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Abstract

Data mining algorithms, especially those used for unsupervised learning, generate a large quantity of rules. In particular
this applies to the APRIORI family of algorithms for the determination of association rules. It is hence impossible for an
expert in the field being mined to sustain these rules. To help carry out the task, many measures which evaluate the inter-
estingness of rules have been developed. They make it possible to filter and sort automatically a set of rules with respect to
given goals. Since these measures may produce different results, and as experts have different understandings of what a
good rule is, we propose in this article a new direction to select the best rules: a two-step solution to the problem of the
recommendation of one or more user-adapted interestingness measures. First, a description of interestingness measures,
based on meaningful classical properties, is given. Second, a multicriteria decision aid process is applied to this analysis
and illustrates the benefit that a user, who is not a data mining expert, can achieve with such methods.
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1. Introduction

One of the main objectives of Knowledge Discov-
ery in Databases (KDD) is to produce interesting
rules with respect to some user’s point of view. This
user is not assumed to be a data mining expert, but
rather an expert in the field being mined. Moreover,
it is well known that the interestingness of a rule is

difficult to evaluate with objectivity. Indeed, this
estimation greatly depends on the expert user’s
interests (Klemettinen et al., 1994; Hilderman and
Hamilton, 2001). Ideally, a rule should be valid,

new and comprehensive (Fayyad et al., 1996) but
these generic terms cover a large number of various
situations according to the context. It is also well
known that data mining algorithms may produce
huge numbers of rules and that the end user is then
unable to analyse them manually.

In this context, interestingness measures play an
essential role in KDD processes in order to find
the best rules (in a post-processing step). Depending
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on the user’s objectives, the data mining experts
should choose an appropriate interestingness mea-
sure in order to filter the huge amount of rules. Nev-
ertheless, as this study shows, this choice is not easy
and can be facilitated by the use of a Multiple Cri-
teria Decision Aid (MCDA) approach.

In fact, this choice is hard to make since rule
interestingness measures have many different quali-
ties or flaws (Tan et al., 2002; Lenca et al., 2004).
What is more, some of these properties are incom-
patible. Therefore there is no optimal measure, and
a way of solving this problem is to try to find good
compromises (Lenca et al., 2003b; Francisci, 2003).
A well-known example of such a controversial mea-
sure is the support. On the one hand, it is greatly
used for filtering purposes in KDD algorithms
(Agrawal et al., 1993; Pasquier et al., 1999), since
its antimonotonicity property simplifies the large
lattice that has to be explored. On the other hand,
it has almost all the flaws a user would like to avoid,
such as variability of the value under the indepen-
dence hypothesis or for a logical rule (Piatetsky-
Shapiro, 1991). Bayardo and Agrawal (1999), Tan
and Kumar (2000), Hilderman and Hamilton
(2003), Lallich and Teytaud (2004), McGarry
(2005), Blanchard et al. (2005), Lenca et al. (2006),
Suzuki (2006) for instance, have formally extracted
several specificities of measures/interestingness.

The importance of objective evaluation criteria of
interestingness measures has already been studied
by Piatetsky-Shapiro (1991) and Freitas (1999) on
restricted sets of measures and properties. However,
the relevance of these criteria for the selection of the
right measure is still difficult to establish. In Tan
et al. (2002), the authors provide a comparative
study according to certain properties and an origi-
nal approach to the selection of measures by an
expert. However, this approach does not exploit
the above-mentioned comparative study: from
the set of rules resulting from a data mining algo-
rithm, the authors propose to extract a small subset
of rules where the measures give very different
results. The authors experimentally establish that
the diversity of the results on the subset of rules
enables the user to efficiently select an appropriate
measure.

This article can be seen as an alternative contri-
bution to Tan et al. (2002). We propose a two-step
process. First, we provide a comparative description
of a set of measures through the expression of a list
of properties. These properties partly differ from
those evaluated in Tan et al. (2002), since some of

the latter ones do not apply efficiently, in our opin-
ion, to the interestingness of association rules, and
others do not make any distinction between the dif-
ferent interestingness measures which are studied. In
addition, we introduce and study new properties,
such as for example the easiness to fix a threshold,
or intelligibility. Second, we propose to use an
MCDA method on some classical measures and
the previously identified properties to help select a
measure which is concordant with the user’s objec-
tives. MCDA methods have already proved their
utility in different fields (Roy, 1996; Roy and Bouys-
sou, 1993). We argue in this paper that an MCDA
method could be profitable for the specific problem
of the selection of an appropriate interestingness
measure.

This paper is organised as follows. In Section 2
we briefly recall the context of association rule dis-
covery. We introduce in Section 3 a representative
list of existing measures, frequently used in the sci-
entific context of association rules. In Section 4,
we report some experimental results that underline
the diversity of ranks obtained by the different mea-
sures. In Section 5 we define the problem within an
MCDA context. We propose in Section 6 a list of 8
meaningful properties (from the user’s point of
view) and evaluate the previous list of measures
according to them. Section 7 is dedicated to the
use of the MCDA method PROMETHEE, using differ-
ent preferences scenarios. Finally, we conclude in
Section 8.

2. On association rule mining

As defined in Agrawal et al. (1993), given a typi-
cal market-basket (transactional) database E, an
association rule A! B means if someone buys the

set of items A, then he/she probably also buys item

B. Such sets of items are usually called itemsets.
The problem of mining for association rules

involves discovering all the rules that correlate the
presence of one itemset with another under mini-
mum support and minimum confidence conditions:

• an association rule is an assertion A! B where A
and B are two itemsets and A \ B = ;;

• the support of A! B is the percentage of transac-
tions that contain A and B;

• the confidence of A! B is the ratio of the num-
ber of transactions that contain A and B against
the number of transactions that contain A.



The well-known APRIORI algorithm (Agrawal and
Srikant, 1994) proceeds in two steps within the sup-
port-confidence framework (minimum support and
confidence thresholds have to be fixed by the user)
in order to extract association rules:

• find frequent itemsets (the sets of items which
occur more frequently than the minimum support
threshold) with the frequent itemset property (any
subset of a frequent itemset is frequent; if an item-
set is not frequent, none of its supersets can be fre-
quent) for efficiency reasons. Thus starting from
k = 1, APRIORI generates itemsets of size k + 1
from frequent itemsets of size k,

• generate rules from frequent itemsets and filter
them with the minimum confidence threshold.

