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RUBIS: a bipolar-valued outranking method
for the choice problem

Raymond Bisdorff · Patrick Meyer ·
Marc Roubens

Abstract The main concern of this article is to present the Rubis method for tack-
ling the choice problem in the context of multiple criteria decision aiding. Its 
genuine purpose is to help a decision maker to determine a single best decision 
alternative. Methodologically we focus on pairwise comparisons of these alternatives 
which lead to the concept of bipolar-valued outranking digraph. The work is centred 
around a set of five pragmatic principles which are required in the context of a 
progressive deci-sion aiding methodology. Their thorough study and implementation 
in the outranking digraph lead us to define a choice recommendation as an extension 
of the classical digraph kernel concept.

Keywords Choice problematique · Multiple criteria outranking method · 
Progressive decision aiding methodology · Digraph kernel
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1 Introduction

We present a new method for constructing choice recommendations in the context 
of multiple criteria decision aiding where the objective is to determine a single best
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alternative from a set of potential decision objects. This work is situated in the context
of progressive decision aiding methods (see Sect. 3.1) consisting normally in several
stages providing the decision maker (DM) with more and more precise choice recom-
mendations. Each of these steps aims at determining a subset of alternatives among
which the best one is situated. As long as such a provisional recommendation consists
of several candidates, the decision aiding process may be restarted on this restricted
set with new and more detailed information in order to further assist the DM in his
decision problem. Note that it may be up to him to determine the ultimate choice from
the eventual recommendation of the decision aiding.

Apart from the European multiple criteria decision aiding community (Roy 1985;
Roy and Vanderpooten 1996), the progressive resolution of the choice problem has
attracted quite little attention by the Operational Research (OR) field. Seminal work
on it goes back to the first article of Roy on the Electre I methods (Roy 1968). After
Kitainik (1993), interest in solving the choice problem differently from the classical
optimisation paradigm has reappeared. An early work of Bisdorff and Roubens (1998)
on valued kernels has resulted in new attempts to tackle the progressive choice prob-
lem directly on the valued outranking digraph. After first positive results (Bisdorff
2000), methodological difficulties appeared when facing highly non-transitive and
partial outranking relations. In this paper, we therefore present a new proposal for
computing provisional choice recommendations from a valued outranking digraph.
Our approach is based on new pragmatic and logical foundations of the progressive
choice problematique1 in the tradition of the pioneering work of Roy and Bouyssou
(1993).

The paper is organised as follows. In Sect. 2, we introduce the basic concepts and
notation which are necessary for our future discourse. In Sect. 3, we revisit the very
foundations of the choice problematique, briefly present the classical Electre meth-
odology, and list new pragmatic principles which are required for computing choice
recommendations in a progressive decision aiding process. Sect. 4 deals with the trans-
lation of these principles into properties in the bipolar-valued outranking digraph which
lead to the concept of hyperkernel, an extension of the classical kernel of a digraph. In
Sect. 5, we show how to determine these hyperkernels and detail the Rubis method2

for computing a choice recommendation.

2 Fundamental concepts

We start by establishing the backbone of the Rubis method, namely the bipolar-valued
credibility scale, modelling the credibility of the validation of preferential statements.

1 A broad typology or category of problems for which multiple criteria decision analysis may be useful 
(Belton and Stewart 2002, p. 15).
2 We propose the name Rubis as a generic identifier for bipolar-valued concordance-based decision aiding 
methods.



2.1 Bipolar-valued credibility calculus

Let ξ be a propositional statement like “alternative x is a choice recommendation” or
“alternative x is at least as good as alternative y”. In a decision process, a DM may
either accept or reject these statements following his belief in their validation (Bisdorff
2000). This degree of credibility (or credibility for short) may be represented via a
credibility scale L = [−1, 1] supporting the following semantics. Let ξ and ψ be two
propositional statements to which are associated credibilities r and s ∈ L:

1. If r = +1 (resp. r = −1) then it is assumed that ξ is clearly validated (resp. clearly
non-validated). If 0 < r < +1 (resp. −1 < r < 0) then it is assumed that ξ is more
validated than non-validated (resp. more non-validated than validated). If r = 0
then ξ could either be validated or non-validated, a situation we call undetermined.

2. If r > s then it is assumed that the validation of ξ is more credible than that of ψ
(or that the non-validation of ψ is more credible than that of ξ ).

3. The credibility of the disjunction ξ ∨ ψ (resp. the conjunction ξ ∧ ψ) of these
statements equals the credibility of the statement that is the most (resp. the less)
credible of both, i.e., max(r, s) [resp. min(r, s)].

4. −r ∈ L denotes the credibility of the non-validation of ξ , i.e., the credibility of the
validation of the logical negation of ξ (written ¬ξ ).

Definition 2.1 The credibility associated with the validation of a propositional state-
ment ξ , defined on a credibility domain L and verifying properties (1) to (4) is called
a bipolar-valued characterisation of ξ .

It follows from property (4) that the graduation of credibility degrees concerns both the
affirmation and the negation of a propositional statement (Windelband 1884). Starting
from +1 (certainly validated) and −1 (certainly non-validated), one can approach a
central position 0 by a gradual weakening of the absolute values of the credibility
degrees. This particular point 0 in L represents an undetermined situation concerning
the validation or non-validation of a given propositional statement (Bisdorff 2000,
2002).

Definition 2.2 The degree of determination of the validation (for short determinate-
ness) D(ξ) of a propositional statement ξ is given by the absolute value of its
bipolar-valued characterisation: D(ξ) = |r |.
For both a clearly validated and a clearly non-validated statement, the determinateness
equals 1. On the opposite, for an undetermined statement, this determinateness equals
0.

This establishes the central degree 0 as an important neutral value in the
bipolar-valued credibility calculus. Propositions characterised with this degree 0 may
be either seen as suspended or as missing statements (Bisdorff 2002). The credibility
degree 0 represents a temporary delay in characterising the validation or non-valida-
tion of a propositional statement. In the framework of progressive decision aiding,
this feature allows us to easily cope with currently undetermined preferential situa-
tions that may eventually become determined to a certain degree, either as validated
or non-validated, in a later stage of the decision aiding process.



The following subsection introduces the important concept of bipolar-valued out-
ranking digraph which is the preferential support for the Rubis choice decision aiding
methodology.

2.2 The bipolar-valued outranking digraph

Let X = {x, y, z, . . .} be a finite set of decision objects (or alternatives) evaluated
on a finite, coherent family F = {1, . . . , p} of p criteria. To each criterion j of F is
associated its relative significance weight represented by a rational number w j from
the open interval ]0, 1[ such that

∑p
j=1w j = 1. Besides, to each criterion j of F is

linked a preference scale in [0, 1] which allows to compare the performances of the
decision objects on the corresponding preference dimension.

