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Abstract: In this paper we derive the asymptotic properties of the least squares estimator
(LSE) of fractionally integrated autoregressive moving-average (FARIMA) models under the
assumption that the errors are uncorrelated but not necessarily independent nor martingale
differences. We relax considerably the independence and even the martingale difference as-
sumptions on the innovation process to extend the range of application of the FARIMA
models. We propose a consistent estimator of the asymptotic covariance matrix of the LSE
which may be very different from that obtained in the standard framework. A self-normalized
approach to confidence interval construction for weak FARIMA model parameters is also
presented. All our results are done under a mixing assumption on the noise. Finally, some
simulation studies and an application to the daily returns of stock market indices are presented
to corroborate our theoretical work.

AMS 2000 subject classifications: Primary 62M10; secondary 91B84.
Keywords and phrases: Nonlinear processes; FARIMA models; Least-squares estimator; Con-
sistency; Asymptotic normality; Spectral density estimation; Self-normalization; Cumulants.

1. Introduction

Long memory processes takes a large part in the literature of time series (see for instance [GJ80],
[FT86], [Dah89], [Hos81], [BFGK13], [Pal07], among others). They also play an important role in
many scientific disciplines and applied fields such as hydrology, climatology, economics, finance,
to name a few. To model the long memory phenomenon, a widely used model is the fractional
autoregressive integrated moving average (FARIMA, for short) model. Consider a second order
centered stationary process X := (Xt)t∈Z satisfying a FARIMA(p, d0, q) representation of the form

a(L)(1 − L)d0Xt = b(L)ǫt , (1)

where d0 ∈ ]0, 1/2[ is the long memory parameter, L stands for the back-shift operator and
a(L) = 1 −∑p

i=1 aiL
i is the autoregressive (AR for short) operator and b(L) = 1 −∑q

i=1 biL
i is

the moving average (MA for short) operator (by convention a0 = b0 = 1). The operators a and
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b represent the short memory part of the model. The linear innovation process ǫ := (ǫt)t∈Z is
assumed to be a stationary sequence satisfies

(A0): E [ǫt ] = 0, Var (ǫt) = σ2ǫ and Cov (ǫt , ǫt+h) = 0 for all t ∈ Z and all h 6= 0.

Under the above assumptions the process ǫ is called a weak white noise. Different sub-classes of
FARIMA models can be distinguished depending on the noise assumptions. It is customary to say
that X is a strong FARIMA(p, d0, q) representation and we will do this henceforth if in (1) ǫ is
a strong white noise, namely an independent and identically distributed (iid for short) sequence
of random variables with mean 0 and common variance. A strong white noise is obviously a weak
white noise because independence entails uncorrelatedness. Of course the converse is not true.
Between weak and strong noises, one can say that ǫ is a semi-strong white noise if ǫ is a stationary
martingale difference, namely a sequence such that E(ǫt |ǫt−1, ǫt−2, . . . ) = 0. An example of semi-
strong white noise is the generalized autoregressive conditional heteroscedastic (GARCH) model
(see [FZ10]). If ǫ is a semi-strong white noise in (1), X is called a semi-strong FARIMA(p, d0, q).
If no additional assumption is made on ǫ, that is if ǫ is only a weak white noise (not necessarily iid,
nor a martingale difference), the representation (1) is called a weak FARIMA(p, d0, q). It is clear
from these definitions that the following inclusions hold:

{strong FARIMA(p, d0, q)} ⊂ {semi-strong FARIMA(p, d0, q)} ⊂ {weak FARIMA(p, d0, q)} .

Nonlinear models are becoming more and more employed because numerous real time series exhibit
nonlinear dynamics. For instance conditional heteroscedasticity can not be generated by FARIMA
models with iid noises.1 As mentioned by [FZ05, FZ98] in the case of ARMA models, many
important classes of nonlinear processes admit weak ARMA representations in which the linear
innovation is not a martingale difference. The main issue with nonlinear models is that they are
generally hard to identify and implement. These technical difficulties certainly explain the reason
why the asymptotic theory of FARIMA model estimation is mainly limited to the strong or semi-
strong FARIMA model.

Now we present some of the main works about FARIMA model estimation when the noise
is strong or semi-strong. For the estimation of long-range dependent process, the commonly used
estimation method is based on the Whittle frequency domain maximum likelihood estimator (MLE)
(see for instance [Dah89], [FT86], [TT97], [GS90]). The asymptotic properties of the MLE of
FARIMA models are well-known under the restrictive assumption that the errors ǫt are independent
or martingale difference (see [Ber95], [BFGK13], [Pal07], [BCT96], [LL97], [HK98], among others).
All the works mentioned above assume either strong or semi-strong innovations. In the modeling
of financial time series, for example, the GARCH assumption on the errors is often used (see for
instance [BCT96], [HK98]) to capture the conditional heteroscedasticity. There is no doubt that
it is important to have a soundness inference procedure for the parameter in the FARIMA model
when the (possibly dependent) error is subject to unknown conditional heteroscedasticity. Little
is thus known when the martingale difference assumption is relaxed. Our aim in this paper is to
consider a flexible FARIMA specification and to relax the independence assumption (and even the
martingale difference assumption) in order to be able to cover weak FARIMA representations of
general nonlinear models. This is why it is interesting to consider weak FARIMA models.

1 To cite few examples of nonlinear processes, let us mention the self-exciting threshold autoregressive (SETAR),
the smooth transition autoregressive (STAR), the exponential autoregressive (EXPAR), the bilinear, the random
coefficient autoregressive (RCA), the functional autoregressive (FAR) (see [Ton90] and [FY08] for references on
these nonlinear time series models).
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A very few works deal with the asymptotic behavior of the MLE of weak FARIMA models.
To our knowledge, [Sha12, Sha10b] are the only papers on this subject. Under weak assumptions
on the noise process, the author has obtained the asymptotic normality of the Whittle estimator
(see [Whi53]). Nevertheless, the inference problem is not addressed. This is due to the fact that
the asymptotic covariance matrix of the Whittle estimator involves the integral of the fourth-order
cumulant spectra of the dependent errors ǫt . Using non-parametric bandwidth-dependent methods,
one build an estimation of this integral but there is no guidance on the choice of the bandwidth
in the estimation procedures (see [Sha12, Tan82, Kee87, Chi88] for further details). The difficulty
is caused by the dependence in ǫt . Indeed, for strong noise, a bandwidth-free consistent estimator
of the asymptotic covariance matrix is available. When ǫt is dependent, no explicit formula for a
consistent estimator of the asymptotic variance matrix seems to be provided in the literature (see
[Sha12]).

In this work we propose to adopt for weak FARIMA models the estimation procedure developed
in [FZ98] so we use the least squares estimator (LSE for short). We show that a strongly mixing
property and the existence of moments are sufficient to obtain a consistent and asymptotically
normally distributed least squares estimator for the parameters of a weak FARIMA representation.
For technical reasons, we often use an assumption on the summability of cumulants. This can be
a consequence of a mixing and moments assumptions (see [DL89], for more details). These kind
of hypotheses enable us to circumvent the problem of the lack of speed of convergence (due to
the long-range dependence) in the infinite AR or MA representations. We fix this gap by proposing
rather sharp estimations of the infinite AR and MA representations in the presence of long-range
dependence (see Subsection 6.1 for details).

In our opinion there are three major contributions in this work. The first one is to show that
the estimation procedure developed in [FZ98] can be extended to weak FARIMA models. This goal
is achieved thanks to Theorem 1 and Theorem 2 in which the consistency and the asymptotic
normality are stated. The second one is to provide an answer to the open problem raised by
[Sha12] (see also [Sha10b]) on the asymptotic covariance matrix estimation. We propose in our
work a weakly consistent estimator of the asymptotic variance matrix (see Theorem 3). Thanks
to this estimation of the asymptotic variance matrix, we can construct a confidence region for
the estimation of the parameters. Finally another method to construct such confidence region is
achieved thanks to an alternative method using a self normalization procedure (see Theorem 6).

The paper is organized as follows. Section 2 shown that the least squares estimator for the
parameters of a weak FARIMA model is strongly consistent when the weak white noise (ǫt) is
ergodic and stationary, and that the LSE is asymptotically normally distributed when (ǫt) satisfies
mixing assumptions. The asymptotic variance of the LSE may be very different in the weak and
strong cases. Section 3 is devoted to the estimation of this covariance matrix. We also propose a
self-normalization-based approach to constructing a confidence region for the parameters of weak
FARIMA models which avoids to estimate the asymptotic covariance matrix. We gather in Section
7 all our figures and tables. These simulation studies and illustrative applications on real data are
presented and discussed in Section 4. The proofs of the main results are collected in Section 6.

In all this work, we shall use the matrix norm defined by ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ρ1/2(A
′

A),

when A is a R
k1×k2 matrix, ‖x‖2 = x ′x is the Euclidean norm of the vector x ∈ R

k2 , and ρ(·)
denotes the spectral radius.
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2. Least squares estimation

In this section we present the parametrization and the assumptions that are used in the sequel.
Then we state the asymptotic properties of the LSE of weak FARIMA models.

2.1. Notations and assumptions

We make the following standard assumption on the roots of the AR and MA polynomials in (1).

(A1): The polynomials a(z) and b(z) have all their roots outside of the unit disk with no
common factors.

Let Θ∗ be the compact space

Θ∗ :=
{
(θ1, θ2, ..., θp+q) ∈ R

p+q, where aθ(z) = 1−
p∑

i=1

θiz
i , and bθ(z) = 1−

q∑

j=1

θp+jz
j

have all their zeros outside the unit disk and have no zero in common
}

.

Denote by Θ the cartesian product Θ∗ × [d1, d2], where [d1, d2] ⊂ ]0, 1/2[ with d1 ≤ d0 ≤ d2.
The unknown parameter of interest θ0 = (a1, a2, . . . , ap , b1, b2, . . . , bq , d0) is supposed to belong
to the parameter space Θ.

The fractional difference operator (1− L)d0 is defined, using the generalized binomial series, by

(1− L)d0 =
∑

j≥0

αj(d0)L
j ,

where for all j ≥ 0, αj(d0) = Γ (j−d0)/ {Γ (j + 1)Γ (−d0)} and Γ (·) is the Gamma function. Using
the Stirling formula we obtain that for large j , αj (d0) ∼ j−d0−1/Γ (−d0) (one refers to [BFGK13]
for further details).

For all θ ∈ Θ we define (ǫt(θ))t∈Z as the second order stationary process which is the solution
of

ǫt(θ) =
∑

j≥0

αj(d)Xt−j −
p∑

i=1

θi
∑

j≥0

αj(d)Xt−i−j +

q∑

j=1

θp+jǫt−j(θ). (2)

Observe that, for all t ∈ Z, ǫt(θ0) = ǫt a.s. Given a realization X1, . . . ,Xn of length n, ǫt(θ) can
be approximated, for 0 < t ≤ n, by ǫ̃t(θ) defined recursively by

ǫ̃t(θ) =
t−1∑

j=0

αj (d)Xt−j −
p∑

i=1

θi

t−i−1∑

j=0

αj (d)Xt−i−j +

q∑

j=1

θp+j ǫ̃t−j(θ), (3)

with ǫ̃t(θ) = Xt = 0 if t ≤ 0. It will be shown that these initial values are asymptotically negligible
uniformly in θ and, in particular, that ǫt(θ) − ǫ̃t(θ) → 0 almost surely as t → ∞ (see Lemma 4
hereafter). Thus the choice of the initial values has no influence on the asymptotic properties of
the model parameters estimator.

Let Θ∗
δ denote the compact set

Θ∗
δ =

{
θ ∈ R

p+q; the roots of the polynomials aθ(z) and bθ(z) have modulus ≥ 1 + δ
}
.
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We define the set Θδ as the cartesian product of Θ∗
δ by [d1, d2], i.e. Θδ = Θ∗

δ × [d1, d2], where δ
is a strictly positive constant chosen such that θ0 belongs to Θδ.

The random variable θ̂n is called least squares estimator if it satisfies, almost surely,

θ̂n = argmin
θ∈Θδ

Qn(θ), where Qn(θ) =
1

n

n∑

t=1

ǫ̃2t (θ). (4)

Our main results are proven under the following assumptions:

(A2): The process (ǫt)t∈Z is strictly stationary and ergodic.

The strong consistency of the least squares estimator will be proved under the three above assump-
tions ((A0), (A1) and (A2)). For the asymptotic normality of the LSE, additional assumptions
are required. It is necessary to assume that θ0 is not on the boundary of the parameter space Θ.

(A3): We have θ0 ∈
◦
Θ, where

◦
Θ denotes the interior of Θ.