Unfortunately APRIORI tends to generate a large
number of rules. It is hence impossible for an expert
of the field being mined to sustain these rules. The
validation of the knowledge extracted within a
KDD process by a field expert requires a filtering
step. One of the classical methods relies on the use
of subjective and objective interestingness measures.
Subjective measures are user-driven in the sense that
they take into account the user’s a priori knowledge
while objective measures are said to be data-driven

and only take into account the data cardinalities.
We focus in this study on objective measures. For
a discussion about subjective aspects of rule inter-
estingness measures, the reader can refer to Silbers-
chatz and Tuzhilin (1995), Liu et al. (1997), Liu
et al. (2000).

Strong rules (interesting rules within the support
and confidence framework) satisfy the minimum
support and minimum confidence thresholds. Nev-
ertheless, they are not necessarily interesting either
from an expert’s point of view or from a statistical
one. For example, high confidence should not be
confused with high correlation, nor with causality
between the antecedent and the consequent of a rule
(Brijs et al., 2003).

As an illustrative example, consider a classical
dataset of 10,000 transactions in a shop. Six thou-
sand transactions include computer games, 7500
include movies and 4000 include both items. Let
the minimum support be 30% and the minimum
confidence be 60%. Thus, the strong rule buy com-

puter games! buy movies is indeed retained with
a support of 40% and a confidence of 66%. How-
ever, this strong rule is misleading since the proba-
bility of purchasing movies is 75%.

The data mining experts should select and apply
an interestingness measure which is compatible with
the user’s objectives. Nevertheless, the measures
have many different and conflicting qualities and
flaws. Moreover, on a given set of rules, they may
generate different rankings and hence highlight dif-
ferent pieces of information.

In the next section we present 20 association rule
interestingness measures that will be used in our
future discourse.

3. Selected measures

The 20 measures we list here evaluate the inter-
estingness of association rules.

It is very important to differentiate between the
association rule A! B, which focuses on cooccur-
rence and gives asymmetric meaning to A and B,
and the logical implication A) B or the equivalence
A () B (see Lallich and Teytaud, 2004).

Interesting measures for association rules are
usually defined using frequency counts or relative
frequencies as presented in Fig. 1. This kind of anal-
ysis is a particular case of the analysis of a contin-
gency table, introduced by Hajek et al. (1966)
within the GUHA method and developed later on
by Rauch and Simunek (2001) in the 4FT-MINER

tool. Given a rule A! B, we note:

• n = jEj the total number of records;
• na = jAj the number of records satisfying A;
• nb = jBj the number of records satisfying B;
• nab = jA \ Bj the number of records satisfying

both A and B (the examples of the rule);
• na�b ¼ jA \ �Bj the number of records satisfying A

but not B (the counter-examples of the rule).

For X � E, we note px instead of nx/n when we
consider relative frequencies rather than absolute
frequencies.

It is clear that, given n, na and nb (or pa and pb),
knowing one cell of the table of Fig. 1 is enough to
deduce the other ones. For example, if one knows

Fig. 1. Notations.



pab, then pa�b ¼ pa � pab, p�a�b ¼ 1� pa � pb þ pab and
p�ab ¼ pb � pab.

We have restricted the list of measures evaluated
in this paper to decreasing ones with respect to na�b,
all marginal frequencies being fixed. This choice
reflects the common assertion that the fewer coun-
ter-examples (A true and B false) to the rule there
are, the higher the interestingness of the rule is.
Therefore, some measures like v2, Pearson’s r2,
Goodman and Smyth’s J-measure or Pearl’s mea-
sure have been excluded from this list.

For a given decreasing monotonic measure l it is
then possible to select interesting rules by fixing a
threshold a and keeping only the rules satisfying
l(A! B) P a. Note that the value of this threshold
a has to be fixed by the expert. The same threshold
is considered for all the rules extracted during the
data mining process. It is hence an important issue.
A well known situation of such a critical point is the
determination of a minimal support and confidence
threshold in the APRIORI algorithm (Agrawal and
Srikant, 1994).

The interestingness measures are given with their
bibliographical references in Table 1. Their formu-

lae in absolute and relative frequencies are given
in Table 2. Their values for various reference situa-
tions are given in Table 3.

We kept the well-known support and confidence:
these are the two most frequently used measures in
association rule extraction algorithms based on the
selection of frequent itemsets (Agrawal et al.,
1993; Pasquier et al., 1999).

Table 1
List of selected measures

Name Reference

BF Bayes factor Jeffreys (1935)
CENCONF centred confidence
CONF confidence Agrawal et al. (1993)
CONV conviction Brin et al. (1997b)
ECR examples and counter-

examples rate
IG information gain Church and Hanks

(1990)
-IMPIND implication index Lerman et al. (1981)
INTIMP intensity of implication Gras et al. (1996)
KAPPA Kappa coefficient Cohen (1960)
LAP Laplace Good (1965)
LC least contradiction Azé and Kodratoff

(2002)
LIFT Lift Brin et al. (1997a)
LOE Loevinger Loevinger (1947)
PDI probabilistic discriminant

index
Lerman and Azé
(2003)

PS Piatetsky-Shapiro Piatetsky-Shapiro
(1991)

R Pearson’s correlation
coefficient

Pearson (1896)

SEB Sebag and Schoenauer Sebag and
Schoenauer (1988)

SUP support Agrawal et al. (1993)
TEII truncated entropic intensity

of implication
Lallich et al. (2005)

ZHANG Zhang Zhang (2000)

Table 2
Association rule interestingness measures

Absolute definition Relative definition

BF nabn�b

nbna�b

pb=a=p�b=a

pb=p�b
¼

pa=b

pa=�b

CENCONF
nab

na
� nb

n
pb=a � pb

CONF
nab

na
pb=a

CONV
nan�b

nna�b

pap�b

pa�b

ECR
nab � na�b

nab
1� pa�b

pab

IG logðnnab
nanb
Þ log pab

papb

-IMPIND � nanb � nnabffiffiffiffiffiffiffiffiffiffiffiffi
nnan�b
p �

ffiffiffi
n
p pa�b � pap�bffiffiffiffiffiffiffiffiffi

pap�b
p

INTIMP P ½Nð0; 1ÞP ImpInd�

KAPPA 2
nnab � nanb

nna þ nnb � 2nanb
2

pab � papb

pa þ pb � 2papb

LAP
nab þ 1

na þ 2

pb=a þ 1
npa

1þ 2
npa

LC
nab � na�b

nb

pab � pa�b

pb

LIFT
nnab

nanb

pb=a

pb

LOE
nnab � nanb

nan�b

pb=a � pb

1� pb

PDI P ½Nð0; 1Þ > ImpIndCR=B�

PS nab �
nanb

n
nðpab � papbÞ

R
nnab � nanbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nanbn�a:n�b
p

pab � papbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pap�apbp�b
p

SEB
nab

na�b

pab

pa�b

SUP
nab

n
pab

TEII [it(A! B) · INTIMP (A! B)]1/2

ZHANG
nnab � nanb

maxfnabn�b; nbna�bg
pab � papb

maxfpabp�b; pbpa�bg

it(A! B) is the (truncated) inclusion index of A! B, defined as:
itðA � BÞ ¼ ½ð1� H�ðB=AÞaÞð1� H �ðA=BÞaÞ�

