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Abstract

We analyze a recently proposed ordinal sorting procedure (TOMASO) for the assignment of alternativ es to 
graded classes and we present a freeware constructed from this procedure. We illustrate it by two examples, 
and do some testing in order to show its usefulness.
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1. Introduction

In this paper we analyze an ordinal sorting procedure for the assignment of alternatives to graded
classes in the presence of interacting points of view. This procedure has been recently proposed
by Roubens [1,2] and is now known under the name TOMASO, which means “Tool for Ordinal
Multi-Attribute Sorting and Ordering”.

The technique used in this method proceeds in two steps: a pre-scoring phase determines for each
point of view and for each alternative a net score (the number of times a given alternative beats
all the other alternatives minus the number of times this alternative is beaten by the others) and is
followed by an aggregation phase, using the discrete Choquet integral, which produces a global net
score associated to each alternative. These global scores are then used to assign the alternatives to
graded classes.

The fuzzy measure associated to the Choquet integral can be learnt from a subset of alternatives
(called prototypes) that are assigned beforehand to the classes by the decision maker. This leads to
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solving a linear constraint satisfaction problem whose unknown variables are the coeFcients of the
fuzzy measure.

Once a fuzzy measure is found, it is useful to interpret it through some behavioral parameters:

(1) The importance indices (Shapley importance indices), which make it possible to appraise the
overall importance of each point of view.

(2) The interaction indices (Shapley interaction indices), which measure the extent to which the
points of view interact (positively or negatively).

The main purpose of this paper is to present a freeware, also called TOMASO, which allows the user
to apply this method to a learning set and analyze the resulting assignments. It is written in Visual
Basic, which increases its ergonomy.

The paper is organized as follows. In Section 2 we recall the general sorting procedure TOMASO.
In Sections 3–5 we present the freeware TOMASO, its implementation, and its application on two
particular case studies. Finally, in Section 6, we compare this procedure with classical methods in
terms of both results and computational eFciency.

2. The TOMASO method

In the present section, we brieHy recall the procedure TOMASO. For theoretical developments on
this procedure, the readers are referred to [1].

Let A be a set of q potential alternatives, which are to be assigned to disjoint classes, and let
N={1; : : : ; n} be a label set of points of view to satisfy. For each point of view i∈N , the alternatives
are evaluated according to a si-point ordinal performance scale; that is, a totally ordered set

Xi := {gi
1 ≺i gi

2 ≺i · · · ≺i gi
si}:

We assume that each alternative x∈A can be identiJed with its corresponding proJle

(x1; : : : ; xn)∈ n×
i=1

Xi =: X;

where, for any i∈N , xi represents the partial evaluation of x related to point of view i.
Now, consider a partition of X into m nonempty classes {Clt}m

t=1, which are increasingly ordered;
that is, for any r; s∈ {1; : : : ; m}, with r ¿ s, the elements of Clr have a better evaluation than the
elements of Cls.
We also set

Cl¿r :=
⋃

t¿r

Clt (r = 1; : : : ; m):

The procedure TOMASO consists in partitioning the elements of A into the classes {Clt}m
t=1. It is

mainly based on the following result, adapted from [3, Theorem 2.1], which states that, under a
simple condition of monotonicity, it is possible to Jnd a discriminant function that strictly separates
the classes Cl1; : : : ; Clm by ordered numerical thresholds.



For any xi ∈Xi and any y−i ∈X−i := ×j∈N\{i} Xj, we set

xiy−i := (y1; : : : ; yi−1; xi; yi+1; : : : ; yn)∈X:

Theorem 1. The following two assertions are equivalent:

(1) For all i∈N , t ∈ {1; : : : ; m}, xi; x′
i ∈Xi, y−i ∈X−i, we have

x′
i �i xi and xiy−i ∈Clt ⇒ x′

iy−i ∈Cl¿t :

(2) There exist
• functions gi :Xi →R (i∈N ), strictly increasing, called criteria,
• a function f :Rn →R, increasing in each argument, called discriminant function,
• m − 1 ordered thresholds {zt}m

t=2 satisfying

z26 z36 · · ·6 zm

such that, for any x∈X and any t ∈ {2; : : : ; m}, we have

f[g1(x1); g2(x2); : : : ; gn(xn)]¿ zt ⇔ x∈Cl¿t :

For a practical use of this result and in order to produce a meaningful result, Roubens [2] restricted
the family of possible discriminant functions to the class of n-variable Choquet integrals and the
criteria functions to normalized scores.