The stationary process ǫ is not supposed to be an independent sequence. So one needs to control
its dependency by means of its strong mixing coefficients {αǫ(h)}h∈N defined by

αǫ (h) = sup
A∈F t

−∞
,B∈F∞

t+h

|P (A ∩ B)− P(A)P(B)| ,

where F t
−∞ = σ(ǫu , u ≤ t) and F∞

t+h = σ(ǫu, u ≥ t + h).
We shall need an integrability assumption on the moments of the noise ǫ and a summability

condition on the strong mixing coefficients (αǫ(k))k≥0.

(A4): There exists an integer τ such that for some ν ∈]0, 1], we have E|ǫt |τ+ν < ∞ and∑∞
h=0(h + 1)k−2 {αǫ(h)}

ν

k+ν <∞ for k = 1, . . . , τ .

Note that (A4) implies the following weak assumption on the joint cumulants of the innovation
process ǫ (see [DL89], for more details).

(A4’): There exists an integer τ ≥ 2 such that Cτ :=
∑

i1,...,iτ−1∈Z |cum(ǫ0, ǫi1 , . . . , ǫiτ−1)| <∞ .

In the above expression, cum(ǫ0, ǫi1, . . . , ǫiτ−1) denotes the τ−th order cumulant of the stationary
process. Due to the fact that the ǫt ’s are centered, we notice that for fixed (i , j , k)

cum(ǫ0, ǫi , ǫj , ǫk) = E [ǫ0ǫiǫjǫk ]− E [ǫ0ǫi ]E [ǫjǫk ]− E [ǫ0ǫj ]E [ǫi ǫk ]− E [ǫ0ǫk ]E [ǫiǫj ] .

Assumption (A4) is a usual technical hypothesis which is useful when one prove the asymptotic
normality (see [FZ98] for example). Let us notice however that we impose a stronger convergence
speed for the mixing coefficients than in the works on weak ARMA processes. This is due to the
fact that the coefficients in the AR or MA representation of ǫt(θ) have no more exponential decay
because of the fractional operator (see Subsection 6.1 for details and comments).

As mentioned before, Hypothesis (A4) implies (A4’) which is also a technical assumption usually
used in the fractionally integrated ARMA processes framework (see for instance [Sha10c]) or even
in an ARMA context (see [FZ07, ZL15]). One remarks that in [Sha10b], the author emphasized
that a geometric moment contraction implies (A4’). This provides an alternative to strong mixing
assumptions but, to our knowledge, there is no relation between this two kinds of hypotheses.
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2.2. Asymptotic properties

The asymptotic properties of the LSE of the weak FARIMA model are stated in the following two
theorems.

Theorem 1. (Consistency). Assume that (ǫt)t∈Z satisfies (1) and belonging to L
2. Let (θ̂n)n be

a sequence of least squares estimators. Under Assumptions (A0), (A1) and (A2), we have

θ̂n
a.s.−−−→

n→∞
θ0.

The proof of this theorem is given in Subsection 6.2.
In order to state our asymptotic normality result, we define the function

On(θ) =
1

n

n∑

t=1

ǫ2t (θ), (5)

where the sequence (ǫt(θ))t∈Z is given by (2). We consider the following information matrices

I (θ) = lim
n→∞

Var

{√
n
∂

∂θ
On(θ)

}
and J(θ) = lim

n→∞

[
∂2

∂θi∂θj
On(θ)

]
a.s.

The existence of these matrices are proved when one demonstrates the following result.

Theorem 2. (Asymptotic normality). We assume that (ǫt)t∈Z satisfies (1). Under (A0)-(A3) and
Assumption (A4) with τ = 4. The sequence (

√
n(θ̂n − θ0))n≥1 has a limiting centered normal

distribution with covariance matrix Ω := J−1(θ0)I (θ0)J
−1(θ0).

The proof of this theorem is given in Subsection 6.3.

Remark 1. Hereafter (see more precisely (52)), we will be able to prove that

J(θ0) = 2E

[
∂

∂θ
ǫt(θ0)

∂

∂θ′
ǫt(θ0)

]
.

Thus the matrix J(θ0) has the same expression in the strong and weak FARIMA cases (see Theorem
1 of [Ber95]). On the contrary, the matrix I (θ0) is in general much more complicated in the weak
case than in the strong case.

Remark 2. In the standard strong FARIMA case, i.e. when (A2) is replaced by the assumption that
(ǫt) is iid, we have I (θ0) = 2σ2ǫ J(θ0). Thus the asymptotic covariance matrix is then reduced as
ΩS := 2σ2ǫ J

−1(θ0). Generally, when the noise is not an independent sequence, this simplification
can not be made and we have I (θ0) 6= 2σ2ǫ J(θ0). The true asymptotic covariance matrix Ω =
J−1(θ0)I (θ0)J

−1(θ0) obtained in the weak FARIMA framework can be very different from ΩS . As
a consequence, for the statistical inference on the parameter, the ready-made softwares used to
fit FARIMA do not provide a correct estimation of Ω for weak FARIMA processes because the
standard time series analysis softwares use empirical estimators of ΩS . The problem also holds in
the weak ARMA case (see [FZ07] and the references therein).This is why it is interesting to find
an estimator of Ω which is consistent for both weak and (semi-)strong FARIMA cases.

Based on the above remark, the next subsection deals with two different methods in order find
an estimator of Ω .
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3. Estimating the asymptotic variance matrix

For statistical inference problem, the asymptotic variance Ω has to be estimated. In particular
Theorem 2 can be used to obtain confidence intervals and significance tests for the parameters.

First of all, the matrix J(θ0) can be estimated empirically by the square matrix Ĵn of order
p + q + 1 defined by:

Ĵn =
2

n

n∑

t=1

{
∂

∂θ
ǫ̃t

(
θ̂n

)}{ ∂

∂θ
′
ǫ̃t

(
θ̂n

)}
. (6)

The convergence of Ĵn to J(θ0) is classical (see Lemma 8 in Subsection 6.3 for details).
In the standard strong FARIMA case, in view of remark 2, we have Ω̂S := 2σ̂2ǫ Ĵ

−1
n with σ̂2ǫ =

Qn(θ̂n). Thus Ω̂S is a strongly consistent estimator of ΩS . In the general weak FARIMA case, this
estimator is not consistent when I (θ0) 6= 2σ2ǫ J(θ0). So we need a consistent estimator of I (θ0).

3.1. Estimation of the asymptotic matrix I(θ0)

For all t ∈ Z, let

Ht(θ0) = 2ǫt(θ0)
∂

∂θ
ǫt(θ0) =

(
2ǫt(θ0)

∂

∂θ1
ǫt(θ0), . . . , 2ǫt(θ0)

∂

∂θp+q+1
ǫt(θ0)

)′

. (7)

We shall see in the proof of Lemma 9 that

I (θ0) = lim
n→∞

Var

(
1√
n

n∑

t=1

Ht(θ0)

)
=

∞∑

h=−∞
Cov (Ht(θ0),Ht−h(θ0)) .

Following the arguments developed in [BMCF12], the matrix I (θ0) can be estimated using Berk’s
approach (see [Ber74]). More precisely, by interpreting I (θ0)/2π as the spectral density of the
stationary process (Ht(θ0))t∈Z evaluated at frequency 0, we can use a parametric autoregressive
estimate of the spectral density of (Ht(θ0))t∈Z in order to estimate the matrix I (θ0).

For any θ ∈ Θ, Ht(θ) is a measurable function of {ǫs , s ≤ t}. The stationary process (Ht(θ0))t∈Z
admits the following Wold decomposition Ht(θ0) = ut +

∑∞
k=1 ψkut−k , where (ut)t∈Z is a (p +

q + 1)−variate weak white noise with variance matrix Σu.
Assume that Σu is non-singular, that

∑∞
k=1 ‖ψk‖ <∞, and that det(Ip+q+1+

∑∞
k=1 ψkz

k) 6= 0
when |z | ≤ 1. Then (Ht(θ0))t∈Z admits a weak multivariate AR(∞) representation of the form

Φ(L)Ht(θ0) := Ht(θ0)−
∞∑

k=1

ΦkHt−k(θ0) = ut , (8)

such that
∑∞

k=1 ‖Φk‖ <∞ and det {Φ(z)} 6= 0 for all |z | ≤ 1. It is proved in [BM09, Lüt05] that
one may find a constant K and 0 < ρ < 1 such that

‖Φk‖ ≤ K ρk . (9)

Thanks to the previous remarks, the estimation of I (θ0) is therefore based on the following
expression

I (θ0) = Φ−1(1)ΣuΦ
−1(1).
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Consider the regression of Ht(θ0) on Ht−1(θ0), . . . ,Ht−r (θ0) defined by

Ht(θ0) =

r∑

k=1

Φr ,kHt−k(θ0) + ur ,t , (10)

where ur ,t is uncorrelated with Ht−1(θ0), . . . ,Ht−r (θ0). Since Ht(θ0) is not observable, we introduce
Ĥt ∈ R

p+q+1 obtained by replacing ǫt(θ0) by ǫ̃t(θ0) and θ0 by θ̂n in (7):

Ĥt = 2ǫ̃t(θ̂n)
∂

∂θ
ǫ̂t(θn) . (11)

Let Φ̂r (z) = Ip+q+1 −
∑r

k=1 Φ̂r ,kz
k , where Φ̂r ,1, . . . , Φ̂r ,r denote the coefficients of the LS re-

gression of Ĥt on Ĥt−1, . . . , Ĥt−r . Let ûr ,t be the residuals of this regression and let Σ̂ûr be the
empirical variance (defined in (12) below) of ûr ,1, . . . , ûr ,r . The LSE of Φr = (Φr ,1, . . . ,Φr ,r ) and
Σur = Var(ur ,t) are given by

Φ̂r = Σ̂
Ĥ,Ĥr

Σ̂−1

Ĥr

and Σ̂ûr =
1

n

n∑

t=1

(
Ĥt − Φ̂r Ĥ r ,t

)(
Ĥt − Φ̂r Ĥ r ,t

)′

, (12)

where

Ĥ r ,t = (Ĥ
′

t−1, . . . , Ĥ
′

t−r )
′

, Σ̂
Ĥ,Ĥr

=
1

n

n∑

t=1

ĤtĤ
′

r ,t and Σ̂
Ĥr

=
1

n

n∑

t=1

Ĥ r ,tĤ
′

r ,t ,

with by convention Ĥt = 0 when t ≤ 0. We assume that Σ̂
Ĥr

is non-singular (which holds true

asymptotically).
In the case of linear processes with independent innovations, Berk (see [Ber74]) has shown that

the spectral density can be consistently estimated by fitting autoregressive models of order r = r(n),
whenever r tends to infinity and r3/n tends to 0 as n tends to infinity. There are differences with
[Ber74]: (Ht(θ0))t∈Z is multivariate, is not directly observed and is replaced by (Ĥt)t∈Z. It is shown
that this result remains valid for the multivariate linear process (Ht(θ0))t∈Z with non-independent
innovations (see [BMCF12, BMF11], for references in weak (multivariate) ARMA models). We will
extend the results of [BMCF12] to weak FARIMA models.

The asymptotic study of the estimator of I (θ0) using the spectral density method is given in the
following theorem.

Theorem 3. We assume (A0)-(A3) and Assumption (A4’) with τ = 8. In addition, we assume
that the process (Ht(θ0))t∈Z defined in (7) admits a multivariate AR(∞) representation (8). Then,
the spectral estimator of I (θ0)

Î SPn := Φ̂−1
r (1)Σ̂ûr Φ̂

′−1
r (1)

P−−−→
n→∞

I (θ0) = Φ−1(1)ΣuΦ
−1(1)

where r depends on n and satisfies limn→∞ r5(n)/n1−2(d2−d1) = 0 (remind that d0 ∈ [d1,d2] ⊂
]0,1/2[).

The proof of this theorem is given in Subsection 6.4.
A second method to estimate the asymptotic matrix (or rather avoiding estimate it) is proposed

in the next subsection.
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3.2. A self-normalized approach to confidence interval construction in weak FARIMA
models

We have seen previously that we may obtain confidence intervals for weak FARIMA model parame-
ters as soon as we can construct a convergent estimator of the variance matrix I (θ0) (see Theorems
2 and 3). The parametric approach based on an autoregressive estimate of the spectral density of
(Ht(θ0))t∈Z that we used before has the drawback of choosing the truncation parameter r in (10).
This choice of the order truncation is often crucial and difficult. So the aim of this section is to
avoid such a difficulty.

This section is also of interest because, to our knowledge, it has not been studied for weak
FARIMA models. Notable exception is [Sha12] who studied this problem in a short memory case
(see Assumption 1 in [Sha12] that implies that the process X is short-range dependent).