Let g j (x) and g j (y) be the performances of two alternatives x and y of X on
criterion j . Let � j (x, y) be the difference of the performances g j (x) − g j (y). To
each preference scale for each j of F is associated a variable indifference threshold
q j (g j (x)) ∈ [0, 1[, a preference threshold p j (g j (x)) ∈ [q j (g j (x)), 1[, a weak veto
thresholdwv j (g j (x)) ∈ [p j (g j (x)), 1] ∪ {2} and a strong veto threshold v j (g j (x)) ∈
[wv j (g j (x)), 1] ∪ {2}, where the complete absence of veto is modelled via the value
2. All these threshold functions are supposed to verify the standard non-decreasing
monotonicity condition (Roy and Bouyssou 1993, p. 56).

Let S be a binary relation on X . Classically, an outranking situation x Sy between
two decision alternatives x and y of X is assumed to hold if there is a sufficient major-
ity of criteria which supports an “at least as good as” preferential statement and there
is no criterion which raises a veto against it (Roy 1985). The validation of such an out-
ranking situation may quite naturally be expressed in the bipolar credibility calculus
defined in Sect. 2.1. Our formulation is based on the classical Electre definition of
the outranking index. Nevertheless the reader should notice some slight but important
differences, due to the semantics of the underlying bipolar valuation.

Indeed, in order to characterise a local “at least as good as” situation between two
alternatives x and y of X for each criterion j of F , we use the following function
C j : X × X → {−1, 0, 1} such that:

C j (x, y) =

⎧
⎪⎨

⎪⎩

1 if � j (x, y) > −q j (g j (x)) ;
−1 if � j (x, y) ≤ −p j (g j (x)) ;
0 otherwise .

Credibility 0 is assigned to C j (x, y) in case it cannot be determined whether alterna-
tive x is at least as good as alternative y or not (see Sect. 2.1). Note here the deviation 
from the classical Electre concordance index, where a linear transition between cer-
tainly validated and certainly non-validated situations is proposed (Roy and Bouyssou 
1993).

Similarly, the local veto situation for each criterion j of F is characterised via a 
veto-function V j : X × X → {−1, 0, 1} where:



Vj (x, y) =

⎧
⎪⎨

⎪⎩

1 if � j (x, y) ≤ −v j (g j (x)) ;
−1 if � j (x, y) > −wv j (g j (x)) ;
0 otherwise .

Again, according to the semantics of the bipolar-valued characterisation, the veto
function Vj renders an undetermined response when the difference of performances
is between the weak and the strong veto thresholds wv j and v j .

The global outranking index S̃, defined for all pairs of alternatives (x, y) ∈ X × X ,
conjunctively combines a global concordance index, aggregating all local “at least
as good as” statements, and the absence of veto on each of the criteria. For any two
alternatives x and y of X we have:

S̃(x, y) = min{C̃(x, y),−V1(x, y), . . . ,−Vp(x, y)}, (2.1)

where the global concordance index C̃(x, y) is defined as follows:

C̃(x, y) =
∑

j∈F

w j · C j (x, y). (2.2)

The min operator in Formula 2.1 translates the conjunction between the global concor-
dance index C̃(x, y) and the negated criterion-based veto indexes−Vj (x, y) (∀ j ∈ F).
If all the Vj are equal to −1 (no veto situation is observed), the resulting outranking
index S̃ equals the global concordance index C̃ . Following Formulae (2.1) and (2.2),
S̃ is a function from X × X to L representing the credibility of the validation or non-
validation of an outranking situation observed between each pair of alternatives. S̃ is
called the bipolar-valued characterisation of the outranking relation S, or for short, the
bipolar-valued outranking relation.

The maximum value +1 of the valuation is reached in the case of unanimous con-
cordance, whereas the minimum value −1 is obtained either in the case of unanimous
discordance, or if there exists a strong veto situation on at least one criterion. The
median situation 0 represents a case of undeterminateness: either the arguments in
favour of an outranking are compensated by those against it or, a positive concordance
in favour of the outranking is outbalanced by a potential (weak) veto situation.

It is now easy to recover the semantics linked to this bipolar-valued characterisation
from our earlier considerations (see Sect. 2.1). For any two alternatives x and y of X ,

– S̃(x, y) = +1 means that assertion “x Sy” is clearly validated.
– S̃(x, y) > 0 means that assertion “x Sy” is more validated than non-validated.
– S̃(x, y) = 0 means that assertion “x Sy” is undetermined.
– S̃(x, y) < 0 means that assertion “x Sy” is more non-validated than validated.
– S̃(x, y) = −1 means that assertion “x Sy” is clearly non-validated.

Definition 2.3 The set X associated to a bipolar-valued characterisation S̃ of the out-
ranking relation S ∈ X × X is called a bipolar-valued outranking digraph, denoted
G̃(X, S̃).



Table 1 Example 1: random performance table and bipolar-valued outranking relation

Alternatives Coherent family of criteria S̃1

1 2 3 4 5 a b c d e

a 0.52 0.82 0.07 1.00 0.04 1.0 −0.2 −1.0 0.6 0.4

b 0.96 0.27 0.43 0.83 0.32 0.4 1.0 0.2 0.2 0.4

c 0.85 0.31 0.61 0.41 0.98 0.2 0.4 1.0 0.4 0.6

d 0.30 0.60 0.74 0.02 0.02 −1.0 −1.0 −1.0 1.0 −1.0

e 0.18 0.11 0.23 0.94 0.63 0.2 0.2 −0.4 0.0 1.0

Fig. 1 Example 1: associated
crisp digraph and undetermined
arc
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The crisp outranking relation S can be constructed via its bipolar-valued characteri-
sation. S is the set of pairs (x, y) of X × X such that S(x, y) > 0. We write G(X, S)
the corresponding so-called crisp outranking digraph associated to G̃(X, S).

Example 1 Consider the set X1 = {a, b, c, d, e} of alternatives evaluated on a coher-
ent family F1 = {1, . . . , 5} of criteria of equal weights (see left part of Table 1). To 
each criterion is associated a rational preference scale in [0, 1] and an indifference 
threshold of 0.1, a preference threshold of 0.2, a weak veto threshold of 0.6, and a 
strong veto threshold of 0.8.

