 
which is the ratio of the number of predicted constituents that cross a gold standard 
constituent with respect to the total number of predicted constituents. Early work on 
RST parsing (Marcu 2000) introduced a modified version of Parseval to accommodate 
RST c-trees encoded as outlined above. This early work addressed the two tasks of 
segmenting elementary discourse units and parsing. As almost all existing work as-
sumes gold segmentation and focuses on the parsing task itself, and because the trees 
are binarized, there are a few simplifications to consider. First, precision and recall are 
equal if admissible structures are binary trees, and thus existing work only provides 
accuracy scores. Note that this is not necessarily the case for n-ary structures, since the 
number of predicted and reference spans can then be different.

On the contrary, a binary tree spanning n EDUs is always made of n − 1 binary 
constituents, resulting from n − 1 attachment decisions, thus containing a total of n + 
(n − 1) = 2n − 1 “spans.”

Counting crossing brackets is not necessary because this number is directly cor-
related to the accuracy on the spans, whereas in syntactic parsing this measure 
is necessary to mitigate the effect of missing spans (empty categories, for instance) on 
pure precision and recall.

RST parsing studies usually consider the unlabeled spans (S) as the basic building 
blocks to evaluate, irrespective of the discourse relation that links two discourse units 
to form a constituent. The discursive function of correctly identified spans is then 
evaluated, either on the sole label of the incoming relation (R) or on the assignments of 
nuclearities to the arguments (N) or both (F). We note also that all of these evaluations 
provide a kind of edit distance over RST c-trees, and are hence true metrics (as is any 
linear combination of them).

Nuclearity in RST is a type of information that can provide a partial notion of 
directionality, as Figure 1 shows, for the case of mononuclear relations. For multinuclear 
relations there is no directionality, as the two arguments are of “equal importance.” 
Constituency-based RST parsers should distinguish three types of nuclearity in their 
binary attachment decisions: “NS” if the left subtree is the nucleus of a mononuclear 
relation and the right subtree is the satellite, “SN” if the linear ordering of the satellite 
and nucleus is inverted, and “NN” for multinuclear relations.

Figure 3 shows an example of a scoring of a constituency tree against a reference, 
with all four different scores (S), (N), (R), (F). A consequence of assuming the gold 
segmentation for evaluation of existing discourse parsing methods is that accuracy 
on the spans should be restricted to non-EDUs. Otherwise, the span measures will be 
overestimated, since the n basic spans (EDUs) are necessarily correct, and only (n − 1) 
spans corresponding to binary relations on top of the EDUs are predicted; for instance, a 
predicted RST tree whose structure is entirely different from the reference would still 
have a full unlabeled span (S) score of n/(2n − 1). Excluding the EDU spans from the 
evaluation is not the general practice in the literature, however, because as we have



R1(NS)

π4R2(NS)

R3(NN)

π3π2

π1

(a) Predicted RST tree

R1(NS)

π4R3(NN)

π3R2(NS)

π2π1

(b) Reference RST tree

(ǫ,R)

(R1,S)

π4

(SPAN, N)

(R2,S)

(R3,N)

π3

(R3,N)

π2

(SPAN, N)

π1

(c) Predicted, RST-DT format

(ǫ,R)

(R1,S)

π4

(SPAN, N)

(R3,N)

π3

(R3,N)

(R2,S)

π2

(SPAN, N)

π1

(d) Reference, RST-DT format

Predicted Spans Correct Nuclearity Correct Relation Correct

Original RST π2,π3 × NN × - ×
π1,π3 X NS × R2 ×
π1,π4 X NS X R1 X

Scores S = 2/3 N = 1/3 R = F = 1/3

RST-DT π1 X N X SPAN X

π2 X N × R3 ×
π3 X N X R3 X

π4 X S X R1 X

π2,π3 × S × R2 ×
π1,π3 X N X SPAN X

π1,π4 X R X ǫ X

Scores S = 6/7 N = 5/7 R = F = 5/7

(e) Scores

Figure 3
Example of constituent-based evaluation of a predicted tree in the “original” RST format (a) with
respect to a reference (b), with four scores: span (S), span+nuclearity (N), span+relation type (R),
span+nuclearity+relation (F). This evaluation ignores EDU spans, which are assumed to be given.
In the RST-DT format, the predicted and reference trees are now (c) and (d), with additional
artificial relations SPAN and inflated scores. Note that multinuclear relations are duplicated on
all their children.

seen, in the format of the RST-DT treebank, mono-nuclear relations are stored onto
their satellite child, and the nucleus is labeled SPAN (cf. Figure 3(c)-3(d)). In the case
of multinuclear relations, all nuclei receive the relation label. It is thus easier to include
the spans corresponding to EDUs into the evaluation procedure to recover their relation
and nuclearity status.

In addition, the evaluation procedure followed by every cited paper considers SPAN

relation labels as bona fide discourse relations, although all they do is (by construction)
count again the given span as the nucleus, something that is already taken into account
in the Nuclearity score. This adds another “pseudo-relation” to RST’s inventory; a



significant proportion of the evaluation of relation labels thus corresponds in fact to 
the correct identification of the nuclei of mononuclear relations. This problem is one of 
the arguments put forward by Iruskieta, da Cunha, and Taboada (2015) to propose an 
alternative evaluation metric for discourse trees that is actually similar to the depen-
dency metrics we present in the next section. The influence of this issue on the scoring 
of labeled spans in the literature will be empirically investigated in Section 4.

3. A Dependency View of RST Trees

In this section, we investigate in depth the correspondence between dependency struc-
tures and RST trees. We first provide a brief overview of extant work on this topic. 
We then define a dependency structure that is fully equivalent to an RST constituent 
tree using the standard convention proposed by Sagae (2009) for determining heads 
in RST constituent trees. Converting RST trees to dependency structures requires us to 
add some structure to the canonical definition of an RST tree, in particular the notion 
of a head. The next step is to introduce a dependency structure with nuclearity infor-
mation (RST dependency trees). We will then exploit head-ordered dependency trees, 
a formalism proposed in syntactic parsing (Fernández-González and Martins 2015) to 
deal with ambiguities of scope that arise when translating from constituent structures to 
dependency structures. We will show that head-ordered dependency structures encode 
all the information in a headed RST tree, so that there is a bijection between RST trees 
and head-ordered, projective dependency trees. We also consider the aspects related to 
the evaluation of parsers producing dependency structures.

In the following, we will sometimes abbreviate constituent structures and trees as 
c-structures and c-trees, and similarly dependency structures and trees as d-structures 
and d-trees.

3.1 An Introduction to Dependency Structures for RST

The duality of representation structures found in syntax between constituents and 
dependencies is now part of the domain of discourse parsing, too. The target repre-
sentations are similar: Elementary units (words or discourse units) combine to form 
larger structures, either by grouping (constituents) or by linking (dependencies). As we 
have seen, the RST Discourse Treebank is an example of the first kind, with specificities 
presented in the previous sections: Only adjacent units can be grouped together, and 
all units must be grouped into one that spans the entire document, in a tree-like struc-
ture. Although dependency structures have been advocated for discourse in general in 
Muller et al. (2012) and applied to an SDRT corpus, they have been applied specifically 
to RST annotations in Hirao et al. (2013), and predicted as the output of an RST parser 
in Li et al. (2014) and Yoshida et al. (2014).

Basic dependency trees for discourse are of the form: D = {(n1, n2, rel) : ni ∈ 
E, and rel ∈ R}, where D is a directed spanning tree over a set of EDUs E with labels 
from a set of discourse relation labels R on the edges. Directedness implies that each 
dependency tree has a unique head or governor and one or more dependents, and this 
means the concept of head/governor must be defined for discourse.

We have seen in the previous section that the non-atomic constituents of RST con-
stituent trees are not straightforward to interpret semantically. Dependency trees have a 
semantic transparency that is lacking with the constituent structures of RST. If CDUs are 
not intended as arguments of relations, then the natural, compositional interpretation



of a dependency tree gives us the actual semantic arguments of each discourse relation.
If CDUs are intended as arguments of relations, then a dependency structure tells us
at least one of the CDU’s constituents and hence predicts a part of the argument of
the relation. The RST constituent structure on its own does neither of these things,
though one could interpret the constituent structure without the nuclearity principle
as providing another sort of underspecified semantic structure: If a relation has an RST
subtree as an argument, then the “real” semantic argument of the discourse relation is
to be found somewhere in that subtree or is in fact the whole subtree.

Another virtue of a dependency-based framework is that it generalizes naturally
from RST constituent trees to other more permissive discourse structures. Frameworks
like SDRT or GraphBank assume more general structures than trees (respectively,
directed acyclic graphs and arbitrary graphs). Venant et al. (2013) show that differences
between frameworks can be encoded with different, additional structural constraints
on a dependency based graph. Thus, dependency graphs capture commonalities
between these different types of representation, and it is easy to convert them into
a dependency graph between EDUs. It was already shown in Danlos (2004) that
some discourse constructs would be more appropriately represented as directed
acyclic graphs.

Although we will show below how dependency parsing can provide comparable
analyses to constituent-based parsers for the RST corpus, an added advantage of de-
pendency parsing formalisms like the one we have proposed here is that it is easily
adaptable: (1) to discourse structures that are not projective trees—Muller et al. (2012)
use non-projective maximum spanning tree (MST) algorithms to compute dependency
trees in an SDRT style on the Annodis corpus of French texts; (2) to structures that
are not even treelike, for instance, representations for multi-party chat conversations—
Perret et al. (2016) use the STAC corpus (Asher et al. 2016) where discourse annotations
are not trees but only directed acyclic graphs, which constituent parsers based on RST
projective tree formalisms cannot reproduce. Perret et al. (2016) have shown how a
dependency formalism combined with constraints implemented in ILP can learn such
structures with comparable measures of success to the efforts on the more constrained
RST tree bank. Dependency parsing also easily handles long distance dependencies
without the computation of nuclearity features. Venant et al. (2013) have shown that
nuclearity computations cannot handle all long distance dependencies and argue that
it is difficult to give a sensible semantic interpretation of structures that use nuclearity
features to compute long distance dependencies. Finally, the STAC and Annodis corpora
contain discourse structures in which substructures of the whole graph can act as
discourse constituents. These are known as complex discourse units. While dependency
graphs on their own do not suffice to fully represent CDUs, Perret et al. (2016) also
shows how dependency structures can approximate CDUs by distributing the relations
in which a CDU is an argument over the CDU’s member EDUs.