We propose an alternative method to obtain confidence intervals for weak FARIMA models by
avoiding the estimation of the asymptotic covariance matrix I (θ0). It is based on a self-normalization
approach used to build a statistic which depends on the true parameter θ0 and which is asymptot-
ically distribution-free (see Theorem 1 of [Sha12] for a reference in weak ARMA case). The idea
comes from [Lob01] and has been already extended by [BMS18, KL06, Sha10c, Sha10a, Sha12]
to more general frameworks. See also [Sha15] for a review on some recent developments on the
inference of time series data using the self-normalized approach.

Let us briefly explain the idea of the self-normalization.
By a Taylor expansion of the function ∂Qn(·)/∂θ around θ0, under (A3), we have

0 =
√
n
∂

∂θ
Qn(θ̂n) =

√
n
∂

∂θ
Qn(θ0) +

[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]√
n
(
θ̂n − θ0

)
, (13)

where the θ∗n,i ,j ’s are between θ̂n and θ0. Using the following equation

√
n

(
∂

∂θ
On(θ0)−

∂

∂θ
Qn(θ0)

)
=

√
n
∂

∂θ
On(θ0) +

{[
∂2

∂θi∂θj
Qn(θ

∗
n,i ,j)

]
− J(θ0) + J(θ0)

}√
n(θ̂n − θ0),

we shall be able to prove that (13) implies that

√
n
∂

∂θ
On(θ0) + J(θ0)

√
n(θ̂n − θ0) = oP (1) . (14)

This is due to the following technical properties:

• the convergence in probability of
√
n∂Qn(θ0)/∂θ to

√
n∂On(θ0)/∂θ (see Lemma 5 hereafter),

• the almost-sure convergence of [∂2Qn(θ
∗
n,i ,j)/∂θi∂θj ] to J(θ0) (see Lemma 8 hereafter),

• the tightness of the sequence (
√
n(θ̂n − θ0))n (see Theorem 2) and

• the existence and invertibility of the matrix J(θ0) (see Lemma 6 hereafter).

Thus we obtain from (14) that

√
n(θ̂n − θ0) =

1√
n

n∑

t=1

Ut + oP (1) ,

where (remind (7))

Ut = −J−1(θ0)Ht(θ0).
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At this stage, we do not rely on the classical method that would consist in estimating the asymptotic
covariance matrix I (θ0). We rather try to apply Lemma 1 in [Lob01]. So we need to check that a
functional central limit theorem holds for the process U := (Ut)t≥1. For that sake, we define the
normalization matrix Pp+q+1,n of R(p+q+1)×(p+q+1) by

Pp+q+1,n =
1

n2

n∑

t=1




t∑

j=1

(Uj − Ūn)






t∑

j=1

(Uj − Ūn)




′

, (15)

where Ūn = (1/n)
∑n

i=1Ui . To ensure the invertibility of the normalization matrix Pp+q+1,n (it
is the result stated in the next proposition), we need the following technical assumption on the
distribution of ǫt .

(A5): The process (ǫt)t∈Z has a positive density on some neighborhood of zero.

Proposition 4. Under the assumptions of Theorem 2 and (A5), the matrix Pp+q+1,n is almost
surely non singular.

The proof of this proposition is given in Subsection 6.5.
Let (Bm(r))r≥0 be a m-dimensional Brownian motion starting from 0. For m ≥ 1, we denote by

Um the random variable defined by:

Um = B
′

m(1)V
−1
m Bm(1), (16)

where

Vm =

∫ 1

0
(Bm(r)− rBm(1)) (Bm(r)− rBm(1))

′

dr . (17)

The critical values of Um have been tabulated by [Lob01].
The following theorem states the self-normalized asymptotic distribution of the random vector√
n(θ̂n − θ0).

Theorem 5. Under the assumptions of Theorem 2 and (A5), we have

n(θ̂n − θ0)
′

P−1
p+q+1,n(θ̂n − θ0)

in law−−−→
n→∞

Up+q+1.

The proof of this theorem is given in Subsection 6.6.
Of course, the above theorem is useless for practical purpose because the normalization matrix

Pp+q+1,n is not observable. This gap will be fixed below when one replaces the matrix Pp+q+1,n

by its empirical or observable counterpart

P̂p+q+1,n =
1

n2

n∑

t=1




t∑

j=1

(Ûj − 1
n

∑n
k=1 Ûk)






t∑

j=1

(Ûj − 1
n

∑n
k=1 Ûk)




′

where Ûj = −Ĵ−1
n Ĥj .

(18)
The above quantity is observable and we are able to state our Theorem which is the applicable
version of Theorem 5.

Theorem 6. Under the assumptions of Theorem 2 and (A5), we have

n(θ̂n − θ0)
′

P̂−1
p+q+1,n(θ̂n − θ0)

in law−−−→
n→∞

Up+q+1.
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The proof of this theorem is given in Subsection 6.7.
At the asymptotic level α, a joint 100(1−α)% confidence region for the elements of θ0 is then

given by the set of values of the vector θ which satisfy the following inequality:

n(θ̂n − θ)
′

P̂−1
p+q+1,n(θ̂n − θ) ≤ Up+q+1,α,

where Up+q+1,α is the quantile of order 1− α for the distribution of Up+q+1.

Corollary 7. For any 1 ≤ i ≤ p + q + 1, a 100(1 − α)% confidence region for θ0(i) is given by
the following set: {

x ∈ R ; n
(
θ̂n(i)− x

)2
P̂−1
p+q+1,n(i , i) ≤ U1,α

}
,

where U1,α denotes the quantile of order 1− α of the distribution for U1.
The proof of this corollary is similar to that of Theorem 6 when one restricts ourselves to a one

dimensional case.

4. Numerical illustrations

In this section, we investigate the finite sample properties of the asymptotic results that we intro-
duced in this work. For that sake we use Monte Carlo experiments. The numerical illustrations of
this section are made with the open source statistical software R (see R Development Core Team,
2017) or (see http://cran.r-project.org/).

4.1. Simulation studies and empirical sizes for confidence intervals

We study numerically the behavior of the LSE for FARIMA models of the form

(1− L)d (Xt − aXt−1) = ǫt − bǫt−1, (19)

where the unknown parameter is taken as θ0 = (a, b, d) = (−0.7,−0.2, 0.4). First we assume that
in (19) the innovation process (ǫt)t∈Z is an iid centered Gaussian process with common variance 1
which corresponds to the strong FARIMA case. In two other experiments we consider that in (19)
the innovation processes (ǫt)t∈Z are defined respectively by

{
ǫt = σtηt
σ2t = 0.04 + 0.12ǫ2t−1 + 0.85σ2t−1

(20)

and

ǫt = η2t ηt−1, (21)

where (ηt)t≥1 is a sequence of iid centered Gaussian random variables with variance 1. Note that
the innovation process in (21) is not a martingale difference whereas it is the case of the noise
defined in (20).

We simulated N = 1, 000 independent trajectories of size n = 2, 000 of Model (19) in the three
following case: the strong Gaussian noise, the semi-strong noise (20) and the weak noise (21).

Figure 1, Figure 2 and Figure 3 compare the distribution of the LSE in these three contexts.
The distributions of d̂n are similar in the three cases whereas the LSE ân of a is more accurate in
the weak case than in the strong and semi-strong cases. The distributions of b̂n are more accurate
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in the strong case than in the weak case. Remark that in the weak case the distributions of b̂n are
more accurate to the semi-strong ones.

Figure 4 compares standard estimator Ω̂S = 2σ̂2ǫ Ĵ
−1
n and the sandwich estimator Ω̂ = Ĵ−1

n Î SPn Ĵ−1
n

of the LSE asymptotic variance Ω . We used the spectral estimator Î SPn defined in Theorem 3.
The multivariate AR order r (see (10)) is automatically selected by AIC (we use the function
VARselect() of the vars R package). In the strong FARIMA case we know that the two estimators
are consistent. In view of the two upper subfigures of Figure 4, it seems that the sandwich estimator
is less accurate in the strong case. This is not surprising because the sandwich estimator is more
robust, in the sense that this estimator remains consistent in the semi-strong and weak FARIMA
cases, contrary to the standard estimator (see the middle and bottom subfigures of Figure 4).
Figure 5 (resp. Figure 6) presents a zoom of the left(right)-middle and left(right)-bottom panels
of Figure 4. It is clear that in the semi-strong or weak case n(ân − a)2, n(b̂n − b)2 and n(d̂n − d)2

are, respectively, better estimated by Ĵ−1
n Î SPn Ĵ−1

n (1, 1), Ĵ−1
n Î SPn Ĵ−1

n (2, 2) and Ĵ−1
n Î SPn Ĵ−1

n (3, 3) (see
Figure 6) than by 2σ̂2ǫ Ĵ

−1
n (1, 1), 2σ̂2ǫ Ĵ

−1
n (2, 2) and 2σ̂2ǫ Ĵ

−1
n (3, 3) (see Figure 5). The failure of the

standard estimator of Ω in the weak FARIMA framework may have important consequences in
terms of identification or hypothesis testing and validation.

Now we are interested in standard confidence interval and the modified versions proposed in
Subsections 3.1 and 3.2. Table 1 displays the empirical sizes in the three previous different FARIMA
cases. For the nominal level α = 5%, the empirical size over the N = 1, 000 independent replications
should vary between the significant limits 3.6% and 6.4% with probability 95%. For the nominal
level α = 1%, the significant limits are 0.3% and 1.7%, and for the nominal level α = 10%, they
are 8.1% and 11.9%. When the relative rejection frequencies are outside the significant limits, they
are displayed in bold type in Table 1. For the strong FARIMA model, all the relative rejection
frequencies are inside the significant limits for n large. For the semi-strong FARIMA model, the
relative rejection frequencies of the standard confidence interval are definitely outside the significant
limits, contrary to the modified versions proposed. For the weak FARIMA model, only the standard
confidence interval of b̂n is outside the significant limits when n increases. As a conclusion, Table
1 confirms the comments done concerning Figure 4.

4.2. Application to real data

We now consider an application to the daily returns of four stock market indices (CAC, DAX,
Nikkei and S&P 500). The returns are defined by rt = log(pt/pt−1) where pt denotes the price
index of the stock market indices at time t. The observations cover the period from the starting
date of each index to February 14, 2019. Figure 7 (resp. Figure 8) plots the closing prices (resp.
the returns) of the four stock market indices. Figure 9 shows that the squared returns (r2t )t≥1 are
generally strongly autocorrelated.

In Financial Econometrics the returns are often assumed to be martingale increments. The
squares of the returns have often second-order moments close to those of an ARMA(1, 1) which is
compatible with a GARCH(1, 1) model for the returns (see [FZ10]). A long-range memory property
of the stock market returns series was also largely investigated by [DGE93] (see also [BFGK13],
[Pal07] and [BCT96]). The squared returns (r2t )t≥1 have significant positive autocorrelations at
least up to lag 100 (see Figure 9) which confirm the claim that stock market returns have long-term
memory (see [DGE93]). In particular the returns (rt)t≥1 process is characterized by substantially
more correlation between absolute or squared returns than between the returns themselves.

Now we focus on the dynamics of the squared returns and we fit a FARIMA(1, d , 1) model to
the squares of the 4 daily returns. Denoting by (Xt)t≥1 the mean corrected series of the squared
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returns, we adjust the following model

(1− L)d (Xt − aXt−1) = ǫt − bǫt−1.

Table 2 displays the LSE of the parameter θ = (a, b, d) of each squared of daily returns. The
p−values of the corresponding LSE, θ̂n = (ân, b̂n, d̂n) are given in parentheses. The last column
presents the estimated residual variance. Note that for all series, the estimated coefficients |̂an| and
|b̂n| are smaller than one and this is in accordance with our Assumption (A1). We also observe that
for all series the estimated long-range dependence coefficients d̂n are significant for any reasonable
asymptotic level and are inside ]0, 0.5[. We thus think that the assumption (A3) is satisfied and
thus our asymptotic normality theorem can be applied. Table 3 then presents for each serie the
modified confidence interval at the asymptotic level α = 5% for the parameters estimated in
Table 2.

5. Conclusion

Taking into account the possible lack of independence of the error terms, we show in this paper
that we can fit FARIMA representations of a wide class of nonlinear long memory times series. This
is possible thanks to our theoretical results and it is illustrated in our real cases and simulations
studies.

This standard methodology (when the noise is supposed to be iid), in particular the significance
tests on the parameters, needs however to be adapted to take into account the possible lack of
independence of the errors terms. A first step has been done thanks to our results on the confidence
intervals. In future works, we intent to study how the existing identification (see [BM12], [BMK16])
and diagnostic checking (see [BMS18], [FRZ05]) procedures should be adapted in the presence of
long-range dependence framework and dependent noise.

6. Proofs

In all our proofs, K is a strictly positive constant that may vary from line to line.

6.1. Preliminary results

In this subsection, we shall give some results on estimations of the coefficient of formal power series
that will arise in our study. Some of them are well know on some others are new to our knowledge.
We will make some precise comments hereafter.