Based on the performances of the five alternatives on the criteria, we compute the 
bipolar-valued outranking relation S̃1 shown in the right part of Table 1. The crisp 
outranking digraph G1(X1, S1) associated to the bipolar-valued outranking digraph
G1(X1, S̃1) is shown in Fig. 1. Note the dotted arc from alternative e to d which 
˜

represents an undetermined outranking. This situation is not expressible in a stan-

dard Boolean-valued characterisation of the outranking. Consequently, the (‘positive’) 
negation of the general S relation is not identical to the complement of S in X × X .

The reader, familiar with the Electre methodology, may have noticed much resem-
blance between the bipolar-valued characterisation S and the classical Electre-type 
valuations of an outranking relation. It is important to notice, however, that the latter do 
not necessarily respect the semantics of the bipolar credibility calculus. In particular, 
the 1/2 value does in general not have the meaning of undetermined validation which 
is given here to the 0 credibility degree. Furthermore, the bipolar valuation of the 
outranking relation is solely based on sums and differences of weights of individual 
criteria.



Let us now introduce some further concepts which are used in this article. The order
n of the digraph G̃(X, S̃) is given by the cardinality of X , whereas the size p of G̃ is
given by the cardinality of S. A path of order m ≤ n in G̃(X, S̃) is a sequence (xi )

m
i=1

of alternatives of X such that S̃(xi , xi+1) ≥ 0, ∀i ∈ {1, . . . ,m − 1}. A circuit of order
m ≤ n is a path of order m such that S̃(xm, x1) ≥ 0.

Definition 2.4 An odd chordless circuit (xi )
m
i=1 is a circuit of odd order m such that

S̃(xi , xi+1) ≥ 0, ∀i ∈ {1, . . . ,m − 1}, S̃(xm, x1) ≥ 0 and S̃(xi , x j ) < 0 otherwise.

Following a result by Bouyssou (Notes on bipolar outranking. Personal communica-
tion, August, 2006) which extends the results of Bouyssou (1996) to the bipolar-valued
case, it appears that, apart from certainly being reflexive, the bipolar-valued outranking
digraphs do not necessarily have any particular relational properties such as transitiv-
ity or total comparability. Indeed he shows that, with a sufficient number of criteria,
it is always possible to define a performance table such that the associated crisp out-
ranking digraph renders any given reflexive binary relation. This rather positive result
from a methodological point of view, namely that the outranking based methodology
is universal, bears however a negative algorithmic consequence. Indeed, as we will
show in Sects. 3 and 4, solving the choice problem based on a bipolar-valued outran-
king relation is a non-trivial algorithmic problem in case of non-transitive and partial
outrankings.

Before switching to the following subsection, it is important to underline here that
the starting point of this study is deliberately a given performance table, a set of thresh-
old and veto functions as well as significance weights which are all clearly defined
and have been acknowledged by the DM.3

Historically, in the context of outranking relations, the progressive choice problem
has been solved by using the independent outranking set, i.e., the kernel of a digraph
(Roy 1968, 1985). Let us now define this concept in a bipolar-valued outranking
digraph.

2.3 On kernels in bipolar-valued outranking digraphs

Definition 2.5 Let Y be a non-empty subset of X .

1. Y is said to be outranking (resp. outranked) in G̃(X, S̃) if and only if x 	∈ Y ⇒
∃y ∈ Y : S̃(y, x) > 0 (resp. S̃(x, y) > 0).

2. Y is said to be independent (resp. strictly independent) in G̃(X, S̃) if and only if
for all x 	= y in Y we have S̃(x, y) ≤ 0 (resp. S̃(x, y) < 0).

3. Y is called an outranking (resp. outranked) kernel if and only if it is an outranking
(resp. outranked) and independent set.

4. Y is called a determined outranking (resp. outranked) kernel if and only if it is an
outranking (resp. outranked) and strictly independent set.

Example 1 (continued) In the crisp digraph G1 (see Fig. 1) we can observe two deter-
mined outranking kernels, namely the singletons {b} and {c}. The digraph also contains

3 Tackling impreciseness issues in these data is out of the scope of this paper. For first attempts to cope
with this topic in a bipolar-valued credibility calculus framework, see (Bisdorff 2004).



one outranked kernel, namely the pair {d, e}. Note that alternatives d and e are inde-
pendent (but not strictly independent) from each other.

The set Y may be characterised with the help of bipolar-valued membership assertions
Ỹ : X → L, denoting the credibility of the fact that x ∈ Y or not, for all x ∈ X . The
set Ỹ is called a bipolar-valued characterisation of Y , or for short a bipolar-valued set
in G̃(X, S̃). The semantics linked to this characterisation can again be derived from
the properties of the bipolar-valued scale L (see Sect. 2.1).

In the following paragraphs, we recall useful results from Bisdorff et al. (2006).
They allow us to establish a link between the classical graph theoretic and algebraic
representations of kernels (via their bipolar-valued characterisations).

Proposition 2.6 The outranking (resp. outranked) kernels of G̃(X, S̃) are among the
bipolar-valued sets Ỹ satisfying the respective following bipolar-valued kernel equa-
tion systems:

max
y 	=x

[min(Ỹ (y), S̃(y, x))] = −Ỹ (x), for all x ∈ X; (2.3)

max
y 	=x

[min(S̃(x, y), Ỹ (y))] = −Ỹ (x), for all x ∈ X. (2.4)

Let Y+ and Y– denote the set of bipolar-valued sets verifying the respective kernel
equation systems (2.3) and (2.4) above. Let Ỹ1 and Ỹ2 be two elements of Y+ (or Y–).
Ỹ1 is said to be at least as sharp as Ỹ2 (denoted Ỹ2 � Ỹ1) if and only if for all x in
X either Ỹ1(x) ≤ Ỹ2(x) ≤ 0 or 0 ≤ Ỹ2(x) ≤ Ỹ1(x). The � relation defines a partial
order (antisymmetrical and transitive) (Bisdorff 1997). If Ỹ (x) 	= 0 for each x in X ,
Ỹ is called a determined bipolar-valued set.

Theorem 2.7 (Bisdorff et al. 2006)

1. There exists a one-to-one correspondence between the maximal sharp determined
sets in Y+ (resp. Y–) and the determined outranking (resp. outranked) kernels in
G̃.

2. Each maximal sharp set in Y+ (resp. Y–) characterises an outranking (resp. out-
ranked) kernel in G̃.

Proof The first result, specialised to determined sets, is proved in Bisdorff et al. (2006, 
Theorem 1). The second one results directly from the kernel equation systems of 
Proposition 2.6. �
The maximal sharp sets in Y+ (resp. Y–) deliver thus outranking (resp. outranked) 
kernel characterisations.

