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Iterative Equalization With Decision Feedback

Based on Expectation Propagation

Serdar Şahin , Antonio Maria Cipriano , Charly Poulliat , and Marie-Laure Boucheret

Abstract— This paper investigates the design and analysis of
minimum mean square error (MMSE) turbo decision feedback
equalization (DFE), with expectation propagation (EP), for single
carrier modulations. Classical non iterative DFE structures have
substantial advantages at high-data rates, even compared with
turbo linear equalizers-interference cancellers (LE-IC), hence
making turbo DFE-IC schemes an attractive solution. In this
paper, we derive an iterative DFE-IC, capitalizing on the use of
soft feedback based on expectation propagation, along with the
use of prior information for improved filtering and interference
cancellation. This turbo iterative DFE-IC significantly outper-
forms turbo LE-IC, especially at high-spectral efficiency and
also exhibits performance improvements over existing DFE-IC
variants. The proposed scheme can also be self-iterated, as done
in the recent trend on EP-based equalizers, and it is shown to be
an attractive alternative to linear self-iterated receivers. For time-
varying (TV) filter equalizers, an efficient matrix inversion
scheme is also proposed, considerably reducing the computational
complexity relative to existing methods. Using finite-length and
asymptotic analysis on a severely selective channel, the proposed
DFE-IC is shown to achieve higher rates than known alternatives,
with better waterfall thresholds and faster convergence, while
keeping a similar computational complexity.

Index Terms— Interference cancellation, turbo equalization,
decision feedback equalizers, expectation propagation.

I. INTRODUCTION

COMMUNICATION systems operating on wide-band

channels suffer from inter-symbol interference (ISI),

which can be mitigated with an appropriate transceiver design.
In particular, for wireless systems where the throughput
requirements increase at each new generation, more effective
receivers are needed in order to maintain robust data links.

With the discovery of turbo-codes, iterative processing
principles were extended to joint detection and decoding tech-
niques via soft-input soft-output (SISO) receivers which use
prior information provided by the channel decoder, to further
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reduce detection errors. Although early turbo equalization

techniques, such as maximum a posteriori (MAP) detector

using BCJR estimation [1]–[3], can operate near the channel

capacity with properly designed coding schemes, their oper-

ational complexity significantly increases for large channel

delay spread or with high modulation orders. Consequently,

finite impulse response (FIR) filter-based turbo equalizers with

lowered computational complexity have been proposed. These

structures can be categorized into three groups with regards

to its filter updates depending on prior information. Other

kinds of adaptive FIR receivers are out of this paper’s scope.

Time-invariant (TI) structures update their filters only once

at each packet reception, using the available channel state.

Iteration-variant (IV) equalizers are updated at each turbo

iteration by additionally using the overall prior information.

Time-varying (TV) structures update their filters at each sym-

bol, using both symbol-wise prior information and channel

states, making them particularly suitable for doubly selective

channels, where the impulse response varies over time.

The first FIR turbo structure, proposed by

Glavieux et al. [4], uses a time-invariant interference

canceller [5], and an application to IV filtering appeared

in [6] and [7]. Further extension to TV equalization is

provided in [8] and a formal framework presented in [9]

derive these receivers from the MAP criterion.

An alternative approach formalized by Tüchler et. al [10]

consists in designing a TV adaptive LE, by using statistics

conditioned on prior information, while solving the MMSE

criterion. This structure has been applied to high-order modu-

lations, time-varying channels and to IV, TI, frequency domain

structures for lower complexity, and also to multi-user detec-

tion for multiple input-multiple output systems [11]–[14].

Equivalence of these approaches was shown in [15], mak-

ing the TV MMSE LE-IC the most widespread reference.

Although turbo LE-IC brings significant improvements over

classical filtering, it falls far behind classical DFE [16], [17]

with channel coding, at high spectral efficiency operating

points. Oppositely, at lower rates, turbo LE-IC is near capacity-

achieving while DFE performs poorly.1

This paper addresses the design of iterative time-domain TV

DFE-IC equalizers, i.e. FIR receivers where prior information

and a symbol-wise decision feedback is respectively used on

anti-causal and causal symbols, to improve equalization. These

1These facts are also shown in subsection V-C, in Fig. 7.



TABLE I

CLASSIFICATION OF CONSTITUENT FIR TURBO EQUALIZERS VS. THE USAGE OF PRIOR INFORMATION

receivers are of interest for applications where doubly-selective

channels are involved, such as HF communications [18].

A. Related Work

There exist several prior works on DFE-IC. Proposals

mainly differ with the nature of decision feedback, and with

the filter updating method. Besides, recent complex receivers

use DFEs as constituent elements for concatenated equalizers.

Hence, for clarity, we propose to classify related works in three

sub-categories.

1) Iterative Hard DFE-IC: Among hard feedback struc-

tures, DFE-IC in [19] is a classical DFE that uses prior

information for IC on anti-causal symbols. This structure

is known for its error propagation issues which makes its

TV form even less efficient than TI LE, and its extrin-

sic information transfer (EXIT) analysis yields contradictory

results [19, Fig. 14]. In [20], the previous structure is enhanced

with a powerful soft demapper that uses the distribution of

residual ISI sequences for symbol detection. This modified

structure outperforms turbo LE-IC, but this residual ISI distri-

bution is very difficult to derive even in the simple BPSK

case. A more practical solution, proposed in [21], consists

in approximating the residual ISI at the DFE-IC output to an

additive white Gaussian noise (AWGN), which simplifies the

demapper. While this solution challenges TV LE-IC on BPSK,

its extension to multilevel modulations has not been explored

so far. To the authors’ knowledge, this is the only DFE-IC

outperforming exact TV LE-IC in the reference scenario of

Proakis-C channel with BPSK symbols. DFE-ICs in [20]

and [21] were later used as constituent elements for more

advanced receivers such as bi-directional DFE, or structures

obtained by parallel concatenation of FIRs [22].

2) Iterative Soft DFE-IC: Literature on turbo soft DFE-IC

is more diverse; although feedback is mostly based on the

posterior distribution, there is no common strategy for eval-

uating its variance [23]–[25]. Such iterative structure is first

presented in [26], where various TI DFE with soft feedback

are evaluated with a perfect decision hypothesis, within a sub-

optimal receiver using hard decoding. In particular, it is seen

that soft feedback mitigates to some extent error propagation,

despite ignoring decision errors in filter computation. Another

notable structure is the IV soft interference canceller in [23];

using both prior and posterior LLRs for filtering and for

interference cancellation with BPSK, this scheme significantly

outperforms IV LE-IC, but it requires stochastic methods

for estimating the correlation properties of posterior LLRs.

Several other IV soft feedback structures exist [25], [27],

with alternative heuristics for feedback quality assessment.

Structural comparison of IV schemes using posterior feedback

is given in [24], extending [23] and [27] to higher order

modulations, but requiring new heuristics with LE-IC pre-

equalization for filter computation. These approaches have

drawbacks due to their limitations in usable constellations [23],

[25], [27], or due to the sub-optimality of heuristics used

in filter computation [23], [24], [27]. Indeed, IV structures

need static statistics of its soft feedback for computing its

filters, which requires approximations.

Time-varying soft posterior feedback structures do not have

such issues; they can update their filters after each symbol is

detected, as it had been done for MIMO receivers in [28].

In equalization, the structure closest to [28] is a block-

feedback turbo DFE in [29], which updates its filters every

P symbols. A classification of the references above is given

in Table I.

3) Receivers Based on Expectation Propagation: There is a

recent renewal of interest in iterative equalization, brought by

the use of an approximate statistical inference method, namely

expectation propagation (EP) [30]. This technique can be used

as a message passing algorithm, which extends the loopy belief

propagation (BP) by using exchange of expectations. When EP

is used with probability density functions (PDF) belonging to

the exponential family, it is possible to compute an extrinsic

message passed from the demapper to the equalizer.