We begin by recalling the following properties on power series. If for |z | ≤ R , the power series
f (z) =

∑
i≥0 aiz

i and g(z) =
∑

i≥0 biz
i are well defined, then one has (f g)(z) =

∑
i≥0 ciz

i is
also well defined for |z | ≤ R with the sequence (ci )i≥0 which is given by c = a ∗b where ∗ denotes
the convolution product between a and b defined by ci =

∑i
k=0 akbi−k =

∑i
k=0 ai−kbi . We will

make use of the Young inequality that states that if the sequence a ∈ ℓp and b ∈ ℓq and such that
1
p
+ 1

q
= 1 + 1

r
with 1 ≤ p, q, r ≤ ∞, then

‖a ∗ b‖ℓr ≤ ‖a‖ℓp × ‖b‖ℓq .

Now we come back to the power series that arise in our context. Remind that for the true value
of the parameter,

aθ0(L)(1 − L)d0Xt = bθ0(L)ǫt . (22)



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Estimation of weak FARIMA models 14

Thanks to the assumptions on the moving average polynomials bθ and the autoregressive polyno-
mials aθ, the power series a−1

θ and b−1
θ are well defined.

Thus the functions ǫt(θ) defined in (2) can be written as

ǫt(θ) = b−1
θ (L)aθ(L)(1 − L)dXt (23)

= b−1
θ (L)aθ(L)(1 − L)d−d0a−1

θ0
(L)bθ0(L)ǫt (24)

and if we denote γ(θ) = (γi (θ))i≥0 the sequence of coefficients of the power series b−1
θ (z)aθ(z)(1−

z)d (which is absolutely convergent for at least for |z | ≤ 1), we may write for all t ∈ Z:

ǫt(θ) =
∑

i≥0

γi (θ)Xt−i , (25)

In the same way, by (23) one has

Xt = (1 − L)−da−1
θ (L)bθ(L)ǫt(θ)

and if we denote η(θ) = (ηi (θ))i≥0 the coefficients of the power series (1− z)−da−1
θ (z)bθ(z) one

has

Xt =
∑

i≥0

ηi (θ)ǫt−i(θ) . (26)

We strength the fact that γ0(θ) = η0(θ) = 1 for all θ.
For large j , [HTSC99] have shown that uniformly in θ the sequences γ(θ) and η(θ) satisfy

∂kγj(θ)

∂θi1 · · · ∂θik
= O

(
j−1−d {log(j)}k

)
, for k = 0, 1, 2, 3, (27)

and
∂kηj(θ)

∂θi1 · · · ∂θik
= O

(
j−1+d {log(j)}k

)
, for k = 0, 1, 2, 3. (28)

Note that, in view of (25), (26) and (27), for all θ ∈ Θδ, ǫt(θ) belongs to L
2, that (ǫt(θ))t∈Z is

an ergodic sequence and that, for all t ∈ Z, the function ǫt(·) is a continuous function.
One difficulty that has to be addressed is that (25) includes the infinite past (Xt−i)i≥0 whereas

only a finite number of observations (Xt)1≤t≤n are available to compute the estimators defined in
(4). The simplest solution is truncation which amounts to setting all unobserved values equal to
zero. Thus, for all θ ∈ Θ and 1 ≤ t ≤ n one defines

ǫ̃t(θ) =
t−1∑

i=0

γi (θ)Xt−i =
∑

i≥0

γti (θ)Xt−i (29)

where the truncated sequence γt(θ) = (γti (θ))i≥0 is defined by

γti (θ) =

{
γi (θ) if 0 ≤ i ≤ t − 1 ,

0 otherwise.

Since our assumptions are made on the noise in (1), it will be useful to express the random variables
ǫt(θ) and its partial derivatives with respect to θ, as a function of (ǫt−i )i≥0.
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From (24), there exists a sequence λ(θ) = (λi (θ))i≥0 such that

ǫt(θ) =

∞∑

i=0

λi (θ) ǫt−i (30)

where the sequence λ(θ) is given by the sequence of the coefficients of the power series b−1
θ (z)aθ(z)(1−

z)d−d0a−1
θ0

(z)bθ0(z). Consequently λ(θ) = γ(θ) ∗ η(θ0) or, equivalently,

λi (θ) =

i∑

j=0

γj(θ)ηi−j(θ0). (31)

We proceed in the same way as regard to the derivatives of ǫt(θ). More precisely, for any θ ∈ Θ,

t ∈ Z and 1 ≤ k , l ≤ p + q + 1 there exists sequences
.

λk(θ) = (
.

λi ,k(θ))i≥1 and
..

λk,l (θ) =

(
..

λi ,k,l(θ))i≥1 such that

∂ǫt(θ)

∂θk
=

∞∑

i=1

.

λi ,k (θ) ǫt−i (32)

∂2ǫt(θ)

∂θk∂θl
=

∞∑

i=1

..

λi ,k,l (θ) ǫt−i . (33)

Of course it holds that
.

λk(θ) =
∂γ(θ)
∂θk

∗ η(θ0) and
..

λk,l(θ) =
∂2γ(θ)
∂θk∂θl

∗ η(θ0).
Similarly we have

ǫ̃t(θ) =

∞∑

i=0

λti (θ) ǫt−i , (34)

∂ǫ̃t(θ)

∂θk
=

∞∑

i=1

.

λ
t

i ,k (θ) ǫt−i (35)

∂2ǫ̃t(θ)

∂θk∂θl
=

∞∑

i=1

..

λ
t

i ,k,l (θ) ǫt−i , (36)

where λt(θ) = γt(θ) ∗ η(θ0),
.

λ
t

k(θ) =
∂γt (θ)
∂θk

∗ η(θ0) and
..

λ
t

k,l (θ) =
∂2γt(θ)
∂θk∂θl

∗ η(θ0).
In order to handle the truncation error ǫt(θ) − ǫ̃t(θ), one needs informations on the sequence

λ(θ)− λt(θ). This is the purpose on the following lemma.

Lemma 1. For 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, we have

‖ λ (θ)− λt (θ) ‖ℓr = O
(
t−1+ 1

r
−(d−d0)

)

and
‖

.

λk (θ)−
.

λ
t

k (θ) ‖ℓr = O
(
t−1+ 1

r
−(d−d0)

)
.

Proof. We have
λ (θ)− λt (θ) =

(
γ(θ)− γt(θ)

)
∗ η(θ0).
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In view of (28), the sequence η(θ0) belongs to ℓq for any q > 1/(1 − d0). Young’s inequality for
convolution yields that for all r ≥ 2

‖ λ (θ)− λt (θ) ‖ℓr ≤‖ γ(θ)− γt(θ) ‖ℓp‖ η(θ0) ‖ℓq (37)

with q = (1 − (d0 + β))−1 > 1/(1 − d0) and p = r/(1 + r(d0 + β)), for some β > 0 sufficiently
small. Thus there exists K such that ‖ η(θ0) ‖ℓq≤ K . Since for any j ≥ 0,

γj(θ)− γtj (θ) =

{
0 if 0 ≤ j ≤ t − 1

γj(θ) otherwise

we obtain using (27) that

‖ λ (θ)− λt (θ) ‖ℓr ≤ K

( ∞∑

k=0

∣∣γk(θ)− γtk(θ)
∣∣p
)1/p

≤ K

( ∞∑

k=t

|γk(θ)|p
)1/p

≤ K

( ∞∑

k=t

1

kp+pd

)1/p

≤ K

(∫ ∞

t

1

xp+pd
dx

)1/p

≤ Kt
−1−d+ 1

p

≤ Kt−1+ 1
r
−(d−d0)+β,

where the constant K varies from line to line. The conclusion follows by tending β to 0.
The second point of the lemma is shown in the same way as the first. This is because from (27),

the coefficient ∂γj (θ)/∂θk = O(j−1−d+ζ ) for any small enough ζ > 0. The proof of the lemma is
then complete.

Remark 3. Taking r = ∞ in the above lemma implies that the sequence
.

λk (θ0) −
.

λtk (θ0) is
bounded and more precicely there exists K such that

sup
j≥1

∣∣∣
.

λj ,k (θ0)−
.

λt j ,k (θ0)
∣∣∣ ≤ K

t
(38)

for any t and any 1 ≤ k ≤ p + q + 1.

One shall also need the following lemmas.

Lemma 2. For any 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, there exists a constant K such
that we have

‖
.

λ
t

k (θ) ‖ℓr≤ K .

Proof. The proof follows the same arguments than the proof of Lemma 1.

Lemma 3. There exists a constant K such that we have
∣∣∣
.

λi ,k (θ0)
∣∣∣ ≤ K

i
. (39)
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Proof. For 1 ≤ k ≤ p + q + 1, the sequence
.

λk(θ) = (
.

λi ,k(θ))i≥1 is in fact the sequence of the
coefficients in the power series of

∂

∂θk

(
b−1
θ (z)aθ(z)(1− z)d−d0a−1

θ0
(z)bθ0(z)

)
.

Thus
.

λi ,k (θ0) is the i−th coefficient taken in θ = θ0. There are three cases.

⋄ k = 1, . . . , p:
Since

∂

∂θk

(
b−1
θ (z)aθ(z)(1− z)d−d0a−1

θ0
(z)bθ0(z)

)
= −b−1

θ (z)zk(1− z)d−d0a−1
θ0

(z)bθ0(z) ,

we deduce that
.

λi ,k (θ0) is the i−th coefficient of zka−1
θ0

(z) which satisfies
.

λi ,k (θ0) ≤ Kρi

for some 0ρ < 1 (see [FZ98] for example).
⋄ k = p + 1, . . . , p + q:

We have

∂

∂θk

(
b−1
θ (z)aθ(z)(1− z)d−d0aθ0(z)bθ0(z)

)
=

(
∂

∂θk
b−1
θ (z)

)
aθ(z)(1−z)d−d0a−1

θ0
(z)bθ0(z)

and consequently
.

λi ,k (θ0) is the i−th coefficient of ( ∂
∂θk

b−1
θ0

(z))bθ0(z) which also satisfies
.

λi ,k (θ0) ≤ Kρi (see [FZ98]).
The last case will not be a consequence of the usual works on ARMA processes.

⋄ k = p + q + 1:
In this case, θk = d and so we have

∂

∂θk

(
b−1
θ (z)aθ(z)(1− z)d−d0a−1

θ0
(z)bθ0(z)

)
= b−1

θ (z)aθ(z)ln(1−z)(1−z)d−d0a−1
θ0

(z)bθ0(z)

and consequently
.

λi ,k (θ0) is the i−th coefficient of ln(1− z) which is equal to −1/i .

The three above cases imply the expected result.

6.2. Proof of Theorem 1

We can follow from line to line the proof of Theorem 1 in [FZ98]. The only difference relies on the
following Lemma in which it is stated that the choice of the initial values has no influence on the
estimation. Its proof is completely different from the one done in [FZ98] because we do not have
the same speed of convergence.

Lemma 4. Under the assumptions of Theorem 1, we have almost surely

lim
t→∞

sup
θ∈Θδ

|ǫt(θ)− ǫ̃t(θ)| = 0. (40)

Proof. From (25) and (29), for all θ ∈ Θδ and all t ∈ Z, we have

ǫt(θ)− ǫ̃t(θ) =
∑

j≥0

γj(θ)Xt−j −
t−1∑

j=0

γj(θ)Xt−j =
∑

j≥t

γj(θ)Xt−j =
∑

k≥0

γt+k(θ)X−k .
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Recall that for any sequence (Yn)n of random variables it holds that

Yn
a.s.−→

n→∞
Y ⇔ sup

k≥n

|Yk − Y | P−→
n→∞

0.

Hence supθ∈Θδ
|ǫt(θ)− ǫ̃t(θ)| converges almost surely to 0 as soon as supk≥t supθ∈Θδ

|ǫk(θ)− ǫ̃k(θ)|
converges in probability to 0. In view of (27), for all β > 0 and for large t we have

P

(
sup
k≥t

sup
θ∈Θδ

|ǫk(θ)− ǫ̃k(θ)| > β

)
= P


sup

k≥t

sup
θ∈Θδ

∣∣∣∣∣∣

∑

j≥0

γk+j (θ)X−j

∣∣∣∣∣∣
> β




≤ P


∑

j≥0

sup
k≥t

sup
θ∈Θδ

|γk+j (θ)| |X−j | > β




≤ K

β

(
sup
t∈Z

E |Xt |
)∑

j≥0

(
1

t + j

)1+d1

,

≤ K

βd1
(t − 1)−d1 −→

t→∞
0

and (40) is proved.