Let us furthermore underline, that it may also happen that neither Y+ nor Y– contain 
any determined, or even partially determined sets at all. Such a case arises for example 
if G̃  is an odd chordless circuit (see Definition 2.4).

Example 1 (continued) Recall that the crisp outranking digraph G1 contains two out-

ranking kernels and one outranked kernel. The bipolar-valued characterisations of 
these kernels are shown in Table 2. The outranking kernel {c} is more determined than



Table 2 Example 1: bipolar-valued characterisations of the kernels

Ỹ a b c d e

{b} −0.2 0.2 −0.2 −0.2 −0.2

{c} −0.2 −0.4 0.4 −0.4 −0.4

{d, e} −0.6 −0.2 −0.4 1.0 0.0

{b} and is therefore the more credible instance. Indeed, one can easily verify that the
degrees of logical determination of the membership assertions for {c} are higher than
those for {b} (see Definition 2.2). Concerning the outranked kernel {d, e}, it is worth-
while noting that alternative d belongs to it with certainty, whereas the belonging of
alternative e to this kernel depends on the undetermined situation d Se. In the context
of a progressive method, if this latter outranking becomes more true than false at a
later stage, then e can be dropped from the kernel without any regret. On the opposite,
if the outranking becomes more non-validated than validated, then e remains part of
the then determined kernel {d, e}.

In the past (see e.g., Bisdorff and Roubens 2003), the authors have promoted the
most determined outranking kernel in a bipolar-valued outranking digraph G̃ as a
convenient choice recommendation in a progressive choice problem.

Example 1 (continued) The reader can indeed easily verify in the performance table
of Example 1 (see Table 1) that alternative c is performing better than alternative b.
Alternative a has very contrasted performances and d indisputably presents the worst
performances.

However, recent well founded criticisms against the capacity of the outranking ker-
nel concept to generate in general outranking digraphs a satisfactory and convincing
choice recommendation led us to reconsider our method. We therefore revisit in the
next section the pragmatic foundations of a progressive choice decision aiding meth-
odology.

3 Foundations of the RUBIS choice decision aiding methodology

First, we revisit the choice problematique in order to identify the type of pragmatic
decision aiding we are interested in. A brief comparison with the classical Electre
methodology will underline similarities and differences with the Rubis one. Finally,
we present new foundations for the choice decision aiding methodology.

3.1 The choice problematique

From a classical OR point of view, the choice problem is the search for one best or
optimal alternative. From a decision aiding point of view, however, the assistance we
may offer the DM depends on the nature of the decision aiding process we support.



Choice and elimination:
Following the tradition (Roy 1985; Roy and Bouyssou 1993), we call choice prob-
lematique the category of decision problems consisting of the search for a single best 
alternative. Symmetrically to this choice problematique, we define the elimination 
problematique as the category of decision problems, whose objective it is to search 
for a single worst alternative.

The interest of considering both opposite problematiques will appear later in 
Sects. 3.3 and 4.3, where we show that, due to the intransitivity of the outranking 
relation, certain sets of alternatives can be considered a potential choice, as well as, a 
potential elimination recommendation (which makes the recommendation ambiguous 
in both problematiques).

Following the symmetric design of the bipolar credibility calculus, both the choice, 
and the elimination problematique can be tackled similarly. As the first one is much 
more common, we will in the sequel exclusively focus on the choice problematique.

Type of decision aiding process:
A decision aiding method is a particular way to solve a given decision problem. A 
choice recommendation is the output of such a decision aiding method in the particular 
context of the choice problematique.

Following the nature of the decision aiding process, we have to distinguish between 
two general kinds of choice problems. On the one hand, choice problems which require 
the single best alternative to be uncovered in a single decision aiding step, and, on the 
other hand, choice problems which allow to progressively uncover the single best alter-
native through the implementation of an iterative, progressive multiple step decision 
aiding process.

In the first case, a choice recommendation must always propose a single best alter-
native, whereas in the second case, the choice recommendation is a provisional advice 
that should, given the current available information, propose all plausible candidates 
for a final solution. It is in fact a set of potentially best alternatives which has to 
be refined via further interactions with the DM. We have here to clearly distinguish 
between a current and the eventual choice recommendation consisting ideally of the 
single best alternative. If not, this last recommendation requires to be further analysed 
by the DM himself, in view of determining his ultimate choice.

We focus in the sequel on the resolution of this progressive decision aiding problem, 
in the tradition of the classical Electre methods.

3.2 The Electre choice decision aiding method

The progressive choice problem is extensively discussed and promoted in the context 
of multiple criteria decision aiding in Roy and Bouyssou (1993) who explain that it is 
important that the non-retained alternatives for the current choice recommendation are 
left out for well-founded reasons, acknowledged and approved by the DM. Instead of 
forcing the decision aiding procedure to elicit a single best alternative at any cost, it is 
indeed preferable to obtain a set Y of potential candidates for the choice, as long as it 
can be plainly justified on the basis of the currently available preferential 
information.



Starting from this methodological position, Roy defines two principles for the con-
struction of a choice recommendation. Subset Y of X is a choice recommendation
if:

1. Each alternative which in not selected in Y is outranked by at least one alternative
of Y .

2. The number of retained alternatives in the set Y is as small as possible.

The first principle counterbalances the second one. Indeed, it tends to keep the cardi-
nality of the choice recommendation high enough to guarantee that no potentially best
alternative is missed out. The second principle tends to keep its cardinality as small
as possible in order to focus on the single best choice.

In the context of the Electre methods, Roy (1968, 1985) proposes to use as provi-
sional choice recommendation the concept of outranking kernel, i.e., an independent
and outranking set. One can indeed easily check that this recommendation verifies both
principles. According to Roy, a choice recommendation has furthermore to be unique.
The existence of a unique outranking kernel is, however, only guaranteed when the
digraph does not contain any circuits at all (Berge 1970). To avoid a possible emptiness
or multiplicity of outranking kernels, Roy (1968) initially proposed in the Electre I
method to consider the alternatives belonging to maximal circuits as ties. The reduc-
tion of the outranking digraph along these ties results in a digraph that always admits
a unique outranking kernel. The alternatives gathered in such a maximal circuit might,
however, not be all equivalent and behave differently when compared to alternatives
exterior to the circuit. Furthermore, the validation of the arcs of such a circuit may be
problematic due to imprecision in the data or the preferential information provided
by the DM. All in all, these difficulties in the clear interpretation of those circuits led
to the development of the Electre IS method (see Roy and Bouyssou 1993). There,
robustness considerations allow to remove certain arcs of the outranking digraph lead-
ing to a circuit-free graph containing a unique outranking kernel. Note finally that in
both methods, the outranking relation is not viewed on a valued credibility scale. The
double requirement of sufficient concordance and absence of vetoes is used instead
for a crisp validation of pairwise outranking situations.