1
2a where H*(X/Y) =

1, if px/y 6 max{0.5;px} and H*(X/Y) = �px/ylog2px/y � (1 �
px/y)log2(1 � px/y) otherwise. Nð0; 1Þ stands for the centred and
reduced normal distribution function, ImpInd

CR=B corresponds to
IMPIND, centred reduced (CR) for a rule set B.



Many other measures are linear transformations
of the confidence, enhancing it, since they enable
comparisons with pb. This transformation is gener-
ally achieved by centring the confidence on pb, using
different scale coefficients (centred confidence,
Piatetsky–Shapiro’s measure, Loevinger’s measure,
Zhang’s measure, correlation, implication index
and least contradiction). In case the of the lift, the
confidence is divided by pb.

Other measures, like Sebag–Schoenauer’s or the
examples and counter-examples rate, are monoton-
ically increasing transformations of the confidence,
while the information gain is a monotonically

increasing transformation of the lift. Thus, mea-
sures that are monotonically increasing transforma-
tions of the confidence inherit the confidence’s
properties, and so on.

Therefore, such measures will rank the rules
according to the same order (Lallich, 2002). How-
ever, they are different according to the user’s points
of view studied later in this article. A user will there-
fore be able to choose one of these ‘‘equal’’ measures
on the basis of his/her preferences. For example, the
conviction and Loevinger rank similarly, neverthe-
less, they differ on the linearity criterion which
is introduced in Section 6. Similarly, the lift and

Table 3
Interestingness measures reference situations

Value at incompatibility (minimum) Value at independence Value for a logical rule (maximum)

BF 0 1 +1

CENCONF � nb

n
0

n�b

n
CONF 0

nb

n
1

CONV
n�b

n
1 +1

ECR �1 nb � n�b

nb
1

IG �1 0 log
n
nb

-IMPIND �
ffiffiffiffiffi
na
p

nbffiffiffiffiffiffiffi
nn�b
p 0

ffiffiffiffiffiffiffiffiffi
nan�b

n

r

INTIMP P Nð0; 1Þ >
ffiffiffiffiffi
na
p

nbffiffiffiffiffiffiffi
nn�b
p

" #
0.5 P Nð0; 1Þ > �

ffiffiffiffiffiffiffiffiffi
nan�b

n

r� �

KAPPA �2
nanb

nan�b þ n�anb
0 2

nan�b

nan�b þ n�anb

LAP
1

na þ 2

nanb þ n
nna þ 2n

na þ 1

na þ 2

LC � na

nb

naðnb � n�bÞ
nnb

na

nb

LIFT 0 1
n
nb

LOE � nb

n�b
0 1

PDI P Nð0; 1Þ >

ffiffiffiffi
na
p

nbffiffiffiffiffi
nn�b
p � l

r

2
4

3
5 P ½Nð0; 1Þ > � l

r� P Nð0; 1Þ > �

ffiffiffiffiffiffiffi
nan�b

n

q
þ l

r

2
4

3
5

PS � nanb

n
0

nan�b

n

R �
ffiffiffiffiffiffiffiffiffi
nanb

n�an�b

r
0

ffiffiffiffiffiffiffiffiffi
nan�b

n�anb

r

SEB 0
nb

n�b
+1

SUP 0
nanb

n2

na

n

TEII 0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IntImp

p

ZHANG �1 0 1

l is the mean value of IMPIND on a given rule set.
r is the standard deviation of IMPIND on a given rule set.



the information gain are also such measures, but
they differ on the linearity and the intelligibility
criteria. A last example is the pair composed of
Sebag–Schoenauer and the examples and counter-
examples rate which differ on linearity and
intelligibility.

Some measures focus on counter-examples, like
the conviction or the above-cited implication index.
In its original definition, IMPIND models the number
of counter-examples under null hypothesis. Thus, in
order to have a decreasing quality measure with
respect to na�b, we consider -IMPIND. This latter mea-
sure is the basis of several different probabilistic
measures like the probabilistic discriminant index,
the intensity of implication, or its entropic version,
which takes into account an entropic coefficient,
enhancing the discriminant power of the intensity
of implication. For the intensity of implication,
the statistical law was approximated using the cen-
tred and reduced normal distribution function. In
this paper we use the truncated entropic intensity
of implication, TEII, presented in Lallich et al.
(2005), a more consistent definition of the entropic
intensity of implication (Gras et al., 2001). Com-
pared to EII, TEII has a constant value at the inde-
pendence situation under certain conditions.

Laplace’s measure is a variant of the confidence,
taking the total number of records n into account.

The Bayes factor, also called sufficiency by Kam-
ber and Shingal (1996), is the ratio of the odd of B/A
against the prior odd of B. It has been thoroughly
studied by Kamber and Shingal (1996), Lallich
and Teytaud (2004), Greco et al. (2004).

The following section presents a comparison of
the preorders generated by the measures on an
experimental dataset. This comparison highlights
the problem of selecting the ‘‘best’’ rules, and thus
the necessity of using a measure adapted to the
user’s needs.

4. Experimental comparison of total preorders

In order to get an idea of the difficulty of select-
ing the subset of the N best rules, we study the total
preorders induced by the measures’ values on rule
sets.