EP has already been used in channel decoding [31], and

in receiver design with MIMO receivers [32], block linear

equalizers [33] and Kalman smoothers [34], [35]. In particular,

a concomitant work has recently extended these schemes

to FIR with a self-iterated LE-IC [36]. In [37], EP was

applied on multivariate white Gaussian distributions to derive

a low-complexity self-iterated frequency domain equalizer.

The receivers above use EP in a parallel interference cancel-

lation scheduling through self-iterations, i.e. the whole data

block is detected, and then detection process is repeated using

EP feedback from the demapper. These structures are not

decision feedback structures as in [16], which are natural

successive interference cancellers.

Hence, in this paper, we propose to derive a DFE-IC EP

exploiting the successive interference cancellation schedule of

DFE-IC to operate on an EP-based soft feedback. Moreover,

we combine this serial detection framework with an outer loop,

as in prior work on EP, to obtain a self-iterated DFE-IC EP.

A low complexity matrix inversion strategy for TV FIR struc-

tures is also derived, significantly reducing the computational

complexity difference between DFE-IC and LE-IC.

B. Contributions and Paper Outline

The main contributions of this paper are as follows:

• A novel time-varying DFE-IC algorithm, using EP to

update its filters, and to cancel residual ISI, is proposed.



It outperforms other constituent FIR receivers known

to the authors, while providing an overall efficient

complexity-performance trade-off.

• DFE-IC EP is extended to a self-iterated structure, and

compared to prior work on self-iterated EP receivers.

• Well-known hard [19], [21] or sub-optimal [24], [29]

DFE-IC proposals are extended to TV structures with soft

posterior feedback, by using MMSE Bayesian estimators.

• Analytical and asymptotic analysis of DFE-IC is car-

ried out on a highly selective deterministic channel.

Performance and computational complexity comparison

between LE-IC and different DFE-IC structures is pro-

vided.

• A new recursive matrix inversion strategy for TV equal-

izers is exposed. Compared to the iterative algorithm

in [10], it brings between 30% (for long data blocks)

and 75% (for shorter blocks) complexity reduction for

LE-IC.

The remainder of this paper is organized as follows.

The considered BICM communication scheme and the generic

FIR receiver model are described in section II. Section III

proposes a factor graph model for the system and applies

the expectation propagation framework to derive the proposed

equalizer in subsection III-D. A novel matrix inversion strat-

egy is detailed in section IV for reducing TV equalization

complexity. Section V extends prior work on DFE-IC to the

state-of-the-art and compares with the proposed DFE-IC EP.

In section VI, DFE-IC EP is self-iterated, and compared with

several existing self-iterated EP receivers.

C. Notations

Bold lowercase letters are used for vectors: let u be a N×1
vector, then un, n = 0, . . . , N − 1 are its entries. Capital bold

letters denote matrices: for a given N ×M matrix A, [A]n,:

and [A]:,m respectively denote its nth row and mth column,

and an,m = [A]n,m is the entry (n, m).
IN is the N × N identity matrix, 0N,M and 1N,M are

respectively all zeros and all ones N × M matrices. en is

the N × 1 indicator whose only non-zero entry is en = 1.
Operator Diag(u) denotes the diagonal matrix whose diagonal

is defined by u. R, C, and Fk are respectively the real field,

the complex field and a Galois field of order k. Let x and

y be two random variables, then µx = E[x] is the expected

value, σ2
x = Var[x] is the variance and σx,y = Cov[x, y] is the

covariance. The probability of x taking a value α is P[x = α],
and probability density functions (PDF) are denoted as p(·). If
x and y are random vectors, then we define vectors µµµx = E[x]
and σσσ2

x = Var[x], the covariance matrix Σx,y = Cov[x,y] and
we note Σx = Cov[x,x]. CN (µx, σ2

x) denotes the circularly-

symmetric complex Gaussian distribution of mean µx and

variance σ2
x, and B(p) denotes the Bernoulli distribution with

a success probability of 0 ≤ p ≤ 1.

II. SYSTEM MODEL

A. Transmission Over a Multipath Channel

We consider a single carrier transmission using a bit-

interleaved coded modulation (BICM) scheme. Let b ∈ F
Kb

2

be a binary information packet of length Kb bits. A channel

encoder maps b into a codeword c ∈ F
Kc

2 , with a code rate

Rc = Kb/Kc, which is then interleaved to give a data block

d ∈ F
Kc

2 . A memoryless mapping ϕ associates d to the symbol

block of length K , denoted x ∈ XK , where the constellation

X ⊂ C has M elements. The q-word associated to a symbol

is denoted dk = [d]qk:q(k+1)−1, and ϕ−1
j (xk) and dk,j denote

the value of the jth bit labelling the kth symbol xk , i.e. dkq+j .

We assume the constellation has zero mean, and has an average

symbol power of σ2
x, with equiprobable symbols.

For the sake of clarity, only the single user, single input-

single output T -spaced (symbol spaced) equalization problem

is considered. The channel is modelled at the base-band

as an equivalent L-tap linear time-varying filter h[k] =
[hk,L−1, hk,L−2 . . . hk,0], k being the time index, and where

pulse shaping and transceiver filters are accounted for.

The signal going through the channel is then affected by

thermal noise wk at the receiver side, and assuming a perfect

channel state information, ideal time and frequency synchro-

nization and the absence of inter-block interference (IBI),

the base-band received samples are given by:

yk =
∑L−1

l=0
hk,lxk−l + wk, (1)

where k = 0, 1, . . . , K +L−2, and xk, k < 0 and k > K are

set to 0. These assumptions can be satisfactorily approached

in practice with the use of a unique-word signalling scheme,

among other options, to jointly enable channel estimation and

the IBI removal. The noise is modelled as wk ∼ CN (0, σ2
w),

i.e. its real and imaginary parts are real independent zero

mean Gaussian random processes with σ2
w/2 variance each.

The transmission can be rewritten as:

y = Hx + w, (2)

with y = [y0, . . . , yK+L−2]
T , w = [w0, . . . , wK+L−2]

T , x =
[x−L+1, . . . , xK+L−2]

T and H is the (K + L − 1) × (K +
2L− 2) matrix whose kth row is [01,k−1,h[k],01,K+L−1−k],
k = 1, . . . , K + L− 1.

B. On MMSE FIR Equalization

FIR structures can be modelled by windowed processes;

applying a sliding window [−Np, Nd] on the observation vec-

tor y, we define yk = [yk−Np
, . . . , yk+Nd

]T . Np and Nd are

respectively the number of pre-cursor and post-cursor samples,

and we denote N , Np + Nd + 1, and N ′
p , Np + L − 1 to

simplify notations. Then, using the same window on w, and

[−N ′
p, Nd] on x, the channel model becomes

yk = Hkxk + wk, (3)

with Hk = [H]k−Np : k+Nd, k−N ′
p : k+Nd

, for k = 0, . . . , K−1.
Below, a generic structure of an unbiased MMSE FIR

receiver is given for comparing different structures and their

dynamics in the remainder of the paper. Prior estimates on x

with means x̄fir
k , [x̄fir

k−N ′
p
, . . . , x̄fir

k+Nd
] and variances v̄fir

k ,

[v̄firk−N ′
p
, . . . , v̄firk+Nd

] are used for interference cancellation.

Then denoting its output estimate on xk as xe
k, and the variance



of the residual interference and noise as ve
k, with

xe
k = ffirH

k yk + gfirk

ve
k = 1/ξfirk − v̄firk ,







ffir
k , Σfir

k
−1hk/ξfirk ,

gfirk , x̄fir
k − ffir

k
HHkx̄

fir
k ,

ξfirk , hH
k Σfir

k
−1hk,

(4)

where Σfir
k , kwσ2

wIN + HkV̄
fir
k HH

k , V̄fir
k , diag(v̄fir

k ),
hk , Hkek and kw = 1/2, when signals with one real

degree of freedom are used (e.g. X is BPSK), and otherwise

kw = 1 [17]. A proof of these relationships is in Appendix.