Dependency structures for discourse formalisms less constrained than RST’s con-
stituent trees are easy to make and to use, because dependency structures are seman-
tically more transparent than c-structures. The same semantic interpretation relation
holds when we relax dependency trees to non-projective trees as in Muller et al. (2012)
and Afantenos et al. (2015) or to directed acyclic graphs as in Perret et al. (2016). CDUs
aside, dependency structures exhibit the actual semantic arguments of the relations and
are much closer to a logical formalism in which binary relations could hold in all sorts
of graph configurations. A constituency based approach like RST’s arguably does not
exhibit the actual semantic arguments of discourse relations—hence, the need for a
nuclearity principle.



3.2 Dependency-Based Alternatives to RST Trees

As we have just seen, the notion of a head is central to a dependency structure for 
a discourse. The notion of headedness is also crucial for both a semantically trans-
parent and structurally sound notion of discourse tree structure. All discourse rela-
tions that have been proposed that have any nontrivial semantic content have an 
implicit order; an explanation relation distinguishes an explanans and an explanandum; 
a causal relation like Result distinguishes between a cause and effect; a thematic 
relation like Elaboration distinguishes between a theme or topic element and an ele-
ment that develops the theme. Headedness captures a crucial aspect of relational 
structures, and if discourse structures are anything they are that. We need a notion 
of headedness to tell us which way the semantics of the relation is to be directed. 
We also need a notion of headedness to determine exactly what sort of tree struc-
ture is proposed. That is why we propose to move from traditional c-trees to headed 
c-trees.

Although RST trees lack a notion of headedness, we can exploit the nuclearity dec-
orations of RST trees together with a heuristic to produce headed trees and eventually 
dependency trees from classic RST trees. It is important to emphasize, however, that 
nuclearity decorations that apply to spans do not determine in and of themselves a 
head EDU for a tree. When these spans are non-atomic (i.e., they contain more than one 
EDU), nuclearity tells us little about the actual arguments of the eventual relation that 
links these spans. In any case, nuclearity by itself tells us nothing about the direction 
of the eventual relation, unless we add an interpretive principle of nuclearity that tells 
us how to use this feature to calculate the headedness of a structure or direction of an 
attachment. As we have been at some pains to point out, nuclearity and headedness 
are not the same thing; headedness does not determine nuclearity, because where a 
and b are EDUs, the two simple trees [aN, bS] and [aN, bN] (since we are just looking 
at structure and nuclearity, we have omitted any of the relational decorations) have the 
same head. And nuclearity by itself does not determine headedness even though its 
introduction by Marcu (2000) was semantically motivated in an effort to find the core 
or central idea in a span; a notion is reflected in other theories (Grosz and Sidner 1986; 
Asher 1993) by the use of coordinating and subordinating discourse relations. Consider, 
for instance, the following hypothetical tree structure [[aNbN]N, cS], where [aNbN] is a 
subtree and the nucleus of the larger tree that includes c. An admittedly somewhat 
crazy interpretive principle that takes the head of the multinuclear relation to be the 
rightmost one locally but takes the leftmost one as the head projected up through the 
tree would yield the following non-projective dependency structure: {a ← b, a → c}. 
A saner, interpretive principle would be the one that we suggested earlier, produc-
ing a standard projective tree: {a → b, a → c}. The point is, the nuclearity measure 
by itself is not telling us much about the structure of the tree that is relevant to the 
semantics.

Thus, we need a heuristic to go from nuclearity decorations on spans to head 
EDUs. Sagae (2009) was the first to propose such a heuristic to define heads on RST 
trees, motivated by technical aspects of his shift-reduce parsing algorithm. Others, like 
Ji and Eisenstein (2014) and Braud, Coavoux, and Søgaard (2017), have adopted the 
same parsing algorithm and inherited the same notion of headedness. The heuristic 
for determining a head EDU from nuclearity decorations is simple in the case of trees 
with only mononuclear relations. However, if the structure contains a subtree with 
a multinuclear relation, then a decision that is arbitrary from the point of view of 
the RST constituent structure must be made as to what is the head of the subtree; one



can either take the left or the right argument in an NN structure to be the head. Without
a notion of head, two dependency trees will represent one RST tree consisting of one
multinuclear relation. On the other hand, assuming some convention to determine
the head in an RST tree will result in a dependency structure that represents two RST
c-trees; for instance, assuming that a tree consisting of one multinuclear relation has
its head in the leftmost argument will mean that the RST trees [aN, b] and [aN, bN]
yield the same unlabeled dependency structure, a → b. Consequently, RST non-terminal
constituents have been translated as dependencies with some information loss; see
for example (Li et al. 2014). We will return to this problem in subsection 3.3; see
Figure 5.

Inspired by similar proposals in syntax and in other discourse formalisms rely-
ing on head percolation, two variants of dependency trees were independently pro-
posed as an explicit alternative to RSTc-trees (Hayashi, Hirao, and Nagata 2016). In
the first variant (Li et al. 2014), each non-terminal is assigned a head EDU, which
is the head EDU of its leftmost nucleus child, following the same heuristic as Sagae
(2009). Then, a dependency relation is created for each non-terminal from its head to
its dependent, in a procedure similar to those designed for syntax. An example RST
c-tree and the corresponding d-tree are presented in Figure 4. The second variant
(Hirao et al. 2013) differs from the first one in its processing of multinuclear relations:
A multinuclear relation in the RST c-tree does not translate directly to a dependency
relation but instead “distributes” the closest mono-nuclear relation higher in the tree
(Yoshida et al. 2014; Hayashi, Hirao, and Nagata 2016). The difference between
these two variants is explained by the different empirical motivations behind their
development.

Li et al. (2014) adapt a syntactic dependency parser, the MSTParser of McDonald,
Crammer, and Pereira (2005), to predict RST dependency trees over a text segmented
in EDUs instead of syntactic dependency trees over sentences segmented in tokens.
They convert the RST constituency trees from the RST-DT to RST dependency trees
that they use for training and evaluation. They report experiments with two decoders
implemented in the original MSTParser, the non-projective Maximum Spanning Tree
decoder and the projective Eisner decoder (Eisner 1996). Although the authors initially
point out that a given simple RST dependency tree can correspond to several RST
constituency trees, they do not describe any mechanism to cope with this issue and yet
report RST-Parseval scores for projective variants of their parser. It turns out that their
implementation of the RST-Parseval procedure does not operate on pairs of reference
and predicted RST constituency trees but rather on pairs of reference and predicted RST
dependency trees. For each RST dependency tree, constituency spans are computed
from the transitive closure of its adjacency matrix (i.e., its maximal projection). The
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Example RST c-tree (left) and the corresponding d-tree (right). In accord with syntactic
conventions, arrows point away from the head of the dependency.
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same ambiguous configurations, however, arise in this formulation, which they solve 
by arbitrarily attaching to a head all the modifiers on its left, then all modifiers on its 
right. Their implementation of the RST-Parseval procedure thus manipulates reference 
spans that are absent from the original RST constituency trees. As a further consequence, 
the RST-Parseval scores reported by Li et al. (2014) are misleading because their imple-
mentation of the RST-Parseval procedure uses distorted reference trees, not the original 
annotations, which artificially raises scores by several points.

The second approach to RST dependency parsing started as a way of doing sum-
marization, converting the output of a constituency-based RST parser to dependencies 
(Hirao et al. 2013). Yoshida et al. (2014) pushed this work further and used a dependency 
parser built around an MST decoder and trained on dependency trees converted from 
the RST-DT, using a classical training loss function and another one that puts more 
weight on dependencies higher up in the tree. In both settings, their parser attained 
better performance on the summarization task than a similar constituency-based parser. 
A subsequent study (Hayashi, Hirao, and Nagata 2016) refined these results in a com-
parative evaluation, both intrinsic and extrinsic, of three dependency schemes for RST 
structures, including the “tree” transform presented above and used in Li et al. (2014). 
The DEP-DT dependency scheme proposed by Hirao et al. (2013) was adopted by 
Bhatia, Ji, and Eisenstein (2015) to perform sentiment analysis.

As we will see formally in Section 3.3, although an RST constituency tree can be 
deterministically mapped to a simple RST dependency tree, the reverse does not hold 
true. A dependency tree can correspond to several constituency trees, depending on 
the relative order of attachment of modifiers located on both sides of a given head. 
This ambiguity hampers the direct evaluation of dependency-based RST parsers with 
the standard RST-Parseval procedure. Before seeing how to overcome this problem, we 
will present traditional evaluation procedures for evaluation structures. We will now 
see how to make a precise correspondence between dependency structures and RST 
constituents.

3.3 Headed RST Trees as c-trees

We start with a formal definition of the headed RST trees of Sagae (2009). Our definition 
of headed RST trees is essentially the same as the definition of the headed syntactic 
constituent trees in Fernández-González and Martins (2015), with minimal adaptations 
to account for the specificities of RST.

Let e1e2 . . . eL be a document, where ei denotes the EDU in the ith position. Let R 
be the set of relations and N = {N, S, R} be the set of possible nuclearities, short for 
Nucleus, Satellite, and Root, respectively.