This comparison is based on counts over all the
possible couples of rules. We simplify the mathe-
matical background introduced in Giakoumakis
and Monjardet (1987) to its simplest form, and con-
sider four different situations, for any two rules, and
two measures:

• there is strict agreement if both measures assign a
strictly higher value to one of the rules over the
other;

• there is semi-agreement if only one of the mea-
sures evaluates the two rules as of equal quality;

• there is large agreement if both measures evaluate
the two rules as of equal quality;

• and there is strict disagreement if one of the mea-
sures evaluates the quality of a rule strictly higher
than the other one, the second measure making
the inverse evaluation.

In Giakoumakis and Monjardet (1987), 16 coef-
ficients for preorder comparison based on such
counts over possible situations are studied. More-
over, Lingoes (1979) defines the s1 coefficient,
derived from Kendall’s s coefficient. s1 takes its val-
ues in [�1;1], the maximum value being obtained
when both preorders are equal. In this case, there
are only strict agreements, or large agreements.
The minimum value is obtained if, for any couple
of different rules, there is either strict disagreement
or semi-agreement. In the first case, both measures
rank the rules in the same way and the subset of
the N best rules is the same, for any N (see for exam-
ple Table 5, measures CONV and LOE). On the con-
trary, in the second case, the order of the rules is
reversed.

Using the HERBS tool developed by Vaillant et al.
(2003), we computed the values of s1 for the 20 mea-
sures on the cmc database (contraceptive method

choice (Lim et al., 2000), a subset of the 1987
National Indonesia Contraceptive Prevalence Sur-
vey). The rule set is composed of 2878 rules, gener-
ated by the APRIORI algorithm implementation of
Borgelt and Kruse (2002) with a support threshold
of 5% and a confidence threshold of 60%. The
results are presented in Table 4. The length of the
side of each square is equal to s1þ1

2
(a linear transfor-

mation of s1 into [0,1]). The lines and columns have
been reorganised in order to highlight groups of
similar measures using the AMADO method (Chau-
chat et al., 1998), which is based on the works of
Bertin (1977). For more experimental results the
reader can refer to Vaillant et al. (2004) in which a
thorough study carried out on 10 databases is pre-
sented. These results lead to a comparison of classi-
fications built on both experimental and formal
aspects.

We have only 8 negative values, the lowest being
�0.0331 for (SUP, TEII). The average value of s1 is
0.54, and the variance is 0.11. Some of the values are



equal to 1, and this could have been predicted as in
these cases the measures are monotonically increas-
ing transformations of one another, like for (CONV,
LOE) or (IG, LIFT).

This means that although some measures do gen-
erate the same rankings, there are some significant
differences. Thus, the subset of the N best rules
may differ, depending on the measure which is used.
This is illustrated in Table 5, which presents the
number of rules in common within the subsets of
N best rules for four measures. Clearly, these sub-
sets are of size at least equal to N for measures
which rank rules in the same order, such as CONV

and LOE. The reason why this value may be above
N is that rules equally evaluated by the measures
are all included in the subsets. By taking such a
closer look at top ranked rules, we see that
CENCONF disagrees with the three other measures
on the 50 most interesting rules. Moreover, as some

measures do generate the same rankings, the user
may freely pick out from among them the one that
best fits his preferences, without any loss of interest-
ing rules.

These two remarks lead us to develop a descrip-
tion of interestingness measures, based on user pref-
erences, in order to assist him in the task of selecting
a good measure, adapted to his point of view.

The following section presents the properties that
have been retained to describe the different
measures.

5. Positioning of the problem

We have shown that the search for the best rules
among a vast set of rules generated by a KDD pro-
cedure is directly linked to the search and the use of
a good interestingness measure. As measures can be
described by properties, we will consider an MCDA
framework. From the user’s point of view, the prob-
lem can then be resumed as a search for finding the
best measure(s) according to the context. This con-
text is defined by many parameters like the nature of
the data (what is their type, do they suffer from
noise, how imbalanced is the distribution of each
attribute?), the type of rule extraction algorithm
(what are its biases?), the goals, and the preferences
of the user. In this article we focus on the latter two
points.

Table 4
Comparison of total preorders between 20 measures

Table 5
Number of best rules in common in the subset of N best rules

N 20 50 70 100 150 200 400

CENCONF & CONV 0 0 10 25 62 86 179
CENCONF& LOE 0 0 10 25 62 86 179
CENCONF & BF 0 0 10 25 64 94 210
CONV & LOE 62 62 70 100 150 201 401
CONV & BF 62 62 70 97 135 170 369
LOE & BF 62 62 70 97 135 170 369



We define the problem by considering a sextuplet
hD;R;M;A;P;Fi where:

• D is a dataset. The data are described by a list of
attributes;

• R is a set of association rules A! B which can be
applied to D;

• M is a set of interestingness measures of the rules
of R (see Section 3);

• A is a set of properties which describe the
characteristics of the measures of M (see Section
6);

• P is a set of preferences expressed by the expert
user (of the field of D) on A in relation to his
objectives. The major difficulty in the construc-
tion of P is the formalisation of the user’s
objectives. They are often given in natural lan-
guage and a non-trivial task is to keep their
semantics;

• F is a set of evaluation criteria of the measures
of M. F is built on the basis of the sets A and
P. In brief, one can say that F corresponds to
an evaluation of the quality measures of M on
the properties of A by taking into account the
preferences of P.

The quality measures considered in this study
evaluate only the individual quality of rules. We
do not evaluate the quality of the whole set of rules
R.

Two actors take part in this analysis: the user, an
expert in the data (expert of D and R), who tries to
select the best rules of R and the analyst, a specialist
in MCDA procedures and in KDD, who tries to
help the expert. We call the first one Er and the sec-
ond one Ea. Consequently, the main problem is to
translate the properties of A into a set F of criteria
by considering the preferences P in view of deter-
mining the best measures. Note that the sets D, R
and P mainly concern the expertise of Er. On the
other hand, the sets M, A and F are related to
the expertise of Ea.

The resolution of this problem implies a close
collaboration and a permanent discussion between
the two actors: the specialist Ea needs to know the
preferences P and the objectives of the expert user
Er. These preferences can then be modelled and be
used to build a family of criteria F to help in the
selection of the best measure(s).

The following section presents the properties
that have been retained to describe the different
measures.

6. Evaluation criteria

In this section, we present a list of eligible prop-
erties to evaluate the previous list of measures.

For some of these properties, an order on the val-
ues they can take is straightforward. These proper-
ties can be considered as criteria by Ea (the
analyst, expert in MCDA and KDD) without the
intervention of Er (the expert in the data). These
properties, g1, g2, g3, g4 and g7, will be called norma-
tive. In addition to these, the properties g5, g6 and g8

need Er to express his preferences on the values they
can take (Lenca et al., 2004).