6.3. Proof of Theorem 2

By a Taylor expansion of the function ∂Qn(·)/∂θ around θ0 and under (A3), we have

0 =
√
n
∂

∂θ
Qn(θ̂n) =

√
n
∂

∂θ
Qn(θ0) +

[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]√
n
(
θ̂n − θ0

)
, (41)

where the θ∗n,i ,j ’s are between θ̂n and θ0. The equation (41) can be rewritten in the form:

√
n
∂

∂θ
On(θ0)−

√
n
∂

∂θ
Qn(θ0) =

√
n
∂

∂θ
On(θ0) +

[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]√
n
(
θ̂n − θ0

)
. (42)

Under the assumptions of Theorem 2, it will be shown respectively in Lemma 5 and Lemma 8 that

√
n
∂

∂θ
On(θ0)−

√
n
∂

∂θ
Qn(θ0) = oP(1),

and

lim
n→∞

{[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]
− J(θ0)

}
= 0 a.s.

As a consequence, the asymptotic normality of
√
n(θ̂n − θ0) will be a consequence of the one of√

n∂/∂θOn(θ0).

Lemma 5. For 1 ≤ k ≤ p + q + 1, under the assumptions of Theorem 2, we have

√
n

(
∂

∂θk
Qn(θ0)−

∂

∂θk
On(θ0)

)
= oP(1). (43)

Proof. Throughout this proof, θ = (θ1, ..., θp+q , d)
′ ∈ Θδ is such that d0 < d ≤ d2 where d2 is

the upper bound of the support of the long-range dependence parameter d0.
The proof is quite long so we divide it in several steps.
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⋄ Step 1: preliminaries For 1 ≤ k ≤ p + q + 1 we have

√
n
∂

∂θk
Qn(θ0) =

2√
n

n∑

t=1

ǫ̃t(θ0)
∂

∂θk
ǫ̃t(θ0)

=
2√
n

n∑

t=1

(ǫ̃t(θ0)− ǫ̃t(θ))
∂

∂θk
ǫ̃t(θ0) +

2√
n

n∑

t=1

(ǫ̃t(θ)− ǫt(θ))
∂

∂θk
ǫ̃t(θ0)

+
2√
n

n∑

t=1

(ǫt(θ)− ǫt(θ0))
∂

∂θk
ǫ̃t(θ0) +

2√
n

n∑

t=1

ǫt(θ0)

(
∂

∂θk
ǫ̃t(θ0)−

∂

∂θk
ǫt(θ0)

)

+
2√
n

n∑

t=1

ǫt(θ0)
∂

∂θk
ǫt(θ0)

= ∆k
n,1(θ) +∆k

n,2(θ) +∆k
n,3(θ) +∆k

n,4(θ0) +
√
n
∂

∂θk
On(θ0), (44)

where

∆k
n,1(θ) =

2√
n

n∑

t=1

(ǫ̃t(θ0)− ǫ̃t(θ))
∂

∂θk
ǫ̃t(θ0),

∆k
n,2(θ) =

2√
n

n∑

t=1

(ǫ̃t(θ)− ǫt(θ))
∂

∂θk
ǫ̃t(θ0),

∆k
n,3(θ) =

2√
n

n∑

t=1

(ǫt(θ)− ǫt(θ0))
∂

∂θk
ǫ̃t(θ0)

∆k
n,4(θ0) =

2√
n

n∑

t=1

ǫt(θ0)

(
∂

∂θk
ǫ̃t(θ0)−

∂

∂θk
ǫt(θ0)

)
.

Using (30) and (34), the fourth term ∆k
n,4(θ0) can be rewritten in the form:

∆k
n,4(θ0) =

2√
n

n∑

t=1

∞∑

j=1

{ .

λ
t

j ,k (θ0)−
.

λj ,k (θ0)
}
ǫtǫt−j . (45)

Therefore, if we prove that the three sequences of random variables (∆k
n,1(θ)+∆k

n,3(θ))n, (∆
k
n,2(θ))n

and (∆k
n,4(θ0))n converge in probability towards 0, then (43) will be true.

⋄ Step 2: convergence in probability of (∆k
n,4(θ0))n to 0

For simplicity, in this step we denote in the sequel by
.

λj ,k the coefficient
.

λj ,k(θ0) and by
.

λ
t

j ,k the

coefficient
.

λ
t

j ,k(θ0). Let ̺(·, ·) be the function defined for 1 ≤ t, s ≤ n by

̺(t, s) =
∞∑

j1=1

∞∑

j2=1

{ .

λj1,k −
.

λ
t

j1,k

}{ .

λj2,k −
.

λ
s

j2,k

}
E [ǫtǫt−j1ǫsǫs−j2 ] .



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Estimation of weak FARIMA models 20

For all β > 0, using the symmetry of the function ̺(t, s), we obtain that

P

(∣∣∣∆k
n,4(θ0)

∣∣∣ ≥ β
)
≤ 4

nβ2
E






n∑

t=1

∞∑

j=1

{ .

λj ,k −
.

λ
t

j ,k

}
ǫtǫt−j




2


≤ 4

nβ2

n∑

t=1

n∑

s=1

∞∑

j1=1

∞∑

j2=1

{ .

λj1,k −
.

λ
t

j1,k

}{ .

λj2,k −
.

λ
s

j2,k

}
E [ǫtǫt−j1ǫsǫs−j2]

≤ 8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

{ .

λj1,k −
.

λ
t

j1,k

}{ .

λj2,k −
.

λ
s

j2,k

}
E [ǫtǫt−j1ǫsǫs−j2] .

By the stationarity of (ǫt)t∈Z which is assumed in (A2), we have

E [ǫtǫt−j1ǫsǫs−j2 ] = cum (ǫ0, ǫ−j1 , ǫs−t , ǫs−t−j2) + E [ǫ0ǫ−j1]E [ǫs−tǫs−t−j2] + E [ǫ0ǫs−t ]E [ǫ−j1ǫs−t−j2 ]

+ E [ǫ0ǫs−t−j2]E [ǫ−j1ǫs−t ] .

Since the noise is not correlated, we deduce that E [ǫ0ǫ−j1 ] = 0 and E [ǫ0ǫs−t−j2] = 0 for 1 ≤ j1, j2
and s ≤ t. Consequently we obtain

P

(∣∣∣∆k
n,4(θ0)

∣∣∣ ≥ β
)
≤ 8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

sup
j1≥1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
∣∣∣
.

λj2,k −
.

λ
s

j2,k

∣∣∣ |cum (ǫ0, ǫ−j1 , ǫs−t , ǫs−t−j2)|

+
8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
∣∣∣
.

λj2,k −
.

λ
s

j2,k

∣∣∣ |E [ǫ0ǫs−t ]E [ǫ−j1ǫs−t−j2 ]|

(46)

If

t∑

s=1

∞∑

j1=1

∞∑

j2=1

sup
j1≥1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
∣∣∣
.

λj2,k −
.

λ
s

j2,k

∣∣∣ |cum (ǫ0, ǫ−j1 , ǫs−t , ǫs−t−j2)| −−−→t→∞
0, (47)

Cesàro’s Lemma implies that the first term in the right hand side of (46) tends to 0. Thanks to
Lemma 1 applied with r = ∞ (or see Remark 3) and Assumption (A4’) with τ = 4, we obtain
that

t∑

s=1

∞∑

j1=1

∞∑

j2=1

sup
j1≥1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
∣∣∣
.

λj2,k −
.

λ
s

j2,k

∣∣∣ |cum (ǫ0, ǫ−j1 , ǫs−t , ǫs−t−j2)|

≤ K

t

t∑

s=1

∞∑

j1=1

∞∑

j2=1

|cum (ǫ0, ǫ−j1 , ǫs−t , ǫs−t−j2)|

≤ K

t

∞∑

s=−∞

∞∑

j1=−∞

∞∑

j2=−∞
|cum (ǫ0, ǫs , ǫj1 , ǫj2)| −−−→t→∞

0 ,
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hence (47) holds true. Concerning the second term of right hand side of the inequality (46), we
have

8

nβ2

n∑

t=1

t∑

s=1

∞∑

j1=1

∞∑

j2=1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
∣∣∣
.

λj2,k −
.

λ
s

j2,k

∣∣∣ |E [ǫ0ǫs−t ]E [ǫ−j1ǫs−t−j2]|

=
8σ2ǫ
nβ2

n∑

t=1

∞∑

j1=1

∞∑

j2=1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
∣∣∣
.

λj2,k −
.

λ
t

j2,k

∣∣∣ |E [ǫ−j1ǫ−j2 ]|

=
8σ4ǫ
nβ2

n∑

t=1

∞∑

j1=1

∣∣∣
.

λj1,k −
.

λ
t

j1,k

∣∣∣
2

=
8σ4ǫ
nβ2

n∑

t=1

∥∥∥
.

λk −
.

λ
t

k

∥∥∥
2

ℓ2

≤ K

β2
1

n

n∑

t=1

1

t
−−−→
n→∞

0

where we have used the fact that the noise is not correlated, Lemma 1 with r = 2 and Cesàro’s
Lemma. This ends Step 2.

⋄ Step 3: (∆k
n,2(θ))n converges in probability to 0

For all β > 0, we have

P

(∣∣∣∆k
n,2(θ)

∣∣∣ ≥ β
)
≤ 2

β
√
n

n∑

t=1

‖ǫ̃t(θ)− ǫt(θ)‖L2

∥∥∥∥
∂

∂θk
ǫ̃t(θ0)

∥∥∥∥
L2

.

First, using Lemma 2, we have

∥∥∥∥
∂

∂θk
ǫ̃t(θ0)

∥∥∥∥
2

L2

= E



( ∞∑

i=1

.

λ
t

i ,k (θ0) ǫt−i

)2



=

∞∑

i=1

∞∑

j=1

.

λ
t

i ,k (θ0)
.

λ
t

j ,k (θ0)E [ǫt−i ǫt−j ]

= σ2ǫ

∞∑

i=1

{ .

λ
t

i ,k (θ0)
}2

≤ K . (48)
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In view of (30), (34) and (48), we may write

P

(∣∣∣∆k
n,2(θ)

∣∣∣ ≥ β
)
≤ K

β
√
n

n∑

t=1

(
E

[
(ǫ̃t(θ)− ǫt(θ))

2
])1/2

≤ K

β
√
n

n∑

t=1



∑

i≥0

∑

j≥0

(
λti (θ)− λi (θ)

) (
λtj (θ)− λj(θ)

)
E [ǫt−i ǫt−j ]




1/2

≤ σǫK

β
√
n

n∑

t=1



∑

i≥0

(
λti (θ)− λi (θ)

)2



1/2

≤ σǫK

β
√
n

n∑

t=1

∥∥λ(θ)− λt(θ)
∥∥
ℓ2
.

We use Lemma 1, the fact that d > d0 and the fractional version of Cesàro’s Lemma2, we obtain

P

(∣∣∣∆k
n,2(θ)

∣∣∣ ≥ β
)
≤ σǫK

β

1√
n

n∑

t=1

1

t1/2+(d−d0)
−−−→
n→∞

0.

This proves the expected convergence in probability.

⋄ Step 4: Convergence of (∆k
n,1(θ) +∆k

n,3(θ))n
Note now that, for all n ≥ 1, we have

∆k
n,1(θ) +∆k

n,3(θ) =
2√
n

n∑

t=1

{
(ǫt(θ)− ǫ̃t(θ))− (ǫt(θ0)− ǫ̃t(θ0))

} ∂

∂θk
ǫ̃t(θ0).

By the mean value theorem, there exists 0 < cω < 1 such that

∣∣∣(ǫt(θ)− ǫ̃t(θ))− (ǫt(θ0)− ǫ̃t(θ0))
∣∣∣ ≤

∥∥∥∥
∂(ǫt − ǫ̃t)

∂θ
((1− cω)θ + cωθ0)

∥∥∥∥
Rp+q+1

‖θ − θ0‖Rp+q+1 .

(49)

2Recall that the fractional version of Cesàro’s Lemma states that for (ht)t a sequence of positive real numbers,
κ > 0 and c ≥ 0 we have

lim
t→∞

htt
1−κ = |κ| c ⇒ lim

n→∞

1

nκ

n∑

t=0

ht = c.
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Following the same method than in the previous step we obtain

E

(
(ǫt(θ)− ǫ̃t(θ))− (ǫt(θ0)− ǫ̃t(θ0))

)2
≤ ‖θ − θ0‖2Rp+q+1

p+q+1∑

k=1

E

[∣∣∣∣
∂(ǫt − ǫ̃t)

∂θk
((1− cω)θ + cωθ0)

∣∣∣∣
2
]

≤ ‖θ − θ0‖2Rp+q+1

p+q+1∑

k=1

sup
θ

E

[∣∣∣∣
∂(ǫt − ǫ̃t)

∂θk
(θ)

∣∣∣∣
2
]

≤ ‖θ − θ0‖2Rp+q+1

p+q+1∑

k=1

σ2ǫ sup
θ

∥∥∥(
.