Definition 1
A headed RST tree is a rooted tree whose leaves are the EDUs {ei}i=1, and whose internal 
nodes (constituents) are represented as a tuple 〈Z, h, I〉, where:

1. Z = 〈rel, nuc〉 is a non-terminal tuple such that rel ∈ R ∪ {SPAN,ǫ} is either
a relation, the label SPAN, or the empty symbol; and nuc ∈ N is the
nuclearity of the node,

2. h ∈ {1, . . . , L} indicates the head EDU,

3. I ⊆ {1, . . . , L} is the yield of the node.



ǫ and Root are reserved symbols for the root node of the RST tree: Zroot = 〈ǫ, Root〉.
The parent of each EDU ei is a pre-terminal unary node of the form 〈Z, i, {i}〉. The
yields and head EDUs are defined so that for every constituent 〈Z, h, I〉 with children

〈Xk, mk,Jk〉
K
k=1, (i) we have I =

⋃K
k=1 Jk; and (ii) there is a unique k such that h = mk.

This k-th node (called the head-child node) is commonly chosen as the leftmost nucleus
child: k = min( j ∈ {1, . . . , K}) such that Xj = 〈relj, Nucleus〉.

Non-terminal nodes in a headed RST tree obey the following constraint concerning
nuclearity:

Constraint 11
For every constituent 〈Z, h, I〉 with children 〈Xk, mk,Jk〉

K
k=1, either:

1. all but one child are satellites of the remaining child, each through a
mononuclear relation: ∃!k.Zk = 〈SPAN, N〉 and
∀k′ ∈ {1, . . . , K}. k′ 6= k.∃r′ ∈ R.Zk′ = 〈r

′, S〉; or

2. all children are nuclei of a unique multinuclear relation:
∃!r ∈ R.∀k ∈ {1, . . . , K}.Zk = 〈r, N〉.

Trees in the RST-DT follow the adjacency principle, whereby only neighboring units
can be related. Formally, this means that RST trees are continuous, namely, all nodes
〈Z, I〉 have a contiguous yield I: ∀i, j ∈ I (i < j → ∀k(i < k < j → k ∈ I )).

For what follows, we reproduce a few additional definitions from Fernández-
González and Martins (2015) that apply unchanged to RST trees. An internal node
that is not a pre-terminal is called a proper node. A node is called unary if it has
exactly one child. An RST tree without unary proper nodes is called unaryless. If
all proper nodes have exactly two children then it is called a binary tree. For each
EDU position h ∈ {1, . . . , L}, we define φ(h) as the highest node in the c-tree whose
head EDU is h. We call the path from φ(h) down to the pre-terminal ph the spine
of h.

Definition 1 implies that, by construction, RST trees are unaryless. As already
mentioned, existing RST discourse parsers additionally work on binary trees only, a
requirement that facilitates learning and prediction in their parsing models: bottom–up
greedy, CKY, or shift-reduce parsers.

An RST dependency tree (d-tree) is a single-rooted directed tree spanning all the
EDUs in the document. Each arc in this tree is a tuple 〈h, m, ℓ〉, expressing a typed dis-
course relation with nuclearity ℓ = 〈rel, nuc〉 between the head EDU eh and the modifier
em.2 A d-tree is projective if for every arc 〈h, m, ℓ〉 there is a directed path from h to all
EDUs that lie between h and m in the surface string.

Head-ordered RST Dependency Trees. Gaifman (1965) showed how to obtain projective
dependency trees from headed continuous constituency trees3 by reading off the head
and dropping the internal nodes. However, in our case the relation between continuous
c-trees and projective d-trees is many-to-one: as shown in Figure 5, several c-trees may
project onto the same d-tree, differing on their flatness and on left or right-branching
decisions.

2 Note that nuclearity here is needed, because the direction of the arc in the dependency tree does not
suffice to determine a nuclearity decoration, as we have discussed in Section 3.2.

3 A continuous tree is one according to which the span of any subtree is an uninterrupted sequence of
terminal constituents. This entails and is equivalent to a tree with no crossing dependencies.
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Figure 5
Ambiguity of the simple conversion of RST trees to dependency trees: three distinct RST trees
(a)–(c) yielding the same dependency tree (d).

This ambiguity prevents a 1-1 mapping between c- and d-trees. To sum up, dif-
ferent RST constituent trees can yield the same dependency structure, since a head
can be propagated through different constituent paths while being attached to the
same satellites. We can, however, be more specific as to when this ambiguity arises.
The adjacency principle in RST, whereby only adjacent spans can be attached, im-
plies that dependents appearing on the same side of the governing unit are neces-
sarily attached from the inside to the outside. It follows that ambiguities arise in
specific configurations where a unit has dependents on both sides: the relative or-
dering of attachment of dependents on the same side is fixed, but it is compati-
ble with several relative orderings of dependents from both sides. The source of
ambiguity is the alternation between sides. We will call such ambiguous subtrees
“spiders.”

What’s missing in our d-tree representation is the order according to which mod-
ifiers are attached to the head. Fernández-González and Martins (2015) solved this
issue by adding to the d-tree a layer of information that stores the relative order of
attachment of modifiers to each head. The resulting structure is called a head-ordered
dependency tree. For each head EDU h with modifiers Mh = {m1, . . . , mK}, we endow
Mh with a weak order relation defined as an ordered partition: We can partition the
K modifiers into J equivalence classes, Mh =

⋃ J
j=1 M̄

j
h, and define a strict order≺h on the

quotient set: M̄1
h ≺h . . . ≺h M̄ J

h. Intuitively, there is a sequence of events of attachment
of modifiers (1 to J) to the head h, where at each event j one or more modifiers (the

ones in the equivalence set M̄
j
h) are simultaneously attached to h. We represent this

graphically by decorating d-arcs with indices (#1, #2, . . . ) to denote the order of events.
A weakly ordered RST d-tree is an RST d-tree endowed with a weak order for each
head.

Figure 6 shows one example RST tree from Figure 5 translated as a tree of this
type.



(ǫ,R)

(SPAN, N)

(ATTRIB.,S)

π4

(SPAN, N)

(RESTAT.,S)

π3

(SPAN, N)

π2

(EXPL.,S)

π1

π1 π2 π3 π4

explanation#3
restatement#1

attribution#2

root

Figure 6
Correspondence between a head-ordered dependency tree and a headed RST tree.

3.4 Conversion from RST c-trees to RST d-trees

Having defined headed RST c-trees and ordered d-trees, we now show an isomorphism
between them. We will need the following two algorithms from c-trees to d-trees and
back.

We first detail a translation into dependency trees we have defined. The translations
to dependencies in the already cited (Muller et al. 2012; Hirao et al. 2013; Li et al.
2014) all follow the general algorithm (Algorithm 1): each non-atomic constituent has
a distinguished atomic constituent as its head, and this head is percolated recursively
through larger constituents. We only add the numbering of attachment order, with a
treatment of nodes given by a post-order traversal of the starting c-tree.

Algorithm 1 Conversion from RST c-tree to weakly-ordered RST d-tree

Input: RST c-tree C
Output: weakly-ordered RST d-tree D
D := {}
for each h = 1, . . . , L do ⊲ initialize order of attachment

j(h) := 1

M̄
j(h)
h := {}

end for
Nodes := GETPOSTORDERTRAVERSAL(C)
for each v := 〈Z, h, I〉 ∈ Nodes do

for each u := 〈X, m,J 〉 which is a child of v do
if m 6= h then

e := 〈h, m, X〉
D := D ∪ e
M̄

j(h)
h := M̄

j(h)
h ∪ e

end if
end for
j(h) := j(h) + 1

M̄
j(h)
h := {}

end for



To do the reverse transformation, we adapt the algorithm in Fernández-González
and Martins (2015) to binary RST trees, as in Algorithm 2.

Algorithm 2 Head-ordered dependency tree to headed RST tree Th translation

Input: weakly-ordered RST d-tree D
Output: RST c-tree C

Nodes := GETPOSTORDERTRAVERSAL(D)
for each h ∈ Nodes do

Add c-node v := 〈〈span, Nucleus〉, h, {h}〉 ⊲ pre-terminal
φ(h) := v

Sort Mh(D), yielding M̄1
h ≺h M̄2

h ≺h . . . ≺h M̄ J
h

for each j = 1, . . . , J do
Add c-node v := 〈〈span, Nucleus〉, h, I ∪

⋃
M̄

j
h

Jm〉 to C

Obtain c-node φ(h) = 〈X, h, I〉

for each m ∈ M̄
j
h do

Obtain c-node φ(m) = 〈Ym, m,Jm〉 ⊲ subtree headed by m already built
because of the post-order traversal

Let Z be the label of the arc 〈h, m, Z〉
Ym := Z
if Ym==〈rm, Nucleus〉 then ⊲ multinuclear relation: h gets the same label as m

X := Ym

end if
end for
Set φ(h) and {φ(m)|m ∈ M̄

j
h} as children of v

φ(h) := v
end for ⊲ the tree headed by h grows from first attachment to last

end for
Let v = 〈X, h, {1, . . . , L}〉 be the root of C, set X := 〈ǫ, Root〉

We can now establish a correspondence between weakly ordered RST d-trees and
RST c-trees.

Proposition 1
Unaryless headed RST c-trees and weakly-ordered RST d-trees are isomorphic.

