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Iterative Equalization With Decision Feedback
Based on Expectation Propagation

Serdar Sahin™, Antonio Maria Cipriano

Abstract—This paper investigates the design and analysis of
minimum mean square error (MMSE) turbo decision feedback
equalization (DFE), with expectation propagation (EP), for single
carrier modulations. Classical non iterative DFE structures have
substantial advantages at high-data rates, even compared with
turbo linear equalizers-interference cancellers (LE-IC), hence
making turbo DFE-IC schemes an attractive solution. In this
paper, we derive an iterative DFE-IC, capitalizing on the use of
soft feedback based on expectation propagation, along with the
use of prior information for improved filtering and interference
cancellation. This turbo iterative DFE-IC significantly outper-
forms turbo LE-IC, especially at high-spectral efficiency and
also exhibits performance improvements over existing DFE-IC
variants. The proposed scheme can also be self-iterated, as done
in the recent trend on EP-based equalizers, and it is shown to be
an attractive alternative to linear self-iterated receivers. For time-
varying (TV) filter equalizers, an efficient matrix inversion
scheme is also proposed, considerably reducing the computational
complexity relative to existing methods. Using finite-length and
asymptotic analysis on a severely selective channel, the proposed
DFE-IC is shown to achieve higher rates than known alternatives,
with better waterfall thresholds and faster convergence, while
keeping a similar computational complexity.

Index Terms— Interference cancellation, turbo equalization,
decision feedback equalizers, expectation propagation.

I. INTRODUCTION

OMMUNICATION systems operating on wide-band
C channels suffer from inter-symbol interference (ISI),
which can be mitigated with an appropriate transceiver design.
In particular, for wireless systems where the throughput
requirements increase at each new generation, more effective

receivers are needed in order to maintain robust data links.
With the discovery of turbo-codes, iterative processing
principles were extended to joint detection and decoding tech-
niques via soft-input soft-output (SISO) receivers which use
prior information provided by the channel decoder, to further
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reduce detection errors. Although early turbo equalization
techniques, such as maximum a posteriori (MAP) detector
using BCJR estimation [1]-[3], can operate near the channel
capacity with properly designed coding schemes, their oper-
ational complexity significantly increases for large channel
delay spread or with high modulation orders. Consequently,
finite impulse response (FIR) filter-based turbo equalizers with
lowered computational complexity have been proposed. These
structures can be categorized into three groups with regards
to its filter updates depending on prior information. Other
kinds of adaptive FIR receivers are out of this paper’s scope.
Time-invariant (TI) structures update their filters only once
at each packet reception, using the available channel state.
Iteration-variant (IV) equalizers are updated at each turbo
iteration by additionally using the overall prior information.
Time-varying (TV) structures update their filters at each sym-
bol, using both symbol-wise prior information and channel
states, making them particularly suitable for doubly selective
channels, where the impulse response varies over time.

The first FIR  turbo  structure, proposed by
Glavieux et al. [4], uses a time-invariant interference
canceller [5], and an application to IV filtering appeared
in [6] and [7]. Further extension to TV equalization is
provided in [8] and a formal framework presented in [9]
derive these receivers from the MAP criterion.

An alternative approach formalized by Tiichler ez. al [10]
consists in designing a TV adaptive LE, by using statistics
conditioned on prior information, while solving the MMSE
criterion. This structure has been applied to high-order modu-
lations, time-varying channels and to IV, TI, frequency domain
structures for lower complexity, and also to multi-user detec-
tion for multiple input-multiple output systems [11]-[14].

Equivalence of these approaches was shown in [15], mak-
ing the TV MMSE LE-IC the most widespread reference.
Although turbo LE-IC brings significant improvements over
classical filtering, it falls far behind classical DFE [16], [17]
with channel coding, at high spectral efficiency operating
points. Oppositely, at lower rates, turbo LE-IC is near capacity-
achieving while DFE performs poorly.!

This paper addresses the design of iterative time-domain TV
DFE-IC equalizers, i.e. FIR receivers where prior information
and a symbol-wise decision feedback is respectively used on
anti-causal and causal symbols, to improve equalization. These

These facts are also shown in subsection V-C, in Fig. 7.



TABLE 1
CLASSIFICATION OF CONSTITUENT FIR TURBO EQUALIZERS VS. THE USAGE OF PRIOR INFORMATION

Linear Structure Decision Feedback Structures
Update Type TI v TV Dec. Type TI v TV
[61, [71, [91, [8]-[11] Hard [20], [21] [20], [21] [19]-[21]
References [4], [19] [10], [12], [13] [19’] Soft APP [26] [23], [24], [27], [29] Proposed
[14], [15] o Soft EP Proposed

receivers are of interest for applications where doubly-selective
channels are involved, such as HF communications [18].

A. Related Work

There exist several prior works on DFE-IC. Proposals
mainly differ with the nature of decision feedback, and with
the filter updating method. Besides, recent complex receivers
use DFESs as constituent elements for concatenated equalizers.
Hence, for clarity, we propose to classify related works in three
sub-categories.

1) Iterative Hard DFE-IC: Among hard feedback struc-
tures, DFE-IC in [19] is a classical DFE that uses prior
information for IC on anti-causal symbols. This structure
is known for its error propagation issues which makes its
TV form even less efficient than TI LE, and its extrin-
sic information transfer (EXIT) analysis yields contradictory
results [19, Fig. 14]. In [20], the previous structure is enhanced
with a powerful soft demapper that uses the distribution of
residual ISI sequences for symbol detection. This modified
structure outperforms turbo LE-IC, but this residual ISI distri-
bution is very difficult to derive even in the simple BPSK
case. A more practical solution, proposed in [21], consists
in approximating the residual ISI at the DFE-IC output to an
additive white Gaussian noise (AWGN), which simplifies the
demapper. While this solution challenges TV LE-IC on BPSK,
its extension to multilevel modulations has not been explored
so far. To the authors’ knowledge, this is the only DFE-IC
outperforming exact TV LE-IC in the reference scenario of
Proakis-C channel with BPSK symbols. DFE-ICs in [20]
and [21] were later used as constituent elements for more
advanced receivers such as bi-directional DFE, or structures
obtained by parallel concatenation of FIRs [22].

2) Iterative Soft DFE-IC: Literature on turbo soft DFE-IC
is more diverse; although feedback is mostly based on the
posterior distribution, there is no common strategy for eval-
uating its variance [23]-[25]. Such iterative structure is first
presented in [26], where various TI DFE with soft feedback
are evaluated with a perfect decision hypothesis, within a sub-
optimal receiver using hard decoding. In particular, it is seen
that soft feedback mitigates to some extent error propagation,
despite ignoring decision errors in filter computation. Another
notable structure is the IV soft interference canceller in [23];
using both prior and posterior LLRs for filtering and for
interference cancellation with BPSK, this scheme significantly
outperforms IV LE-IC, but it requires stochastic methods
for estimating the correlation properties of posterior LLRs.
Several other IV soft feedback structures exist [25], [27],
with alternative heuristics for feedback quality assessment.
Structural comparison of IV schemes using posterior feedback

is given in [24], extending [23] and [27] to higher order
modulations, but requiring new heuristics with LE-IC pre-
equalization for filter computation. These approaches have
drawbacks due to their limitations in usable constellations [23],
[25], [27], or due to the sub-optimality of heuristics used
in filter computation [23], [24], [27]. Indeed, IV structures
need static statistics of its soft feedback for computing its
filters, which requires approximations.