Note that x̄fir
k and v̄fir

k completely characterize such

receivers. When x̄fir
k′ and v̄fir

k′ are independent of xe
k, ve

k, ∀k′, k,
we call this receiver a LE-IC, and when x̄fir

k′ and v̄firk′ are

dependent on xe
k, ve

k, ∀k′ < k, we refer to it as a DFE-IC.

III. RECEIVER DESIGN WITH EXPECTATION

PROPAGATION

This section focuses on the design of a FIR receiver that

approximates the posterior probability distribution on xk using

an EP-based message passing on the system factor graph.

A. Factor Graph Model for FIR Receivers

The optimal joint MAP receiver satisfies the MAP criterion

b̂ = maxb p(b|y), where, assuming i.i.d. information bits,

the posterior PDF can be factorized as follows

p(b|y) = p(b,d,x|y) ∝ p(y|x)
︸ ︷︷ ︸

channel

p(x|d)
︸ ︷︷ ︸

mapping

p(d|b)
︸ ︷︷ ︸

encoding

. (5)

This density can be further factorized by using:

- the memoryless mapping: p(x|d) =
∏K−1

k=0 p(xk|dk),
- the independence assumption in BICM encoding:

p(d|b) =
∏K−1

k=0

∏q−1
j=0 p(dk,j),

where p(dk,j) , p(dk,j |b) is a probability mass func-

tion (PMF) which is seen as a Bernoulli-distributed prior

constraint provided by the decoder, from the receiver’s point

of view.

The “channel” factor in (5) creates constraints between the

whole block of received baseband samples and the transmitted

symbols, however to derive a reduced complexity FIR receiver

which estimates xk and dk, the windowed model in (3) is

needed. The FIR approximation posterior is

p
(
d̄k,xk|yk

)

∝
∏k+Nd

k′=k−N ′
p

p(yk|xk)p(xk′ |dk′)
∏q−1

j=0
p(dk′,j), (6)

where d̄k = dk−Np−L+1:k+Nd
. Note that working with

p
(
d̄k,xk|y

)
≈ p

(
d̄k,xk|yk

)
is not the only option for

estimating xk . Indeed xk can be estimated through inference

on xk′ , with k′ = k − Nd, . . . , k + N ′
p, but by selecting xk,

this option is indirectly translated to the choice of window

parameters, which is a common aspect of FIR equalizers.

A message-passing based decoding algorithm iteratively

estimates the variable nodes (VN) xk and dk,j by using

constraints imposed by factor nodes (FN). Factor nodes are

non proper PDFs for resolving transmission steps. The decoder

FN models BICM encoding constraints with

fDEC(dk,j) , p(dk,j), (7)

Fig. 1. Factor graph for the posterior PDF (6) on xk and dk .

and the demapper FN incorporates mapping constraints with

fDEM(xk,dk) , p(xk|dk) =
∏q−1

j=0
δ(dk,j − ϕ−1

j (xk)), (8)

where δ is the Dirac delta function. The multipath channel

constraints are modelled within the equalization factor node

fEQU(xk) , p(yk|xk) ∝ e−yH
k yk/σ2

w+2R(yH
k Hkxk)/σ2

w , (9)

where the dependence on yk is omitted, as observations are

fixed during the message-passing procedure. Using these nota-

tions, the posterior (6) gives the factor graph shown in Fig. 1.

B. Expectation Propagation Message Passing Framework

EP-based message passing algorithm is an extension of

loopy belief propagation, where VNs are assumed to lie

in the exponential distribution family [38]. Consequently,

the exchanged messages are depicted by tractable distri-

butions, and they allow iterative computation of a fully-

factorized approximation for cumbersome posterior PDFs such

as p(d̄k,xk|yk). Updates at a FN F connected to variable

nodes v are as follows. Messages exchanged between a VN vi,

the ith component of v, and factor node F are

mv→F(vi) ,
∏

G 6=F
mG→v(vi), (10)

mF→v(vi) , projQvi
[qF(vi)]/mv→F(vi), (11)

where projQvi
is the Kullback-Leibler projection towards the

probability distribution Qvi
of VN vi. The posterior qF(vi) is

an approximation of the marginal of the true posterior p(v)
on vi, obtained by combining the true factor on FN F with

messages from the neighbouring VNs

qF(vi) ,

∫

v\i

fF(v)
∏

vj

mv→F(vj)dv\i, (12)

where v\i are VNs without vi [38]. The projection operation

for exponential families is equivalent to moment matching,

which simplifies the computation of messages [30], [38].

In this paper symbol VNs are assumed to lie in the family

of multivariate circularly symmetric Gaussians with diagonal

covariance matrices, making the approximate distributions

fully factorized to independent Gaussians. Hence, a message

on xk will be defined by a mean and a variance. The VNs

dk,j are considered to follow Bernoulli distributions (which is



Fig. 2. Factor nodes shown as an iterative BICM receiver.

included in the exponential family), and their messages can be

described by bit log-likelihood ratios (LLR).

This formalism is very generic and allows the derivation

of many receiver structures. It has been used to derive a

MIMO detector in [32], and a Kalman smoother in [34].

However EP receivers can also be derived without a message

passing formalism, as recently shown for the block [33]

or FIR [36] equalizers. To the authors’ knowledge, message-

passing formalism was not previously used for FIR design, and

it is favoured in this paper because of the available scheduling

options it allows to clearly identify.

C. Derivation of Exchanged Messages

This section details the EP-based message passing

algorithm’s application to the considered factor graph. First,

exchanged messages are defined, and then their characterizing

parameters are explicitly computed. See Fig. 2 for a conven-

tional view of the receiver with these quantities.

The messages arriving on the VN xk are Gaussians with

mEQU→x(xk) ∝ CN (xe
k, ve

k), (13)

mDEM→x(xk) ∝ CN
(
xd

k, vd
k

)
, (14)

whereas messages arriving on the VN dk,j are Bernoullis

mDEC→d(dk,j) ∝ B (pa
d) , mDEM→d(dk,j) ∝ B (pe

d). (15)

During the message passing procedure, the characteristic para-

meters of these distributions are updated following a selected

schedule. For Bernoulli distributions, it is rather preferable to

work with bit LLRs, rather than the success probability pd:

L(dj) , ln
P[dj = 0]

P[dj = 1]
= ln

1− pd

pd
. (16)

We use La(·), Le(·) and L(·) operators to denote respectively

a priori, extrinsic and a posteriori LLRs. When applied to

dk,j , this vocabulary represents the receiver’s perspective, i.e.

La(dk,j), Le(dk,j) respectively characterize mDEC→d(dk,j)
and mDEM→d(dk,j).
Finally, considering the factor graph shown on Fig. 1, all

variable nodes are only connected to a pair of distinct factor

nodes. Consequently, using eq. (10), mv→F(vi) = mG→v(vi),
for all VN vi, and FN F,G, F 6= G they are connected to.

1) Messages From DEC to DEM: In this paper, we assume

DEC is a SISO decoder providing prior information La(d)
to DEM, whenever it receives extrinsic information Le(d) by

DEM.

The demapper uses these prior LLRs, along with the DEM

FN (8) to compute a prior PMF on xk = α, ∀α ∈ X with

Pk(α) ∝
∏q−1

j=0
e−ϕ−1

j
(α)La(dk,j). (17)

This is a categorical PMF corresponding to the marginal

of fDEM(xk,dk)md→DEC(dk) on xk [32], used hereafter to

compute approximate marginals qDEM(xk) and qDEM(dk,j).
2) Messages From DEM to EQU: The demapper computes

an approximate posterior on the VN xk using eq. (12) with

qDEM(xk) =
∑

dk

fDEM(xk,dk)mx→DEM(xk)

×
∏q−1

j=0
md→DEM(dk,j). (18)

This is a posterior categorical PMF on the elements xk of X ,

which can be computed using eqs. (13) and (17), which will

be denoted as

Dk(α) ∝ exp
(
−kw|α− xe

k|2/ve
k

)
Pk(α), ∀α ∈ X . (19)

For computing messages towards EQU, the posterior PMF is

projected into CN through moment matching. The mean and

the variance of Dk are

µd
k , EDk

[xk] =
∑

α∈X
αDk(α),

γd
k , VarDk

[xk] =
∑

α∈X
|α|2Dk(α)− |µd

k|2. (20)

When mx→DEM(xk) ∝ 1, i.e. when there is no information

from the EQU node (equivalent to xe
k = 0 and ve

k = +∞),

Dk = Pk, and we denote the prior mean and variances as

xp
k , EPk

[xk], vp
k , VarPk

[xk]. (21)

Note that these values are used as soft feedback in conven-

tional turbo equalization.