Proof. We use the construction in Figure 7, adapted from Fernández-González and
Martin (2015). Let D be given. We visit each node h ∈ {1, . . . , L} and split it into J + 1
nodes, where J is the number of equivalence classes of the K modifiers, organized as a
linked list. For each class of equivalence on the modifiers M̄

j
h, j ∈ {1, . . . , J}, (i) let h be

the head EDU of the ( J + 1− j)-th node of the linked list, (ii) for each modifier
mk ∈ M̄

j
h, (a) move the tail of the arc 〈h, mk, Zk〉 to the ( J + 1− j)-th node of the list, (b)

move the head of this arc to the highest node headed by EDU mk φ(mk) and assign the
label Zk to φ(mk). Because the incoming and outgoing arcs of the linked list component
are the same as in the original node h, the tree structure is preserved. After doing this
for every h, add the leaves and propagate the yields bottom up. It is straightforward
to show that this procedure yields a valid unaryless, headed RST c-tree. Because there
is no loss of information (the orders ≺h are implied by the order of the nodes in each
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Transformation of a strictly ordered RST d-tree (a) into a binary RST c-tree (c) using the order of
attachment (b).

spine), this construction can be inverted to recover the original RST d-tree. Conversely,
if we start with a unaryless headed RST c-tree, traverse the spine of each h, and attach

the modifiers in each equivalence class M̄1
h, . . . , M̄J

h in order, we get a weakly ordered
RST d-tree (also an invertible procedure). �

If we constrain each equivalence class to contain exactly one member, we get
a strong order relation on the modifiers of each head EDU. The resulting structure is
called a strongly ordered RST d-tree and it is straightforward to show it is isomorphic
to a binary headed, RST c-tree. This variant is of particular interest given the widespread
use of binarized RST trees for the training and evaluation of existing discourse
parsers.

Binarization is not required to convert from a constituency to a dependency tree,
however. In fact, the RST d-tree D obtained from converting a headed RST c-tree C is
structurally identical to the RST d-tree DLB obtained from first applying a left-heavy
binarization to C then converting the binary c-tree. The two d-trees D and DLB differ
only in their order of attachment: In D, several modifiers of the same head can have
the same order, whereas by construction all modifiers of the same head have distinct
orders in DLB. Direct conversion (without binarization) produces a d-tree that is strictly
equivalent to the original headed RST c-tree. This preserves the exact semantics of
the original annotation, not only for constituency nodes that dominate more than two
nuclei (n-ary multinuclear relations) but also for constituency nodes that dominate more
than one satellite. This configuration corresponds to several independent mononuclear



relations, where each satellite independently modifies the nucleus. While independent 
modifications by several mononuclear relations are extremely rare in the RST-DT cor-
pus, such configurations have been advocated for and used more extensively in other 
corpora (van der Vliet and Redeker 2011).

When a right-heavy binarization is applied, n-ary nodes for multinuclear relations 
are replaced with n − 1 binary nodes where each nucleus is the head of the recursive 
binary node on its right. In the corresponding dependency tree, this translates to a 
chain of n − 1 dependencies between the linearly ordered nuclei of the relation. When 
no binarization or the left-heavy binarization procedure is applied, the first nucleus is 
the head of all other nuclei. In the corresponding dependency tree, the first nucleus has 
the n − 1 other nuclei as its dependents. We will refer to the composition of the right-
heavy binarization and conversion to dependency as the chain transformation, and the 
direct conversion of n-ary c-trees to dependency as the tree transformation. We leave 
aside the left-heavy conversion procedure that does not appear to be used in the RST 
parsing literature.

In theory, predicting a head-ordered dependency tree resembles predicting a de-
pendency tree together with the rank of attachment of each dependent to its governor. 
In practice, Fernández-González and Martins (2015) reduced these two problems into a 
standard dependency parsing problem by concatenating relation label and attachment 
rank into a unique label. Their experiments showed that the increase of the number 
of classes for prediction did not have a negative impact on the performance of their 
syntactic parser.

3.5 Dependency-Based Evaluation

Having defined precisely the correspondences between constituent and dependency 
structures, we can now discuss how dependency structures should be evaluated.

In syntactic parsing evaluation, dependency structures are compared straight-
forwardly with respect to their edges, either labeled or unlabeled. Unlabeled attach-
ment score (UAS) is the proportion of correct (oriented) edges in a system prediction 
with respect to edges in the gold dependency structure. Labeled attachment score 
(LAS) is the proportion of correct oriented edges with the correct relation label in 
the gold. These evaluations are also types of edit distances and provide true metrics 
over dependency trees. These two measures can be directly applied to discourse rep-
resentations in the form of a labeled dependency structure between EDUs. When the 
structure is constrained to be a tree spanning n given discourse units, the number of 
dependencies is necessarily n − 1 both in the gold and the predicted tree structure. 
This is not necessarily the case in discourse theories which allow for non-tree graphs, 
such as SDRT in the corpus used in Muller et al. (2012), where precision and recall 
are used.

In the case of headed RST c-trees, we have seen that there are several options 
to produce a comparable dependency structure, though the notion of headedness is 
not part of the original conception of an RST constituent tree. We have shown the 
equivalence with head-ordered dependency trees, and it is thus necessary to account 
for the rank of attachment of dependents to their head.

We do not know of any work considering this kind of structure in the discourse 
dependency parsing literature, as predicted dependencies approximate more complex 
structures: in the case of RST parsing (Li et al. 2014), human annotations are converted 
to simple dependency structures, and then compared to predicted structures with UAS



and LAS, without considering attachment ranks. They also give constituent scores based
on a list of correspondences between simple dependency trees and simple constituent
trees, but they do not explain their conversion further, neither how they resolve the
inherent ambiguity of simple dependency trees.

Some researchers argue that dependency metrics, even on the simple version with-
out attachment order, are a better reflection of the decisions made during the annotation
process than constituency metrics, where a unique attachment decision counts several
times. Some attachment rankings are not semantically meaningful but are rather an
artifact of the annotation process (Iruskieta, da Cunha, and Taboada 2015, page 276),
especially in the case of binary trees (van der Vliet and Redeker 2011, page. 8). Indeed,
the “qualitative metric” proposed by Iruskieta, da Cunha, and Taboada (2015) seems
very similar to the standard dependency metrics (UAS/LAS). If we consider again
Figure 5, for instance, we can see that the decision to include π3 in the scope of the expla-
nation between π1 and π2 in (c) is really an attachment decision about the pair (π2, π3),
which makes the whole subtree false under constituency metrics with respect to the tree
in (b), while dependency metrics will evaluate rightly the explanation between π1 and
π2. The binarization of trees compounds the problem by forcing artificial constructions
for relations with arity of more than 2, which can be seen later in Figure 8 for the List
relation, where the two options (left or right binarization) are semantically equivalent
and a matter of convention, but can generate errors in the constituent evaluations, while
a simple dependency representation would make them truly equivalent. This cannot
be solved by post-processing these subtrees without losing potential List substructures
(something that would be lost on simple dependency trees, too). Note that sublists could
be represented with a head-ordered dependency tree, thus keeping the binary relation
framework that is assumed by all parsing approaches. All of this militates in favor of
using dependency metrics, as a better reflection of the annotation decisions, and a more
cautious approach to the semantics of discourse relations.

3.6 Dependency-Based and Constituent-Based Metrics Compared

How do the original measures on RST c-structures compare with evaluations of d-
structures? Our answer is that the original measures are not helpful in gauging the
accuracy of the semantic content of a candidate c-structure vis a vis a reference structure,
as we will show below. Once we add heads to c-structures, however, we can prove
equivalences between measures for headed c-trees and d-structures, exploiting the
result in Section 3.3 that dependency structures in which we keep track of the order of
attachment are isomorphic to headed RST constituent trees. We can then use UAS/LAS
measures on RST constituent trees with only minor modifications. We will indicate
how a combination of the UAS measure with a measure on the order of attachment
to the head (OUAS) can capture spans and headedness in headed RST trees; we can
extend such a measure to then evaluate a candidate tree with respect to a reference
tree concerning the relation and nuclearity decorations. Thus, the constituency-based
measures on headed trees can all be reproduced within the dependency framework.

With regard to the original measures proposed for non-headed c-trees, we note that
span by itself is not a very informative measure semantically. Two trees may define
the same spans with subtrees yet have completely discordant d-structures: consider the
ordered d-trees

(2) {a ←3 c, b ←1 c, c →2 d} and {a ←3 b →1 c, b →2 d}
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Figure 8
Left- vs. right-heavy binarization strategies for RST c-trees.

The two d-trees in Example (2) do not agree on any unlabeled edges yet they yield
c-structures with the same spans. Given that we are interested semantically in what
EDUs have discourse or rhetorical connections to other discourse units, the Span mea-
sure by itself risks, as this example makes evident, to tell us nothing, or next to nothing.
Spans of subtrees in an RST c-tree do not even determine an undirected, unlabeled
d-tree, because nuclearity information, together with an interpretive principle that
links nuclearity to headedness, is needed to determine the d-tree’s head. Consider
the following RST c-tree: [a, [b, c]] without any nuclearity decoration. One d-tree that
could correspond to this is a → b → c if the nuclearity decoration is [aN, [bN, cS]S), but
another is {c → a, c → b} if the nuclearity decoration is [aS, [bS, cN]N]. So what does
the span measure tell us about? It does tell us about higher order RST constituents;
but as we have been at some pains to emphasize, these higher-order RST constituents
are not semantically transparent, and so a measure that tells us mainly about them
is not what we should be interested in as discourse theorists. This point is further
reinforced by noting the same d-tree, with its semantically important discourse relations
between constituents, can give rise to two different c-trees with different spans in spider
configurations. The spans then are semantically epiphenomenal, at best. A similar point
can be made about nuclearity. Finally, if we add information about relation to spans—
for instance [aN, bS, Explanation], we know for instance that a relation like Explanation
holds of subspans of a and b but once again we are far from determining a full discourse
structure.



Once we add the notion of headedness to c-trees, however, there are strong correla-
tions between measures on headed c-trees and measures on d-structures, as expected.