Time-varying soft posterior feedback structures do not have
such issues; they can update their filters after each symbol is
detected, as it had been done for MIMO receivers in [28].
In equalization, the structure closest to [28] is a block-
feedback turbo DFE in [29], which updates its filters every
P symbols. A classification of the references above is given
in Table 1.

3) Receivers Based on Expectation Propagation: There is a
recent renewal of interest in iterative equalization, brought by
the use of an approximate statistical inference method, namely
expectation propagation (EP) [30]. This technique can be used
as a message passing algorithm, which extends the loopy belief
propagation (BP) by using exchange of expectations. When EP
is used with probability density functions (PDF) belonging to
the exponential family, it is possible to compute an extrinsic
message passed from the demapper to the equalizer.

EP has already been used in channel decoding [31], and
in receiver design with MIMO receivers [32], block linear
equalizers [33] and Kalman smoothers [34], [35]. In particular,
a concomitant work has recently extended these schemes
to FIR with a self-iterated LE-IC [36]. In [37], EP was
applied on multivariate white Gaussian distributions to derive
a low-complexity self-iterated frequency domain equalizer.
The receivers above use EP in a parallel interference cancel-
lation scheduling through self-iterations, i.e. the whole data
block is detected, and then detection process is repeated using
EP feedback from the demapper. These structures are not
decision feedback structures as in [16], which are natural
successive interference cancellers.

Hence, in this paper, we propose to derive a DFE-IC EP
exploiting the successive interference cancellation schedule of
DFE-IC to operate on an EP-based soft feedback. Moreover,
we combine this serial detection framework with an outer loop,
as in prior work on EP, to obtain a self-iterated DFE-IC EP.
A low complexity matrix inversion strategy for TV FIR struc-
tures is also derived, significantly reducing the computational
complexity difference between DFE-IC and LE-IC.

B. Contributions and Paper Outline

The main contributions of this paper are as follows:
e A novel time-varying DFE-IC algorithm, using EP to
update its filters, and to cancel residual ISI, is proposed.



It outperforms other constituent FIR receivers known
to the authors, while providing an overall efficient
complexity-performance trade-off.

e DFE-IC EP is extended to a self-iterated structure, and
compared to prior work on self-iterated EP receivers.

e Well-known hard [19], [21] or sub-optimal [24], [29]
DFE-IC proposals are extended to TV structures with soft
posterior feedback, by using MMSE Bayesian estimators.

e Analytical and asymptotic analysis of DFE-IC is car-
ried out on a highly selective deterministic channel.
Performance and computational complexity comparison
between LE-IC and different DFE-IC structures is pro-
vided.

e A new recursive matrix inversion strategy for TV equal-
izers is exposed. Compared to the iterative algorithm
in [10], it brings between 30% (for long data blocks)
and 75% (for shorter blocks) complexity reduction for
LE-IC.

The remainder of this paper is organized as follows.
The considered BICM communication scheme and the generic
FIR receiver model are described in section II. Section III
proposes a factor graph model for the system and applies
the expectation propagation framework to derive the proposed
equalizer in subsection III-D. A novel matrix inversion strat-
egy is detailed in section IV for reducing TV equalization
complexity. Section V extends prior work on DFE-IC to the
state-of-the-art and compares with the proposed DFE-IC EP.
In section VI, DFE-IC EP is self-iterated, and compared with
several existing self-iterated EP receivers.

C. Notations

Bold lowercase letters are used for vectors: let ube a NV x 1
vector, then u,,,n =0,..., N —1 are its entries. Capital bold
letters denote matrices: for a given N x M matrix A, [A]W
and [A].,, respectively denote its '™ row and m™ column,
and ay, ;m = [A]nm is the entry (n,m).

Iy is the N x N identity matrix, Oy, a7 and 1y s are
respectively all zeros and all ones N x M matrices. e, is
the N x 1 indicator whose only non-zero entry is e, = 1.
Operator Diag(u) denotes the diagonal matrix whose diagonal
is defined by u. R, C, and IF;, are respectively the real field,
the complex field and a Galois field of order k. Let = and
y be two random variables, then pu, = E[z] is the expected
value, o2 = Var[z] is the variance and o, , = Cov[z, ] is the
covariance. The probability of x taking a value « is Pz = a,
and probability density functions (PDF) are denoted as p(-). If
x and y are random vectors, then we define vectors pyx = E[x]
and o2 = Var[x], the covariance matrix X , = Cov[x, y] and
we note X, = Cov[x,x|. CN(u1.,02) denotes the circularly-
symmetric complex Gaussian distribution of mean pu, and
variance o2, and B(p) denotes the Bernoulli distribution with
a success probability of 0 < p < 1.

II. SYSTEM MODEL
A. Transmission Over a Multipath Channel

We consider a single carrier transmission using a bit-
interleaved coded modulation (BICM) scheme. Let b € F fb

be a binary information packet of length K} bits. A channel
encoder maps b into a codeword ¢ € IE‘KC, with a code rate
R. = K,/ K., which is then interleaved to give a data block
de Ff °. A memoryless mapping ¢ associates d to the symbol
block of length K, denoted x € X K where the constellation
X C C has M elements. The g-word associated to a symbol
is denoted dy, = [d]gk.q(k+1)—1, and w;l(xk) and dy, ; denote
the value of the j bit labelling the k™ symbol zy, i.e. diqy ;-
We assume the constellation has zero mean, and has an average
symbol power of o2, with equiprobable symbols.

For the sake of clarity, only the single user, single input-
single output 7'-spaced (symbol spaced) equalization problem
is considered. The channel is modelled at the base-band
as an equivalent L-tap linear time-varying filter h[k] =
(M r,—1, i —2 ... hg o], k being the time index, and where
pulse shaping and transceiver filters are accounted for.

The signal going through the channel is then affected by
thermal noise wy, at the receiver side, and assuming a perfect
channel state information, ideal time and frequency synchro-
nization and the absence of inter-block interference (IBI),
the base-band received samples are given by:

L—1
Yk = leo Rggxp—; + wg, (M

where K =0,1,..., K+ L—2,and xx, k <0 and k > K are
set to 0. These assumptions can be satisfactorily approached
in practice with the use of a unique-word signalling scheme,
among other options, to jointly enable channel estimation and
the IBI removal. The noise is modelled as wy ~ CN(0,02),
i.e. its real and imaginary parts are real independent zero
mean Gaussian random processes with o2 /2 variance each.
The transmission can be rewritten as:

y=Hx+w, (2)
withy = [yo, ..., Yx+r—2]"s W = [wo, ..., Wktr—2]", x =
[.’IJ_L+1,...,.%'K+L_2]T and H is the (K + L — 1) X (K+

2L — 2) matrix whose k™ row is [01 51, h[k], 01 k4 r—1-%]s
k=1, K+L—1.

B. On MMSE FIR Equalization

FIR structures can be modelled by windowed processes;
applying a sliding window [—N,,, Ng] on the observation vec-
tor y, we define yx = [yk—n,, .., Yr+n,]" . Np and Ny are
respectively the number of pre-cursor and post-cursor samples,
and we denote N £ N, + Ng+ 1, and N, £ N, + L — 1 to
simplify notations. Then, using the same window on w, and
[~ N,, Na] on x, the channel model becomes

yvi = Hyxp + wy, 3)

with Hy, = [H]k—Np:k+Nd, k=N :k+Ng> fork=0,..., K—1.