Then in order to calculate mDEM→x(xk) as in (11),

a Gaussian division [30] is implemented

x∗
k =

µd
kve

k − xe
kγd

k

ve
k − γd

k

, and, v∗k =
ve

kγd
k

ve
k − γd

k

. (22)

This is the major novelty in using EP: the computation of

an extrinsic feedback from the demapper to the equalizer.

Attempting this with categorical distributions, as in BP, would

completely remove mx→DEM(xk), and the extrinsic “feed-

back” to EQU would simply be the prior PMF Pk [32], which

would yield a receiver equivalent to LE-IC [19].

EP message passing algorithm consists in minimizing global

divergence through iterative minimization of simpler local

divergences. Thus, it might lock on undesirable fixed points,

and a damping heuristic, as recommended in [38, eq. (17)],

is used to improve accuracy

v
d(next)
k =

[

(1− β)/v∗k + β/v̄
d(prev)
k

]−1

,

x
d(next)
k = v

d(next)
k

[

(1− β)
x∗

k

v∗k
+ β

x
d(prev)
k

v
d(prev)
k

]

, (23)

where 0 ≤ β ≤ 1 configures the damping, and its effectiveness

has been verified in [36].

3) Messages From EQU to DEM: The equalizer computes

an approximate posterior on the VN xk using eq. (12) with

qEQU(xk) =

∫

x
\k

k

fEQU(xk)
∏k+Nd

k′=k−N ′
p

mx→EQU(xk′ )dx
\k
k .

(24)



The integrand of the equation above is a multivariate Gaussian

distribution CN (µµµe,Γe), hence, using eq. (9), its covariance

and mean satisfy

Γe
k = (Vd

k
−1 + σ−2

w HH
k Hk)−1,

µµµe
k = Γe(Vd

k
−1xd

k + σ−2
w HH

k yk), (25)

where Vd
k = diag(vd

k ), with vd
k = [vd

k−N ′
p
, . . . , vd

k+Nd
], and

xd
k = [xd

k−N ′
p
, . . . , xd

k+Nd
]. Using some matrix algebra, and

Woodbury’s identity on Γe, the mean µe
k and the variance γe

k

of the marginalized PDF qEQU(xk) are given by

γe
k = eH

k Γe
kek = vd

k(1− vd
kh

H
k Σd

k
−1hk),

µe
k = eH

k µµµe
k = xd

k + vd
kh

H
k Σd

k
−1(yk −Hkx

d
k ), (26)

with Σd
k = kwσ2

wIN + HkV
d
kHH

k . Message to the demapper

is then extracted with the Gaussian density division in eq. (11)

ve
k =

γe
kvd

k

vd
k − γe

k

, and, xe
k =

vd
kµe

k − γe
kxd

k

vd
k − γe

k

. (27)

Developing these yields a FIR expression as in (4) with x̄
ep
k ,

[xd
k−N ′

p
, . . . , xd

k+Nd
] and v̄

ep
k , [vd

k−N ′
p
, . . . , vd

k+Nd
] for IC.

4) Messages From DEM to DEC: The demapper computes

an approximate posterior on the VN dk,j using eq. (12) with

qDEM(dk) =
∑

xk∈X
fDEM(xk,dk)mx→DEM(xk)

×
∏q−1

j=0
md→DEM(dk,j). (28)

As bit LLRs are used to represent messages to DEC, this

distribution is marginalized on dk,0, . . . , dk,q−1 [32], and the

division in eq. (11) is directly carried out with LLRs

Le(dk,j) = ln
∑

α∈X 0

j

Dk(α)− ln
∑

α∈X 1

j

Dk(α)− La(dk,j),

(29)

with X p
j = {α ∈ X : ϕ−1

j (x) = p} where p ∈ F2.

D. Proposed Self-Iterated DFE-IC EP Receiver

A factor graph (sec. III-A) and messages exchanged over

it (sec. III-C) are necessary to derive a receiver algorithm,

but may be insufficient when considering a graph with cycles.

Indeed, specifying a scheduling for the update of VNs and

FNs is also required.

In this paper, a serial scheduling across variable nodes xk

is considered. In detail, when EQU updates a VN xk , factor

node DEM is immediately activated in order to provide its

own extrinsic estimation of xk, jointly using prior information

from the decoder and the equalizer’s extrinsic output. This

results in a DFE-IC structure, using a novel kind of soft

feedback, unlike any hard or soft APP feedback previously

used in the literature [19]–[21], [23]–[27]. Moreover, when

detection across the whole block is completed, this serial

scheduling can be repeated by keeping the previously updated

DEM messages, yielding a self-iterated DFE-IC EP structure.

To clarify the dynamics of the proposed receiver,

τ = 0, . . . , T denotes turbo iterations (TI), i.e. exchanges

between the DEM and DEC factor nodes. Each TI consists

of s = 0, . . . ,Sτ self-iterations (SI) (may vary with τ ),
i.e. exchanges between EQU and DEM factor nodes, which

sequentially updates the whole block x. In the following,

EQU ↔ DEM messages derived previously are appended a

superscript (s), but τ is omitted for readability.

Algorithm 1 Proposed Self-Iterated DFE-IC EP Receiver

Input y, H, σ2
w

1: Initialize decoder with L
(0)
a (dk) = 0, ∀k.

2: for τ = 0 to T do

3: ∀k = 0, . . . , K − 1, use L
(τ)
a (d) to compute P(τ)

k

with (17), and set (x
d(0)
k , v

d(0)
k )← (xp

k, vp
k) using (21).

4: for s = 0 to Sτ do

5: for k = 0 to K − 1 do

6: Equalize using (27) and get (x
e(s)
k , v

e(s)
k ).

7: Use (19)-(20) to update D(s+1)
k , and generate EP

feedback (x
d(s+1)
k , v

d(s+1)
k ) with (22)-(23).

8: If v
d(s+1)
k ≤ 0, then (x

d(s+1)
k , v

d(s+1)
k ) ← (µd

k, γd
k)

and store k in the set I(s)
err .

9: end for

10: ∀k ∈ I(s)
err , (x

d(s+1)
k , v

d(s+1)
k )← (x

d(s)
k , v

d(s)
k ).

11: end for

12: Compute L
(τ)
e (dk) using D(τ,Sτ )

k with (29), ∀k, and

provide them to the decoder, to obtain L
(τ+1)
a (dk), ∀k.

13: end for

The proposed scheduling, given in Algorithm 1, generates

an EP FIR receiver which uses the following means and

variances for interference cancellation

x̄
dfe-ep
k

(s) , [x
d(s+1)
k−N ′

p
, . . . , x

d(s+1)
k−1 , x

d(s)
k , . . . , x

d(s)
k+Nd

]T ,

v̄
dfe-ep
k

(s) , [v
d(s+1)
k−N ′

p
, . . . , v

d(s+1)
k−1 , v

d(s)
k , . . . , v

d(s)
k+Nd

]T , (30)

for k = 0, . . . , K − 1. This layout shows that this structure

indeed follows a time-varying DFE-IC evolution, with anti-

causal symbols using demapper’s output from the previous

self-iteration, and causal symbols using current EP feedback

from the demapper. The extrinsic feedback from the demapper

is obtained by using jointly the prior information from the

previous TI, and the past equalizer outputs of the current and

previous self iterations (see (19)-(23)). The Algorithm 1 also

incorporates a mechanism to deal with EP-based feedback’s

infamous negative variances [32], [33], with the set I(s)
err which

stores their indexes. These values are replaced with APP-based

variances in the current SI, and then replaced again with their

previous values for the next SI.