By combining a measure of span and head accuracy, we can capture unlabeled
accuracy in some cases. Consider equating a measure of unlabeled accuracy with a
measure, δSH, over triples (a, b, c), where a is the leftmost EDU in a span, b its rightmost
EDU, and c the EDU that is the head of that span (or tree with that span). Where T, T′

are two headed trees, δSH(T, T′) = the number of triples in T that do not occur in T′. δSH

is an evaluation measure that strongly resembles δuas, which also counts the number of
directed edges in the target tree missing in the candidate tree.

Now, given the isomorphism I : headed-c-tree −→ Ordered-d-tree defined in the proof
of Proposition 1, we can show that there is a strict correspondence between the heads
and spans of subtrees of a headed c-tree and the directions of the arrows in a d-tree: If the
head of a tree T0 is t0, then the arrows will flow from t0 to other elements of T0, and vice-
versa. Hence any mistake in a head on a span defined by T will translate to a mistake on
the direction of an arrow in I(T) and hence an increase in δuas(I(T), I(T′)). To go back
to our case in Example (2), we see that the candidate tree has three errors on what the
head of a span is, which correspond to the three UAS arrow errors. On the other hand,
if the heads of spans are all correct, then the spans will determine correct attachments.

However, to furnish an equivalent dependency based measure to our δSH, we
need also to consider the order in which dependents are attached to the head. If two
d-trees have the same head, we can compare the strings of order operations used in
each one to generate the tree. We will use an edit distance on these strings, in which
we count the wrong choices among the possibilities for attaching dependents to their
heads made in constructing the candidate tree with respect to the reference tree. This
distance can thus be added to a UAS count to produce a OUAS evaluation measure,
δouas, that is provably equivalent to δSH. For example given a reference ordered d-tree
{a ←2 b, b →1 c, a →3 d}, where b is the head, the candidate tree {a ←1 b, b →2 c, a →3 d}
has exactly the same arrows and so hence a perfect UAS score. However, the bracketed
representation of the two resulting c-trees [[a[b, c]], d] and [[a, b], c], d], shows that in
building the candidate tree we made one wrong choice (attaching b first to a), which
leads under the translation to a wrong subtree and span (a b instead of b c). If we look
at the strings of applications to b, we have f→d( f←a( f→c(b)) for the reference tree and
f→d( f→c( f←a(b)) for the candidate; in counting the wrong choices made, we see that we
made one wrong choice of applying f←a instead of f→c; counting such wrong choices
would assign the same distance to the candidate tree as would δSH in this case. That is,
δSH and δouas agree. In Appendix A we sketch a proof of the following proposition:

Proposition 2
Let T and T′ be two, projective headed c-trees over a common set of EDUs {b1, . . . , bn}.
Then δSH(T, T′) = δouas(I(T), I(T′)).

With this proposition it is easy to see how to extend δouas to capture constituent
measures that also evaluate predictions of nuclearity or relation.

Although we have shown how evaluation measures on dependency trees can ex-
press various measures on headed trees, we believe that there are conceptual reasons
to prefer simple dependency measures like δuas and δlas over a measure like δouas; while
differences in order accurately reflect differences in higher order constituents of two
c-trees, the semantic relevance of these higher order constituents remains unclear for
reasons that we gave in the last section. Hence, we do not see a compelling reason to try
to capture them, and hence we do not need to move to a measure like δouas from δuas.



4. Evaluation

In this section, we turn to the empirical study of RST parsing, using both the depen-
dency and the constituent viewpoint in a unified framework. This is made possible by 
the explicit conversion between viewpoints, and the awareness of the specificities of 
theoretical models and their practical representations.

4.1 A Diverse Panel of Parsing Strategies

We evaluate the performance of a diverse sample of RST discourse parsers on the 
test set of the RST-DT, using manual EDU segmentation. We build on the work of 
Morey, Muller, and Asher (2017), who collected and harmonized the c-trees predicted by 
nine RST (constituency) parsers and implemented several variants of the RST-Parseval 
(constituency) metrics. We add to this collection the d-trees output by the MST parser 
of Hayashi, Hirao, and Nagata (2016), which we augment with the nuclearity and order 
of attachment to the head (predicted by heuristic components described below). We do 
not present results for the dependency parser of Li et al. (2014) and the constituency 
parser of Li, Li, and Hovy (2014), because we were unable to obtain or reproduce usable 
predictions from them.

Because there is such an imbalance between parsers representative of constituent 
and dependency approaches, we add an in-house dependency parser to the com-
parison to increase the diversity of parsing strategies. We built this parser from stan-
dard elements: (i) an Eisner decoder (Eisner 1996) that outputs projective dependency 
trees, classic in syntactic dependency parsing (McDonald, Crammer, and Pereira 2005) 
and already used in Li et al. (2014); (ii) a subset of the lexical, syntactic, and or-
ganizational features commonly used in the aforementioned constituency-based RST
discourse parsers; (iii) logistic regression models with L2 regularization (also known 
as Maximum Entropy) (Nigam, Lafferty, and McCallum 1999): binary classifiers for 
attachment and multi-class classifiers for labeling. The models use the same features 
as most feature-heavy constituent approaches up to the syntactic level. We follow 
Reitter (2003), Joty, Carenini, and Ng (2015), and Feng and Hirst (2014) and decom-
pose the parsing process in two stages with distinct models for intra- and inter-
sentential relations. Our parser builds an RST dependency tree for each sentence, 
then builds a document-level dependency tree by adding dependencies between the 
heads of the sentence-level trees. The nuclearity of each relation occurrence is de-
termined heuristically in a post-processing stage: It is multinuclear (the dependent 
is labeled “Nucleus”) if all occurrences of this relation type are multinuclear in the 
training section of the RST-DT, else it is mono-nuclear (“Satellite”). We train two vari-
ants of this dependency parser, respectively, on the chain and tree transformations of 
the RST-DT described in Section 3. The two variants are trained on different depen-
dency trees but they use the exact same components, except for a slight adaptation 
of the heuristics used to determine the order of attachment to the head (described 
below).

A key difference compared with previous studies that included dependency parsers 
for discourse (Muller et al. 2012; Li et al. 2014; Hayashi, Hirao, and Nagata 2016) is that 
we consider head-ordered dependency trees, as presented in Section 3.3. This enables 
us to produce equivalent RST c-trees for comparison with existing constituency-based 
RST parsers. Although the order of attachment could be learned along with the relation 
label as in the syntactic work of Fernández-González and Martins (2015), this would 
multiply the number of categories, on a data set that is much smaller than syntactic



parsing data sets. So instead we determine the order of attachment heuristically, in a
post-processing phase. The modifiers on each side (left, right) of an EDU are ordered
from the inside out. If a head h has a SAME-UNIT modifier msu on its right, all modifiers
from h to msu included are attached before other modifiers are considered. The relative
order of the remaining left and right modifiers is determined by their distance to the
head, in number of sentences then EDUs (lower is attached first), and right modifiers
are attached before left ones. Finally, for the parser trained on the “tree” transformation
only, modifiers of the same head with the same multinuclear relation label are assigned
the same order to form n-ary multinuclear relations.

Our discourse parser for RST thus blends features and decoding strategies from
existing constituent and dependency parsers. We decompose the prediction problem
for RST discourse parsing into three problems: labeled dependency parsing, prediction
of nuclearity, and prediction of the order of attachment to the head, where the latter
two stages depend on the first one. Even if nuclearity and order could be modeled as
independent learning problems or jointly with relation labeling, our heuristics for them
provide a solid, inexpensive baseline that can additionally be applied directly to the
output of other dependency parsers for RST (Li et al. 2014; Hayashi, Hirao, and Nagata
2016). Keeping nuclearity and order separate from labeled dependency parsing further
enables our parser to generalize well to other formalisms like SDRT.

4.2 Grouping Parsing Strategies

In line with the standard dependency metrics for syntactic parsing, we defined and
implemented several metrics on the dependencies of head-ordered RST d-trees: un-
labeled attachment score (UAS), labeled attachment score where the label is restricted
to nuclearity (LAS-N), relation (LAS-R), or includes both (LAS-F). The source code of
the new parsers and evaluation procedures is available online.4

We distinguish three groups among RST parsers. The first group consists of con-
stituency parsers that do not use the notion of head EDU. HHN16 HILDA is a reim-
plementation by Hayashi, Hirao, and Nagata (2016) of the HILDA parser (duVerle and
Prendinger 2009; Hernault et al. 2010), which was one of the first text-level discourse
parsers to be published that was trained and evaluated on the RST-DT. It is a greedy
bottom–up parser that uses two support vector machine models to predict structures
and their labeling, on a set of lexical, syntactic, and structural features. SHV15 D follows
the same architecture as HILDA, with minor differences in the models (perceptron for
structure, logistic regression for labeling) and features (syntactic features expressed on
dependency trees) (Surdeanu, Hicks, and Valenzuela-Escárcega 2015). JCN15 1S-1S is a
two-stage CKY parser that first builds sentence-level subtrees then combines them into a
document-level RST tree (Joty, Carenini, and Ng 2015). To each stage corresponds a dis-
tinct Dynamic conditional random field (CRF) model that jointly estimates the structure
and labeling of constituents. FH14 gCRF is a two-stage greedy parser where each stage
leverages two linear-chain conditional random field (CRF) models to predict structure
and labeling (Feng and Hirst 2014). LLC16 is a CKY parser that uses a hierarchical
bidirectional LSTM model with attention mechanism to learn representations of text
spans, complemented with a minimal set of lexical, syntactic, and structural features
(Li, Li, and Chang 2016).

4 https://github.com/irit-melodi/irit-rst-dt.