Below, a generic structure of an unbiased MMSE FIR
receiver is given for comparing different structures and their
dynamics in the remainder of the paper. Prior estimates on x

3 Zfir & [=fir Ahr i Gfir &
with means X = [xk—N;,v ., 2}l ] and variances V' =
e e H H
[UR_ nvs -5 Ui y,] are used for interference cancellation.

Then éenoting its output estimate on x, as =, and the variance



of the residual interference and noise as vy, with

_ fﬁrHy + g‘ fl?r = Eﬁrilhk/gﬁr
k _ 1/§k " szr ggr Y 7ﬁr fhrHHkX (4)

fir & H fir—1
k_hkzk h’

where 2fr 2k, 021y + H,VIFHE, Vir 2 djag(vir),
h, £ Hpe, and k, = 1/2, when signals with one real
degree of freedom are used (e.g. X is BPSK), and otherwise
kw =1 [17]. A proof of these relationships is in Appendix.
Note that igr and Vgr completely characterize such
receivers. When X and v are independent of z, v§, Vk: k,
we call this receiver a LE IC, and when z' and o are

dependent on x}, vy, VE' < k, we refer to it as a DFE-IC.

III. RECEIVER DESIGN WITH EXPECTATION
PROPAGATION

This section focuses on the design of a FIR receiver that
approximates the posterior probability distribution on xj, using
an EP-based message passing on the system factor graph.

A. Factor Graph Model for FIR Receivers

_ The optimal joint MAP receiver satisfies the MAP criterion
b = maxyp, p(bly), where, assuming i.i.d. information bits,
the posterior PDF can be factorized as follows

p(bly) = p(b,d,x|y) o p(y[x) p(x|d) p(d[b) . (5)
—— N ——
channel mapping encoding

This density can be further factorized by usmg

- the memoryless mapping: p(x|d) = Hk 0 (e |dy),

- the independence assumption in BICM encoding:

p(db) = [Ty 120 p(di;).

where p(dy ;) é p(dk,;|b) is a probability mass func-
tion (PMF) which is seen as a Bernoulli-distributed prior
constraint provided by the decoder, from the receiver’s point
of view.

The “channel” factor in (5) creates constraints between the
whole block of received baseband samples and the transmitted
symbols, however to derive a reduced complexity FIR receiver
which estimates x; and dj, the windowed model in (3) is
needed. The FIR approximation posterior is

p (amxk\}%)

o HHNd p(yxlxe)p(zp |di) H

where d, = di-n~, r41:k+n,. Note that working with
p (di.xxly) ~ p(di,xklyx) is not the only option for
estimating zj. Indeed x; can be estimated through inference
on x5, with ¥ = k — Ng,..., k+ NT’,, but by selecting xp,
this option is indirectly translated to the choice of window
parameters, which is a common aspect of FIR equalizers.

A message-passing based decoding algorithm iteratively
estimates the variable nodes (VN) z; and dj ; by using
constraints imposed by factor nodes (FN). Factor nodes are
non proper PDFs for resolving transmission steps. The decoder
FN models BICM encoding constraints with

forc(dr,;) = p(d ), (7)

k_N, p(di 5), (6)

' forc(dg)

di,q—1

) Joem (2, dk)

Lk+Ng

Yk—N, Yk—N,+1 Yk+Ng—2 Yk+Ng

Fig. 1. Factor graph for the posterior PDF (6) on zj and dj.

and the demapper FN incorporates mapping constraints with

Sy — e (@), ®

plarld) = [T,

where 0 is the Dirac delta function. The multipath channel
constraints are modelled within the equalization factor node

fDEM(xk,dk) £

H
fEQU(Xk) A p(yr|xp) < e Yk Hyw/o2 +2R(y+ Hkxk)/o'w )

where the dependence on yj is omitted, as observations are
fixed during the message-passing procedure. Using these nota-
tions, the posterior (6) gives the factor graph shown in Fig. 1.

B. Expectation Propagation Message Passing Framework

EP-based message passing algorithm is an extension of
loopy belief propagation, where VNs are assumed to lie
in the exponential distribution family [38]. Consequently,
the exchanged messages are depicted by tractable distri-
butions, and they allow iterative computation of a fully-
factorized approximation for cumbersome posterior PDFs such
as p(dy,xx|yx). Updates at a FN F connected to variable
nodes v are as follows. Messages exchanged between a VN v;,
the 7 component of v, and factor node F are

(10)

C8Y)

where projg ~ is the Kullback-Leibler projection towards the
probability distribution Q,, of VN v;. The posterior gg(v;) is
an approximation of the marginal of the true posterior p(v)
on v;, obtained by combining the true factor on FN F with
messages from the neighbouring VNs

qr(vi) = /\i fe(v) HW Moy (v;)dv ",

where v\" are VNs without v; [38]. The projection operation
for exponential families is equivalent to moment matching,
which simplifies the computation of messages [30], [38].

In this paper symbol VNs are assumed to lie in the family
of multivariate circularly symmetric Gaussians with diagonal
covariance matrices, making the approximate distributions
fully factorized to independent Gaussians. Hence, a message
on xj will be defined by a mean and a variance. The VNs
dy, ; are considered to follow Bernoulli distributions (which is

mv—»F(Uz’) £ HG;EF mc—w(vz’),

me—y(vi) £ projg, [gr(vi)]/mo—p(vi),

12)
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Fig. 2. Factor nodes shown as an iterative BICM receiver.

included in the exponential family), and their messages can be
described by bit log-likelihood ratios (LLR).

This formalism is very generic and allows the derivation
of many receiver structures. It has been used to derive a
MIMO detector in [32], and a Kalman smoother in [34].
However EP receivers can also be derived without a message
passing formalism, as recently shown for the block [33]
or FIR [36] equalizers. To the authors’ knowledge, message-
passing formalism was not previously used for FIR design, and
it is favoured in this paper because of the available scheduling
options it allows to clearly identify.

C. Derivation of Exchanged Messages

This section details the EP-based message passing
algorithm’s application to the considered factor graph. First,
exchanged messages are defined, and then their characterizing
parameters are explicitly computed. See Fig. 2 for a conven-
tional view of the receiver with these quantities.

The messages arriving on the VN z;, are Gaussians with

13)
(14)

meQu—a (k) o< CN (2, vg),
MpEM—z (2k) o< CN (:ch,vd),
whereas messages arriving on the VN dy, ; are Bernoullis

mpec—d(di,j) < B(pg), mpem—d(dr;) o« B(pg).  (15)

During the message passing procedure, the characteristic para-
meters of these distributions are updated following a selected
schedule. For Bernoulli distributions, it is rather preferable to
work with bit LLRs, rather than the success probability pg:

21, B =00y 1=pa

2 1In
Pld; = 1] Pd

We use L4(+), Le(-) and L(-) operators to denote respectively
a priori, extrinsic and a posteriori LLRs. When applied to
dy.;, this vocabulary represents the receiver’s perspective, i.e.
Lo(dy,j), Le(dy,;) respectively characterize mpgc—q(dy ;)
and mDEM_,d(dk,j).

Finally, considering the factor graph shown on Fig. 1, all
variable nodes are only connected to a pair of distinct factor
nodes. Consequently, using eq. (10), m,—r(vi) = mg—v(v;),
for all VN v;, and FN F, G, F # G they are connected to.

1) Messages From DEC to DEM: In this paper, we assume
DEC is a SISO decoder providing prior information L, (d)
to DEM, whenever it receives extrinsic information L.(d) by
DEM.