Such scores, whose deJnition might vary from an application to another, should have a precise
meaning for the decision maker.

Two natural approaches can be considered: either the score of each alternative is built on the
basis of all the alternatives in A or this score is constructed in a context-free manner, that is,
independently of the other alternatives. The decision maker must be aware that the Jnal results may
signiJcantly diLer according to the considered approach. Therefore, a prior analysis of the problem
is recommended to choose the scores appropriately.

In the Jrst approach, one possible way to build the scores is to consider comparisons of the
alternatives on each of the points of view. We consider Si(x), the ith partial net score of alternative
x∈A along point of view i∈N , as the number of times that x is preferred to any other alternative
of A minus the number of times that any other alternative of A is preferred to x for point of view
i. We furthermore normalize these scores so that they range in the unit interval, i.e.,

SN
i (x) :=

Si(x) + (q − 1)
2(q − 1)

∈ [0; 1] (i∈N );

where q= |A|. Clearly, this normalized score is not a utility, and should not be considered as such.
Indeed, observing an extreme value (close to 0 or 1) means that x is rather “atypical” compared to
the other alternatives along point of view i. Thus, the resulting evaluations strongly depend on the
alternatives which have been chosen to build A.

Consider now the second approach, that is, where the score of each alternative does not depend on
the other alternatives in A. In this case, we suggest the decision maker provides the score functions
as utility functions. Alternatively, we can approximate these utility functions by the following linear



formula:

SN
i (x) :=

ordi(x) − 1
si − 1

∈ [0; 1] (i∈N );

where ordi : A → {1; : : : ; si} is a mapping deJned by ordi(x) = r if and only if xi = gi
r . In this latter

case, SN
i does not necessarily represent a real utility and probably does not correspond to the utility

the decision maker has in mind. We therefore continue to call it a score.
Notice that the case studies we present in this paper are treated by means of the scores of the

Jrst type, i.e., based on the comparison of alternatives.
The normalized scores of each alternative x are then aggregated by means of a Choquet integral

[4], namely

Cv(SN (x)) :=
n∑

i=1

SN
(i)(x) [v(A(i)) − v(A(i+1))];

where SN (x) stands for (SN
1 (x); : : : ; S

N
n (x)) and v represents a fuzzy measure on N ; that is, a monotone

set function v : 2N → [0; 1] fulJlling v(∅) = 0 and v(N ) = 1. This fuzzy measure merely expresses
the importance of each subset of points of view. Also, the parentheses used for indices represent a
permutation on N such that

SN
(1)(x)6 · · ·6 SN

(n)(x)

and, for any i∈N , A(i) represents the subset {(i); : : : ; (n)}.
The Choquet integral presents standard properties for aggregation (see [5,6]): it is continuous,

non-decreasing, located between min and max. The major advantage linked to the use of this integral
derives from the large number of parameters (2n − 2) associated with a fuzzy measure. However,
this Hexibility can be also considered as a serious drawback when assessing the fuzzy measure. To
reduce the number of parameters, it is proposed to consider k-additive fuzzy measures [5]: a fuzzy
measure v on N is k-additive if its MNobius transform m : 2N →R, deJned by

m(S) =
∑

T⊆S

(−1)|S|−|T | v(T ) (S ⊆ N );

satisJes m(S) = 0 for S such that |S|¿k and there exists at least one subset S such that |S| = k
and m(S) �= 0. It can be shown that k-additive fuzzy measures on N can be represented by at most∑k

i=1

( n
i

)
parameters.