The second group consists of constituency parsers that make crucial use of the 
notion of head EDU, introduced in the shift-reduce RST parser of Sagae (2009).5 In partic-
ular, the representations of (complex) discourse units are built from the representations 
of their head EDUs. JE14 DPLP is a shift-reduce parser that jointly learns to predict 
transitions and to project the bag-of-word representation of each EDU into a latent 
space, complemented with a minimal set of lexical, syntactic, and structural features 
introduced in Ji and Eisenstein (2014) and subsequently improved in an unpublished 
version by the authors. BPS16 is a sequence-to-sequence parser that uses a hierarchical 
bidirectional LSTM model to learn representations of text spans in a multi-task learning 
setting (Braud, Plank, and Søgaard 2016). One of the auxiliary tasks consists in predict-
ing binary dependencies extracted from the RST c-trees by means of a procedure akin 
to that of Li et al. (2014) evoked in Section 3.1. BCS17 mono and BCS17 cross are two 
variants (mono- and cross-lingual, respectively) of a shift-reduce parser that uses a feed-
forward neural network to learn representations for EDUs from structural, syntactic, and 
lexical features (Braud, Coavoux, and Søgaard 2017).

The third group consists of dependency parsers for RST whose output can be 
converted to RST c-trees. HHN16 MST is a parser that uses a Maximum Spanning Tree 
decoder and a linear model trained with MIRA, on lexical, syntactic, and structural 
features (Hayashi, Hirao, and Nagata 2016). It is trained on dependency trees obtained 
by applying the conversion procedure of Li et al. (2014) on right-heavy binarized 
c-trees from the RST-DT. dep-chain and dep-tree are two variants of our proof-of-
concept parser that uses an Eisner decoder and logistic regression models for intra- and 
inter-sentential attachment and labeling, as described above. The first variant is trained 
on d-trees produced from right-heavy binarized c-trees and the second is trained on 
d-trees produced from the original, n-ary c-trees from the RST-DT. The dependency 
trees output by these three parsers (HHN16 MST, dep-chain, and dep-tree) originally 
contain neither the nuclearity status of relations nor the order of attachment. We apply 
the post-processing heuristics described above to add both types of information and 
obtain fully-specified head-ordered RST d-trees.

4.3 Evaluations of Parsers Against Right-Heavy Binarized c-trees from the RST-DT

We first replicated the de facto standard evaluation protocol from the literature and use 
as reference a right-heavy binarized version of the c-trees from the RST-DT. In Table 1, 
we report the F1 scores of the standard constituency metrics in RST-Parseval: unlabeled 
spans (S), spans labeled with Nuclearity (N), Relation (R), or both (F), following the 
abbreviations in Hernault et al. (2010). Additionally, we report the scores for the same 
metrics where each span is augmented with its head EDU, denoted S+H, N+H, R+H, 
and F+H.

The overall level of performance on RST-Parseval is quite homogeneous among 
the three groups of parsers, even though two parsers stand out: FH14 gCRF on un-
labeled spans (S) and spans labeled with nuclearity (N), JE14 DPLP on spans labeled 
with relation (R), and fully labeled spans (F). Another point is that the dependency 
parsers (HHN16 MST, dep-chain, dep-tree) are competitive on constituency metrics 
with constituency parsers. This is slightly surprising because these dependency parsers 
are trained toward a different objective (attachments between head EDUs), and we

5 In each case, the head is determined via the nuclearity principle, i.e., following the nucleus, or is the
leftmost EDU in case of a non-mononuclear relation.



Table 1
RST-Parseval F1 scores against right-heavy binarized reference trees. S = Span; N = (Span and
Nuclearity); R = (Span and Relation); F = (Span and Relation and Nuclearity). An asterisk (*)
signals scores on predictions we reproduced using code and material made available by the
authors; a double asterisk (**) signals scores on predictions provided by the author with an
improved, unpublished version of the parser posterior to the original study; +h marks the use of
our heuristic component to determine the nuclearity and order of attachment. The best score in
each group is underlined; the best score overall is in bold.

parser S N R F S+H N+H R+H F+H

LLC16 82.2 66.5 51.4 50.6 78.9 64.5 49.9 49.2
HHN16 HILDA 82.6 66.6 54.6 54.3 79.3 64.9 53.3 53.0
SHV15 D * 82.6 67.1 55.4 54.9 79.3 64.9 53.7 53.2
JCN15 1S-1S 82.6 68.3 55.8 55.4 79.8 66.4 54.6 54.2
FH14 gCRF * 84.3 69.4 56.9 56.2 80.4 66.7 55.1 54.5

BPS16 79.7 63.6 47.7 47.5 76.0 61.1 46.4 46.1
BCS17 mono 81.0 67.7 55.7 55.3 78.8 66.3 54.6 54.2
BCS17 cross 81.3 68.1 56.3 56.0 78.9 66.4 55.0 54.7
JE14 DPLP ** 82.0 68.2 57.8 57.6 79.5 66.6 56.6 56.5

HHN16 MST +h 82.8 67.6 54.5 53.8 79.6 65.8 53.6 52.9
dep-tree +h 81.4 68.3 55.2 54.7 79.0 66.6 54.2 53.7
dep-chain +h 81.3 68.3 55.2 54.7 78.8 66.6 54.1 53.6

only used a heuristic component to predict the order of attachment between mod-
ifiers of the same head. The four columns on the right in Table 1 show the scores
obtained with the same evaluation procedure, but where each span is augmented
with the index of its head EDU. Although the relative performance of parsers is
globally stable inside each group of parsers, the addition of the head EDU takes a
slightly higher toll on the first group of parsers compared with the second and third
groups.

The scores in Table 1 suffer from a bias we described in Section 2.4: Marcu’s
encoding of RST into c-trees and variant of Parseval give an arguably higher score
than is warranted. To obtain more accurate scores, we use the alternative encoding
of RST c-trees represented in the top row of Figure 3 and apply a variant of RST-
Parseval that includes the root node but excludes pre-terminals (and leaves)—namely,
the EDUs. Each node in these trees represents a labeled attachment decision made by
an RST parser, and the evaluation procedure needs to consider only half the number of
nodes compared to Marcu’s RST-Parseval. The scores for this alternative RST-Parseval
are given in Table 2. The scores on unlabeled spans (S) are 15 to 20 points lower than
in Table 1. In fact, the alternative scores on unlabeled spans (the S column in Table 2)
directly correspond to the non-trivial fraction of the original scores (the S column in
Table 1), where manually segmented EDUs make up for half the number of unlabeled
spans. A visible consequence is that differences between parsers on the S metric are
doubled, for instance FH14 gCRF is now 3 points ahead of the second best parser
(HHN16 MST). This relationship is less obvious for labeled spans (N, R, F) because the
alternative encoding irons out several factors at once: trivial spans, but also redundant
information in the node labels about nuclearity and relations (multinuclear relations,
SPAN labels for mono-nuclear relations), as detailed in Section 2.4. The alternative
scores are 10 to 20 points lower than the original scores, but all parsers are not equally



Table 2
Corrected constituency evaluation on labeled attachment decisions.

parser S N R F S+H N+H R+H F+H

LLC16 64.5 54.0 38.1 36.6 57.4 52.2 36.1 35.7
HHN16 HILDA 65.1 54.6 44.7 44.1 58.4 52.6 43.0 42.8
SHV15 D * 65.3 54.2 45.1 44.2 58.2 52.2 43.1 42.9
JCN15 1S-1S 65.1 55.5 45.1 44.3 59.3 54.2 43.5 43.3
FH14 gCRF * 68.6 55.9 45.8 44.6 60.5 53.8 43.4 43.1

BPS16 59.5 47.2 34.7 34.3 51.7 45.7 33.6 33.5
BCS17 mono 61.9 53.4 44.5 44.0 57.4 52.2 43.4 43.2
BCS17 cross 62.7 54.5 45.5 45.1 57.5 52.8 43.8 43.8
JE14 DPLP ** 64.1 54.2 46.8 46.3 58.7 53.3 45.7 45.6

HHN16 MST +h 65.6 53.2 43.5 42.5 58.0 51.4 41.9 41.7
dep-tree +h 62.7 53.2 43.4 42.4 57.5 51.8 42.1 41.6
dep-chain +h 62.6 52.9 43.4 42.4 57.4 51.6 42.2 41.7

affected, which results in a slightly different picture. On spans labeled with nuclearity
(N), the best system FH14 gCRF is only 0.4 points ahead of JCN15 1S-1S, down from
1.1 points; HHN16 HILDA now appears at the same level as BCS17 cross (ahead by
0.1 points), while its original score was 1.5 points lower. The best parser on R and F,
JE14 DPLP, maintains its lead but the second best parser on F is now BCS17 cross. The
change of encoding and evaluation procedure widens the gap in performance between
constituency and dependency parsers on labeled spans. Note, however, that this gap
could be reduced, on all metrics, by substituting the heuristic component we used
to predict the order of attachment with a machine learning model. The greedy and
chart-based constituency parsers appear to be better at predicting spans than the shift-
reduce and dependency parsers. This reflects the more explicit focus in their modeling
and training objective on predicting accurate boundaries between (complex) discourse
units, while dependency parsers and shift-reduce constituency parsers focus more on
the relationship between head EDUs.

Dependency metrics offer a complementary point of view on parsers’ performance.
Table 3 provides dependency scores for a subset of possible metrics: on unlabeled de-
pendencies (UAS), dependencies labeled with nuclearity alone (LAS-N), relation (LAS-
R), or both (LAS-F).