In this work we do not follow the same approach, even if the bipolar-valued frame-
work would allow it. We instead revisit the very foundations of a progressive choice
decision aiding methodology in order to discover how the bipolar-valued concept of
outranking kernel may deliver a satisfactory choice recommendation without hav-
ing to express doubts about a given bipolar-valued characterisation of the outranking
relation.

3.3 New foundations for a progressive choice decision aiding methodology

In this subsection we introduce five principles (two from the previous discussion and
three new ones) that the construction of a choice recommendation in a progressive
decision aiding method should follow.



P1: Non-retainment for well motivated reasons
Each non-retained alternative must be put aside for well motivated reasons in
order to avoid to miss any potentially best alternative.

A similar formulation is that each non-retained alternative must be considered as worse
as at least one alternative of the choice recommendation.

P2: Minimal size
The number of alternatives retained in a choice recommendation should be
as small as possible.

This requirement is obvious when recalling that the goal of the choice problem is to
find a single best alternative and that ultimately, a choice recommendation containing
a single element concludes the progressive decision aiding process.

P3: Efficient and informative refinement
Each step of the progressive decision aiding must deliver an efficient and
informative refinement of the previous recommendation.

The currently delivered recommendation should focus on new and previously unknown
preference statements, such that the progressive decision aiding process can converge
to a single choice recommendation as quickly and efficiently as possible. Note that a
progressive decision aiding process is not required to go on until a single best alterna-
tive can be recommended. As already mentioned, it may be up to the DM to determine
the ultimate choice from the eventual recommendation of the decision aiding.

Principle P3 is quite similar to the previous principle and appears to make it redun-
dant. In the following section, however, when implementing the Rubis method, their
strategic difference will become apparent.

P4: Effective recommendation
The recommendation should not correspond simultaneously to a choice and
an elimination recommendation.

This principle avoids the formulation of ambiguous recommendations, i.e., both out-
ranking and outranked sets of alternatives, which could appear in intransitive and
partial outranking relations. It is worthwhile noting that in a situation where all deci-
sion alternatives are either considered to be pairwisely equivalent or incomparable, no
effective choice recommendation can be made.

P5: Maximal credibility
The choice recommendation must be as credible as possible with respect to
the preferential knowledge available in the current step of the decision aiding
process.

As the credibility degrees in the bipolar-valued outranking digraph represent the more 
or less overall concordance or consensus of the criteria to support an outranking situ-
ation, it seems quite natural that in the case of several potential choice recommenda-
tions, we recommend the one(s) with the highest determinateness of the membership 
assertions.



Table 3 Example 2: the bipolar-valued outranking relation

S̃2 a b c d e

a 1.0 0.2 −1.0 −0.7 −0.8

b −0.6 1.0 0.8 1.0 0.0

c −1.0 −1.0 1.0 0.2 0.8

d 0.6 −0.6 −1.0 1.0 −0.4

e −1.0 −0.8 −0.4 −0.6 1.0

Fig. 2 Example 2: the
associated crisp digraph and an
undetermined arc

?

ec

b

a

d

As mentioned before, the first two principles are identical to those proposed by
Roy (see Sect. 3.2). However, alone they are not sufficient to generate satisfactory
choice recommendations. The three additional principles P3, P4, and P5 will show
their operational value when translated in Sect. 4 into properties in the bipolar-valued
outranking digraph.

Definition 3.1 A choice recommendation which verifies the five principles above is
called a Rubis choice recommendation (RCR).

Our goal in the following section is to determine which graph theory-related object
these properties characterise as a convincing choice recommendation.

4 Tackling the choice problem in the bipolar-valued outranking digraph

Let us note beforehand that obvious Rubis choice recommendations exist in case
the outranking relation is transitive, namely all maximal alternative(s). However, as
already mentioned earlier, the crisp outranking digraphs that we obtain from the
bipolar-valued characterisation of an outranking relation are in general not transi-
tive. This clearly motivates the necessity to find a procedure which computes a choice
recommendation verifying the five principles for any possible reflexive binary relation.

Throughout this section, we illustrate our discourse via the following didactic exam-
ple.4

Example 2 Let G̃2(X2, S̃2) be a bipolar-valued outranking digraph, where X2 =
{a, b, c, d, e} and S̃2 is given in Table 3 and the associated crisp digraph G2(X2, S2)

is represented in Fig. 2.

4 Roy B (2005) Private communication.



Let us now analyse the previously mentioned principles one by one and present their
translations in terms of the concepts presented in Sect. 2. Note that all the directed con-
cepts linked to an outranking property can symmetrically be reused in an elimination
problematique via the corresponding outranked properties.

4.1 Non-retainment for well motivated reasons (principle: P1)

In terms of the bipolar-valued outranking relation, principle P1 amounts to saying that
each non-retained alternative should be outranked by at least one alternative of the
choice recommendation.

R1: Outranking
An RCR5 is an outranking set in G̃(X, Ỹ ).

Example 2 (continued) The sets {a, b, e}, {b, c, d}, as well as {a, b, c} for instance,
are all outranking sets.

4.2 Minimal size and efficient and informative refinement (principles: P2 and P3)

In this subsection we show that these two principles are closely linked. To rewrite prin-
ciple P2 of minimal size in the present context, we first need to define some concepts
related to graph theory.

Definition 4.1

1. The outranking neighbourhood �+(x) of a node (or equivalently an alternative)
x of X is the union of x and the set of alternatives which are outranked by x .

2. The outranking neighbourhood �+(Y ) of a set Y is the union of the outranking
neighbourhoods of the alternatives of Y .

3. The private outranking neighbourhood �+
Y (x) of an alternative x in a set Y is the

set �+(x) \ �+(Y \ {x}).
For a given alternative x of a set Y , the set �+

Y (x) represents the individual contribu-
tion of x to the outranking quality of Y . If the private outranking neighbourhood of
x in Y is empty, this means that, when x is dropped from this set, Y still remains an
outranking set. From this observation one can derive the following definition.

Definition 4.2 An outranking (resp. outranked) set Y is said to be irredundant if all
the alternatives of Y have non-empty private outranking (resp. outranked) neighbour-
hoods.

The formal counterpart of the minimal size principle is therefore that of irredundancy
of the set.

Example 2 (continued) {a, b, e}, {b, c, d}, {b, e, d}, and {a, c} are irredundant outran-
king sets. {a, b, c}, listed in the context of principle R1, is not irredundant outranking
because alternative b has an empty private neighbourhood in this set.