Although equation (4) is useful for FIR analysis, causal

and anti-causal feedback of DFE-IC should be separated

in practice. Using

Ec = [IN ′
p
, 0N ′

p,Nd+1], Ea = [0Nd+1,N ′
p
, INd+1], (31)

we define Hc
k = HkE

cT and Ha
k = HkE

aT , to respectively

operate on x̄
c(s)
k = Ecx̄

dfe-ep(s)
k , and x̄

a(s)
k = Eax̄

dfe-ep(s)
k , as a

generalized interference cancellation scheme. The SI DFE-IC



Fig. 3. TV DFE-IC EP (dashed) / APP (no dashed) structure.

EP of (30), is rewritten as:

x
e(s)
k = x̄

a(s)
k + f

(s)
k

Hyk − g
c(s)
k

H x̄
c(s)
k − g

a(s)
k

H x̄
a(s)
k ,

v
e(s)
k = 1/ξ

dfe-ep(s)
k − v̄

a(s)
k , (32)

with f
(s)
k = Σ

dfe-ep(s)
k

−1hk/ξ
dfe-ep(s)
k , g

c(s)
k = Hc

k
Hfk, and

g
a(s)
k = Ha

k
Hf

(s)
k . When Sτ = 0, the proposed receiver is a

strict TV DFE-IC EP, with ·d(s+1)
k = ·dk and ·d(s)

k = ·pk, this
case is shown on Fig. 3 with the dashed module.

In conclusion, we have applied message passing framework

of EP for equalization, using sliding window observations.

This results in a novel message computation given by (22)-(23)

and (27), unlike blockwise messages in [32] and [33]. More-

over, by using an hybrid serial/parallel schedule, our structure

operates as a self-iterated DFE-IC, unlike the self-iterated

LE-IC scheme concurrently developed in [36]. In the follow-

ing, a matrix inversion strategy reducing the computational

complexity difference between DFE-IC and LE-IC is intro-

duced.

IV. MATRIX INVERSION FOR TIME-VARYING SLIDING

WINDOW TURBO EQUALIZERS

A. Shortcomings of Existing Approaches

Time-varying FIR as in (4) have excessive computational

costs due to symbol-wise filter updates, requiring recursive

matrix inversion methods. This section overviews the problem

of computing fk = Σ−1
k hk, for k = 0, . . . , K − 1 efficiently.

In [10], Tüchler et al. propose for LE-IC, a recursive matrix

inversion algorithm, based on common submatrices between

successive inverses. The procedure requires computing an

initial inverse (Gauss-Jordan inversion) with a complexity

order2 of 4N3/3, but further recursions’ complexity is 2N2.

Practical implementations avoid inversion by solving the

system Σkfk = hk for fk with triangular factorizations [39],

using forward/backward substitutions. This approach is even

more advantageous in equalization where the system is sparse.

In this paper, we propose a novel recursive inversion strategy

for LE-IC and DFE-IC, based on an initial Cholesky decom-

position, and followed by sparse rank-1 updates/downdates of

the factors for following inversions. Unlike [39], our algorithm

is able to deal with channel matrices evolving in time, making

it more efficient for turbo TV FIR. For LE-IC the complexity

order is of N2, hence roughly 50% less complex than [10].

2“Order” means asymptotic expansion as N → +∞, assuming N ∝ 3L,
i.e. sliding window operating on 4L symbols.

B. Cholesky Factor Update for MMSE LE-IC

We consider a LE-IC with priors variances v̄k, let Lk−1 be

the lower triangular Cholesky decomposition of the covariance

matrix Σk−1, i.e. Lk−1L
H
k−1 = Σk−1. Algorithm 2 uses Lk−1

and the latest values v̄k+Nd
and eH

k+Nd
Hk (new row with

h[k + Nd]) appended to the sliding window, to compute Lk.

Impact of latest generated value is appended to the decomposi-

tion using lH12 and l22, then past data is removed. The resulting

updated Cholesky decomposition is a rank-1 update [40]

of L22, defined within algorithm 2.

Algorithm 2 Cholesky Update Algorithm for LE-IC.

Input Lk−1, σ
2
w, v̄k+Nd

,Hk−1,Hk, V̄k−1

Output Lk

1: {Add a row and a column}

2: [h1k, h2k]← [0, eH
k+Nd

Hk]
3: w← Hk−1V̄k−1h1k

4: l12 ← L−1
k−1w

5: l22 ←
√

h1
H
k V̄k−1h1k + v̄k+Nd

|h2k|2 − l12
H l12 + σ2

w

6: {Build augmented matrix and remove row & column}

7:

[
× 01,N

l21 L22

]

←
[
Lk−1 0N,1

l12
H l22

]

8: {Rank-1 update LkL
H
k = L22L22

H + l21l21
H}

9: for l = 1 to N do

10: r ←
√

[L22]2l,l + |[l21]l|2, c← [L22]l,l
r , s ← [l21]

∗
l

r

11: [L22]l:N,l ← c[L22]l:N,l + s[l21]l:N
12: [l21]l:N ← c[l21]l:N − s∗[L22]l:N,l

13: end for

14: Lk ← L22

These steps, followed by forward/backward substitutions

fk = L−H
k L−1

k hk, allow low complexity filter computation.

C. Cholesky Factor Update for MMSE DFE-IC

In the case of DFE-IC, the diagonal of the covariance matrix

V̄tdfe is composed of two independently sliding parts: one for

causal symbols v̄c
k, between symbols k−N ′

p and k−1, the other
for anti-causal v̄a

k , between symbols k and k+Nd. The LE-IC

update procedure above handles the addition of v̄a
k+Nd

and

the removal of v̄c
k−N ′

p−1, but the change in (k − 1)
th
symbol

remains to be updated.

Algorithm 3 gives a such update procedure for DFE-IC,

by applying either a rank-1 update or downdate on L̃k,

the Cholesky factor who has already been updated by

algorithm 2, depending on the sign of v̄c
k−1 − v̄a

k−1. Such

updates are carried out using Givens plane rotations [40].

D. Computational Complexity Analysis

The computational complexity of the proposed algorithm

is evaluated with the number of required multiply and accu-

mulate units, estimated by the number of real additions and

multiplications, amounting to half a floating point operation

(0.5 FLOPs) each.

FLOP count ratios between different FIR implementations

are plotted in Fig. 4, depending on the channel spread, with



Algorithm 3 Cholesky Update Algorithm for DFE-IC.

Input L̃k, v̄a
k−1, v̄

c
k−1, [Hk]:,−1

Output Lk

1: w←
√

|v̄a
k−1 − v̄c

k−1|[Hk]:,−1

2: for l = Np to N do

3: if v̄c
k−1 < v̄a

k−1 then

4: {Rank-1 downdate LkL
H
k = L̃kL̃

H
k −wwH}

5: r ←
√

[L̃k]2l,l − |[w]l|2, c ← [L̃k]l,l
r , s ← [w]∗l

r

6: [L̃k]l:N,l ← c[L̃k]l:N,l − s[w]l:N
7: else if v̄c

k−1 > v̄a
k−1 then

8: {Rank-1 update LkL
H
k = L̃kL̃

H
k + wwH}

9: r ←
√

[L̃k]2l,l + |[w]l|2, c ← [L̃k]l,l
r , s ← [w]∗l

r

10: [L̃k]l:N,l ← c[L̃k]l:N,l + s[w]l:N
11: end if

12: [w]l:N ← c[w]l:N − s∗[L̃k]l:N,l

13: end for

14: Lk ← L̃k

Fig. 4. Complexity comparison of LE-IC and DFE-IC with proposed matrix
inversion algorithm.

a block length K = 2048 and a FIR window given by N =
3L + 2, Nd = 2L. The blue dashed curves show the FLOP

count ratio of a LE-IC using our strategy relative to using the

algorithm in [10], for different constellation orders. Up to 50%

saving is observed as channel spread increases.