The demapper uses these prior LLRs, along with the DEM
FN (8) to compute a prior PMF on zj, = a, Voo € X with

-1 =
Pela) o [T, e (o betteo,

L(d;) (16)

7)

This is a categorical PMF corresponding to the marginal
of foem(%k, dr)ma—pec(dg) on xx [32], used hereafter to
compute approximate marginals gpem (%) and goem(dk, ;).
2) Messages From DEM to EQU: The demapper computes
an approximate posterior on the VN z; using eq. (12) with

qpem(zk) = de Joem(zk, di)me—pem(2k)
q—1
X Hj:O ma—pem(dg, ;). (18)

This is a posterior categorical PMF on the elements x;, of X,
which can be computed using eqs. (13) and (17), which will

be denoted as
Di(a) o exp (—kwlo — 2§ [*/vf) Pr(a), Ya € X. (19)

For computing messages towards EQU, the posterior PMF is
projected into CN through moment matching. The mean and
the variance of Dy, are

pi £ Epfax] =) oDi(a),
i £ Varp, [zx] = ZQGX |a* Dy () — il

When m,_,ppm(xr) o< 1, i.e. when there is no information
from the EQU node (equivalent to z7 = 0 and vy = +o00),
Dy, = Pr, and we denote the prior mean and variances as

(20)

o £ Ep, [x1], vl £ Varp, [z;]. 2D

Note that these values are used as soft feedback in conven-
tional turbo equalization.

Then in order to calculate mppm—z(2x) as in (11),
a Gaussian division [30] is implemented

d,.e e d e d
vé — v

xl = w7 and, v = ek'yk . (22)
Vi~ Yk YUk — Tk

This is the major novelty in using EP: the computation of
an extrinsic feedback from the demapper to the equalizer.
Attempting this with categorical distributions, as in BP, would
completely remove m,_.pem(zr), and the extrinsic “feed-
back” to EQU would simply be the prior PMF Py [32], which
would yield a receiver equivalent to LE-IC [19].

EP message passing algorithm consists in minimizing global
divergence through iterative minimization of simpler local
divergences. Thus, it might lock on undesirable fixed points,
and a damping heuristic, as recommended in [38, eq. (17)],
is used to improve accuracy

-1
o = (1= B) i + B/
d(prev)

d(nex d(nex ), x
xk( V= ”k( v [(1 - ﬁ)?]: +0 Z(Prev)
k V.

} » (23)

where 0 < 3 < 1 configures the damping, and its effectiveness
has been verified in [36].

3) Messages From EQU to DEM: The equalizer computes
an approximate posterior on the VN z; using eq. (12) with

k+Ng i
gequ(@k) = /\k fEQU(Xk)Hk,:k,N, Ma—pqu(wr )dx,".
X, P

) (24)



The integrand of the equation above is a multivariate Gaussian
distribution CA/ (u°,T'®), hence, using eq. (9), its covariance
and mean satisfy
Iy = (Vi 4o, HiHy) ™,
pi = To(ViT'x + 0, "Hylye), (25)

where V¢ = diag(v{), with v = [U]‘LNI,J, vy ] and

xg = [zf_ni,... 2, y,]. Using some matrix algebra, and
.I) . < .

Woodbury’s identity on I'®, the mean p, and the variance ~;,

of the marginalized PDF ¢gqu (k) are given by
Ve = ekH kek = Uz‘f( thzd_lhk)
with 3¢ = k,02In + HngHkH. Message to the demapper
is then extracted with the Gaussian density division in eq. (11)
e,d d, e _ ~eqnd
v = V% -, and, zj = 70’“#5 %zxk. (27)
~ Tk Ve = Tk

Developing these yields a FIR expressmn as in (4) with X _ep

d d
[z Ny Sady ) and VP £ vl vk+N]forIC
4) Messages From DEM to DEC: The demapper computes
an approximate posterior on the VN dj, ; using eq. (12) with
- Zwk ex

fDEM(xlm dls)mgc—DEM(xk)

q—1
x [1,_, ma—pew(de;)- 28)

4DEM (dk)

As bit LLRs are used to represent messages to DEC, this
distribution is marginalized on dj o, ..., dk q—1 [32], and the
division in eq. (11) is directly carried out with LLRs

Le(dr;) =T > Di(a) —In Y Di(a) — La(d ),

0 1
aEXj anj

(29)

with A = {a € X' <pJ (x) = p} where p € Fs.

D. Proposed Self-Iterated DFE-IC EP Receiver

A factor graph (sec. III-A) and messages exchanged over
it (sec. III-C) are necessary to derive a receiver algorithm,
but may be insufficient when considering a graph with cycles.
Indeed, specifying a scheduling for the update of VNs and
FNs is also required.

In this paper, a serial scheduling across variable nodes xj
is considered. In detail, when EQU updates a VN zy, factor
node DEM is immediately activated in order to provide its
own extrinsic estimation of xj, jointly using prior information
from the decoder and the equalizer’s extrinsic output. This
results in a DFE-IC structure, using a novel kind of soft
feedback, unlike any hard or soft APP feedback previously
used in the literature [19]-[21], [23]-[27]. Moreover, when
detection across the whole block is completed, this serial
scheduling can be repeated by keeping the previously updated
DEM messages, yielding a self-iterated DFE-IC EP structure.

To clarify the dynamics of the proposed receiver,
7=0,...,7 denotes turbo iterations (TI), i.e. exchanges
between the DEM and DEC factor nodes. Each TI consists

of s = 0,...,8, self-iterations (SI) (may vary with ),
i.e. exchanges between EQU and DEM factor nodes, which
sequentially updates the whole block x. In the following,
EQU < DEM messages derived previously are appended a
superscript (s), but 7 is omitted for readability.

Algorithm 1 Proposed Self-Iterated DFE-IC EP Receiver
Input y, H, 0
1: Initialize decoder with L (dg) = 0, Vk.
2: for r=0to 7 do
3 Yk = 0,...,K — 1, use LY(d) to compute P(T)
with (17), and set (xz(o) v:(o)) — (2f,v}) using (21).

4. for s=0to S, do

5: for k=0to K —1do

6: Equalize using (27) and get (2", v¢).

7: Use (19)-(20) to update D,(C st ), and generate EP
feedback (27T T with (22)-(23).

8: If v d(SJrl) S 0, then (xz(s+1)7vg(s+l)) — (,uz,'yg)
and store k in the set Ie(;? )

9: end for

100 Yk eI, (@D ol )y (g0 ),

11:  end for

12:  Compute LgT)(dk) using D,(CT’S’) with (29), Vk, and
provide them to the decoder, to obtain LSLTH)(dk), Vk.
13: end for

The proposed scheduling, given in Algorithm 1, generates
an EP FIR receiver which uses the following means and
variances for interference cancellation

—dfe- d(s+1 d(s+1 d(s d(s T
Xkeep(s)é[ k( N/)7~~~axk(,1 )7‘Tk()7"' k(+3vd] )
gdfeep(s) 2 [UZ(_SJ':};),...,vi&?l),vz(s),..., vl )T, (30)

for k = 0,..., K — 1. This layout shows that this structure
indeed follows a time-varying DFE-IC evolution, with anti-
causal symbols using demapper’s output from the previous
self-iteration, and causal symbols using current EP feedback
from the demapper. The extrinsic feedback from the demapper
is obtained by using jointly the prior information from the
previous TI, and the past equalizer outputs of the current and
previous self iterations (see (19)-(23)). The Algorithm 1 also
incorporates a mechanism to deal with EP-based feedback’s
infamous negative variances [32], [33], with the set Ze(é) which
stores their indexes. These values are replaced with APP-based
variances in the current SI, and then replaced again with their
previous values for the next SI.