5 Rubis choice recommendation (see Definition 3.1).



Fig. 3 Example 3: an unstable
({a, b}) and a stable
({a, d, e, f, . . . , z}) set

a

c b

d e f . . . z

Let us now switch to principle P3 (efficient and informative refinement), whose
primary objective is to avoid that, in the case of a provisional choice recommendation,
the DM may notice a best sub-choice without any further analyses. We require there-
fore that a choice recommendation Y should be such that the digraph restricted to the
nodes of Y does not contain any obvious sub-choice recommendation. Consequently,
at each stage of the decision aiding process, the provisional choice recommendation
must focus on new and previously undetermined or unknown preference statements.
Let us illustrate this with a short example.

Example 3 Consider the problem shown on the crisp digraph represented in Fig. 3.
Both highlighted sets Y1 = {a, b} and Y2 = {a, d, e, f, . . . , z} verify the princi-
ples P1 and P2 as outranking irredundant sets. One would be tempted to prefer Y1
to Y2 because of its lower cardinality. Nevertheless, Y1 contains information which is
already confirmed at this stage of the progressive search, namely that the statement
“a outranks b” is validated. In the case of the choice Y2, the next step of the search
will focus on alternatives which presently are incomparable. If a further analysis step
would focus on the set Y1, then it is quite difficult to imagine that the DM will be
able to forget about the already confirmed validation of the statement “a outranks b”.
He will most certainly consider a as the choice, which might however not be the best
decision alternative, as a is not outranking any of the alternatives of {d, e, f, . . . , z}.

According to principle P3 we therefore recommend Y2 as a choice recommendation.

In view of the previous considerations and the output generated by principles P1
and P2, it is quite natural to define the concept of stability as follows:

Definition 4.3 An outranking (resp. outranked) set Y in G̃(X, Ỹ ) is said to be sta-
ble if and only if the induced subgraph G̃Y (Y, S̃|Y ) does not contain any irredundant
outranking (resp. outranked) subset.

The outranking (resp. outranked) kernels (see Definition 2.5) of an outranking digraph
verify this property of stability. Nevertheless, as already mentioned in Sect. 3.2 and as
it is shown in the following property, the existence of an outranking (resp. outranked)
kernel is not guaranteed in an outranking digraph.

Property 4.4 If a digraph G̃(X, S̃) has no outranking (resp. outranked) kernel, it
contains a chordless circuit of odd order.

Proof This property represents the contraposition of Richardson’s general result: if
a digraph contains no chordless circuit of odd order, then it has an outranking (resp.
outranked) kernel (see Richardson 1953). �



The outranking kernel gives indeed a potential choice recommendation in case the
outranking digraph does not contain any chordless circuit of odd order. Consider now
the case where a potential choice recommendation, resulting from principles P1 and
P2, consists in a chordless circuit Y = {a, b, c} of order 3 such that aSb, bSc and cSa.
Such a choice recommendation is clearly neither a kernel nor is it a stable recommen-
dation. Nevertheless, it may be an interesting provisional recommendation because it
presents three alternatives to the DM which do not contain obvious information on
the possible single choice at this step of the progressive search. In fact, a, b and c can
be considered as equivalent potential candidates for the choice in the current stage of
the decision process.

Neither the concepts of stability and irredundancy nor that of outranking kernel
are in fact sufficient for guiding the search for a choice recommendation in a general
outranking digraph. In the first case, potentially interesting choice recommendations
are left out and in the latter case, nothing guarantees the existence of a kernel in an out-
ranking digraph. In order to overcome these difficulties, we introduce the concept of
hyperindependence, an extension of the independence property discussed in Sect. 2.3.

Definition 4.5 A set Y is said to be (strictly) hyperindependent in G̃ if it consists of
chordless circuits of odd order p ≥ 1 which are (strictly) independent of each other.

Note that in Definition 4.5 above, singletons are assimilated to chordless circuits of
(odd) order 1. Principles P2 and P3 can now be translated into the following formal
property:

R2: Hyperindependence
An RCR is a hyperindependent set in G̃(X, Ỹ ).

As a direct consequence, we can define the concept of hyperkernel.

Definition 4.6 A hyperindependent (resp. strictly hyperindependent) outranking
(resp. outranked) set is called an outranking (resp. outranked) hyperkernel (resp. deter-
mined hyperkernel).

Example 2 (continued) Set {a, b, d, e} (see Fig. 2) is an outranking hyperkernel. The 
undetermined outranking relation between b and e implies that the set is not strictly hy-
perindependent. Note here that this obvious potential choice recommendation would 
have been left out if the search was restricted to outranking kernels.

In case the outranking digraph does not contain any chordless circuits of odd order 3 
and more, the outranking kernels of the digraph deliver potential choice recommenda-
tions verifying the two first Rubis principles. In the general case however, the RCR 
will consist of at least one outranking hyperkernel of the digraph.

4.3 Effective and maximally credible recommendation (principles P4 and P5)

In order to translate principle P4 (effective recommendation), we introduce the concept 
of strict outranking set. Recall that one can associate an outranking (resp. outranked)



set Y with a bipolar-valued characterisation Ỹ + (resp. Ỹ −). It may happen that both
kernel characterisations are solutions of the respective kernel equation systems of
Proposition 2.6. In order to determine in this case whether Y is in fact an outranking or
an outranked set, it is necessary to specify which of its bipolar-valued characterisations
is the more determined.

We extend therefore the concept of determinateness of propositional statements
(see Definition 2.2) to bipolar-valued characterisations of sets.

Definition 4.7 The determinateness D(Ỹ ) of the bipolar-valued characterisation Ỹ of
a set Y is given by the average value of the determinateness degrees D(Ỹ (x)) for all
x in X .

In view of the bipolar definition of the global outranking and concordance indexes
(Formulae 2.1 and 2.2), which solely balance rational significance weights, we define
here the overall determinateness of a bipolar-valued set characterisation as the mean
of all the individual membership determinatenesses. Nevertheless other aggregation
operators could be used as well.

We can now define the concept of strictness as follows:

Definition 4.8

1. A set Y which is outranking and outranked with the same determinateness, i.e.,
D(Ỹ +) = D(Ỹ −) is called a null set.

2. A set Y for which D(Ỹ +) > D(Ỹ −) (resp. D(Ỹ −) > D(Ỹ +)) is called a strict
outranking set (resp. outranked set).

One can now translate the principle of effectiveness P4 into the following formal
property:

R3: Strict outranking
An RCR is a strict outranking set in G̃(X, Ỹ ).