λk −
.

λk
t
)(θ)

∥∥∥
2

ℓ2

≤ K ‖θ − θ0‖2Rp+q+1 sup
d;d0≤d≤d2

(
1

t1/2+(d−d0)

)2

≤ K ‖θ − θ0‖2Rp+q+1

1

t
, (50)

where we have used the fact that the function

θ 7→ E

[∣∣∣∣
∂(ǫt − ǫ̃t)

∂θk
(θ)

∣∣∣∣
2
]

is bounded and continuous. By (50) and (48), it follows that

P

(∣∣∣∆k
n,1(θ) +∆k

n,3(θ)
∣∣∣ ≥ β

)
≤ K

β
‖θ − θ0‖Rp+q+1

1√
n

n∑

t=1

1

t1/2

and the fractional version of Cesàro’s Lemma implies

lim
n→∞

P

(∣∣∣∆k
n,1(θ) +∆k

n,3(θ)
∣∣∣ ≥ β

)
≤ K

β
‖θ − θ0‖Rp+q+1 . (51)

⋄ Step 5: end of the proof For any ε > 0, we choose θ such that K
β ‖θ− θ0‖Rp+q+1 ≤ ε. Then,

from (51), there exists n0 such that for all n ≥ n0,

P

(∣∣∣∆k
n,1(θ) +∆k

n,3(θ)
∣∣∣ ≥ β

)
≤ ε.

By Step 2 and 3, one also has for n ≥ n0

P

(∣∣∣∆k
n,2(θ) +∆k

n,4(θ0)
∣∣∣ ≥ β

)
≤ ε.

Therefore, for all n ≥ n0,

P

(∣∣∣∣
√
n
∂

∂θk
Qn(θ0)−

√
n
∂

∂θk
On(θ0)

∣∣∣∣ ≥ 2β

)
≤ P

(∣∣∣∆k
n,1(θ) +∆k

n,3(θ)
∣∣∣ ≥ β

)

+ P

(∣∣∣∆k
n,2(θ) +∆k

n,4(θ0)
∣∣∣ ≥ β

)

≤ ε

and the expected convergence in probability is proved.
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We show in the following lemma the existence and invertibility of J(θ0).

Lemma 6. Under Assumptions of Theorem 2, the matrix

J(θ0) = lim
n→∞

[
∂2

∂θi∂θj
On(θ0)

]

exists almost surely and is invertible.

Proof. For all 1 ≤ i , j ≤ p + q + 1, we have

∂2

∂θi∂θj
On(θ0) =

1

n

n∑

t=1

∂2

∂θi∂θj
ǫ2t (θ0) =

2

n

n∑

t=1

{
∂

∂θi
ǫt(θ0)

∂

∂θj
ǫt(θ0) + ǫt(θ0)

∂2

∂θi∂θj
ǫt(θ0)

}
.

Note that in view of (25), (26) and (27), the first and second order derivatives of ǫt(·) belong to
L
2. By using the ergodicity of (ǫt)t∈Z assumed in Assumption (A2), we deduce that

∂2

∂θi∂θj
On(θ0)

a.s.−→
n→∞

2E

[
∂

∂θi
ǫt(θ0)

∂

∂θj
ǫt(θ0)

]
+ 2E

[
ǫt(θ0)

∂2

∂θi∂θj
ǫt(θ0)

]
.

By (30) and (33), ǫt and ∂ǫt(θ0)/∂θ are non correlated as well as ǫt and ∂2ǫt(θ0)/∂θ∂θ. Thus we
have

∂2

∂θi∂θj
On(θ0)

a.s.−→
n→∞

J(θ0)(i , j) := 2E

[
∂

∂θi
ǫt(θ0)

∂

∂θj
ǫt(θ0)

]
. (52)

From (30) and (39) we obtain that

E

[
∂

∂θi
ǫt(θ0)

∂

∂θj
ǫt(θ0)

]
= E




∑

k1≥1

.

λk1,i (θ0) ǫt−k1




∑

k2≥1

.

λk2,j (θ0) ǫt−k2






=
∑

k1≥1

∑

k2≥1

.

λk1,i (θ0)
.

λk2,j (θ0)E [ǫt−k1ǫt−k2 ]

≤ K σ2ǫ
∑

k1≥1

(
1

k1

)2

<∞.

Therefore J(θ0) exists almost surely.
If the matrix J(θ0) is not invertible, there exists some real constants c1, . . . , cp+q+1 not all equal

to zero such that c
′

J(θ0)c =
∑p+q+1

i=1

∑p+q+1
j=1 cjJ(θ0)(j , i)ci = 0, where c = (c1, . . . , cp+q+1)

′

.
In view of (52) we obtain that

p+q+1∑

i=1

p+q+1∑

j=1

E

[(
cj
∂ǫt(θ0)

∂θj

)(
ci
∂ǫt(θ0)

∂θi

)]
= E



(

p+q+1∑

k=1

ck
∂ǫt(θ0)

∂θk

)2

 = 0,

which implies that

p+q+1∑

k=1

ck
∂ǫt(θ0)

∂θk
= 0 a.s. or equivalenty c

′ ∂ǫt(θ0)
∂θ

= 0 a.s. (53)
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Differentiating the equation (1), we obtain that

c
′ ∂
∂θ

{
aθ0(L)(1 − L)d0

}
Xt = c

′
{
∂

∂θ
bθ0(L)

}
ǫt + bθ0(L)c

′ ∂
∂θ
ǫt(θ0).

and by (53) we may write that

c
′

(
∂

∂θ

{
aθ0(L)(1 − L)d0

}
Xt −

{
∂

∂θ
bθ0(L)

}
ǫt

)
= 0 a.s.

It follows that (1) can therefore be rewritten in the form:
(
aθ0(L)(1 − L)d0 + c

′ ∂

∂θ

{
aθ0(L)(1 − L)d0

})
Xt =

(
bθ0(L) + c

′ ∂

∂θ
bθ0(L)

)
ǫt , a.s.

Under Assumption (A1) the representation in (1) is unique (see [Hos81]) so

c
′ ∂

∂θ

{
aθ0(L)(1 − L)d0

}
= 0 and (54)

c
′ ∂

∂θ
bθ0(L) = 0. (55)

First, (55) implies that
p+q∑

k=p+1

ck
∂

∂θk
bθ0(L) =

p+q∑

k=p+1

−ckL
k = 0

and thus ck = 0 for p + 1 ≤ k ≤ p + q.
Similarly, (54) yields that

p∑

k=1

ck
∂

∂θk
aθ0(L)(1 − L)d0 + cp+q+1aθ0(L)

∂(1 − L)d

∂d
(d0) = 0 .

Since ∂(1 − L)d/∂d = (1− L)d ln(1− L), it follows that

−
p∑

k=1

ckL
k + cp+q+1

∑

k≥0

ekL
k = 0 ,

where the sequence (ek)k≥1 is given by the coefficients of the power series aθ0(L)ln(1 − L). Since
e0 = 0 and e1 = −1, we obtain that

c1 = −cp+q+1

ck = ekcp+q+1 for k = 2, . . . , p

0 = ekcp+q+1 for k ≥ p + 1.

Since the polynomial aθ0 is not the null polynomial, this implies that cp+q+1 = 0 and then ck for
1 ≤ k ≤ p. Thus c = 0 which leads us to a contradiction. Hence J(θ0) is invertible.

Lemma 7. For any 1 ≤ i , j ≤ p+q+1 and under the assumptions of Theorem 1, we have almost
surely

lim
t→∞

sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫt(θ)−

∂

∂θi
ǫ̃t(θ)

∣∣∣∣ = 0 and lim
t→∞

sup
θ∈Θδ

∣∣∣∣
∂2

∂θi∂θj
ǫt(θ)−

∂2

∂θi∂θj
ǫ̃t(θ)

∣∣∣∣ = 0. (56)
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Proof. The proof uses the same arguments that the proof of Lemma 4 so it is omitted.

Lemma 8. For any 1 ≤ i , j ≤ p+q+1 and under the assumptions of Theorem 1, we have almost
surely

lim
n→∞

{[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]
− J(θ0)

}
= 0 (57)

where θ∗n,i ,j is defined in (41).

Proof. For any θ ∈ Θδ, let

Jn(θ) =
∂2

∂θ∂θ′
Qn (θ) =

2

n

n∑

t=1

{
∂

∂θ
ǫ̃t (θ)

}{
∂

∂θ′
ǫ̃t (θ)

}
+

2

n

n∑

t=1

ǫ̃t(θ)
∂2

∂θ∂θ′
ǫ̃t(θ),

and

J∗n(θ) =
∂2

∂θ∂θ′
On (θ) =

2

n

n∑

t=1

{
∂

∂θ
ǫt (θ)

}{
∂

∂θ′
ǫt (θ)

}
+

2

n

n∑

t=1

ǫt(θ)
∂2

∂θ∂θ′
ǫt(θ).

We have
∣∣∣∣

∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)
− J(θ0)(i , j)

∣∣∣∣ ≤
∣∣Jn(θ∗n,i ,j)(i , j) − J∗n (θ

∗
n,i ,j)(i , j)

∣∣

+
∣∣J∗n(θ∗n,i ,j)(i , j)− J∗n (θ0)(i , j)

∣∣ + |J∗n(θ0)(i , j) − J(θ0)(i , j)| .
(58)

So it is enough to show that the three terms in the right hand side of (58) tend almost-surely to
0 when n tends to infinity. Following the same arguments as the proof of Lemma 6 and applying
the ergodic theorem, we obtain that

J∗n (θ0)
a.s.−→

n→∞
2E

[
∂

∂θ
ǫt(θ0)

∂

∂θ′
ǫt(θ0)

]
= J(θ0).

Let us now show that the term |J∗n (θ∗n,i ,j)(i , j)− J∗n (θ0)(i , j)| converges almost-surely to 0. In view
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of (25) and (27), we have

sup
θ∈Θδ

∥∥∥∥
∂

∂θ

(
∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)

)∥∥∥∥ = sup
θ∈Θδ

∥∥∥∥∥∥
∂

∂θ






∑

k1≥1

∂

∂θi
γk1(θ)Xt−k1




∑

k2≥1

∂

∂θj
γk2(θ)Xt−k2







∥∥∥∥∥∥

= sup
θ∈Θδ

∥∥∥∥∥∥
∂

∂θ


 ∑

k1,k2≥1

∂

∂θi
γk1(θ)

∂

∂θj
γk2(θ)Xt−k1Xt−k2



∥∥∥∥∥∥

≤ sup
θ∈Θδ

∥∥∥∥∥∥

∑

k1,k2≥1

(
∂

∂θ

∂

∂θi
γk1(θ)

)
∂

∂θj
γk2(θ)Xt−k1Xt−k2

∥∥∥∥∥∥

+ sup
θ∈Θδ

∥∥∥∥∥∥

∑

k1,k2≥1

∂

∂θi
γk1(θ)

(
∂

∂θ

∂

∂θj
γk2(θ)

)
Xt−k1Xt−k2

∥∥∥∥∥∥

≤
∑

k1,k2≥1

sup
θ∈Θδ

∥∥∥∥
∂

∂θ

∂

∂θi
γk1(θ)

∥∥∥∥ sup
θ∈Θδ

∥∥∥∥
∂

∂θj
γk2(θ)

∥∥∥∥ |Xt−k1| |Xt−k2 |

+
∑

k1,k2≥1

sup
θ∈Θδ

∥∥∥∥
∂

∂θi
γk1(θ)

∥∥∥∥ sup
θ∈Θδ

∥∥∥∥
∂

∂θ

∂

∂θj
γk2(θ)

∥∥∥∥ |Xt−k1 | |Xt−k2 |

≤ K
∑

k1,k2≥1

(log(k1))
2
k−1−d1
1 log(k2)k

−1−d1
2 |Xt−k1 | |Xt−k2 |

+ K
∑

k1,k2≥1

log(k1)k
−1−d1
1 (log(k2))

2
k−1−d1
2 |Xt−k1 | |Xt−k2 | .