Although equation (4) is useful for FIR analysis, causal
and anti-causal feedback of DFE-IC should be separated
in practice. Using
(€3]

E¢ = [In;, Ony N 41), E* = [On,41,37, Ing 1],

we define HS = H,E? and H2 = H,E?*”, to respectively
operate on )_(k( ) — E‘t_dfe “P(%) and )‘(Z(s) = Eaizfe'ep(s), as a
generalized interference cancellation scheme. The SI DFE-IC
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Fig. 3. TV DFE-IC EP (dashed) / APP (no dashed) structure.

EP of (30), is rewritten as:

250) = 5a) | g0y e Hgels) _ gals)gals)
oel®) = 1 gdleen(s) _ o), (32)
with £ = mdfeep(s) 1y edieen(s) o) _ perg and

gz(s) = Haka,gs). When S, = 0, the proposed receiver is a
strict TV DFE-IC EP, with -{¢™") = .4 and .4 = 2 thig
case is shown on Fig. 3 with the dashed module.

In conclusion, we have applied message passing framework
of EP for equalization, using sliding window observations.
This results in a novel message computation given by (22)-(23)
and (27), unlike blockwise messages in [32] and [33]. More-
over, by using an hybrid serial/parallel schedule, our structure
operates as a self-iterated DFE-IC, unlike the self-iterated
LE-IC scheme concurrently developed in [36]. In the follow-
ing, a matrix inversion strategy reducing the computational
complexity difference between DFE-IC and LE-IC is intro-
duced.

IV. MATRIX INVERSION FOR TIME-VARYING SLIDING
WINDOW TURBO EQUALIZERS

A. Shortcomings of Existing Approaches

Time-varying FIR as in (4) have excessive computational
costs due to symbol-wise filter updates, requiring recursive
matrix inversion methods. This section overviews the problem
of computing fj, = Zglhk, for k=0,..., K — 1 efficiently.

In [10], Tiichler et al. propose for LE-IC, a recursive matrix
inversion algorithm, based on common submatrices between
successive inverses. The procedure requires computing an
initial inverse (Gauss-Jordan inversion) with a complexity
order? of 4N3/3, but further recursions’ complexity is 2N2.

Practical implementations avoid inversion by solving the
system X fi, = hy for f;, with triangular factorizations [39],
using forward/backward substitutions. This approach is even
more advantageous in equalization where the system is sparse.

In this paper, we propose a novel recursive inversion strategy
for LE-IC and DFE-IC, based on an initial Cholesky decom-
position, and followed by sparse rank-1 updates/downdates of
the factors for following inversions. Unlike [39], our algorithm
is able to deal with channel matrices evolving in time, making
it more efficient for turbo TV FIR. For LE-IC the complexity
order is of N2, hence roughly 50% less complex than [10].

2“Order” means asymptotic expansion as N — oo, assuming N oc 3L,
i.e. sliding window operating on 4L symbols.

B. Cholesky Factor Update for MMSE LE-IC

We consider a LE-IC with priors variances vy, let Ly_; be
the lower triangular Cholesky decomposition of the covariance
matrix X_1, i.e. L;c,lLkH_1 = 3;_1. Algorithm 2 uses L
and the latest values v, and ekH+ Nde (new row with
h[k + Ng4|) appended to the sliding window, to compute Ly.
Impact of latest generated value is appended to the decomposi-
tion using 1{{2 and /52, then past data is removed. The resulting
updated Cholesky decomposition is a rank-1 update [40]
of Lo, defined within algorithm 2.

Algorithm 2 Cholesky Update Algorithm for LE-IC.
IHPUt Lk—la 0-121)3 ﬁk—}—Nd 5 Hk—l) Hk7 Vk—l
Output L,
1: {Add a row and a column}
t [hag hog] < [0, e, v, Hil
W Hp_1Vi_1hyy
: 112 — L]:_IIW

Bow oo

W

2 log — \/hlkHvk—lhlk + Ty vyl howl? — i lyg + 02
6: {Build augmented matrix and remove row & column}
N [ X 017N} _ |:Lk—1 0N,1:|
" 121 La2 L™ loo
8: {Rank-1 update L LI = LaaLaa™ + 121151}
9: for [ =1 to N do
10: 7 [L22]12,z + [[l21]1]?, ¢ %, s
11: [Lagling < c[Lazling + s[lai]in
122 [laa]in — clai]i:n — s*[Laz2]iny
13: end for
14: Ly < Las

o [al;
T

These steps, followed by forward/backward substitutions
fr = L,;H Lglhk, allow low complexity filter computation.

C. Cholesky Factor Update for MMSE DFE-IC

In the case of DFE-IC, the diagonal of the covariance matrix
VU is composed of two independently sliding parts: one for
causal symbols v}, between symbols k—NZ’, and k—1, the other
for anti-causal ¥}, between symbols k and k+ Ng. The LE-IC
update procedure above handles the addition of vy, 5 ~and
the removal of of,_,, _;, but the change in (k — 1)™ symbol
remains to be updatepd.

Algorithm 3 gives a such update procedure for DFE-IC,
by applying either a rank-1 update or downdate on Ly,
the Cholesky factor who has already been updated by
algorithm 2, depending on the sign of ¥;_; — ¥j_;. Such
updates are carried out using Givens plane rotations [40].

D. Computational Complexity Analysis

The computational complexity of the proposed algorithm
is evaluated with the number of required multiply and accu-
mulate units, estimated by the number of real additions and
multiplications, amounting to half a floating point operation
(0.5 FLOPs) each.

FLOP count ratios between different FIR implementations
are plotted in Fig. 4, depending on the channel spread, with



Algorithm 3 Cholesky Update Algorithm for DFE-IC.
Input Ly, o¢_,, 05, [Hy]. -1

Output L,

Lw—/|og_ — v |[Hil:

2: for [ = N, to N do

3. if vf_, <v}_, then

4: {Rank-1 downdate LkL,IC_I = I:EIN;kH —wwil}
5 [Ealfy — lIwlif2, ¢ o Bt s - B
6: (L) < c[Lilung — s[wlin

7. else if v;_, > v;_, then

8: {Rank-1 update L,LT = Lka +wwll}

o re JIEJE w2 e o Bk B
10: [Liling — c[Liling + s[w]in

11:  end if .

12: Wiy < oWy — s [Li]in

13: end for

14: L, «— L
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Fig. 4. Complexity comparison of LE-IC and DFE-IC with proposed matrix
inversion algorithm.

a block length K = 2048 and a FIR window given by N =
3L + 2, Ny = 2L. The blue dashed curves show the FLOP
count ratio of a LE-IC using our strategy relative to using the
algorithm in [10], for different constellation orders. Up to 50%
saving is observed as channel spread increases.

DFE-IC FLOP count is compared to LE-IC, both using
the proposed inversion strategies, with red solid lines. This
ratio is high for a low number channel taps, but decreases
to 7% as L increases, more or less quickly depending on
the modulation order M. Finally, MAP detector is seen to
be an interesting alternative to FIR receivers for BPSK/QPSK
signalling, in channels with very short channel spreads.

V. COMPARISON WITH THE PRIOR WORK ON
TIME-VARYING DFE-IC STRUCTURES

In this section, the DFE-IC based on EP feedback, proposed
in section III-D, in its canonical form without self-iterations

(S = 0) and without damping is compared to alternative
state-of-the-art TV DFE-IC structures.