This concept allows to solve the problem raised by the following example.

Example 4 Consider the crisp outranking digraph represented on Fig. 4 6 [for the sake
of simplicity we suppose that all the arcs which are drawn (resp. not drawn) represent
a credibility of the outranking of 1 (resp. −1)]. {a} and {c} are both irredundant out-
ranking sets with the same maximal determinateness 1. However, one can easily see
that alternative a compares differently with b than c does. Set {c} is clearly a null set.
If we now require the three properties R1, R2 and R3 to be verified, only the set {a}
can be retained as a potential choice recommendation.

An immediate consequence of the effectiveness principle is that a bipolar-val-
ued outranking digraph, which is completely symmetrical, i.e., with equal credibility
degrees for all x Sy and ySx , does not admit any RCR. Every outranking set will auto-
matically be a null set. Indeed, without any asymmetrical preferential statements, it is
impossible to derive any preferential discriminations that would support a convincing
choice recommendation.

6 Inspired from Roy and Bouyssou (1993).



Fig. 4 Example 4: illustration
of the necessity of PropertyR3 a

b

c

Table 4 Example 1: illustration of the maximal credibility principle

Ỹ a b c d e D(Ỹ )

{c} –0.2 –0.4 0.4 –0.4 –0.4 0.36 RCR

{b} –0.2 0.2 –0.2 –0.2 –0.2 0.20 –

Finally, principle P5 (maximal credibility) involves again the idea of determinate-
ness of bipolar-valued sets (see Definition 4.7). In the case of multiple potential choice
recommendations, we recommend the most determined one, i.e., the one with the high-
est determinateness. Let Ỹ be the set of sets verifying R1, R2 and R3 in G̃(Y, S̃).

R4: Maximal determinateness
An RCR is a choice in G̃(X, S̃) that belongs to the set

Ỹ∗ = {
Ỹ ′ ∈ Ỹ|D(Ỹ ′) = max

Ỹ∈Ỹ
D(Ỹ )

}
. (4.1)

Example 1 (continued) Recall that in this example (see Sect. 2.2), we determined two 
outranking kernels which were potential choice recommendations (see Table 4). The 
determinateness of the kernel {c} (0.36) is significantly higher than that of kernel {b}
(0.20). Following property R4, we recommend in this case the first solution, namely 
kernel {c}.

In this section, we have presented the translation of the five Rubis principles into 
properties of sets of alternatives defined in the bipolar-valued outranking digraph. 
Detailed motivations for these principles have been given. They lead quite naturally to 
the new concept of outranking hyperkernel of an outranking digraph. Consequently, 
a maximally determined strict outranking hyperkernel, which by construction verifies 
all five principles, gives a Rubis choice recommendation.

The following section focuses on the construction of the hyperkernels and pro-
poses a general algorithm for computing the Rubis choice recommendations in a 
given (non-symmetrical) bipolar-valued outranking digraph.

5 Computing the RUBIS choice recommendation

We start by presenting an algorithm which allows to determine the hyperkernels of an 
outranking digraph before presenting some of their properties.



5.1 Determination of the hyperkernels

If G̃(X, S̃) contains chordless circuits of odd order (� 3), the original outranking di-
graph is modified into a digraph that we will call the chordless-odd-circuits-
augmented (COCA) outranking digraph G̃C(XC, S̃C). Intuitively, the main idea is
to “hide” the problematic circuits behind new nodes which are added to the digraph
in a particular way. This may appear to be a problematic perturbation of the original
information. Nevertheless, as we will see later, such a transformation does not affect
the original problem but only helps to find more suitable solutions.

The procedure to obtain the COCA digraph G̃C is iterative. The initial digraph
is written G̃0(X0, S̃0), and is equal to G̃(X, S̃). At step i , the set of nodes becomes
Xi = Xi−1 ∪ Ci , where Ci is a set of nodes representing the chordless circuits of
odd order of G̃i−1(Xi−1, S̃i−1). These nodes are called hypernodes. The outranking
relation S̃i−1 is augmented by links between the nodes from Xi−1 and those from Ci

in the following way (the resulting relation is written S̃i )7:

∀Ck ∈ Ci

{
S̃i (Ck, x) = ⋃

y∈Ck

S̃i−1(y, x) ∀x ∈ Xi−1 \ Ck ,

S̃i (Ck, x) = +1 ∀x ∈ Ck ,
(5.1)

∀x ∈ Xi−1,Ck ∈ Ci

{
S̃i (x,Ck) = ⋃

y∈Ck

S̃i−1(x, y) if x /∈ Ck ,

S̃i (x,Ck) = +1 if x ∈ Ck .
(5.2)

The iteration is stopped at step r for which |Xr | = |Xr+1|. We then define G̃C(XC, S̃C)
as the digraph G̃r (Xr , S̃r ). As the order of the original digraph G̃ is finite, the number
of circuits it may contain is also finite. Therefore, the iteration is a finite process. Note
that this iterative approach is necessary because of the fact that new chordless circuits
of odd order may appear when new hypernodes are added to the digraph.

The outranking (resp. outranked) hyperkernels of G̃(X, S̃) are then determined by
searching the classical outranking (resp. outranked) kernels of G̃C(XC, S̃C) (Bisdorff
1997, 2006b).

5.2 Properties of the COCA outranking digraph

This extension of the digraph has two very important properties.

Property 5.1 The outranking (resp. outranked) kernels of G̃(X, S̃) are also the out-
ranking (resp. outranked) kernels of G̃C(XC, S̃C).

Proof Let us suppose that G̃ contains at least one odd chordless circuit. Let Y be an
outranking kernel of G̃ (the case of the outranked kernels can be treated similarly).
We must prove that Y is also an outranking kernel of G̃C .

7 For the sake of simplicity, an element Ck of Ci will represent a node of Xi as well as a the set of nodes
of Xi−1 representing the circuit Ck .



First, the elements of Y are independent in G̃ and G̃C because no relation is added
between elements of X in XC . Secondly, as Y is an outranking set in G̃, each element
of X \ Y is outranked by at least one element of Y . In particular, if Ck is an odd
chordless circuit of X , each node of Ck is also outranked by at least one element of Y
(in X ). Due to the special way S̃C is built, the node representing Ck in XC is also also
outranked by at least one element of Y . �
Property 5.2 The digraph G̃C(XC, S̃C) contains at least one outranking (resp. out-
ranked) hyperkernel.