We now explain how the fuzzy measure is assessed in this procedure.
Assume that all the alternatives of A ⊆ X are already sorted into classes Cl1; : : : ; Clm. In some

particular cases there exist a fuzzy measure v on N and m − 1 ordered thresholds {zt}m
t=2 satisfying

z26 z36 · · ·6 zm

such that for any x∈A, and any t ∈ {2; : : : ; m}, we have

Cv(SN (x))¿ zt ⇔ x∈Cl¿t :



Of course, if such a fuzzy measure does exist then the thresholds may be deJned by

zt := min
x∈Cl¿t

Cv(SN (x)) (t = 2; : : : ; m):

In real situations, the assignment of all alternatives is not known but has to be determined. However,
this assignment, or equivalently the fuzzy measure v, can be learnt from a reference subset, made
up of prototypes that have been sorted beforehand by the decision maker.

Practically, the decision maker is asked to supply such a prototypical subset P ⊆A and the as-
signment of each of its elements to a given class; that is, a partition of P into prototypical classes
{Pt}m

t=1, where Pt := P ∩ Clt for all t ∈ {1; : : : ; m}. Here some prototypical classes may be empty.
As the Choquet integral is supposed to strictly separate the classes Clt , we must impose the

following necessary condition:

Cv(SN (x)) − Cv(SN (x′))¿ � (1)

for each ordered pair (x; x′)∈Pt × Pt−1 and each t ∈ {2; : : : ; m}, where � is a given strictly positive
threshold.

These separation conditions, put together with the boundary and monotonicity constraints on the
fuzzy measure, form a linear constraint satisfaction problem whose unknowns are the coeFcients
of the fuzzy measure. Thus the sorting problem consists in Jnding a feasible solution satisfying all
these constraints. If � has been chosen too big, the problem might have no solution. To avoid this,
we can consider � as a non-negative variable to be maximized. In this case its optimal value must
be strictly positive for the problem to have a solution.

In the resolution of this problem, we use the principle of parsimony. If no solution is found for
k=1, we turn to k=2. If no solution is still found, we turn to k=3, and so forth, up to k=n. Notice
however that an empty solution set for k = n is necessarily due to an incompatibility between the
assignment of the given prototypes and the assumption that the discriminant function is a Choquet
integral.

Due to the increasing monotonicity of the Choquet integral, the number of separation constraints
(1) can be reduced signiJcantly. For example, if x′′ ∈Pt−1 is such that Cv(SN (x′))¿Cv(SN (x′′))
then, by transitivity, the constraint

Cv(SN (x)) − Cv(SN (x′′))¿ �

is redundant.
Now, we can deJne a dominance relation D on X as follows: For each x; y∈X ,

xDy ⇔ SN
i (x)¿ SN

i (y) ∀i∈N:

Being an intersection of complete (total) orders, the binary relation D is a partial order, i.e., it is
reHexive, antisymmetric, and transitive. Furthermore we clearly have

xDy ⇒ Cv(SN (x))¿Cv(SN (y)):

It is then useful to deJne, for each t ∈ {1; : : : ; m}, the set of non-dominating alternatives of Pt ,

Ndt := {x∈Pt |@x′ ∈Pt \ {x} : xDx′}



and the set of non-dominated alternatives of Pt ,

NDt := {x∈Pt |@x′ ∈Pt \ {x} : x′Dx}
and to consider only constraint (1) for each ordered pair (x; x′)∈Ndt×NDt−1 and each t ∈ {2; : : : ; m}.
Thus, the total number of separation constraints boils down to

m∑

t=2

|Ndt| |NDt−1|:

Finally, suppose that there exists a k-additive fuzzy measure v∗ that solves the problem above. Then
any alternative x∈A will be assigned to

• the class Clt if

min
y∈Ndt

Cv∗(SN (y))6Cv∗(SN (x))6 max
y∈NDt

Cv∗(SN (y));

• one of the classes Clt or Clt−1 if

max
y∈NDt−1

Cv∗(SN (y))¡Cv∗(SN (x))¡ min
y∈Ndt

Cv∗(SN (y)):

3. The freeware TOMASO

We now present the freeware TOMASO, 2 which is an implementation (written in Visual Basic) of
the algorithm presented in Section 2. In the present section we describe brieHy the various aspects
of the freeware. In the next section, we present an application on a Jctitious example of evaluation
of students, we show how the freeware deals with a leave-one-out procedure, and we present a way
to test its performance on this particular example. In the following section, we present an application
of the method to a classiJcation problem of quality indices for association rules.