Table 6 summarises the semantic and the modal-
ities of the eight properties and the results of the
evaluations are presented in Table 7.

g1: asymmetric processing of A and B (Freitas,
1999). Since the antecedent and the consequent of
a rule may have very different significations, it is
desirable to make a distinction between measures
that evaluate rules A! B differently from rules
B! A and those which do not. We note sym if
the measure is symmetric, asym otherwise.

g2: decrease with nb (Piatetsky-Shapiro, 1991).

Given nab, na�b and n�a�b, it is of interest to relate the
interestingness of a rule to the size of B. In this sit-
uation, if the number of records verifying B but not
A increases, the interestingness of the rule should
decrease. We note dec(nb) if the measure is a
decreasing function with nb, no-dec(nb) otherwise.

g3: reference situations, independence (Piatetsky-
Shapiro, 1991). To avoid keeping rules that contain
no information, it is necessary to eliminate the
A! B rule when A and B are independent, which
means that the probability of obtaining B does not
depend of the fact that A is true or not. A comfort-
able way of dealing with this is to require that a

Table 6
Properties of the measures

Property Semantic Modality

g1 Asymmetric processing of A
and B

asym, sym

g2 Decrease with nb dec(nb), no-dec(nb)
g3 Reference situations:

independence
cst, var

g4 Reference situations: logical
rule

cst, var

g5 Linearity with na�b around
0+

convex, linear,
concave

g6 Sensitivity to n desc, stat
g7 Easiness to fix a threshold easy, hard
g8 Intelligibility a, b, c



measure’s value at independence should be constant
(independent of the marginal frequencies). We note
cst if the measure’s value at independence is con-
stant and var otherwise.

g4: reference situations, logical rule (Lenca et al.,
2003a). Similarly, the second reference situation
we consider is related to the value of the measure
when there is no counter-example. Depending on
the co-domain (see Table 3), three cases arise. First,
the measure takes a value independent of the mar-
ginal frequencies and thus takes a constant and
maximal value.1 A second case occurs when the
measure tends to infinity when na�b ! 0. Finally, a
third and more uncomfortable case arises when
the value taken by the measure depends on the mar-
ginal frequencies when na�b ¼ 0.

It is desirable that the value should be constant and
maximal, or possibly infinite. We note cst in the
cases of a constant or infinite value, var otherwise.

Independence is the lower value in which we are
interested and we do not take into account the value
for the incompatibility situation. The latter refer-
ence situation is obtained when A \ B = ;, and
expresses the fact that B cannot be realized if A

already has been. Our choice is based on the fact
that incompatibility is related to the rule A! B
and not A! B.

g5: linearity with pa�b around 0+ (Gras et al., 2001).
It is desirable to have a slow decrease in the neigh-
bourhood of a logical rule rather than a fast or even
linear decrease (as with confidence or its linear
transformations). This reflects the fact that the user
may tolerate a few counter-examples without signif-
icant loss of interest, but will definitely not tolerate
too many of them. However, the opposite choice
could also be preferred. In that case, a convex
decrease with na�b around the logic rule increases
the sensitivity to a false positive. We hence note
convex if the measure is convex with na�b near 0,
linear if it is linear and concave if it is concave.

g6: sensitivity to n (total number of records) (Lal-
lich, 2002; Gras et al., 2004). Intuitively, if the rates
of presence of A, A! B, B are constant, it may be
interesting to see how the measure reacts to a global
extension of the database (with no evolution of
rates). Measures that are sensitive to n are called
statistical measures while those not sensitive are
called descriptive measures.

The user can prefer to have a measure which is
invariant or not with the dilatation of data. Note
that, if the measure increases with n and has a max-
imum value, then there is a risk that all the evalua-
tions might come close to this maximum. The
measure would then lose its discrimination power.
We note stat if it increases with n and desc if
the measure is invariant.

g7: easiness to fix a threshold (Lenca et al., 2003a).

Even if properties g3 and g4 are valid, it is still

Table 7
Evaluation matrix

g1 g2 g3 g4 g5 g6 g7 g8

BF asym dec(nb) cst cst convex desc easy a

CENCONF asym dec(nb) cst var linear desc easy a

CONF asym no-dec(nb) var cst linear desc easy a

CONV asym dec(nb) cst cst convex desc easy b

ECR asym no-dec(nb) var cst concave desc easy b

IG sym dec(nb) cst var concave desc easy c

-IMPIND asym dec(nb) cst var linear stat easy c

INTIMP asym dec(nb) cst var concave stat easy c

KAPPA sym dec(nb) cst var linear desc easy c

LAP asym no-dec(nb) var var linear desc easy c

LC asym dec(nb) var var linear desc easy b

LIFT sym dec(nb) cst var linear desc easy a

LOE asym dec(nb) cst cst linear desc easy b

PDI asym dec(nb) cst var concave stat easy c

PS sym dec(nb) cst var linear stat easy b

R sym dec(nb) cst var linear desc easy b

SEB asym no-dec(nb) var cst convex desc easy b

SUP sym no-dec(nb) var var linear desc easy a

TEII asym dec(nb) cst var concave stat hard c

ZHANG asym dec(nb) cst cst concave desc hard c

1 Recall that due to our eligibility criterion, we restrict our
study to decreasing measures with respect to na�b, all marginal
frequencies being fixed.



difficult to decide on the best threshold value that
separates interesting from uninteresting rules. This
property allows us to identify measures whose
threshold is more or less difficult to locate.

To establish this property, we propose to proceed
in the following (and very conventional) way by
providing a sense of the strength of the evidence
against the null hypothesis2 H0 (absence of a link
between A and B), that is the p-value.3 Due to the
high number of tests, this probability should not
be interpreted as a statistical risk, but rather as a
control parameter (Lallich and Teytaud, 2004).