Consequently we obtain

Eθ0

[
sup
θ∈Θδ

∥∥∥∥
∂

∂θ

(
∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)

)∥∥∥∥

]
≤ K

∑

k1,k2≥1

(log(k1))
2
k−1−d1
1 log(k2)k

−1−d1
2 sup

t∈Z
Eθ0 |Xt |2

+ K
∑

k1,k2≥1

log(k1)k
−1−d1
1 (log(k2))

2 k−1−d1
2 sup

t∈Z
Eθ0 |Xt |2

≤ K . (59)

Following the same approach used in (59), we have

Eθ0

[
sup
θ∈Θδ

∥∥∥∥
∂

∂θ

{
ǫt(θ)

∂2

∂θi∂θj
ǫt(θ)

}∥∥∥∥

]
<∞. (60)

A Taylor expansion implies that there exists a random variable θ∗∗n,i ,j ’s between θ∗n,i ,j and θ0 such
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that

∣∣J∗n (θ∗n,i ,j)(i , j) − J∗n (θ0)(i , j)
∣∣ =

∣∣∣∣
∂

∂θ
J∗n(θ

∗∗
n,i ,j)(i , j) · (θ∗n,i ,j − θ0)

∣∣∣∣

≤ sup
θ∈Θδ

∥∥∥∥
∂

∂θ
J∗n(θ)(i , j)

∥∥∥∥
∥∥θ∗n,i ,j − θ0

∥∥

≤ 2

n

n∑

t=1

sup
θ∈Θδ

∥∥∥∥
∂

∂θ

(
∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)

)∥∥∥∥
∥∥θ∗n,i ,j − θ0

∥∥

+
2

n

n∑

t=1

sup
θ∈Θδ

∥∥∥∥
∂

∂θ

{
ǫt(θ)

∂2

∂θi∂θj
ǫt(θ)

}∥∥∥∥
∥∥θ∗n,i ,j − θ0

∥∥ .

By Theorem 1, the ergodic theorem, (59) and (60) imply that limn→∞ |J∗n (θ∗n,i ,j)(i , j)−J∗n (θ0)(i , j)| =
0 a.s.

To prove the almost-sure convergence of the first term of the right hand side of (58) it suffices
to show that

1

n

n∑

t=1

sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)−

∂

∂θi
ǫ̃t(θ)

∂

∂θj
ǫ̃t(θ)

∣∣∣∣

and
1

n

n∑

t=1

sup
θ∈Θδ

∣∣∣∣ǫt(θ)
∂2

∂θi∂θj
ǫt(θ)− ǫ̃t(θ)

∂2

∂θi∂θj
ǫ̃t(θ)

∣∣∣∣

converge almost-surely to 0. On one hand we have

1

n

n∑

t=1

sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)−

∂

∂θi
ǫ̃t(θ)

∂

∂θj
ǫ̃t(θ)

∣∣∣∣

≤ 1

n

n∑

t=1

{
sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫt(θ)−

∂

∂θi
ǫ̃t(θ)

∣∣∣∣ sup
θ∈Θδ

∣∣∣∣
∂

∂θj
ǫt(θ)

∣∣∣∣+ sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫ̃t(θ)

∣∣∣∣ sup
θ∈Θδ

∣∣∣∣
∂

∂θj
ǫ̃t(θ)−

∂

∂θj
ǫt(θ)

∣∣∣∣

}

≤


1

n

n∑

t=1

(
sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫt(θ)−

∂

∂θi
ǫ̃t(θ)

∣∣∣∣

)2



1/2
1

n

n∑

t=1

(
sup
θ∈Θδ

∣∣∣∣
∂

∂θj
ǫt(θ)

∣∣∣∣

)2



1/2

+


1

n

n∑

t=1

(
sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫ̃t(θ)

∣∣∣∣

)2



1/2
1

n

n∑

t=1

(
sup
θ∈Θδ

∣∣∣∣
∂

∂θj
ǫ̃t(θ)−

∂

∂θj
ǫt(θ)

∣∣∣∣

)2



1/2

.

In view of (25) and (27) it follows that

Eθ0



(

sup
θ∈Θδ

∣∣∣∣
∂

∂θj
ǫt(θ)

∣∣∣∣

)2

 ≤ sup

t∈Z
Eθ0 |Xt |2


∑

k1≥1

log(k1)k
−1−d1
1




2

<∞.

Similar commutations imply that

Eθ0



(

sup
θ∈Θδ

∣∣∣∣
∂

∂θj
ǫ̃t(θ)

∣∣∣∣

)2

 <∞.
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Cesàro’s Lemma, Lemma (7) and the ergodic theorem yield

1

n

n∑

t=1

sup
θ∈Θδ

∣∣∣∣
∂

∂θi
ǫt(θ)

∂

∂θj
ǫt(θ)−

∂

∂θi
ǫ̃t(θ)

∂

∂θj
ǫ̃t(θ)

∣∣∣∣
a.s.−→

n→∞
0.

On the other hand, one similarly may prove that

1

n

n∑

t=1

sup
θ∈Θδ

∣∣∣∣ǫt(θ)
∂2

∂θi∂θj
ǫt(θ)− ǫ̃t(θ)

∂2

∂θi∂θj
ǫ̃t(θ)

∣∣∣∣
a.s.−→

n→∞
0.

Thus

sup
θ∈Θδ

‖Jn(θ)− J∗n (θ)‖
a.s.−→

n→∞
0

and the lemma is proved.

The following lemma states the existence of the matrix I (θ0).

Lemma 9. Under the assumptions of Theorem 2, the matrix

I (θ0) = lim
n→∞

Var

{√
n
∂

∂θ
On(θ0)

}

exists.

Proof. By the stationarity of (Ht(θ0))t∈Z (remind that this process is defined in (7)), we have

Var

{√
n
∂

∂θ
On(θ0)

}
= Var

{
1√
n

n∑

t=1

Ht(θ0)

}

=
1

n

n∑

t=1

n∑

s=1

Cov {Ht(θ0),Hs(θ0)}

=
1

n

n−1∑

h=−n+1

(n − |h|)Cov {Ht(θ0),Ht−h(θ0)} .

By the dominated convergence theorem, the matrix I (θ0) exists and is given by

I (θ0) =

∞∑

h=−∞
Cov {Ht(θ0),Ht−h(θ0)}

whenever ∞∑

h=−∞
‖Cov {Ht(θ0),Ht−h(θ0)} ‖ <∞. (61)

For s ∈ Z and 1 ≤ k ≤ p + q + 1, we denote Hs,k(θ0) = 2ǫs(θ0)
∂

∂θk
ǫs(θ0) the k−th entry of
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Hs(θ0). In view of (30) we have

|Cov {Ht,i (θ0),Ht−h,j (θ0)}| = 4

∣∣∣∣∣∣
Cov


∑

k1≥1

.

λk1,i (θ0) ǫtǫt−k1 ,
∑

k2≥1

.

λk2,j (θ0) ǫt−hǫt−h−k2



∣∣∣∣∣∣

≤ 4
∑

k1≥1

∑

k2≥1

∣∣∣
.

λk1,i (θ0)
∣∣∣
∣∣∣
.

λk2,j (θ0)
∣∣∣ |E [ǫtǫt−k1ǫt−hǫt−h−k2 ]|

≤
∑

k1≥1

∑

k2≥1

K

k1k2
|E [ǫtǫt−k1ǫt−hǫt−h−k2 ]|

where we have used Lemma 3. It follows that

∞∑

h=−∞
|Cov {Ht,i (θ0),Ht−h,j (θ0)}| ≤

∑

h∈Z\{0}

∑

k1≥1

∑

k2≥1

K

k1k2
|cum (ǫt , ǫt−k1 , ǫt−h, ǫt−h−k2)|

+
∑

k1≥1

∑

k2≥1

K

k1k2
|E [ǫtǫt−k1ǫtǫt−k2 ]| .

Thanks to the stationarity of (ǫt)t∈Z and Assumption (A4’) with τ = 4 we deduce that

∞∑

h=−∞
|Cov {Ht,i(θ0),Ht−h,j (θ0)}| ≤

∑

h∈Z\{0}

∑

k1≥1

∑

k2≥1

K

k1k2
|cum (ǫ0, ǫ−k1 , ǫ−h, ǫ−h−k2)|

+
∑

k1≥1

∑

k2≥1

K

k1k2
|E [ǫ0ǫ−k1ǫ0ǫ−k2 ]|

≤ K
∑

h,k,l∈Z
|cum (ǫ0, ǫk , ǫh, ǫl)|

+
∑

k1≥1

∑

k2≥1

K

k1k2

(
|cum (ǫ0, ǫ−k1 , ǫ0, ǫ−k2)|

+ σ2ǫ |E [ǫ−k1ǫ−k2 ]|
)

≤ K
∑

h,k,l∈Z
|cum (ǫ0, ǫk , ǫh, ǫl)|+ Kσ4ǫ

∑

k1≥1

(
1

k1

)2

≤ K

and we obtain the expected result.

Lemma 10. Under Assumptions of Theorem 2, the random vector
√
n(∂/∂θ)On(θ0) has a limiting

normal distribution with mean 0 and covariance matrix I (θ0).

Proof. Observe that for any t ∈ Z

E

[
ǫt
∂

∂θ
ǫt(θ0)

]
= 0 (62)

because ∂ǫt(θ0)/∂θ belongs to the Hilbert space Hǫ(t − 1), linearly generated by the family
(ǫs)s≤t−1. Therefore we have

lim
n→∞

E

[√
n
∂

∂θ
On(θ0)

]
= lim

n→∞
2√
n

n∑

t=1

E

[
ǫt
∂

∂θ
ǫt(θ0)

]
= 0.
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For i ≥ 1, we denote Λi (θ0) = (
.

λi ,1 (θ0) , . . . ,
.

λi ,p+q+1 (θ0))
′ and we introduce for r ≥ 1

Ht,r (θ0) = 2
r∑

i=1

Λi (θ0) ǫtǫt−i and Gt,r(θ0) = 2
∑

i≥r+1

Λk (θ0) ǫtǫt−i .

From (30) we have

√
n
∂

∂θ
On(θ0) =

1√
n

n∑

t=1

Ht,r (θ0) +
1√
n

n∑

t=1

Gt,r (θ0).

Since Ht,r (θ0) is a function of finite number of values of the process (ǫt)t∈Z, the stationary
process (Ht,r (θ0))t∈Z satisfies a mixing property (see Theorem 14.1 in [Dav94], p. 210) of the
form (A4). The central limit theorem for strongly mixing processes (see [Her84]) implies that
(1/

√
n)
∑n

t=1 Ht,r (θ0) has a limiting N (0, Ir (θ0)) distribution with

Ir (θ0) = lim
n→∞

Var

(
1√
n

n∑

t=1

Ht,r (θ0)

)
.

Since 1√
n

∑n
t=1Ht,r (θ0) and 1√

n

∑n
t=1Ht(θ0) have zero expectation, we shall have

lim
r→∞

Var

(
1√
n

n∑

t=1

Ht,r (θ0)

)
= Var

(
1√
n

n∑

t=1

Ht(θ0)

)
= Var

{√
n
∂

∂θ
On(θ0)

}
,

as soon as

lim
r→∞

E



∥∥∥∥∥

1√
n

n∑

t=1

Ht(θ0)−
1√
n

n∑

t=1

Ht,r (θ0)

∥∥∥∥∥

2

 = 0. (63)

As a consequence we will have limr→∞ Ir (θ0) = I (θ0). The limit in (63) is obtained as follows:

E



∥∥∥∥∥

1√
n

n∑

t=1

Ht(θ0)−
1√
n

n∑

t=1

Ht,r (θ0)

∥∥∥∥∥

2

Rp+q+1


 = E



∥∥∥∥∥

1√
n

n∑

t=1

Gt,r (θ0)

∥∥∥∥∥

2

Rp+q+1




≤ 4

n

p+q+1∑

l=1

E






n∑

t=1

∑

k≥r+1

.

λk,l (θ0) ǫt−kǫt




2


≤ 4

n

p+q+1∑

l=1

n∑

t=1

n∑

s=1

∑

k≥r+1

∑

j≥r+1

∣∣∣
.

λk,l (θ0)
∣∣∣
∣∣∣
.

λj ,l (θ0)
∣∣∣ |E [ǫt−kǫtǫs−jǫs ]| ,

We use successively the stationarity, Lemma 3 and Assumption (A4’) with τ = 4 in order to obtain
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that

E



∥∥∥∥∥

1√
n

n∑

t=1

Ht(θ0)−
1√
n

n∑

t=1

Ht,r (θ0)

∥∥∥∥∥

2

Rp+q+1




≤ 4

n

p+q+1∑

l=1

n−1∑

h=1−n

∑

k≥r+1

∑

j≥r+1

∣∣∣
.

λk,l (θ0)
∣∣∣
∣∣∣
.

λj ,l (θ0)
∣∣∣ (n − |h|) |E [ǫt−kǫtǫt−h−jǫt−h]|

≤ 4

p+q+1∑

l=1

∞∑

h=−∞

∑

k≥r+1

∑

j≥r+1

∣∣∣
.

λk,l (θ0)
∣∣∣
∣∣∣
.