The freeware TOMASO can be used for supervised classiJcation of ordinal multi-criteria data. In
order to work properly, it requires some information about the structure of the data. We call a
prototypical set the set of objects used to build the classiJer. It is described by a set of alternatives
which are already classiJed by the decision maker.

This means that the class of problems which can be solved by this method is quite particular.
The decision maker must be aware of some a priori information on certain objects of his decision
problem. He must be an expert in the Jeld and should be able to give a global evaluation on some
particular elements. Later, when the model is built, new alternatives can be considered. The classiJer
will then assign them to one or more of the predeJned classes, according to the preferences of the
decision maker.

When using the freeware, at Jrst the user has to load the Jle with the data he wants to analyze. 3

These data have to be of ordinal nature and, as mentioned before, can be composed of the prototypes
and some alternatives that need to be classiJed.

2 Available at http://patrickmeyer.tripod.com
3 See tutorial at http://patrickmeyer.tripod.com for a detailed description of the data Jle formats.
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After the calculation of the net scores, the user has to Jx the number of classes and their structures.
This last point is achieved by adding the prototypes to their respective classes, which can be done
either manually or by loading a Jle. At the end of this step, the alternatives which are not assigned
to any class do not belong to the prototypical set and will either be used as a test subset (to check
the validity of the method) or simply as objects to be classiJed.

The next stage of the freeware is to check the consistency of the assignments within the set of
prototypes. The inconsistencies can be of two types:

• Two alternatives x and y with the same net scores for each criterion (SN (x) = SN (y)) belong to
two diLerent classes.

• Two alternatives x and y so that x dominates y (i.e., SN
i (x)¿ SN

i (y) ∀i∈N ) and y belongs to a
better class than x.

If no inconsistency is detected, the freeware allows the user to go on. Else, the user has to change
the deJnition of the classes by the prototypes (either manually, or by loading another class Jle).
The next step is the determination of the non-dominating set of alternatives and the non-dominated
set of alternatives in each class. These sets are not empty, because the user should add at least
one alternative in each class. As already mentioned earlier, this is meant to reduce the number of
separation constraints and is justiJed by the increasing monotonicity of the Choquet integral.

The resolution of the linear constraint satisfaction problem is the next stage. The user can choose
between Jxing the value of k ¡n or solving the problem for k=n. In both cases, a Jle of constraints
is computed. An external solver 4 uses this Jle as an input and tries to solve the problem.
If the problem has no solution for k = n, the user should revise the deJnition of the classes. On

the other hand, if there is a solution for the problem, the following results are displayed:

• the coeFcient of the fuzzy measure v,
• the values of the MNobius transform m of v,
• the value of �,
• the borders of the classes (for each class Clt , given by the maximal and the minimal value of the
Choquet integral of the alternatives of Clt),

• the Shapley importance indices for each point of view i,
• the Shapley interaction indices for each pair of points of view,
• the Choquet integral of each prototype.

An important tool is the assignment of the alternatives which are not in the prototypical set to the
classes, according to the previously built model. During this step, it may happen that the Choquet
integral of some of these objects may not be between the limits of any of the classes. In that case,
those alternatives are assigned to “imprecise” classes which lie between the original classes. If for
one particular alternative x the decision maker is not satisJed with such a fuzzy assignment between
classes Clr and Cls, he may revise the deJnition of the adjacent classes in order to include x or
maybe another alternative similar to x. Else, one can say that alternative x simply belongs to class
Clr or Cls.

4 lp solve 3.0, downloadable at ftp://ftp.ics.ele.tue.nl/pub/lp solve/, released under the LGPL license.

ftp://ftp.ics.ele.tue.nl/pub/lp_solve/


To check the structure of the set of prototypes, it is possible to apply a particular leave-one-out
procedure to the data. For each alternative x of the prototypical set, the model is rebuilt without
the alternative. Then x is assigned to a class, according to the prototypes. This class should then
be the original class of x. If not, it is considered as an error. At the end of the whole procedure,
a high error ratio, say e=p, with e close to p (p is the cardinality of the prototypical set and e is
the number of badly classiJed alternatives during the leave-one-out procedure) does not necessarily
mean that the data of the prototypes are badly chosen. It either stands for a “minimal” prototypical
set, where nearly each alternative is important for the building of the model, or for a quite complex
data structure. In this latter case, the set of prototypes should perhaps be revised and enriched with
new alternatives to increase its diversity.