In some cases, the measure is defined as the com-
plement to 1 of such a probability, for example PDI
or INTIMP. It is then justified to set the threshold to
at least 0.95 or 0.99. More generally, it is possible to
set the threshold by the same way for all the mea-
sures whose distribution under the hypothesis of
link absence (H0) can be established. The threshold
is the observed value of the measure for which the
complementary p-value is at least 0.95 or 0.99.
The distribution of Na�b (or Nab) under H0 can be
established from one of the three types of models
proposed by Lerman (1970). The margins na and
nb being fixed (hypergeometric model), it is possible
to determine the distribution of the confidence
under H0. The same can be done for all the mea-
sures which are a monotone transformation of the
confidence, the margins being fixed. For example,
the expectation of the LIFT under H0 is 1 and its var-
iance is approximately ð1=nÞ p�ap�b

papb
. Under the condi-

tion of normal approximation (npa pb P 3), the
threshold of the LIFT must be at least 1þ

1:645

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞ p�ap�b

papb

h ir
. The only measures which do

not comply with this framework are ZHANG

(because of the max) and TEII (because of the inclu-
sion index).

g8: intelligibility (Lenca et al., 2003a). Intelligibil-
ity denotes the ability of the measure to express a
comprehensive idea of the interestingness of a rule.
We will consider that a measure is intelligible if its

semantics is easily understandable by the expert in
the data Er.

4

We define this criterion according to three fac-
tors. First, the definition of the measure integrates
only simple arithmetic operations on the frequen-
cies. Second, the variations of the values taken by
the measure are easily interpretable. And third, the
definition of the measure is intelligible for the user.

We affect the value (a) to this property if the mea-
sure has the three preceding characteristics, (b) if the
measure only verifies two of them, and (c) if it seems
impossible to give any concrete explanation of the
measure.

We evaluate the measures described in the previ-
ous section with respect to these criteria and we
obtain the evaluation matrix of Table 7.

7. Evaluation of the interestingness measures

In this section, we analyse and evaluate the mea-
sures described earlier and summarised in Table 2.
This analysis has been done using a few MCDA
procedures, in particular the TOMASO method for
sorting (Marichal et al., 2005), a ranking procedure
based on kernels of digraphs by Bisdorff (1999) and
the PROMETHEE method (Brans and Vincke, 1985).
These three methods produced very similar results.
In this paper, we focus on the analysis by the PROM-

ETHEE method to obtain a ranking. Its general objec-
tives are to build partial and complete rankings on
so-called alternatives (in this case, the measures)
and to visualise the structure of the problem in a
plane called the GAIA plane, similarly to a principal
component analysis. The PROMETHEE method
requires information about the importance of the
criteria to be given by a set of weights. Several tools
allow these weights to be fixed in order to represent
the decision maker’s preferences (Er in our context).
The first step of the method is to make pairwise
comparisons on the measures within each criterion.
This means that for small (large) deviations, Er will
allocate a small (large) preference to the best mea-
sure. This is done through the concept of preference
functions. Then, each measure is confronted with
the others in order to define outranking flows. The
positive (negative) outranking flow expresses to
what degree a measure outranks (is outranked by)

2 The null hypothesis is presumed true until statistical evidence
in the form of a hypothesis test indicates otherwise. The
alternative hypothesis is chosen if the observed data values are
sufficiently improbable under the null hypothesis.

3 The p-value is the probability of getting a value of the test
statistic ‘‘at least as extreme’’ as that observed strictly by chance,
given the assumption that the null hypothesis is true. The null
hypothesis is rejected if the p-value is less than the significance
level.

4 It is obvious that this property is subjective. The evaluations
of the measures on this property given hereafter can be
commonly accepted. Nevertheless, depending on Er, our evalu-
ations could be revised.



all the others. Finally, partial and complete rank-
ings are generated from these outrankings. The
GAIA plane provides information about the conflict-
ing character of the criteria and about the impact of
the weights on the final decision. It is a projection,
based on a net flow derived from the outranking
flows, of the measures and the criteria in a common
plane. The GAIA plane shows useful information
and allows intuitive interaction with the decision
maker. This is one of the reasons why we choose
the PROMETHEE method.

For a better understanding of our future dis-
course, we briefly present the main concepts of the
PROMETHEE method. For a more detailed descrip-
tion, the reader can refer to Brans and Mareschal
(2002), Brans and Mareschal (2005), for example.

7.1. A glance at the PROMETHEE method

Let A = {a1, . . . ,am} be a set of possible alterna-
tives. In the present discourse, the alternatives are
the quality measures. Let {gj(Æ), j = 1, . . . ,k} be a
set of evaluation criteria to be maximised or mini-
mised. Each of the possible alternatives of A is eval-
uated on each of the criteria.

Pairwise comparison

The method is based on pairwise comparisons of
the alternatives. First, it formalises the degree of
preference of one alternative over another for each
criterion. For two alternatives ai and aj of A and
for a criterion gk, this is done by transforming the
difference of the evaluations of ai and aj on gk by
a so-called preference function. The result is a
degree of preference of ai over aj on gk which is
between 0 and 1.

Aggregated preference index
The next step involves aggregating the preference

degrees on each criterion in an aggregated preference
index p(al,am) which expresses the degree to which al

is preferred to am on the whole set of criteria. This is
done by a weighted sum, where the weights are asso-
ciated with the importance of the criteria.

Outranking flows

The aggregated preference index is used to build
outranking flows for each alternative. The positive
outranking flow expresses the overall power (its out-
ranking character) of the considered alternative,
whereas the negative outranking flow gives an indi-
cation about its overall weakness (its outranked
character). The net outranking flow / is the differ-
ence between the positive and the negative outran-
king flows.

The rankings

A partial and a complete ranking are obtained on
the basis of the positive and negative outranking
flows.

The GAIA plane

The PROMETHEE method allows the alternatives
and the criteria to be visualised in a common plane
called the GAIA plane. This useful representation
gives a synthetic clear view of the conflicting charac-
teristics of certain criteria and of the impact of the
weights on the final rankings. It is a projection of
the data which is quite similar to what is done in
principal components analysis. The alternatives are
represented by points and the criteria by segments
(or axes) in this plane. In addition, the GAIA plane
contains a so-called decision axis p, which roughly
indicates the direction of the best alternatives for a
given weight system.

Let us point out a few features of the GAIA plane
for a useful analysis of the problem:

• a long axis for a criterion in the GAIA plane
stands for a discriminating criterion;

• criteria representing similar (opposite) prefer-
ences on the set of alternatives are represented
by axes which have a similar direction (opposing
directions);

• independent criteria are represented by orthogo-
nal axes;

• alternatives which have good evaluations on a
given criterion are represented by points which
are close to the axis of this criterion;

• similar alternatives are close in the GAIA plane;
• if the p axis is long, it has a strong decision

power, and the decision maker should choose
alternatives which lie in the direction and the
sense of the axis;

• if the p axis is short, it has a weak decision power.
This means that for this configuration of weights,
the criteria are conflicting, and a good compro-
mise can be found at the origin of the plane.