DFE-IC FLOP count is compared to LE-IC, both using

the proposed inversion strategies, with red solid lines. This

ratio is high for a low number channel taps, but decreases

to 7% as L increases, more or less quickly depending on

the modulation order M . Finally, MAP detector is seen to

be an interesting alternative to FIR receivers for BPSK/QPSK

signalling, in channels with very short channel spreads.

V. COMPARISON WITH THE PRIOR WORK ON

TIME-VARYING DFE-IC STRUCTURES

In this section, the DFE-IC based on EP feedback, proposed

in section III-D, in its canonical form without self-iterations

(Sτ = 0) and without damping is compared to alternative

state-of-the-art TV DFE-IC structures.

First, to provide a fair performance comparison with alter-

natives, existing suboptimal DFE-IC schemes [19], [21], [24]

are extended to time-varying structures using soft posterior

feedback. Next, analytical and asymptotic analysis, and Monte

Carlo simulations show the superiority of DFE-IC based on

EP relative to LE-IC, classical DFE and concurrent DFE-IC

structures.

A. On the TV DFE-IC Based on Bayesian Estimators

References on time-varying DFE-IC with soft feedback

are limited. Hence, here existing methods are generalized

and improved before comparison, thanks to our framework,

in order to provide a fair comparison. Until EP, soft posterior

feedback was the only imperfect feedback with a reasonable

complexity in the literature, applicable to any constellation.

Nevertheless, it is not possible to derive a structure using such

feedback within the conventional BP formalism, but here its

usage is justified with Bayesian inference.

One can consider the equalization problem within a

Bayesian framework, where a particular realization of a

random data symbol is estimated. For instance, the con-

ventional MMSE linear turbo receiver [10] is also the

MAP estimator, if priors are forced to lie in the family

of Gaussian distributions [9]. Hence this equalizer is the

unbiased Bayesian estimator ELk
[xk|yk,Hk], where the joint

prior distribution Lk(xk) ∝ ∏k+Nd

l=k−N ′
p, CN (xp

l , v
p
l ) is used.

However, in Bayesian estimation theory, the mean square error

can be further reduced, using a sequential MMSE estima-

tor, which improves its posterior with previously estimated

data ([41, Sect. 12.6]). Following this idea, we propose the

improved estimator EAk
[xk|yk,Hk], based on the joint pos-

terior Ak(xk) ∝ ∏k+Nd

l=k CN (xp
l , v

p
l )

∏k−1
l=k−N ′

p
CN (µd

l , γ
d
l ),

where µd
l and γd

l are given by (20). In the following, we derive

a posterior feedback based DFE-IC using this estimator for IC,

with model (4).

1) Exact TV DFE-IC With APP Feedback: This equalizer is

a generalization of invariant schemes in [23] and [24] to TV

structures. It is derived by using the joint posterior Ak(xk)
with the model (4), derived in the Appendix. The resulting

APP FIR structure, is fully defined by

x̄
app
k = [µd

k−N ′
p
, . . . , µd

k−1, v
p
k, . . . , xp

k+Nd
]T ,

v̄
app
k = [γd

k−N ′
p
, . . . , γd

k−1, v
p
k, . . . , vp

k+Nd
]T . (33)

This structure will be referred as DFE-IC APP in the

remainder of this paper, and illustrated in Fig. 3 without the

dashed module.

2) TV DFE-IC With Perfect APP Feedback: Here we pro-

pose to generalize [19], [26] to APP feedback, with perfect

decision hypothesis. This imposes decision covariances to 0,

focusing the MMSE filter design to only mitigate anti-causal

symbol interference. However, its use of hard feedback, i.e.

argmaxαDk(α), was shown to be seriously prone to error

propagation [19]. While [26] showed improvements with soft

posterior feedback on non-turbo, invariant structures, here,

we extend this case to time-varying turbo structures.



This case named DFE-IC PAPP, differs from the DFE-IC

APP with the variance estimates:

x̄
papp
k = x̄

app
k ,

v̄
papp
k = [0T

N ′
p
, vp

k, . . . , vp
k+Nd

]T . (34)

3) Hybrid TV DFE-IC With APP Feedback: This struc-

ture is an extension of the TV structure from [21] to APP

feedback. In [21], the DFE-IC with perfect hard decisions

from [19] is improved by adding an estimate of the decision

error to the equalizer output variance ve
k . This quantity is

given by VarDk
[gc

k
H([x − µµµd]k−N ′

p:k−1)], using (19). More-

over, this structure checks whether this variance causes sign

changes in extrinsic LLRs, and sets ambiguous LLRs to zero.

This receiver is extended to use APP soft feedback, instead

of hard decisions, and denoted DFE-IC HAPP.

B. Analytic Comparison of DFE-IC vs. LE-IC

This paragraph semi-analytically assesses the behaviour of a

DFE-IC relative to a LE-IC to underline the interest in jointly

using decision feedback and prior information for IC.

In fact, LE-IC operating with priors (x̄k, v̄k) provides a

lower bound for the achievable information rate of a DFE-IC

structure using the same prior information for its anti-causal

symbols (x̄a
k, v̄ak) = (x̄k, v̄k), alongside decision feedback

estimates (x̄c
k, v̄ck) (see (32)). By exploiting the structural

similarities between DFE-IC and LE-IC, the causal feedback’s

impact is reflected on a ratio of post-equalization SNR3

G =
SNRdfe

out

SNRle
out

=
σ2

x

E[v
e(dfe)
k ]

E[v
e(le)
k ]

σ2
x

=
ξdfe

ξle
1− v̄ξle

1− v̄ξdfe
(35)

where v̄ = E[v̄k] and ξXX = E[ξXXk ], where XX is “le”

or “dfe”. This gain is greater than unity iff ξdfe ≥ ξle,
or equivalently iff E[V̄le

k − V̄dfe
k ] is positive semi-definite.

Hence having v̄ > v̄c, v̄c = E[v̄c
k] for DFE-IC is required for

achieving improvements. Based on empirical and experimental

evidence not presented here, the conjecture P[v̄c
k > v̄k] < 0.5

has been verified over a wide range of input SNRs, and for

random constellations, for v̄c
k = vd

k (DFE-IC EP) and for

v̄c
k = γd

k (DFE-IC APP). This ensures v̄ > v̄c and thus, LE-IC

output SNR is a lower bound on DFE-IC EP/APP, as possible

detection degradations are small.

G is plotted in Fig. 5, with N = 17, Nd = 10 and σ2
x = 1

for the static Proakis-C channel, h = [1, 2, 3, 2, 1]/
√

19; when
decisions are more reliable than priors, G increases, otherwise

DFE-IC brings small improvements. When v̄a → 1, there is

no prior information, and decisions bring a significant gain.

Oppositely, when v̄a → 0, prior information is already close

to the ideal, and DFE-IC cannot improve further. This indicates

boosted performance at initial turbo-iterations.

C. Asymptotic Analysis and Performance Prediction

To assess the full potential of DFE-IC, asymptotic analysis

is used to evaluate its achievable rates. Extrinsic information

3SNRXX
out = σ2

x/E[v
e(XX)
k

] is the post-equalization SNR, where XX is “dfe”
or “le”, (see (4) for ve

k
). Superscript “le” refers to the use of (x̄k , v̄k) for IC,

and “dfe” refers to the use of (x̄a
k
, v̄a

k
) and (x̄c

k
, v̄c

k
) for IC, as in (32).

Fig. 5. Post-equalization SNR ratio G depending on channel SNR σ−2
w ,

prior reliability v̄a and “decision” reliability v̄c.