On unlabeled dependencies, the best performing systems are shift-reduce con-
stituency parsers (JE14 DPLP, BCS17 mono and cross) and dependency parsers (dep-
chain, dep-tree). This is hardly surprising given the fact that shift-reduce constituency
parsers are trained to predict both a constituency and a dependency structure. JE14
DPLP is the best system on all dependency metrics, with a slight advantage on un-
labeled dependencies (+0.2 points compared to dep-chain on UAS) and a marked
advantage on labeled dependencies, especially when the relation is included (0.9
points ahead of dep-chain on LAS-N, 2.1 and 2.2 points ahead of BCS17 mono on
LAS-R and LAS-F). This provides empirical support to the claims made by Ji and
Eisenstein (2014) that their vector-space representation of EDUs improves on existing
approaches for the identification of discourse relations and, to a lesser extent, nuclearity
status.



Table 3
Dependency evaluation. UAS = unlabeled dependencies; LAS-N = dependencies labeled with
nuclearity alone; LAS-R = dependencies labeled with relation alone; LAS-F = dependencies
labeled with relation and nuclearity.

parser UAS LAS-N LAS-R LAS-F

LLC16 62.9 58.5 42.1 41.5
HHN16 HILDA 64.7 59.1 49.1 48.8
SHV15 D * 64.2 59.0 49.5 49.2
JCN15 1S-1S 65.8 60.5 48.9 48.6
FH14 gCRF * 67.6 61.7 50.1 49.8

BPS16 61.7 55.0 40.6 40.5
BCS17 mono 68.2 62.1 51.6 51.4
BCS17 cross 67.9 62.4 51.0 50.9
JE14 DPLP ** 69.2 63.6 53.7 53.6

HHN16 MST +h 66.6 59.9 48.8 48.4
dep-tree +h 68.0 62.1 49.8 49.2
dep-chain +h 69.0 62.7 50.8 50.2

4.4 Evaluation Against the Original Non-binarized RST Trees

We also looked at constituency and dependency metrics against the original, non-
binarized c-trees from the RST-DT. Table 4 provides the scores using Marcu’s encod-
ing and evaluation procedure, Table 5 the scores on dependency metrics. The relative
performance of parsers is quite similar to that observed against right-heavy binarized
c-trees. The scores of greedy and chart-based parsers are stable compared to Tables 1–3,
while the shift-reduce and dependency parsers obtain lower scores. The performance of
parsers is more homogeneous overall. The d-trees produced by the tree transformation
appear to be harder for parsers than those produced by the chain transformation. Note

Table 4
RST-Parseval metrics scores against the original (non-binarized) trees.

parser S N R F S+H N+H R+H F+H

LLC16 82.6 66.9 51.8 51.1 79.2 64.9 50.4 49.7
HHN16 HILDA 82.7 66.9 54.8 54.5 79.4 65.2 53.5 53.2
SHV15 D * 82.5 67.0 55.3 54.8 79.2 64.8 53.7 53.2
JCN15 1S-1S 82.5 68.4 55.9 55.5 79.8 66.5 54.7 54.3
FH14 gCRF * 84.4 69.6 57.1 56.4 80.5 66.9 55.3 54.7

BPS16 79.6 63.4 47.5 47.2 75.8 60.9 46.1 45.9
BCS17 mono 80.6 67.6 55.5 55.2 78.5 66.1 54.5 54.1
BCS17 cross 81.0 67.9 56.2 55.9 78.6 66.2 54.8 54.5
JE14 DPLP ** 81.5 67.7 57.3 57.2 78.9 66.1 56.2 56.0

HHN16 MST +h 82.5 67.4 54.3 53.6 79.3 65.6 53.3 52.6
dep-tree +h 81.3 68.4 55.4 54.9 78.8 66.8 54.3 53.8
dep-chain +h 80.8 68.0 55.0 54.5 78.3 66.3 53.9 53.4



Table 5
Dependency evaluation on non-binarized trees.

parser UAS LAS-N LAS-R LAS-F

LLC16 62.7 58.4 42.1 41.5
HHN16 HILDA 63.1 57.8 47.9 47.7
SHV15 D * 62.4 57.7 48.4 48.1
JCN15 1S-1S 64.4 59.3 48.0 47.7
FH14 gCRF * 65.6 60.0 48.5 48.2

BPS16 59.7 53.1 38.7 38.6
BCS17 mono 66.1 60.3 49.9 49.7
BCS17 cross 65.6 60.4 49.1 48.9
JE14 DPLP ** 66.9 61.7 51.7 51.7

HHN16 MST +h 64.2 58.0 47.1 46.6
dep-tree +h 66.3 60.9 48.7 48.0
dep-chain +h 66.4 60.6 48.7 48.1

that our chain and tree parser obtain similar scores, despite the fact that the former is
trained on a different transformation of the reference trees. This suggests that the higher
level of accuracy attainable by the chain parser that trains on shorter dependencies
compensates for the mismatch between the distributions of attachments during the
training and testing stages.

4.5 Pairwise Similarity Between Parser Predictions

The combined use of alternative constituency and dependency metrics has pro-
vided us with a richer, more nuanced perspective on the relative performance of
RST discourse parsers and the diversity of their predictions. In an attempt to get
better insight into their structural similarity, we computed pairwise similarity be-
tween the predictions of parsers. We compute constituency and dependency met-
rics with the same evaluation procedures as before, taking the prediction of each
parser in turn as the reference. In line with the standard setting used for training
and evaluating parsers in the literature, we again consider right-heavy binarized RST
c-trees.

The pairwise similarity scores in Table 6 tend to confirm the existence of two clusters
of parsers suggested earlier: parsers from the first group in one cluster, and parsers
from the second and third group in another. Pairwise similarity scores tend to be higher
inside a cluster than between clusters. For each parser, similarity scores also tend to be
higher inside its cluster than with the reference trees. Parsers using the same architecture
and core features are the most similar: dep-tree and dep-chain (91.7 on S), followed
by the two parsers BCS17 mono and cross (81.5 on S). The dep-chain parser exhibits a
relatively high level of similarity with the shift-reduce constituency parsers (75.9 with
BCS17 cross, 75.3 with BCS17 mono, 70.8 with JE14 DPLP). The structural similarity
of their predictions empirically confirms the similarity in modeling and architecture
between shift-reduce constituency parsers and dependency parsers. Pairwise similarity
scores on unlabeled dependencies, reported in Table 7, confirm the clustering of parsers
in two groups. The similarity scores between the shift-reduce constituency parsers and
the dependency parsers are even higher on dependencies than on constituents. This



Table 6
Pairwise similarity on parser predictions: RST-Parseval S on labeled attachment decisions.

LLC16 HHN16 H SHV15 D JCN15 1 FH14 gC BPS16 BCS17 m BCS17 c JE14 HHN16 M dep-tr dep-ch gold

LLC16 100.0 60.2 62.5 59.8 61.4 57.6 59.4 58.5 58.8 57.3 59.1 58.7 64.5
HHN16 HILDA 60.2 100.0 66.7 62.2 67.8 58.5 60.1 60.4 62.0 61.9 62.9 61.8 65.1
SHV15 D 62.5 66.7 100.0 62.0 65.6 60.5 61.8 62.0 62.7 61.0 61.7 61.9 65.3
JCN15 1S1S 59.8 62.2 62.0 100.0 65.9 58.2 59.5 59.4 60.3 60.8 60.7 60.6 65.1
FH14 gCRF 61.4 67.8 65.6 65.9 100.0 61.4 63.6 63.8 63.3 65.5 64.6 64.7 68.6

BPS16 57.6 58.5 60.5 58.2 61.4 100.0 63.7 62.5 61.0 59.7 62.0 63.6 59.5
BCS17 mono 59.4 60.1 61.8 59.5 63.6 63.7 100.0 81.5 68.8 63.2 71.3 75.3 61.9
BCS17 cross 58.5 60.4 62.0 59.4 63.8 62.5 81.5 100.0 69.8 63.2 72.4 75.9 62.7
JE14 58.8 62.0 62.7 60.3 63.3 61.0 68.8 69.8 100.0 61.5 67.9 70.8 64.1

HHN16 MST 57.3 61.9 61.0 60.8 65.5 59.7 63.2 63.2 61.5 100.0 64.9 65.6 65.6
dep-tree 59.1 62.9 61.7 60.7 64.6 62.0 71.3 72.4 67.9 64.9 100.0 91.7 62.7
dep-chain 58.7 61.8 61.9 60.6 64.7 63.6 75.3 75.9 70.8 65.6 91.7 100.0 62.6

gold 64.5 65.1 65.3 65.1 68.6 59.5 61.9 62.7 64.1 65.6 62.7 62.6 100.0



Table 7
Pairwise similarity on parser predictions: dependency metric UAS.

LLC16 HHN16 H SHV15 D JCN15 1 FH14 gC BPS16 BCS17 m BCS17 c JE14 HHN16 M dep-tr dep-ch gold

LLC16 100.0 59.3 58.5 59.0 59.0 55.5 62.5 61.5 61.6 57.8 61.7 61.8 62.9
HHN16 HILDA 59.3 100.0 67.4 65.8 70.5 61.8 67.9 67.2 68.0 66.0 68.1 69.0 64.7
SHV15 D 58.5 67.4 100.0 65.5 68.2 62.1 67.5 67.5 66.9 63.9 67.2 68.5 64.2
JCN15 1S1S 59.0 65.8 65.5 100.0 70.6 61.7 68.7 67.6 68.5 65.0 69.3 70.1 65.8
FH14 gCRF 59.0 70.5 68.2 70.6 100.0 64.4 71.7 72.3 70.8 68.2 71.6 72.8 67.6

BPS16 55.5 61.8 62.1 61.7 64.4 100.0 66.5 66.1 66.0 61.3 65.1 66.9 61.7
BCS17 mono 62.5 67.9 67.5 68.7 71.7 66.5 100.0 79.5 73.5 68.2 73.5 75.2 68.2
BCS17 cross 61.5 67.2 67.5 67.6 72.3 66.1 79.5 100.0 73.0 67.0 74.2 75.6 67.9
JE14 61.6 68.0 66.9 68.5 70.8 66.0 73.5 73.0 100.0 66.5 72.7 74.3 69.2

HHN16 MST 57.8 66.0 63.9 65.0 68.2 61.3 68.2 67.0 66.5 100.0 70.0 70.9 66.6
dep-tree 61.7 68.1 67.2 69.3 71.6 65.1 73.5 74.2 72.7 70.0 100.0 95.1 68.0
dep-chain 61.8 69.0 68.5 70.1 72.8 66.9 75.2 75.6 74.3 70.9 95.1 100.0 69.0

gold 62.9 64.7 64.2 65.8 67.6 61.7 68.2 67.9 69.2 66.6 68.0 69.0 100.0



reinforces the view that these two families of parsers are closer than usually presented
in the RST parsing literature.