Stability intervals

The PROMETHEE method allows stability intervals
to be computed for the weights of the criteria. They
indicate to what degree the value of a weight can be
modified without modifying the complete ranking.

7.2. Analysis of the quality measures

This section focuses on the analysis of the
selected quality measures by the MCDA procedure



PROMETHEE. We consider the following two realistic
scenarios for the analysis:

Sc1: The expert Er tolerates the appearance of a

certain number of counter-examples to a decision
rule. In this case, the rejection of a rule is postponed
until enough counter-examples are found. The
shape of the curve representing the value of the
measure versus the number of counter-examples
should ideally be concave (at least in the neighbour-
hood of the maximum); the order on the values of
criterion g5 (non-linearity with respect to the num-
ber of counter-examples) is therefore concave �
linear � convex.

Sc2: The expert Er refuses the appearance of too

many counter-examples to a decision rule. The rejec-
tion of the rule must be done rapidly with respect to
the number of counter-examples. The shape of the
curve is therefore ideally convex (in the neighbour-
hood of the maximum at least) and the order on
the values of criterion g5 is convex � linear �
concave.

We recall that the evaluation matrix of the mea-
sures is presented in Table 7. For both scenarios, for
criterion g6 we suppose that the expert prefers a
measure which increases with n, the size of the data.
The order on the values of criterion g6 is
stat � desc. We suppose that the expert agrees
with the analysis on the intelligibility of the mea-
sures. Therefore the order on the values for g8 is
a � b � c.

For the other criteria which are assumed to be
normative, the expert has no influence on the order
of the values. The orders on the values for criteria
g1, g2, g3, g4 and g7 are given in Table 8.

We start by analysing the problem with equal
weights for the criteria in order to get a first idea
about the structure of the problem. The total rank-
ings for the two scenarios are given in Table 9.

First, we notice that both scenarios reflect the
preferences of Er concerning the shape of the curve.
We can see that for Sc1 the two leading measures
are INTIMP and PDI which are both concave. Simi-
larly, for Sc2, the two leading measures are BF
and CONV which are both convex. This is quite inter-
esting because in both scenarios the weights of the
criteria are all equal. This means that Er has not
expressed any particular preferences on the criteria.
A small experiment shows that it is important to dis-
tinguish the two scenarios. If we give criterion g5 a
high weight (33%), the first positions of the ranking
for Sc1 (Sc2) are held by INTIMP, PDI, ZHANG, TEII
and ECR (BF, CONV, SEB, and LOE) which are
mostly concave (convex). This first analysis with
equal weights also shows that the linear measure
LOE is a very interesting measure as it is well-placed
in both scenarios. It represents a good compromise.

Sensitivity analyses on the weight systems show
that small changes in the weights affect the rankings.
Nevertheless, a closer look shows that these modifi-
cations only occur locally and that the first positions
in the ranking remain stable. This is confirmed by
the values of the net flows / of the leading elements
of each of the rankings presented in Table 10. This
table shows that the /ðaÞ; a 2M are spread more
or less uniformly between their minimum and their
maximum values for both scenarios. In particular,
we can see that the leading positions will vary only
for very significative changes in the weight system.
Therefore, one can say that for an expert who has

Table 8
The order on the values of the normative criteria

Criterion Order

g1 asym � sym

g2 dec(nb) � no-dec (nb)
g3 cst � var

g4 cst � var

g7 easy � hard

Table 9
Total rankings for scenarios Sc1 and Sc2

Rank: 1 2 3 4 5 6 7

Sc1: INTIMP, PDI LOE BF CENCONF CONV -IMPIND

Sc2: BF CONV LOE CENCONF -IMPIND PS SEB

Rank: 8 9 10 11 12 13 14

Sc1: ZHANG, TEII PS ECR LIFT CONF IG
Sc2: LIFT CONF INTIMP, PDI R, LC ZHANG

Rank: 15 16 17 18 19 20

Sc1: R, LC SEB KAPPA SUP LAP

Sc2: TEII KAPPA ECR SUP IG LAP



no particular opinion on the importance of the dif-
ferent criteria, or who considers that the criteria are
equally important, the rankings of Table 9 are valid.

An analysis of the GAIA planes gives us further
indications about the measures (see Figs. 2 and 3).

Let us first note that the percentage of cumulated
variance for the first two factors represented by the
GAIA plane is 60.27% for both scenarios. The infor-
mation taken from the GAIA plane should therefore
be considered as approximate and conclusions be
drawn with great care. First, we observe that the
measures (triangles in the figures) are distributed
homogeneously in the plane. Second, we can see
that the GAIA plane is well covered by the set of cri-
teria (axes with squares in the figures). We conclude
that the description of the selected measures by the
criteria is discriminant and only slightly redundant.

For Sc1 we can see that several couples of criteria
are independent: (g4,g5), (g4,g8), (g5,g3), (g5,g2),
(g8,g3), (g1,g6) and (g8,g2).5 There are similar crite-
ria, for example g2 and g3. We can also observe con-
flicting criteria. For example g4 conflicts with g3 and
g2; and criteria g5 and g6 conflict with g7 and g8.
This type of information gives hints about the
behaviour and the structure of the problem. For
example, measures of M which are good for crite-
rion g5 (concave) will tend to be bad for criterion
g8 (unintelligible).

For Sc2 similar observations can be made. The
major difference lies in criterion g5 which represents
similar preferences to criteria g7 and g8 but conflicts
with g6.

The decision axis p is moderately long in Sc1 and
heads in the opposite direction to g7 and g8. This
means that measures which allow the threshold to
be fixed easily and which are easily understandable
(and which are quite bad on the remaining criteria)
can appear in the leading positions of the ranking
only if the relative weights of g7 and g8 are very high.
However, we think that the importance of criterion

g3 (independence hypothesis) should not be neglected
compared to a criterion like g8 (intelligibility).

Sc1: INTIMP, PDI LOE BF CENCONF CONV -IMPIND . . . LAP

/ .19 .18 .16 .13 .09 .08 . . . �.32

Sc2: BF CONV LOE CENCONF -IMPIND PS . . . LAP

/ .39 .31 .22 .16 .12 .09 . . . �.28
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5 If gi and gj are independent, we write that the couple (gi,gj) is
independent.