First, to provide a fair performance comparison with alter-
natives, existing suboptimal DFE-IC schemes [19], [21], [24]
are extended to time-varying structures using soft posterior
feedback. Next, analytical and asymptotic analysis, and Monte
Carlo simulations show the superiority of DFE-IC based on
EP relative to LE-IC, classical DFE and concurrent DFE-IC
structures.

A. On the TV DFE-IC Based on Bayesian Estimators

References on time-varying DFE-IC with soft feedback
are limited. Hence, here existing methods are generalized
and improved before comparison, thanks to our framework,
in order to provide a fair comparison. Until EP, soft posterior
feedback was the only imperfect feedback with a reasonable
complexity in the literature, applicable to any constellation.
Nevertheless, it is not possible to derive a structure using such
feedback within the conventional BP formalism, but here its
usage is justified with Bayesian inference.

One can consider the equalization problem within a
Bayesian framework, where a particular realization of a
random data symbol is estimated. For instance, the con-
ventional MMSE linear turbo receiver [10] is also the
MAP estimator, if priors are forced to lie in the family
of Gaussian distributions [9]. Hence this equalizer is the
unbiased Bayesian estimator Eg%[:rk\yk, H,|, where the joint
prior distribution L (xy) o< l+kNdN, CN (], vl) is used.
However, in Bayesian estimation theory, the mean square error
can be further reduced, using a sequential MMSE estima-
tor, which improves its posterior with previously estimated
data ([41, Sect. 12.6]). Following this idea, we propose the
improved estimator |E A#xﬂyk, Hy], based on the joint pos-
terior Ay (xx) o NN (2 0P TTES N CN (i, i),
where p¢ and 4 are glven by (20). In the followmg, we derive
a posterior feedback based DFE-IC using this estimator for IC,
with model (4).

1) Exact TV DFE-IC With APP Feedback: This equalizer is
a generalization of invariant schemes in [23] and [24] to TV
structures. It is derived by using the joint posterior Ay (xy)
with the model (4), derived in the Appendix. The resulting
APP FIR structure, is fully defined by

—app d P P T
k [l’l’k N’ "'7uk—17vk7"'7xk+Nd]
—app_ d p P T
T = )T B3)

This structure will be referred as DFE-IC APP in the
remainder of this paper, and illustrated in Fig. 3 without the
dashed module.

2) TV DFE-IC With Perfect APP Feedback: Here we pro-
pose to generalize [19], [26] to APP feedback, with perfect
decision hypothesis. This imposes decision covariances to 0,
focusing the MMSE filter design to only mitigate anti-causal
symbol interference. However, its use of hard feedback, i.e.
argmax, Dy (a), was shown to be seriously prone to error
propagation [19]. While [26] showed improvements with soft
posterior feedback on non-turbo, invariant structures, here,
we extend this case to time-varying turbo structures.



This case named DFE-IC PAPP, differs from the DFE-IC
APP with the variance estimates:

—papp __ —app
X =X

[V SOPR AN (34)

3) Hybrid TV DFE-IC With APP Feedback: This struc-
ture is an extension of the TV structure from [21] to APP
feedback. In [21], the DFE-IC with perfect hard decisions
from [19] is improved by adding an estimate of the decision
error to the equalizer output variance vi. This quantity is
given by Varp, [g¢ ([x — ,ud]k_NI/):k_l)}, using (19). More-
over, this structure checks whether this variance causes sign
changes in extrinsic LLRs, and sets ambiguous LLRs to zero.

This receiver is extended to use APP soft feedback, instead
of hard decisions, and denoted DFE-IC HAPP.

SPaPP __
Vi =

B. Analytic Comparison of DFE-IC vs. LE-IC

This paragraph semi-analytically assesses the behaviour of a
DFE-IC relative to a LE-IC to underline the interest in jointly
using decision feedback and prior information for IC.

In fact, LE-IC operating with priors (Zj,vx) provides a
lower bound for the achievable information rate of a DFE-IC
structure using the same prior information for its anti-causal
symbols (7%,0%) = (Zy,0k), alongside decision feedback
estimates (75, 05) (see (32)). By exploiting the structural
similarities between DFE-IC and LE-IC, the causal feedback’s
impact is reflected on a ratio of post-equalization SNR?

e e(le e ele

CSNRSE o2 B[R] g1 35)
SNRl)eut E[vz(dfe)} 0925 gle 1— @gdfe

where v = E[vy] and X = E[¢§¥], where XX is “le”

or “dfe”. This gain is greater than unity iff ¢4 > ¢l
or equivalently iff E[VI — V4] js positive semi-definite.
Hence having © > ©¢, ¢ = E[v] for DFE-IC is required for
achieving improvements. Based on empirical and experimental
evidence not presented here, the conjecture P[of > 7] < 0.5
has been verified over a wide range of input SNRs, and for
random constellations, for v} = v,‘ﬁ (DFE-IC EP) and for
v§ = 7! (DFE-IC APP). This ensures v > 9¢ and thus, LE-IC
output SNR is a lower bound on DFE-IC EP/APP, as possible
detection degradations are small.

G is plotted in Fig. 5, with N = 17, Ny = 10 and 02 = 1
for the static Proakis-C channel, h = [1,2,3,2,1]/1/19; when
decisions are more reliable than priors, GG increases, otherwise
DFE-IC brings small improvements. When v* — 1, there is
no prior information, and decisions bring a significant gain.
Oppositely, when 9% — 0, prior information is already close
to the ideal, and DFE-IC cannot improve further. This indicates
boosted performance at initial turbo-iterations.

C. Asymptotic Analysis and Performance Prediction

To assess the full potential of DFE-IC, asymptotic analysis
is used to evaluate its achievable rates. Extrinsic information

3SNRXX = o2 /E[vZ(XX>] is the post-equalization SNR, where XX is “dfe”
or “le”, (see (4) for vf). Superscript “le” refers to the use of (Zy, vy, for IC,
and “dfe” refers to the use of (Zj,,v}) and (z{,,v5) for IC, as in (32).
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N ‘\, v ) S
L5 o > <~ 7
0.5 ..“\XE_V 'O:: 5
~ ’V’ ‘/ i - V - N
0 v £ & 3 v
0 0.2 0.4 0.6 0.8

Decision Feedback Reliability v¢

Fig. 5. Post-equalization SNR ratio G depending on channel SNR 0wl
prior reliability v* and “decision” reliability v°.
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Fig. 6. EXIT curves and average MI trajectories of FIR equalizers with

BPSK in Proakis C channel at E},/Ng = 7dB.

transfer (EXIT) analysis [42] of a SISO module is used as a
tool for characterizing its asymptotic limits, by tracking extrin-
sic mutual information (MI) exchanges between the iterative
components. Essentially, a SISO receiver can be characterized
by a simple transfer function I = Tg(1a, H,02), where I4
and /g are the MI between coded bits and respectively its
input prior LLRs and output extrinsic LLRs, and o2 and H
show its dependence on the channel and the received SNR.
In Fig. 6, transfer curves 75 are plotted in solid lines for
considered receivers along with the reverse transfer 7, * of the
BCJR decoder of a recursive systematic convolutional (RSC)
code. DFE-IC APP yields a higher Ip than LE-IC for all
1 4, unsurprisingly given the posterior feedback, and there is
little difference with DFE-IC EP, which has slightly lower
rates at low prior information. In particular, the improvement
at 4 = 0 lets us conjecture a lower waterfall threshold
in BPSK, and the higher slope of the 7z curve at low 4
hints an improved convergence speed across turbo iterations.



e
o
T

o
%
T

o
N
T

S
=N
T

@*++

05 ¢ =it

’ ’ J;‘_/ Turbo Rate U.B.