4. Assigning students to graded classes

In order to validate the TOMASO method, we apply it on the following example. Consider a set
of students evaluated in three courses: mathematics, physics, and literature. For each course, the
evaluation scale has three ordered qualitative levels: bad ≺ medium ≺ good. In total this makes 27
possible diLerent students. Besides, for each student, a decision maker has given a global evaluation
on an qualitative ordinal scale with three levels: bad (1) ≺ medium (2) ≺ good (3). We analyze
two diLerent subproblems of this example. The Jrst one uses the complete set of 27 students as
prototypes and any future assignment has to be correct, because the 27 students represent all possible
cases. The second study is on a random subset of the set of 27 students. It is somewhat more realistic,
as a global information is known only on a subset of students. There, future assignments are not
necessarily correct. In order to test the usefulness of the method, a particular algorithm of cross
validation will be applied to the problem.

4.1. Subproblem 1: 27 students

Fig. 1 represents the assignments of the decision maker, and the dominance relations between
students of the same class. The determination of the non-dominating and non-dominated sets of
alternatives for each class results in the following table:

NDg (3 3 3)
NDm (2 2 3) (3 3 1)
NDb (1 3 3) (3 1 3) (2 2 1)
Ndg (2 3 2) (3 2 2)
Ndm (2 2 2) (2 3 1) (3 2 1)
Ndb (1 1 1)

The extreme sets (NDg and Ndb) will not be used in the linear constraint satisfaction program.
The problem has a solution for k = n = 3, with � = 0:086 (but no solution can be found for

k ¡ 3). This means that all the prototypes can be assigned to their correct classes with the help of a
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Medium
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Fig. 1. Assignments of the decision maker.

Choquet integral as a discriminant function. Interesting parameters are the importance indices which
are shown in the following table:

Math Physics Literature
0:417 0:417 0:166

4.2. Subproblem 2: a subset of the 27 students

For this problem, we chose a random subset of the 27 prototypical students as follows: we
scan sequentially the original set of 27 students and assign each student with a probability of
1=2 to the new subset. The randomly generated subset used here is described in the following
table:

Good (3 2 2) (3 3 2) (3 2 3) (3 3 3)
Medium (3 2 1) (3 3 1)
Bad (3 1 1) (1 2 1) (1 3 1) (3 1 2) (1 3 2) (3 1 3) (1 2 3) (1 3 3)

The structure of this problem if given in Fig. 2. The original classes are represented by dashed
lines. The prototypical classes are described by solid lines. The goal is to reconstruct the original
classes as accurately as possible.
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Fig. 2. Assignments of the decision maker.

The determination of the non-dominating and non-dominated sets of alternatives for each class
results in the following table:

NDg (3 3 3)
NDm (3 3 1)
NDb (1 3 3) (3 1 3)
Ndg (3 2 2)
Ndm (3 2 1)
Ndb (3 1 1) (1 2 1) (1 2 3)

We observe that these sets are quite reduced in comparison to the previous subproblem.
The problem has a solution for k = n=3, with �=0:115. The importance indices are given in the

following table:

Math Physics Literature
0:389 0:389 0:222

They are similar to those of the Jrst subproblem. Mathematics and Physics have the highest
importance indices with equal values.