Proof Following from the construction principle of the COCA digraph (see Eqs. 5.1,
5.2), a hypernode inherits the outranking (outranked) characteristics of its correspond-
ing odd chordless circuit. A direct consequence of this inheritance is that the outran-
king, as well as the outranked, neighbourhood of the odd chordless circuit are inherited
by the hypernode. Furthermore, the individual nodes of each odd chordless circuit are
outranked by and are outranking the hypernode with a credibility of +1 (indifference).

Let us now suppose that G̃(X, S̃) contains no outranking kernel (a similar proof
can be given for the outranked kernels). According to Property 4.4 this means that
G̃(X, S̃) contains at least one odd chordless circuit. One can easily understand that
if the structure of the digraph requires an element x ∈ X of an odd chordless circuit
Ck to be in an irredundant outranking set Y , due to the odd number of elements of
that particular circuit, one of the two direct neighbours of x in the circuit will also be
added to Y . Consequently, Y cannot be kernel in that situation.

Due to the particular construction of the associated COCA digraph G̃C , there exists,
for each odd chordless circuit, a hypernode which inherits its properties, and which
is considered as indifferent to it. Consequently, each element of each odd chordless
circuit in G̃C is outranked by, and is outranking, a hypernode. Furthermore, each of
the hypernodes has the same outranking and outranked neighbourhoods as its corre-
sponding odd chordless circuit.

Finally, the element x of the odd chordless circuit Ck will no longer be problematic
in the construction of the outranking kernels of G̃C because there exists at least one
hypernode which is equivalent to x , and which inherits from the outranking neigh-
bourhoods of Ck . Consequently Ck (as a hypernode) is added to Y instead of x . �

Finally we present and discuss the effective computing of a Rubis choice recom-
mendation.

5.3 The RCR algorithm

Algorithm

Input: G̃(X, S̃),
1. Construct the associated COCA digraph G̃C(XC, S̃C),
2. Extract the sets K̃ + and K̃ − of all outranking and outranked hyperkernels from

G̃C ,
3. Eliminate the null kernels from K̃ +,
4. Rank the elements of K̃ + by decreasing logical determinateness,

Output: The first ranked element(s) in K̃ +.



Table 5 Number of odd
chordless circuits in random
bipolar-valued outranking
digraphs of order 20 (1,000
observations)

Number of odd # Rel. freq. (%) Cum. freq. (%)
chordless circuits

0 735 73.5 73.5

1 116 11.6 85.1

2 65 6.5 91.6

3 25 2.5 94.1
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The first step of the RCR (Rubis choice recommendation, see Definition 3.1) algo-
rithm is by far the most difficult to achieve, as the number of odd chordless circuits in a
bipolar-valued outranking digraph can be huge. To study this operational difficulty, we
have compiled a sample of 1,000 bipolar-valued outranking digraphs generated from
performances of 20 alternatives evaluated randomly on 7–20 criteria with random
weights distributions and random thresholds. In nearly 98% of the sample, the time to
compute the COCA digraph on a standard desktop computer is less than a second. In
one case, we observe an execution time of around 30 s (due to a high number of odd
chordless circuits in the digraph).

In Table 5, we note that nearly 75% of the sample digraphs do not admit any odd
chordless circuit at all. In 100% of the observations less than ten hypernodes are added
to the original outranking digraph.

The second step of the RCR algorithm concerns the extraction of hyperkernels from
the COCA digraph. From a theoretical point of view, this step is well-known to be
computationally difficult (Chvátal 1973). However, this difficulty is directly linked to
the arc-density, i.e., the relative size of the digraph. Indeed, only very sparse digraphs,
showing an arc-density lower than 10% in the range of digraph orders which are rel-
evant for the choice decision aiding problematique (10–30 alternatives), may present
difficulties for the search of kernels. For the test sample of 1,000 random outranking
digraphs of order 20, we observe a very high mean density of 82.6% with a standard
deviation of 5.7%. Consequently, determining hyperkernels is in general a task which
is feasible in a very reasonable time. Indeed, the mean execution time with its stan-
dard deviation for this step of the algorithm are around a thousandth of a second on a
standard desktop computer.

Finally, eliminating the null hyperkernels and sorting the strict outranking hyper-
kernels in decreasing order of determinateness is linear in the order of the digraph and
involves no computational difficulty at all.

Let us illustrate the RCR algorithm on the second example of this paper (see Sect. 4).

Example 2 (continued)The bipolar-valued outranking digraph of this example (see
Fig. 2) contains a chordless circuit of order 3, namely {a, b, d}. The original digraph G̃2
is extended to the digraph G̃C

2 which contains a hyper-node representing {a, b, d}. The
corresponding outranking digraph admits an outranking kernel {a, c} and a hyperkernel



Table 6 Example 2: the associated COCA digraph with the bipolar-valued characterisations of its outran-
king (+) and outranked (−) hyperkernels

S̃C
2 a b c d e {a, b, d} D

a 0.1 0.2 –1.0 –0.7 –0.8 1.0

b –0.6 1.0 0.8 1.0 0.0 1.0

c –1.0 –1.0 1.0 0.2 0.8 0.2

d 0.6 –0.6 –1.0 1.0 –0.4 1.0

e –1.0 –8 –0.4 –0.6 1.0 –0.6

{a, b, d} 1.0 1.0 0.8 1.0 0.0 1.0

{{a, b, d}, e}+ –0.6 –0.6 –0.6 –0.6 0.0 0.6 0.5

{a, c}+ 0.2 –0.2 0.2 –0.2 –0.2 –0.2 0 0.2

{{a, b, d}, e}− 0.0 0.0 0.0 –0.6 0.0 0.6 0.2

{{a, b, d}, e} which is both outranking and outranked, but not with the same degree 
of determinateness (see Table 6). The first one is significantly more determined than 
the second one. Consequently, the Rubis “choice recommendation” is {{a, b, d}, e}, 
where alternative e is in an undetermined situation.

Let us finish this last section by indicating that all the examples of this paper have 
been computed with the free Python module digraphs (Bisdorff 2006a) which allows 
to manipulate bipolar-valued digraphs and to determine the RCR from a given perfor-
mance table.

Concluding remarks

In this paper we defined new operational instruments, namely the strict outranking 
hyperkernel and the chordless circuits augmented digraph, which contribute to enrich 
the set of decision aiding tools for the choice problematique. New concepts, such as the 
Rubis choice recommendation, defined on a bipolar-valued outranking digraph, adapt 
and extend the traditional theoretical and pragmatic framework in which the choice 
problem is generally tackled. Some topics remain of course untouched. In particular, 
the authors’ future challenge will be to illustrate with a successful Rubis decision 
aiding practice, that a DM may indeed enhance his actual choices.
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