04 4 QI-* # | = = = Non-Iterative Rate ||
: b’qﬂ- # |—e—niap

03 o? JF | ——LEIC 0

—»— DFE-IC APP
—O— DFE-IC EP i
—#— Classical DFE [16]

Achievable Information Rate (bits/s/Hz)

o
[}

01 e L L L L I
0 2 4 6 8 10 12 14 16 18 20
E;/Ny (dB)
Fig. 7. Achievable spectral efficiency on deterministic Proakis C channel
with BPSK.

Another use of EXIT analysis is performance prediction,
however this involves strong assumptions on prior inputs that
often cannot be met for FIR turbo equalizers in practice.
Hence, EXIT curves only provide an upper-bound on infor-
mation rate for receivers other than MAP. In this respect, it is
then interesting to compare transfer curves, with actual MI
trajectories (in dashed lines in Fig. 6).

It had been noted in [19], that trajectories of DFE-IC
with hard, “perfect” decision assumption do not follow EXIT
curves; this issue remains with DFE-IC PAPP, although less
severely, indicating that the “perfect decisions” assumption
causes a severe information loss. Other FIRs’ trajectories
overall follow receiver and decoder curves and reach MFB, but
after a few iterations, they no longer make contact with transfer
curves, losing convergence speed. This is a common disad-
vantage of FIR equalizers, attributed to short cycles caused by
neighbouring symbol correlations, as shown in [19, Fig. 16].
However note that among DFE-IC receiver, EP feedback yields
trajectories that remains closest to EXIT curves, making it
easier to predict.

The achievable spectral efficiency for a given receiver can
be measured with the help of the area theorem for EXIT
charts [43]. In Fig. 7, achievable rates for BPSK constellation
are plotted. Note that for MAP receivers, this rate is an
accurate approximation of the channel symmetric information
rate (SIR) [44]. As non-iterative FIR do not depend on prior
inputs, their achievable rates are also accurately computed.
For turbo FIR, upper bounds are obtained by combining results
of area theorem with the channel SIR. Tightness of this bound
depend on the closeness of true MI trajectories to EXIT charts
in Fig. 6, so APP feedback’s asymptotic performance is likely
to be overestimated compared to EP feedback.

D. Finite-Length Comparison With Existing Schemes

Monte Carlo integration remains the most reliable analysis
approach joint detection of BPSK symbols is considered
with parameters in section V-B, and K, = 2048, coded

with a terminated [7,5]s RSC code. Bit error rate (BER)
of various receivers are plotted in Fig. 8. For the reported
iterations, the DFE-IC APP outperforms other APP feedback
DFE structures, and their convergence speeds are compared
on the right side of the figure, at a block error rate (BLER)
of 1072, EP-based feedback provides further improvement of
the threshold by 0.5 dB relative to APP, and it is shown
to reach MFB limit within 7 iterations, earlier than DFE-IC
APP.

Assessing DFE-IC performance at low spectral efficiency
conditions, as above, is of interest, to remedy the poor behav-
iour of classical DFE at those operating points (see Fig. 7).
Indeed, turbo processing helps DFE structures to outperform
LE at all rates. A higher spectral efficiency case is plotted
on the left side of the Fig. 9, with 8-PSK constellation
in the same configuration; DFE-IC APP is shown to improve
LE-IC waterfall threshold by 2dB, DFE-IC EP asymptotically
provides an additional 1.2dB. On the right side of the Fig. 9,
16-QAM is considered; showing that DFE-IC EP provides
further performance enhancements for one or more iterations.

Finally, the coded performance of DFE-IC is balanced with
complexity considerations. In Fig. 10, the receiver computa-
tional complexity (FLOPs per symbol) required to decode with
a BLER of 1072 is plotted as a function of Fj, /Ny. These
values are computed, assuming the use of the proposed matrix
inversion algorithm in section IV, and by accounting for the
equalization, the demapping and the decoding costs. A curve
represents the evolution of BLER and the computational costs
of a receiver accross turbo iterations.

DFE-IC provides a better trade-off than LE-IC; at any
given complexity, it is more efficient, especially at initial
iterations, and the asymptotic £j/Ny gap between LE-IC and
DFE-IC increases with the modulation order M. The use of
EP feedback is more advantageous at higher iterations, for
higher order constellations, while APP is more efficient for
non-iterative receivers.

In conclusion, DFE-IC outperforms LE-IC in various
aspects: it converges faster towards MFB, has a lower decoding
threshold than LE-IC, especially at higher spectral efficiencies.
Among DFE-IC with APP feedback, exact derivation DFE-IC
APP is superior according to both finite-length and asymptotic
analysis. Although EXIT charts show little difference between
DFE-IC EP and APP, in practical simulations EP feedback
tends to outperform APP. This is justified by the tightness
of EP MI trajectories to EXIT curves; APP is overestimated.
Although it DFE-IC EP appears to be able to reach channel
SIR at low to medium spectral efficiencies, there is still a gap
to MAP performance.

In the following, the use of self-iterations will be assessed
to further improve performances.

VI. COMPARISON WITH THE PRIOR WORK ON
SELF-ITERATED EP STRUCTURES

Some recent EP-based receivers [32], [33], [35]-[37] have
observed remarkable performance improvements in repeat-
ing the detection process in a parallel schedule through
self-iterations. As the demapping process is computationally
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Fig. 9. BER performance of the proposed DFE-IC in Proakis-C with 8-PSK and 16-QAM constellations.
less intensive than channel decoding, such structures are of
. . . . . . 6
practical interest. In this section, the benefits in using a self- 10 ‘ MAP‘
¥terate.d DFE-IC EP compared to structures in prior work is 3 — LEIC
investigated. l —%— DFE-IC APP
Independently of our work, an EP-based FIR structure Z 10’k © gggl‘gc EP ]
. . . . . I
is derived in the concomitant work [36]. Unlike the mes- & - = =8 PSK
sage passing formalism used in section III, structure in [36] g
is obtained by approximating a self-iterated block receiver, g 0l
derived by EP-based approximation of the posterior PDF (5). &
The resulting FIR structure uses a parallel schedule, and cor- S
responds to a LE-IC within each SI. Using our formalism, it is <,
equivalent to updating all VNs x;, with messages from EQU E 1o 1 1
sequentially, and only then activating DEM to update posterior £ Matched Filter Bound
approximations. This process is iterated with DEM sending S
k an extrinsic m E nd finally DEM com 10° = ‘ : : ‘
back an extrinsic message to EQU, and finally computes s 0 s 0 3 0 35

messages towards DEC. In the following, the structure denoted
as “EP-F” in [36], is refered as a self-iterated LE-IC (SI
LE-IC), with following mean and variances used for IC

ReP(®) = 200, L2l 1T,
e = Wi, ol (36)

Ey/Ny (dB) required for BLER=10"2

Fig. 10. Performance complexity trade-off in Proakis C.

If the computations of messages on EQU is carried out only
once (S; = 0), this receiver yields the same result as the
conventional turbo LE-IC [10].
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A. Asymptotic Comparison

First, we look into the achievable rates of SI LE-IC and
DEFE-IC EP to identify operating points where self-iterations
have an advantage.