We can also see that there is a solution for k = 2, with � = 0:069. In this case, the importance
indices are given in the following table:

Math Physics Literature
0:500 0:300 0:200



The (pairwise) interaction indices are given in the following table:

(Math, Physics) (Math, Literature) (Physics, Literature)
0.200 0 0.400

Coming back to the solution with k=3, the leave-one-out procedures gives a misclassiJcation ratio
of 14:29%. This means that 2 alternatives out of the 14 of the prototypes were badly reclassiJed.
Besides, the importance indices stay rather constant during these 14 leave-one-out procedures. The
three next tables resume the value of the Shapley indices for the three branches (mathematics (m),
physics (p) and literature (l)).

m 0:389 0:389 0:375 0:389
p 0:389 0:389 0:375 0:389
l 0:222 0:222 0:250 0:222

m 0:417 0:389 0:389 0:389 0:389
p 0:417 0:389 0:389 0:389 0:389
l 0:167 0:222 0:222 0:222 0:222

m 0:389 0:389 0:389 0:389 0:389
p 0:389 0:389 0:389 0:389 0:389
l 0:222 0:222 0:222 0:222 0:222

The average values for mathematics and physics are both 0:39 with a variance of 7:43 × 10−5.
For literature the mean is 0:220 with a variance of 2:89 × 10−4.
The assignments of the remaining 13 alternatives are resumed in the following table:

Student Assignment Original class

(1 1 1) Bad Bad
(2 1 1) Bad Bad
(2 2 1) Medium Bad
(2 3 1) Medium Medium
(1 1 2) Bad Bad
(2 1 2) Bad Bad
(1 2 2) Bad Bad



(2 2 2) Good Medium
(2 3 2) Good Good
(1 1 3) Bad Bad
(2 1 3) Bad Bad
(2 2 3) Good Medium
(2 3 3) Good Good

The three erroneous assignments (indicated in boldface type) lead to an error rate of 23:08%.
If we analyze these problems, they are not surprising at all. The randomly chosen subset has very
few representatives in the middle class of medium students. The three erroneous assignments slide
from the middle to the top class, or from the lower to the middle class. Hence we can conclude
that the class of medium students is quite problematic in this particular case. But the error rate is
still satisfactory.

In order to determine if the algorithm used in the TOMASO method is useful on this particular
example of 27 students, we use a special 2-fold cross validation. The goal is to prove that the
previous randomly chosen subproblem is not a particular case, and that pertinent conclusions can be
drawn for any possible prototypical subset of the 27 students.

The general idea behind this test is to split the data D of the 27 students in 2 random subsets, a
training set R and a test set T . The model is built on R and tested on T . The resulting classiJcation
(on T ) is then compared to the original classes of D. To determine the accuracy of the model, an
error ratio is calculated by dividing the number of misclassiJed elements of T by the cardinality of T .

In this particular example, we build a certain number S of subsets of the set of 27 students.
One condition needs to be fulJlled: there must be at least one object of each decision class in the
subset. To do so, we scan sequentially the original set of 27 students and assign each student with
a probability of 50% to the new subset. Afterwards, we check if each class is represented at least
once in the new set of students.

Let X be a random variable which represents the error ratio. Our main concern is the mean value
of X , E[X ], on all possible subsets of D under the constraint described before.

In order to give an estimation of E[X ] we calculate the mean RX of X on 30 subsets. The values
for the Xi are given in the following table:

0.2857 0 0.2308 0.2500 0.5455
0.1538 0 0.1429 0.0667 0.1818
0.3571 0.4286 0 0.4286 0.5333
0.3889 0.3333 0 0.1538 0.0769
0.2500 0.2941 0.2308 0.3077 0.0769
0.1250 0.1333 0.2222 0.3125 0.2308

Hence RX = 0:2247 and the standard deviation s= 0:0231.
Besides, the normality of the distribution given by the values in the previous table cannot be re-

jected. Hence we compute the Student conJdence interval around the value of RX .



Finally:

P(E[X ]∈ [0:2131; 0:2363]) = 99%:

More intuitively, we can claim that with a probability of 99%, TOMASO allows to classify the students
of this example with an error rate between 21.31% and 23.63% if the prototypes are chosen randomly
as described beforehand.

We observe that the previous example treated in Section 4.2 is not aberrant, and that it could
represent a real case study. Furthermore the conclusions drawn from it are pertinent.

We also have analyzed the variation of the importance indices over these 30 cross validations. In
a majority of cases, the order “mathematics ∼ physics � literature” is maintained. But the values
for each criterion are varying signiJcantly. It is important to emphasize here that the exact values
of these indices should merely be considered as parameters.