5. Conclusion

Text-level discourse parsing has seen a recent surge in experimental approaches using
the RST Discourse Treebank for English as an evaluation benchmark. We have seen
that representing discourse as constituent structures raises a number of issues, both
conceptual and practical. It is compounded by representational choices made in the
annotation of the reference corpus, with the presence of redundant information, against
which all approaches to RST parsing are nonetheless evaluated.

We proposed to remedy the representational problems by providing an alternate
view of the RST data that use dependency structures, a more natural representation
that generalizes to other types of discourse structure, as linguistic studies show they
correspond to less arbitrary annotation decisions. We argued that dependency struc-
tures exhibit a feature that is important to the semantic interpretation of discourse
structures; they provide the minimal semantic arguments of discourse relations, while
constituent trees constitutes an upper bound. We relied on the notion of headedness
in both constituent and dependency views to show how a lot of work on discourse
analysis are related. Dependencies also make for more gradual, lenient evaluation,
less sensitive to somewhat arbitrary transformations (such as binarization), as was
argued in the syntactic community. Because we provide translations from one view to
the other, we advocate the use of both evaluation frameworks for comparative purposes.

We compared the predictions of a variety of parsers on the test set of the RST-
DT corpus, with evaluation procedures that compute constituency and dependency
metrics, to get a better understanding of the differences between approaches. We
compared both constituency-based and dependency-based parsers, parsers with a more
complex structure that can avail themselves of higher order features, parsers based
on learning representations where the complexity lies in the neural architecture and
use of the representations, and some simple parsers, which are based on local models
with a straightforward decoding technique. We also compared parsers that make use of
relatively superficial features and parsers that make use of more sophisticated semantic
information. In comparing simple vs. complex parsing strategies, we have seen that
among the best in both camps there are at present small differences, even though some
approaches perform better on predicting structure and some on predicting relations.

Our empirical comparison of the performance of parsers and the pairwise similarity
between their predictions suggest that head-ordered dependency parsing constitutes
a viable option for RST discourse parsing, with the promise to adapt more easily to
other theories of discourse like SDRT. All of this also suggests that it might be the
time for discourse parsing to move away from the very specific dataset that is the RST
discourse treebank and aim at better generalizations of discourse models.

Appendix A. Proof of the Equivalence of a Dependency Measure Taking into Account
Order and a Measure that Counts Span and Head Accuracy

For simplicity, we look at the case of binary trees. Because any binary projective tree over
n elements can be produced from two binary projective trees of less than n elements, we



can prove by induction on the construction of projective headed trees of n + 1 elements 
from a projective headed tree of n elements that:

Proposition 3
Suppose T and T′ are two binary, headed projective c-trees over a common set of EDUs 
{b1, ..., bn} such that I(T) and I(T′ ) are d-trees where no node has multiple dependents. 
Then: δSH (T, T′ ) = δuas(I(T), I(T′ )).

The base case for n = 2 is easily established by an examination of cases. For the inductive 
step, assume that T1 and T2 are two binary, headed projective c-trees over n EDUs and 
such that I(T1 ) and I(T2 ) have no nodes with multiple dependents. By construction, 
we know that T1 and T2 are composed from two binary trees over < n EDUs, T1

1, T1
2 

and T2
1, T2

2, respectively, with the same characteristics. By the inductive hypothesis, 
we know that δSH (T1

1, T2
1 ) = δuas(I(T1

1 ), I(T2
1 )) and δSH (T1

2, T2
2 ) = δuas(I(T1

2 ), I(T2
2 )). 

Note also that δSH (T1, T2 ) = δSH (T1
1, T2

1 ) + δSH (T1
2, T2

2 ) + 1, if the head of the T1 span 
is distinct from that of the T2 span. By the inductive hypothesis, then, δSH (T1, T2 ) = 
δuas(I(T1 ), I(T2 )).

Now let’s bring order into the picture and deal with d-trees that have multiple descen-
dants. To do so, we need to determine a distance measure based on UAS and order. In 
particular, how do we measure differences in order of operations? In general, because 
of the projectivity of the RST corpus, we know that there are strong restrictions to how 
we can apply the different operations; in particular, we know that any set of operations 
with dependent EDUs to one side of the head must be performed in the linear order 
of the dependent EDUs. Hence, we can prove by induction over the number of nodes 
in a d-tree that:

Proposition 4
Let x0 be the root of a d-tree, with n dependents to the left and m dependents to the 
right. The number of possible orders for both n, m > 0, noted Un,m is:

U(n−1),m + Un,(m−1)

If either n = 0 or m = 0, then the number of possible orders is 1: ∀i, Ui,0 = U0,i = 1.

Given our map I, Proposition 4 tells us exactly how many different headed RST c-trees 
we can build from a given d-tree. An immediate consequence of Proposition 4 is that 
Proposition 3 applies to certain d-trees with multiple dependencies and their headed 
c-tree equivalents.

Corollary 1
Let T and T′ be two, projective headed c-trees over a common set of EDUs {b1, ..., bn} 
such that I(T) and I(T′ ) are d-trees where any node with n dependents to the left 
and m dependents to the right is such that either n = 0 or m = 0. Then: δSH (T, T′ ) = 
δuas(I(T), I(T′ )).

Proposition 4 also gives us some hints as to how to exploit order in a distance definition. 
If two d-trees have the same head, we can compare the strings of order operations used 
in each one to generate the tree; an edit distance on these strings can thus inform a 
OUAS measure. Proposition 3 encodes the fact that one choice may force many others. 
For example, given a reference ordered d-tree {a ←2 b, b →1 c, a →3 d}, where b is the



head, the candidate tree {a ←1 b, b →2 c, a →3 d} has exactly the same arrows and so
hence a perfect UAS score. However, the bracketing shows that in building the can-
didate tree we made one wrong choice (attaching b first to a), which leads under the
translation to a wrong subtree and span (a b instead of b c). If we look at the strings of
applications to b, we have f→d( f←a( f→c(b)) for the reference tree and f→d( f→c( f←a(b))
for the candidate; in counting the wrong choices made, we see that we made one wrong
choice of applying f←a instead of f→c; counting such wrong choices would assign the
same distance to the candidate tree as would δSH in this case. That is, δSH and δouas

agree.

Previously, we have looked at a case where the only difference between two d-trees
is a difference in order. What happens when the UAS score for the two trees differs
as well? If the two trees have the same head, the simple additive distance combining
the edit distance on orders and a UAS score yields something reasonable for simple
cases. For instance, consider the two ordered d-trees T = {a ←2 b, b →1 c, b →3 d} and
T′={a ←1 b, b →2 d, c ← d}. There is one error in the UAS (c ← d) and two edit distance
errors (we have to add the arrow from b to c and that must be numbered first, not the
left arrow to a). On the other hand δSH(T, T′) = 3 as well in this case, as there are two
incorrect spans and an incorrect head for a span. If the heads of two constituent trees are
not the same, we will not be able to compare orders and we set the order distance to 0.
Dependency-based measures on ordered d-trees will still capture differences between
two such trees, however, because the differences will be reflected in a non-zero UAS
distance. The case in (2) is instructive; although the spans are all correct, the heads are
wrong and so our δSH measure agrees with the UAS measure distance of 3.

Proposition 5
Let T and T′ be two, projective headed c-trees over a common set of EDUs {b1, . . . , bn}
such that neither I(T) or I(T′) share any common head nor do any subtrees of I(T) or
I(T′). Then δSH(T, T′) = δuas(I(T), I(T′)).

Given our assumptions, it will follow that I(T), I(T′) disagree on all edges and so
have a maximal δuas distance of n− 1. But it will also follow that δSH(T, T′) = n− 1, as
every head in the triples for T′ measured will be wrong with respect to the heads in T.

We can now prove by induction that for two trees with a common head, the distances
also coincide.

Proposition 6
Let T and T′ be two, projective headed c-trees over a common set of EDUs {b1, . . . , bn}
such that I(T) and I(T′) share a common head bk. Then δSH(T, T′) = δuas(I(T), I(T′)).

For the base case, consider two d-trees of 3 elements. If they have a common head,
then if the common head is a or c, then our result follows from Proposition 1. If the
common head is b, then calculation shows that δSH(T, T′) = δuas(I(T), I(T′)) in all of the
possible configurations. For the inductive step, assume that T1 and T2 are two headed
projective c-trees over n EDUs with a common head bk and for binary projective trees
over < n EDUs with the same head, the desired result holds. By the same reasoning as
in Proposition 3, the result follows. The only difference is that the difference in subtrees
between T1 and T2 may be reflected not in the UAS but in the order score on the side of
the dependency structures.
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Summing up our results, Propositions 3, 1, 5, and 6 prove:

Proposition 7
2 Let T and T′ be two, projective headed c-trees over a common set of EDUs {b1, . . . , bn}.
Then δSH(T, T′) = δuas(I(T), I(T′)).
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