Table 10
Net flows for Sc1 and Sc2



Thus, if the expert is aware of the impact of his weight
system on the result, we can suppose that a measure
like SUP, exclusively good on g7 and g8, will never
appear in the leading positions of the ranking.

For Sc2 the decision axis p is also moderately
long. It points in the opposite direction to g7, g5

and g8. This partly explains the ranking of Table 9.
The positions of the measures in the GAIA plane

(for Sc1 and Sc2) show that many measures have
similar behaviours with respect to weight variations.
This is confirmed by their similar profiles in the
evaluation matrix. Thus, SEB and CONF, are close
in the GAIA plane and have similar profiles. INTIMP

and PDI have an equal profile and therefore have
the same representation in the GAIA plane. These
couples of measures will tend to appear in neigh-
bouring (or equal) positions in the rankings. An
important comment should be made at this point
about the analysis of the GAIA plane. As it repre-
sents only a part of the information of the original
cloud of points, each observation must be verified
in the data or on the basis of other techniques. An
erroneous conclusion would be to consider BF
and SUP as similar measures due to their proximity
in the GAIA plane. In fact, their profiles are very dif-
ferent and consequently their behaviour in case of
weight variations will not be similar.

This quite detailed study of the problem shows
the usefulness of an analysis by means of an MCDA
tool like PROMETHEE. On the basis of the previously
made observations we can suggest two strategies.

The first strategy involves checking first that the
expert Er has well understood the meaning of each
of the criteria and their influence on the final result.
Then, by means of a set of questions, he must
express the relative importance of the weights of
each criterion. Criteria like g3, g4 and g7 will neces-
sarily have high relative weights to guarantee a cer-
tain coherence. Indeed a measure which does not
have fixed values at independence and in the situa-
tion of a logical rule and, what is more, a threshold
which is hard to fix is quite useless in an efficient
search for interesting rules. According to the prefer-
ences of the expert the relative importance of crite-
ria like g1 and g8 can vary. The analysis should be
started by using an initial set of weights coherent
with these considerations. The stability of the result-
ing ranking should then be analysed, especially for
the leading positions. If a stable ranking is obtained,
the GAIA plane, the value of the net flows and the
profile visualisation tool allow a finer analysis of
the leading measures. The values of the net flows

give a hint about the distance between two measures
in the ranking. Two measures with similar values for
the flows can be considered as similar.

The second strategy involves in a first step in an
exploration of the GAIA plane. This procedure helps
the expert to understand the structure of the problem
and detect similar and different measures. Further-
more, the visualisation of the criteria in the same
plane as the measures allows us to detect the influ-
ence of the modification of the weights on the final
ranking. This exploratory strategy should be applied
with an expert Er who has a priori knowledge about
certain measures. He will be able to determine his
ranking on the importance of the criteria by detecting
some well-known measures in the GAIA plane. By
using this first approximate weight system, the first
strategy can be applied. An a posteriori validation
can be done by determining the positions of the
well-known measures in the final ranking.

To show the utility and the usefulness of the
method, we finish this section by a small simulation
of the behaviour of an expert Er. We suppose that Er

is searching for a measure which can be easily used.
Thus, he would like the measure to be easily under-
standable and the thresholds to be constant (i.e.
independent of the marginal frequencies). Ideally
the shape of the selected measure would be convex.
The weight system he suggests is given as follows:
g1 (10%), g2 (5%), g3 (15%), g4 (15%), g5 (10%), g6

(5%), g7 (15%) and g8 (25%). The leading positions
of the complete ranking are given in Table 11.

We can clearly see that BF is the best measure for
this weight system. It is an easily interpretable mea-
sure which is Er’s main objective. A stability analy-
sis shows that the leading positions remain stable
for variations in the weight system. The remaining
desires of Er are also satisfied. Indeed the measure
is good on g3, g4, g7 and g8. In addition, BF is also
competitive on g1 and g2. Its weakness is its sensitiv-
ity to n, but this criterion g6 is not normative.

8. Conclusion

In this article, we have proposed an initial array
of 20 eligible measures evaluated on 8 properties

Table 11
A simulation: ranking and net flow for the preferences of Er

1 2 3 4 5 � � �
BF
(.48)

CONV

(.33)
CENCONF, LOE

(.25)
CONF

(.20)
� � �



which cover a large range of potential users’ prefer-
ences. Given this array, we have shown how to use
an MCDA method, and help expert users to choose
an adapted interestingness measure in the context of
association rules. Our approach is a first step to
improving the quality of a set of rules that will effec-
tively be presented to the user. Of course several
other factors could be used, like attribute costs
and misclassification costs (Freitas, 1999), cognitive
constraints (Le Saux et al., 2002), etc.

In addition to the interest of having such a list of
evaluation criteria for a large number of measures,
the use of the PROMETHEE method has confirmed
the fact that the expert’s preferences have some
influence on the ordering of the interestingness mea-
sures, and that there are similarities between differ-
ent measures. Moreover, the PROMETHEE method
allows us to make a better analysis of the user’s
preferences (the GAIA plane makes it easy to identify
different clusters of criteria and measures).

As already mentioned, we have shown here how
an MCDA method can be used to help select an
appropriate measure for filtering of a set of associa-
tion rules. Another possibility would be to aggre-
gate the outputs of all (or a subset of) the quality
measures in order to obtain a global evaluation of
a rule which takes into account the various proper-
ties of the measures. Such an approach is currently
being explored and has already been applied in
Barthélemy et al. (2006).
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(Brest Métropole Océane, the Urban Community
of Brest) for financial support of his Ph.D. thesis.
The authors would like to thank the members of
the CNRS group GAFOQUALITé for productive dis-
cussions about interestingness measures. Finally,
the authors greatly appreciate the assistance of the
referees and the editor. Their comments have im-
proved both the content and the presentation of
the original paper.

References

Agrawal, R., Srikant, R., 1994. Fast algorithms for mining
association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C.
(Eds.), Proceedings of the 20th Very Large Data Bases
Conference. Morgan Kanfmann, pp. 487–499.

Agrawal, R., Imielinski, T., Swami, A., 1993. Mining association
rules between sets of items in large databases. In: Buneman,
P., Jajodia, S. (Eds.), Proceedings of the 1993 ACM

SIGMOD International Conference on Management of Data,
Washington, DC, pp. 207–216.
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