5. Assigning quality measures of association rules to graded classes

We present a second example to show that the TOMASO method can be used in various real-life
problems where a MCDA problem requires graded classes as an output. This particular example
comes from the data mining and knowledge extraction Jelds. Certain data mining algorithms, espe-
cially those used for unsupervised learning, can generate a large number of rules (A→B; read: if A
is satisJed then B is probably also satisJed). They need to be evaluated before being presented to
an expert in order to reduce their number, and to retain only the “best” and the most interesting
ones. Intuitively one could say that an association rule is “good” if it has few counterexamples.
Therefore, many quality measures have been proposed to evaluate rules. Most of them have diLer-
ent properties and express more subtle properties than simply counting the counterexamples. These
properties are often contradictory and conHicting. In [7] the authors have described quality measures
on a limited set of criteria. Currently, the work has progressed and a set of 20 measures is evaluated
on 8 criteria. The interested reader should refer to [7] for further details. The list of criteria is given
hereafter:

• g1: Asymmetric processing of A and B (To distinguish A→B rules from B→A rules) (asymmetric
(1) � symmetric (0)).

• g2: Decrease with nb (nb = |B|) with Jxed |A| (decreasing with nb (1) � non-decreasing with nb

(0)).
• g3: Constant at independence (If A and B are independent, the rule contains no information.

Hence the quality measure should take a Jxed value at independence (e.g. 0)) (Jxed value at
independence (1) � value at independence varying with rule (0)).

• g4: Constant at situation of logical rule (If no counterexample to the rule exists, the measure should
take a Jxed maximum value (e.g. 1)) (constant at maximum (1) � maximum value dependant
on rule (0)).

• g5: Shape of the curve [measure = f(counterexamples)] (A slow decrease with the number of
counterexamples allows to keep the rule longer, a fast decrease with the number of counterexam-
ples bans the rule faster; depends on the preferences of the expert) (concave (2) � linear (1) �
(0) convex or convex (0) � linear (1) � concave (2)).



Table 1
Decision matrix for the quality measures problem

g1 g2 g3 g4 g5 g6 g7 g8

SUP 0 0 0 0 1 0 1 2
CONF 1 0 0 1 1 0 1 2
R 0 1 1 0 1 0 1 1
CENCONF 1 1 1 0 1 0 1 2
PS 0 1 1 0 1 1 1 1
LOE 1 1 1 1 1 0 1 1
ZHANG 1 1 1 1 2 0 0 0
−IMPIND 1 1 1 0 1 1 1 0
LIFT 0 1 1 0 1 0 1 1
SURP 1 1 0 0 1 0 1 1
SEB 1 0 0 1 0 0 1 1
OM 1 1 1 1 0 0 1 2
CONV 1 1 1 1 0 0 1 1
ECR 1 0 0 1 2 0 1 1
KAPPA 0 1 1 0 1 0 1 0
IG 0 1 1 0 2 0 1 0
INTIMP 1 1 1 1 2 1 1 0
EII 1 1 1 1 2 1 0 0
PDI 1 1 1 0 1 1 1 0
LAP 1 0 0 0 1 0 1 0

Table 2
Assignment of the prototypes

GOOD CENCONF LOE OM EII

Medium ZHANG ECR PDI
Bad SUP SURP KAPPA

• g6: Sensitivity to the total number of examples of the analyzed data table (sensible (1) � not
sensible (0)).

• g7: Ease to Jx an acceptance threshold (If the value of the measure lies above this threshold, the
rule is accepted, else it is rejected) ((1) easy � hard (0)).

• g8: Intelligibility of the measure (easily explainable (2) � basic mathematical knowledge required
(1) � hardly explainable (0)).