Fig. 6. EXIT curves and average MI trajectories of FIR equalizers with
BPSK in Proakis C channel at Eb/N0 = 7dB.

transfer (EXIT) analysis [42] of a SISO module is used as a

tool for characterizing its asymptotic limits, by tracking extrin-

sic mutual information (MI) exchanges between the iterative

components. Essentially, a SISO receiver can be characterized

by a simple transfer function IE = TR(IA,H, σ2
w), where IA

and IE are the MI between coded bits and respectively its

input prior LLRs and output extrinsic LLRs, and σ2
w and H

show its dependence on the channel and the received SNR.

In Fig. 6, transfer curves TR are plotted in solid lines for

considered receivers along with the reverse transfer T −1
D of the

BCJR decoder of a recursive systematic convolutional (RSC)

code. DFE-IC APP yields a higher IR than LE-IC for all

IA, unsurprisingly given the posterior feedback, and there is

little difference with DFE-IC EP, which has slightly lower

rates at low prior information. In particular, the improvement

at IA = 0 lets us conjecture a lower waterfall threshold

in BPSK, and the higher slope of the TR curve at low IA

hints an improved convergence speed across turbo iterations.



Fig. 7. Achievable spectral efficiency on deterministic Proakis C channel
with BPSK.

Another use of EXIT analysis is performance prediction,

however this involves strong assumptions on prior inputs that

often cannot be met for FIR turbo equalizers in practice.

Hence, EXIT curves only provide an upper-bound on infor-

mation rate for receivers other than MAP. In this respect, it is

then interesting to compare transfer curves, with actual MI

trajectories (in dashed lines in Fig. 6).

It had been noted in [19], that trajectories of DFE-IC

with hard, “perfect” decision assumption do not follow EXIT

curves; this issue remains with DFE-IC PAPP, although less

severely, indicating that the “perfect decisions” assumption

causes a severe information loss. Other FIRs’ trajectories

overall follow receiver and decoder curves and reach MFB, but

after a few iterations, they no longer make contact with transfer

curves, losing convergence speed. This is a common disad-

vantage of FIR equalizers, attributed to short cycles caused by

neighbouring symbol correlations, as shown in [19, Fig. 16].

However note that among DFE-IC receiver, EP feedback yields

trajectories that remains closest to EXIT curves, making it

easier to predict.

The achievable spectral efficiency for a given receiver can

be measured with the help of the area theorem for EXIT

charts [43]. In Fig. 7, achievable rates for BPSK constellation

are plotted. Note that for MAP receivers, this rate is an

accurate approximation of the channel symmetric information

rate (SIR) [44]. As non-iterative FIR do not depend on prior

inputs, their achievable rates are also accurately computed.

For turbo FIR, upper bounds are obtained by combining results

of area theorem with the channel SIR. Tightness of this bound

depend on the closeness of true MI trajectories to EXIT charts

in Fig. 6, so APP feedback’s asymptotic performance is likely

to be overestimated compared to EP feedback.

D. Finite-Length Comparison With Existing Schemes

Monte Carlo integration remains the most reliable analysis

approach joint detection of BPSK symbols is considered

with parameters in section V-B, and Ku = 2048, coded

with a terminated [7, 5]8 RSC code. Bit error rate (BER)

of various receivers are plotted in Fig. 8. For the reported

iterations, the DFE-IC APP outperforms other APP feedback

DFE structures, and their convergence speeds are compared

on the right side of the figure, at a block error rate (BLER)

of 10−2. EP-based feedback provides further improvement of

the threshold by 0.5 dB relative to APP, and it is shown

to reach MFB limit within 7 iterations, earlier than DFE-IC

APP.

Assessing DFE-IC performance at low spectral efficiency

conditions, as above, is of interest, to remedy the poor behav-

iour of classical DFE at those operating points (see Fig. 7).

Indeed, turbo processing helps DFE structures to outperform

LE at all rates. A higher spectral efficiency case is plotted

on the left side of the Fig. 9, with 8-PSK constellation

in the same configuration; DFE-IC APP is shown to improve

LE-IC waterfall threshold by 2dB, DFE-IC EP asymptotically

provides an additional 1.2dB. On the right side of the Fig. 9,

16-QAM is considered; showing that DFE-IC EP provides

further performance enhancements for one or more iterations.

Finally, the coded performance of DFE-IC is balanced with

complexity considerations. In Fig. 10, the receiver computa-

tional complexity (FLOPs per symbol) required to decode with

a BLER of 10−2 is plotted as a function of Eb/N0. These

values are computed, assuming the use of the proposed matrix

inversion algorithm in section IV, and by accounting for the

equalization, the demapping and the decoding costs. A curve

represents the evolution of BLER and the computational costs

of a receiver accross turbo iterations.

DFE-IC provides a better trade-off than LE-IC; at any

given complexity, it is more efficient, especially at initial

iterations, and the asymptotic Eb/N0 gap between LE-IC and

DFE-IC increases with the modulation order M . The use of

EP feedback is more advantageous at higher iterations, for

higher order constellations, while APP is more efficient for

non-iterative receivers.

In conclusion, DFE-IC outperforms LE-IC in various

aspects: it converges faster towards MFB, has a lower decoding

threshold than LE-IC, especially at higher spectral efficiencies.

Among DFE-IC with APP feedback, exact derivation DFE-IC

APP is superior according to both finite-length and asymptotic

analysis. Although EXIT charts show little difference between

DFE-IC EP and APP, in practical simulations EP feedback

tends to outperform APP. This is justified by the tightness

of EP MI trajectories to EXIT curves; APP is overestimated.

Although it DFE-IC EP appears to be able to reach channel

SIR at low to medium spectral efficiencies, there is still a gap

to MAP performance.

In the following, the use of self-iterations will be assessed

to further improve performances.

VI. COMPARISON WITH THE PRIOR WORK ON

SELF-ITERATED EP STRUCTURES

Some recent EP-based receivers [32], [33], [35]–[37] have

observed remarkable performance improvements in repeat-

ing the detection process in a parallel schedule through

self-iterations. As the demapping process is computationally



Fig. 8. BER and convergence performance of the proposed DFE-IC in Proakis C channel with BPSK constellation.

Fig. 9. BER performance of the proposed DFE-IC in Proakis-C with 8-PSK and 16-QAM constellations.

less intensive than channel decoding, such structures are of

practical interest. In this section, the benefits in using a self-

iterated DFE-IC EP compared to structures in prior work is

investigated.

Independently of our work, an EP-based FIR structure

is derived in the concomitant work [36]. Unlike the mes-

sage passing formalism used in section III, structure in [36]

is obtained by approximating a self-iterated block receiver,

derived by EP-based approximation of the posterior PDF (5).

The resulting FIR structure uses a parallel schedule, and cor-

responds to a LE-IC within each SI. Using our formalism, it is

equivalent to updating all VNs xk with messages from EQU

sequentially, and only then activating DEM to update posterior

approximations. This process is iterated with DEM sending

back an extrinsic message to EQU, and finally DEM computes

messages towards DEC. In the following, the structure denoted

as “EP-F” in [36], is refered as a self-iterated LE-IC (SI

LE-IC), with following mean and variances used for IC

x̄
le-ep
k

(s) = [x
d(s)
k−N ′

p
, . . . , x

d(s)
k+Nd

]T ,

v̄
le-ep
k

(s) = [v
d(s)
k−N ′

p
, . . . , v

d(s)
k+Nd

]T . (36)

Fig. 10. Performance complexity trade-off in Proakis C.

If the computations of messages on EQU is carried out only

once (Sτ = 0), this receiver yields the same result as the

conventional turbo LE-IC [10].



Fig. 11. Achievable Rates of Self-iterated LE-IC and DFE-IC in Proakis-C with 8-PSK constellation.

Fig. 12. SI LE-IC and DFE-IC in Proakis C with LDPC coded 16-QAM, with 5 turbo iterations.

A. Asymptotic Comparison

First, we look into the achievable rates of SI LE-IC and

DFE-IC EP to identify operating points where self-iterations

have an advantage.