We consider 8-PSK signalling on the Proakis-C channel, and
use the area theorem to obtain an upper bound on asymptotic
achievable rates (i.e. 7 — 00), plotted on the left side
of Fig. 11. Information rates of the optimal MAP detector,
LE-IC and DFE-IC EP without SI, and SI LE-IC and SI
DFE-IC are considered. For self-iterated receivers, a static
damping with § = 0.6 is used. Numerical results show that
SI is not required for LE-IC up to 0.75 bits/s/Hz (i.e. using
a code rate less than 1/4), as LE-IC is close to the SIR,
whereas DFE-IC EP continues to follow MAP rates up to
1 bit/s/Hz (up to a code rate of 1/3). On the other hand,
when using 5 self-iterations, DFE-IC EP follows MAP rates
within 0.5 dB up to 2.25 bits/s/Hz, while LE-IC follows up to
1.85 bits/s/Hz. It is also interesting to note that DFE-IC EP
with 2 SI outperforms LE-IC with 5 SI, at all rates, indicat-
ing at faster convergence of DFE-IC EP towards asymptotic
limits.

At the right side of Fig. 11, non-turbo iterative achievable
rates of these receivers, and those of the classical DFE [16], are
compared. These rates are accurate, and not an upper bound,
unlike asymptotic rates, and note that MAP detector is a mere
maximum likelihood (ML) detector in this case. Although self-
iterations significantly improve LE-IC performance, at rates
above 2.75 bits/s/Hz, classical DFE still outperforms these
receivers. DFE-IC EP on the other hand outperforms alter-
native FIRs at any given self iteration.

Note that the gap to capacity still remains significant for
non turbo iterative rates, and to some extent, for asymptotic
rates. Hence with the objective of deriving capacity achieving
practical receivers in mind, future work should explore the
usage of the proposed DFE-IC EP as a constituent element for
bidirectional DFE [20] or for concatenated FIR [22] receivers.

B. Finite-Length Comparison

In this section, numerical finite-length results complete the
previous analysis. In addition to receivers above, the self-
iterated block linear receiver (SI BLE-IC), denoted nuBEP
in [36], is considered. Without self-iterations, this receiver
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Fig. 13. Performance complexity trade-off for self-iterations in LDPC coded
Proakis C.

is equivalent to turbo block LE-IC [45], and it outperforms
the self-iterated block receiver and Kalman smoother in [33]
and [35]. SI BLE-IC provides a lower bound to the BER
performance of SI LE-IC.

A low density parity check (LDPC) coded 16-QAM trans-
missions over the Proakis C channel, with rate 1/2 and
3/4 encoding of K;, = 2048 bits (Fig. 12). The proposed SI
DFE-IC EP uses respectively 3 = min(0.5, 1-¢”/2/10) and
B = min(0.1,1 — e7/1%/10) for damping, in these two cases,
whereas the optimized damping reported in [36] is kept for SI
BLE-IC and SI LE-IC. The LDPC codes are obtained by path
edge growth method, and a BP decoder up to a 100 iterations
is used. The low rate case, with (3,6) regular LDPC, shows
that while all self-iterated receivers reach the same asymptotic
performance as S, increases, DFE-IC converges much faster
at intermediary iterations. On the other hand, at the high rate
configuration, with (3,12) regular LDPC, DFE-IC is strictly
superior to LE-IC, even without self-iterations. Asymptotically
even the exact SI BLE-IC is 3.8 dB behind the proposed SI
DFE-IC.

These numerical performance results are completed with
computational complexity considerations in Fig. 13, where
decoding threshold for BLER = 1072 is evaluated for 7 =
0,...,5, for each receiver. In the medium rate (2 bits/s/Hz:
16-QAM with rate 1/2 code) case the three considered
receivers converges to the same asymptotic limit near 17 dB,
but DFE-IC offers lower complexity at intermediary iterations.
At 3 bits/s/Hz configuration (16-QAM with rate 3/4 code),
with 5 TI and 3 SI, DFE-IC requires 3 dB less energy,
and 3 times less computational resources than BLE-IC. With
7 = s = 0, LE-IC is unable to decode, BLE-IC decodes
around 39 dB, and DFE-IC decodes with 13 dB less energy.

These numerical results confirms conclusions drawn by the
asymptotic analysis; the proposed SI DFE-IC is of a significant
interest for high data rate applications where linear structures
are less efficient. Using the efficient implementation method
of section IV, DFE-IC outperforms prior work in terms of both
complexity and performance.

VII. CONCLUSION

This paper investigates on the use of decision feedback
with turbo equalization, for improving the limitations of linear
equalizers for high data rate applications.

Turbo DFE structures in the literature consist in either
using hard feedback with symbol-wise adaptive filters, or soft
posterior feedback with symbol-wise invariant filters. The for-
mer perform poorly at low spectral efficiency, and require
complex mechanisms to improve this issue, whereas the latter
are outperformed even by the conventional TV LE-IC. Both
schemes are extended to time-variant soft feedback structures
in this paper, with different filter computation hypotheses.
We show that an exact approach justified with sequential
Bayesian MMSE estimators (DFE-IC APP) outperforms other
APP feedback alternatives.

However, due to the use of posterior estimates, this structure
does not fit within the turbo principle which requires the
exchange of extrinsic information. Consequently, we focus our
discourse on the derivation of FIR DFE within the expectation
propagation framework, which allows the computation of a
novel type of extrinsic feedback from the demapper to the
equalizer. Building upon the emerging trend on self-iterated
EP-based equalizers, the proposed DFE-IC can be self-iterated
to further improve performances.

Thanks to finite-length and asymptotic analysis, DFE-IC EP,
with SI or not, is shown to set new upper limits in achievable
performance among FIR turbo receivers. At high data rates,
even exact self-iterated block linear receivers fall over 3 dB
behind the proposal.

Finally, the gap of achievable rates by turbo DFE-IC to the
channel capacity remains still significant at very high spectral
efficiencies. Bidirectional extension of TV DFE-EP should be
explored to try to close this gap.

APPENDIX
DERIVATION OF MMSE FIR WiTH IC

In this appendix, FIR equalization with interference cancel-
lation is derived by minimizing the Bayesian MMSE criterion
J = Ea.[lzx — x¢|?), where z¢ = f{Tyy + g, is the
equalized linear estimate, and A; is a joint multivariate
Gaussian prior distribution on x;, defined with means 22’ and
variances Vi (see sec. II-B). E 4, -] and Cov 4, -] respectively
denote the expectation and the covariance with respect to
distribution Ay. Solution to this is given by E 4, [zx |y, Hg),
i.e. the symbol mean with respect to p.a, (zx|yx, Hg). This
distribution is the marginalization of the conjugate Gaussian
posterior pa, (xi|yx, Hy), i.e. of likelihood p(y|xx, Hy) and
prior Aj. Hence, z¢ is deduced by multiplying the MMSE
estimator of xj, [41] by eg:

f; = el Cov., [yr, xx|(Var, [yi]) 7, (37)
g1 = el Ea, [xi] — £, E4, [y, (38)

by developing expectations above with prior statistics, it holds

fi = ophy (371 (39)
gk =7k — XY, (40)



with Eﬁr = kwaﬁ,IN + HngerH and Vgr = diag(vzr).
This receiver is biased, as its MMSE estimators’ nature:

Ea, [ loe = 2] = (1 - 0 &)3) + 0y,

with &1 = hfT 2"~ h;,. Removing additive and multiplicative
biases with x§ = (z¢/ — (1 — ofirghn)ziir) /(plrehn) yields the
estimator given in (4), which completes the proof.
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