The data matrix is shown in Table 1. The expert would like to assign these 20 measures to 3
graded classes: Good � Medium � Bad. During a discussion, he is asked to provide at least one
measure for each class. He chooses a few measures he knows quite well, and for which he is able
to interpret the resulting rules and their quality. The assignment of the prototypes is given in Table 2.
One should mention here that this assignment is reHecting the preferences of the expert. He
is not necessarily a data mining expert. Therefore, he is not aware of all the subtilities of the



Table 3
Assignment of the remaining measures

Good CONF CONV INTIMP

Medium PS −IMPIND SEB
Medium ∪ Bad R LIFT
Bad LAP IG

Table 4
Importance indices

g1 g2 g3 g4 g5 g6 g7 g8

0.182 0.000 0.182 0.182 0.000 0.181 0.001 0.273

measures, but during the discussion, he gets information on the 8 selected properties and on certain
measures.

A solution is found for k=1. This additive model allows to classify the non-prototypical alternatives
as shown in Table 3. The importance indices are shown in Table 4. These results are in close relation
with the current research which is made on the evaluation of quality measures of decision rules.
In [7] the authors analyze the same type of problem, with the Promethee-Gaia method for multiple
criteria ranking. Our results are not in contradiction with those published in [7].

6. Bene$ts and speci$cities of TOMASO and comparison to two classical MCDA methods

In the general context of multicriteria decision aiding and sorting methods, TOMASO has two major
particular features.

First of all, it is able to cope with interacting criteria. This allows to deal with a larger set of
problems, and the deJnition of the criteria is less restrictive than for classical methods (like PROMETHEE

[8], or ELECTRE TRI [9]).
Secondly, the decision maker does not have to provide diFcult information on parameters of the

model (like weights for the criteria). They are “learnt” from a set of well-known alternatives by the
decision maker. One could say that in certain problems this may be as complicated as determining
the weights of the criteria. But our experience has shown that in our case studies, expert decision
makers have an a priori knowledge about a few objects of the problem they are analyzing. This
particular information is fully exploited in TOMASO through the concept of prototypes.

In the theoretical example of the assignment of students to graded classes, we observe Jrst of
all that the particular classiJcation of the prototypes implies interaction among criteria (no model
could be found for k = 1). In case of the two classical MCDA methods PROMETHEE and ELECTRE

TRI, the criteria require to be independent. This restrictive condition implies that here a solution
which is compatible with the decision maker’s preferences cannot be found. The strong condition of
independent criteria may be quite restrictive in many real-life cases.

Another point concerns the information that the decision maker has to provide. In PROMETHEE, a
weight system has to be determined in order to obtain a Jnal ranking on the alternatives. Some



visualization tools allow an easier Jxing of these parameters, but nevertheless, this information
is quite complex and hard to obtain. In ELECTRE TRI, A procedure allows to provide some proto-
typical alternatives to the method, in order to Jx certain parameters. But other parameters still need
human interaction (thresholds). Anyway, nothing guarantees that a solution to the classiJcation of
the prototypical alternatives will be found if the criteria are not independent. In TOMASO the decision
maker, such as a teacher in a student evaluation, has to express a global feeling on a subset of stu-
dents. No further parameter has to be Jxed. These assignments are “natural” opinions of the teacher
on some students, without any precise considerations on the exact weights of the diLerent matters.
In this case, this simpliJed information is enough to build a model, and to provide the “weights”
of the criteria by means of the Shapley indices.

A further speciJcity of the TOMASO method is the possibility to use and work with purely ordinal
data. No further information is required. In PROMETHEE, the user has to decide what type of preference
function he wants to use in order to make diLerent ordinal and cardinal scales comparable. Besides,
each preference function requires some parameters to be Jxed by the user. The method ELECTRE

TRI also needs some parameters to be Jxed by the decision maker. In our case, the problem is
solely analyzed (and solved) by asking the decision maker a minimal number of questions on global
evaluations concerning the alternatives and no further information on the structure of the data.

7. Conclusion

We have introduced a freeware that uses the procedure TOMASO to build a supervised classiJer.
Some interesting observations can be made with the help of this tool. We want to emphasize

that the interaction indices as well as the Shapley indices are mainly parameters of the method. In
particular the importance indices should not be interpreted as “real” weights of the problem. Even
if they are stable during the leave-one-out procedures, this does not indicate that they “Jt” to the
decision maker’s mind. As we have shown in the last part of Section 4.2, they can vary quite
signiJcantly from one prototypical set to another. At most their order can give an indication on the
ranking of the “real” weights.
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