We consider 8-PSK signalling on the Proakis-C channel, and

use the area theorem to obtain an upper bound on asymptotic

achievable rates (i.e. τ → ∞), plotted on the left side

of Fig. 11. Information rates of the optimal MAP detector,

LE-IC and DFE-IC EP without SI, and SI LE-IC and SI

DFE-IC are considered. For self-iterated receivers, a static

damping with β = 0.6 is used. Numerical results show that

SI is not required for LE-IC up to 0.75 bits/s/Hz (i.e. using

a code rate less than 1/4), as LE-IC is close to the SIR,

whereas DFE-IC EP continues to follow MAP rates up to

1 bit/s/Hz (up to a code rate of 1/3). On the other hand,

when using 5 self-iterations, DFE-IC EP follows MAP rates

within 0.5 dB up to 2.25 bits/s/Hz, while LE-IC follows up to

1.85 bits/s/Hz. It is also interesting to note that DFE-IC EP

with 2 SI outperforms LE-IC with 5 SI, at all rates, indicat-

ing at faster convergence of DFE-IC EP towards asymptotic

limits.

At the right side of Fig. 11, non-turbo iterative achievable

rates of these receivers, and those of the classical DFE [16], are

compared. These rates are accurate, and not an upper bound,

unlike asymptotic rates, and note that MAP detector is a mere

maximum likelihood (ML) detector in this case. Although self-

iterations significantly improve LE-IC performance, at rates

above 2.75 bits/s/Hz, classical DFE still outperforms these

receivers. DFE-IC EP on the other hand outperforms alter-

native FIRs at any given self iteration.

Note that the gap to capacity still remains significant for

non turbo iterative rates, and to some extent, for asymptotic

rates. Hence with the objective of deriving capacity achieving

practical receivers in mind, future work should explore the

usage of the proposed DFE-IC EP as a constituent element for

bidirectional DFE [20] or for concatenated FIR [22] receivers.

B. Finite-Length Comparison

In this section, numerical finite-length results complete the

previous analysis. In addition to receivers above, the self-

iterated block linear receiver (SI BLE-IC), denoted nuBEP

in [36], is considered. Without self-iterations, this receiver



Fig. 13. Performance complexity trade-off for self-iterations in LDPC coded
Proakis C.

is equivalent to turbo block LE-IC [45], and it outperforms

the self-iterated block receiver and Kalman smoother in [33]

and [35]. SI BLE-IC provides a lower bound to the BER

performance of SI LE-IC.

A low density parity check (LDPC) coded 16-QAM trans-

missions over the Proakis C channel, with rate 1/2 and

3/4 encoding of Kb = 2048 bits (Fig. 12). The proposed SI

DFE-IC EP uses respectively β = min(0.5, 1-eτ/2.5/10) and

β = min(0.1, 1− eτ/1.5/10) for damping, in these two cases,

whereas the optimized damping reported in [36] is kept for SI

BLE-IC and SI LE-IC. The LDPC codes are obtained by path

edge growth method, and a BP decoder up to a 100 iterations

is used. The low rate case, with (3,6) regular LDPC, shows

that while all self-iterated receivers reach the same asymptotic

performance as Sτ increases, DFE-IC converges much faster

at intermediary iterations. On the other hand, at the high rate

configuration, with (3,12) regular LDPC, DFE-IC is strictly

superior to LE-IC, even without self-iterations. Asymptotically

even the exact SI BLE-IC is 3.8 dB behind the proposed SI

DFE-IC.

These numerical performance results are completed with

computational complexity considerations in Fig. 13, where

decoding threshold for BLER = 10−2 is evaluated for τ =
0, . . . , 5, for each receiver. In the medium rate (2 bits/s/Hz:

16-QAM with rate 1/2 code) case the three considered

receivers converges to the same asymptotic limit near 17 dB,

but DFE-IC offers lower complexity at intermediary iterations.

At 3 bits/s/Hz configuration (16-QAM with rate 3/4 code),

with 5 TI and 3 SI, DFE-IC requires 3 dB less energy,

and 3 times less computational resources than BLE-IC. With

τ = s = 0, LE-IC is unable to decode, BLE-IC decodes

around 39 dB, and DFE-IC decodes with 13 dB less energy.

These numerical results confirms conclusions drawn by the

asymptotic analysis; the proposed SI DFE-IC is of a significant

interest for high data rate applications where linear structures

are less efficient. Using the efficient implementation method

of section IV, DFE-IC outperforms prior work in terms of both

complexity and performance.

VII. CONCLUSION

This paper investigates on the use of decision feedback

with turbo equalization, for improving the limitations of linear

equalizers for high data rate applications.

Turbo DFE structures in the literature consist in either

using hard feedback with symbol-wise adaptive filters, or soft

posterior feedback with symbol-wise invariant filters. The for-

mer perform poorly at low spectral efficiency, and require

complex mechanisms to improve this issue, whereas the latter

are outperformed even by the conventional TV LE-IC. Both

schemes are extended to time-variant soft feedback structures

in this paper, with different filter computation hypotheses.

We show that an exact approach justified with sequential

Bayesian MMSE estimators (DFE-IC APP) outperforms other

APP feedback alternatives.

However, due to the use of posterior estimates, this structure

does not fit within the turbo principle which requires the

exchange of extrinsic information. Consequently, we focus our

discourse on the derivation of FIR DFE within the expectation

propagation framework, which allows the computation of a

novel type of extrinsic feedback from the demapper to the

equalizer. Building upon the emerging trend on self-iterated

EP-based equalizers, the proposed DFE-IC can be self-iterated

to further improve performances.

Thanks to finite-length and asymptotic analysis, DFE-IC EP,

with SI or not, is shown to set new upper limits in achievable

performance among FIR turbo receivers. At high data rates,

even exact self-iterated block linear receivers fall over 3 dB

behind the proposal.

Finally, the gap of achievable rates by turbo DFE-IC to the

channel capacity remains still significant at very high spectral

efficiencies. Bidirectional extension of TV DFE-EP should be

explored to try to close this gap.

APPENDIX

DERIVATION OF MMSE FIR WITH IC

In this appendix, FIR equalization with interference cancel-

lation is derived by minimizing the Bayesian MMSE criterion

J = EAk
[|xk − xe

k
′|2], where xe

k
′ = f ′k

T yk + g′k is the

equalized linear estimate, and Ak is a joint multivariate

Gaussian prior distribution on xk defined with means x̄fir
k and

variances v̄fir
k (see sec. II-B). EAk

[·] and CovAk
[·] respectively

denote the expectation and the covariance with respect to

distribution Ak. Solution to this is given by EAk
[xk|yk,Hk],

i.e. the symbol mean with respect to pAk
(xk|yk,Hk). This

distribution is the marginalization of the conjugate Gaussian

posterior pAk
(xk|yk,Hk), i.e. of likelihood p(yk|xk,Hk) and

prior Ak. Hence, xe
k
′ is deduced by multiplying the MMSE

estimator of xk [41] by ek:

f ′k = eH
k CovAk

[yk,xk](VarAk
[yk])−1, (37)

g′k = eH
k EAk

[xk]− f ′k
T

EAk
[yk], (38)

by developing expectations above with prior statistics, it holds

f ′k = v̄firk hH
k (Σfir

k )−1, (39)

g′k = x̄fir
k − f ′k

T x̄fir
k , (40)



with Σfir
k = kwσ2

wIN + HkV
fir
k HH

k and Vfir
k = diag(vfir

k ).
This receiver is biased, as its MMSE estimators’ nature:

EAk
[xe

k
′|xk = x] = (1− v̄firk ξfirk )x̄fir

k + v̄firk ξfirk x,

with ξfirk = hH
k Σfir

k
−1hk. Removing additive and multiplicative

biases with xe
k = (xe

k
′ − (1 − v̄firk ξfirk )x̄fir

k )/(v̄firk ξfirk ) yields the

estimator given in (4), which completes the proof.
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