λj ,l (θ0)
∣∣∣ |E [ǫt−kǫtǫt−h−jǫt−h]|

≤ K

(r + 1)2

∑

h 6=0

∑

k≥r+1

∞∑

j=−∞
|cum (ǫ0, ǫ−k , ǫ−j , ǫ−h)|

+
K

(r + 1)2

∑

k≥r+1

∑

j≥r+1

|cum (ǫ0, ǫ−k , ǫ−j , ǫ0)|+ Kσ4ǫ
∑

k≥r+1

(
1

k

)2

and we obtain the convergence stated in (63) when r → ∞.
Using Theorem 7.7.1 and Corollary 7.7.1 of Anderson (see [And71] pages 425-426), the Lemma

is proved once we have, uniformly in n,

Var

(
1√
n

n∑

t=1

Gt,r (θ0)

)
−−−→
r→∞

0 .

Arguing as before we may write

[
Var

(
1√
n

n∑

t=1

Gt,r (θ0)

)]

i j

=


Var


 2√

n

n∑

t=1

∑

k≥r+1

Λk(θ0)ǫt−kǫt





i j

=
4

n

n∑

t=1

n∑

s=1

∑

k1≥r+1

∑

k2≥r+1

.

λk1,i (θ0)
.

λk2,j (θ0)E [ǫt−k1ǫtǫs−k2ǫs ]

≤ 4

∞∑

h=−∞

∑

k1,k2≥r+1

∣∣∣
.

λk1,i (θ0)
.

λk2,j (θ0)
∣∣∣ |E [ǫt−k1ǫtǫt−h−k2ǫt−h]| .

and we obtain that

sup
n

Var

(
1√
n

n∑

t=1

Gt,r (θ0)

)
−−−→
r→∞

0, (64)

which completes the proof.

No we can end this quite long proof of the asymptotic normality result.
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Proof of Theorem 2

In view of Lemma 5, the equation (42) can be rewritten in the form:

oP(1) =
√
n
∂

∂θ
On(θ0) +

[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]√
n
(
θ̂n − θ0

)
.

From Lemma 10
√
n(θ̂n− θ0)(∂2/∂θi∂θj)Qn(θ

∗
n,i ,j) converges in distribution to N (0, I (θ0)). Using

Lemma 8 and Slutsky’s theorem we deduce that

([
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]
,

[
∂2

∂θi∂θj
Qn

(
θ∗n,i ,j

)]√
n(θ̂n − θ0)

)

converges in distribution to (J(θ0),Z ) with PZ = N (0, I ). Consider now the function h : R(p+q+1)×(p+q+1)×
R
p+q+1 → R

p+q+1 that maps (A,X ) to A−1X . If Dh denotes the set of discontinuity points of h,
we have P((J(θ0),Z ) ∈ Dh) = 0. By the continuous mapping theorem

h
([

(∂2/∂θi∂θj)Qn(θ
∗
n,i ,j)

]
,
[
(∂2/∂θi∂θj)Qn(θ

∗
n,i ,j)

]√
n(θ̂n − θ0)

)

converges in distribution to h(J(θ0),Z ) and thus
√
n(θ̂n−θ0) has a limiting normal distribution with

mean 0 and covariance matrix J−1(θ0)I (θ0)J
−1(θ0). The proof of Theorem 2 is then completed.

6.4. Proof of the convergence of the variance matrix estimator

We show in this section the convergence in probability of Ω̂ := Ĵ−1
n Î SPn Ĵ−1

n to Ω , which is an
adaptation of the arguments used in [BMCF12].

Using the same approach as that followed in Lemma 8, we show that Ĵn converges almost surely
to J. We give below the proof of the convergence in probability of the estimator Î SPn , obtained
using the approach of the spectral density, towards I .

We recall that the matrix norm used is given by ‖A‖ = sup‖x‖≤1 ‖Ax‖ = ρ1/2(A
′

A), when A is

a R
k1×k2 matrix, ‖x‖2 = x

′

x is the Euclidean norm of the vector x ∈ R
k2 , and ρ(·) denotes the

spectral radius. This norm satisfies

‖A‖2 ≤
k1∑

i=1

k2∑

j=1

a2i ,j , (65)

with ai ,j the entries of A ∈ R
k1×k2 . The choice of the norm is crucial for the following results to

hold (with e.g. the Euclidean norm, this result is not valid).
We denote

ΣH,Hr
= EHtH

′

r ,t , ΣH = EHtH
′

t , ΣHr
= EHr ,tH

′

r ,t

where Ht := Ht(θ0) is definied in (7) and H r ,t = (H
′

t−1, . . . ,H
′

t−r )
′

. For any n ≥ 1, we have

Î SPn = Φ̂−1
r (1)Σ̂ûr Φ̂

′−1
r (1)

=
(
Φ̂−1
r (1) − Φ−1(1)

)
Σ̂ûr Φ̂

′−1
r (1) + Φ−1(1)

(
Σ̂ûr − Σu

)
Φ̂

′−1
r (1)

+ Φ−1(1)Σu

(
Φ̂

′−1
r (1)− Φ

′−1(1)
)
+ Φ−1(1)ΣuΦ

′−1(1).
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We then obtain
∥∥∥Î SPn − I (θ0)

∥∥∥ ≤
∥∥∥Φ̂−1

r (1) −Φ−1(1)
∥∥∥
∥∥∥Σ̂ûr

∥∥∥
∥∥∥Φ̂′−1

r (1)
∥∥∥+

∥∥Φ−1(1)
∥∥
∥∥∥Σ̂ûr − Σu

∥∥∥
∥∥∥Φ̂′−1

r (1)
∥∥∥

+
∥∥Φ−1(1)

∥∥ ‖Σu‖
∥∥∥Φ̂′−1

r (1) − Φ
′−1(1)

∥∥∥

≤
∥∥∥Φ̂−1

r (1) −Φ−1(1)
∥∥∥
(∥∥∥Σ̂ûr

∥∥∥
∥∥∥Φ̂′−1

r (1)
∥∥∥ +

∥∥Φ−1(1)
∥∥ ‖Σu‖

)

+
∥∥∥Σ̂ûr − Σu

∥∥∥
∥∥∥Φ̂′−1

r (1)
∥∥∥
∥∥Φ−1(1)

∥∥

≤
∥∥∥Φ̂−1

r (1)
∥∥∥
∥∥∥Φ(1)− Φ̂r (1)

∥∥∥
∥∥Φ−1(1)

∥∥
(∥∥∥Σ̂ûr

∥∥∥
∥∥∥Φ̂′−1

r (1)
∥∥∥ +

∥∥Φ−1(1)
∥∥ ‖Σu‖

)

+
∥∥∥Σ̂ûr − Σu

∥∥∥
∥∥∥Φ̂′−1

r (1)
∥∥∥
∥∥Φ−1(1)

∥∥ . (66)

In view of (66), to prove the convergence in probability of Î SPn to I (θ0), it suffices to show that
Φ̂r (1) → Φ(1) and Σ̂ûr → Σu in probability. Let the r × 1 vector 1r = (1, . . . , 1)

′

and the
r(p+q+1)× (p+q+1) matrix Er = Ip+q+1⊗1r , where ⊗ denotes the matrix Kronecker product
and Im the m×m identity matrix. Write Φ∗

r = (Φ1, . . . ,Φr ) where the Φi ’s are defined by (8). We
have

∥∥∥Φ̂r (1)− Φ(1)
∥∥∥ =

∥∥∥∥∥

r∑

k=1

Φ̂r ,k −
r∑

k=1

Φr ,k +

r∑

k=1

Φr ,k −
∞∑

k=1

Φk

∥∥∥∥∥

≤
∥∥∥∥∥

r∑

k=1

(
Φ̂r ,k − Φr ,k

)∥∥∥∥∥+
∥∥∥∥∥

r∑

k=1

(Φr ,k −Φk)

∥∥∥∥∥+
∥∥∥∥∥

∞∑

k=r+1

Φk

∥∥∥∥∥

≤
∥∥∥
(
Φ̂r − Φr

)
Er

∥∥∥+ ‖(Φ∗
r − Φr )Er‖+

∥∥∥∥∥

∞∑

k=r+1

Φk

∥∥∥∥∥

≤
√

p + q + 1
√
r
(∥∥∥Φ̂r −Φr

∥∥∥+ ‖Φ∗
r − Φr‖

)
+

∥∥∥∥∥

∞∑

k=r+1

Φk

∥∥∥∥∥ . (67)

Under the assumptions of Theorem 3 (see (9)) we have
∥∥∥∥∥

∞∑

k=r+1

Φk

∥∥∥∥∥ ≤
∞∑

k=r+1

‖Φk‖ ≤ K

∞∑

k=r+1

ρk
a.s.−−−→

n→∞
0.

Therefore it is enough to show that
√
r‖Φ̂r−Φr‖ and

√
r‖Φ∗

r −Φr‖ converge in probability towards
0 in order to obtain the convergence in probability of Φ̂r (1) towards Φ(1). From (10) we have

Ht(θ0) = ΦrH r ,t(θ0) + ur ,t , (68)

and thus

Σur = Var(ur ,t) = E

[
ur ,t

(
Ht(θ0)− ΦrH r ,t(θ0)

)′]
.

The vector ur ,t is orthogonal to Hr ,t(θ0). Therefore

Var(ur ,t) = E

[(
Ht(θ0)− ΦrH r ,t(θ0)

)
H

′

t(θ0)
]

= ΣH − ΦrΣ
′

H,Hr
.
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Consequently the least squares estimator of Σur can be rewritten in the form:

Σ̂ûr = Σ̂
Ĥ
− Φ̂r Σ̂

′

Ĥ,Ĥr

, (69)

where

Σ̂
Ĥ
=

1

n

n∑

t=1

ĤtĤ
′

t . (70)

Similar arguments combined with (8) yield

Σu = E

[
utu

′

t

]
= E

[
utH

′

t(θ0)
]

= E

[
Ht(θ0)H

′

t(θ0)
]
−

r∑

k=1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]
−

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]

= ΣH − Φ∗
rΣ

′

H,Hr
−

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]
.

By (69) we obtain

∥∥∥Σ̂ûr − Σu

∥∥∥ =

∥∥∥∥∥Σ̂Ĥ
− Φ̂r Σ̂

′

Ĥ,Ĥr

− ΣH + Φ∗
rΣ

′

H,Hr
+

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]∥∥∥∥∥

=

∥∥∥∥∥Σ̂Ĥ
− ΣH −

(
Φ̂r − Φ∗

r

)
Σ̂

′

Ĥ,Ĥr

− Φ∗
r

(
Σ̂

′

Ĥ,Ĥr

− Σ
′

H,Hr

)
+

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]∥∥∥∥∥

≤
∥∥∥Σ̂Ĥ

− ΣH

∥∥∥+
∥∥∥
(
Φ̂r − Φ∗

r

)(
Σ̂

′

Ĥ,Ĥr

− Σ
′

H,Hr

)∥∥∥+
∥∥∥
(
Φ̂r −Φ∗

r

)
Σ

′

H,Hr

∥∥∥

+
∥∥∥Φ∗

r

(
Σ̂

′

Ĥ,Ĥr

− Σ
′

H,Hr

)∥∥∥+
∥∥∥∥∥

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]∥∥∥∥∥ . (71)

From Lemma 9 and hypotheses of Theorem 3 (see (9)) we deduce that

∥∥∥∥∥

∞∑

k=r+1

ΦkE

[
Ht−k(θ0)H

′

t(θ0)
]∥∥∥∥∥ ≤

∞∑

k=r+1

‖Φk‖
∥∥∥E
[
Ht−k(θ0)H

′

t(θ0)
]∥∥∥

≤ K

∞∑

k=r+1

ρk
a.s.−−−→

n→∞
0.

Observe also that
‖Φ∗

r ‖2 ≤
∑

k≥1

Tr
(
ΦkΦ

′

k

)
<∞.

Therefore the convergence Σ̂ûr to Σu will be a consequence of the four following properties:

• ‖Σ̂
Ĥ
− ΣH‖ = oP(1),

• P− limn→∞ ‖Φ̂r −Φ∗
r ‖ = 0,

• P− limn→∞ ‖Σ̂ ′

Ĥ,Ĥr

−Σ
′

H,Hr
‖ = 0 and

• ‖Σ ′

H,Hr
‖ = O(1).
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The above properties will be proved thanks several lemmas that are stated and proved hereafter.
This ends the proof of Theorem 3. For this, consider the following lemmas:

Lemma 11. Under the assumptions of Theorem 3, we have

sup
r≥1

max
{∥∥ΣH,Hr

∥∥ ,
∥∥ΣHr

∥∥ ,
∥∥∥Σ−1

Hr

∥∥∥
}
<∞.

Proof. See Lemma 1 in the supplementary material of [BMCF12].

Lemma 12. Under the assumptions of Theorem 3 there exists a finite positive constant K such
that, for 1 ≤ r1, r2 ≤ r and 1 ≤ m1,m2 ≤ p + q + 1 we have

sup
t∈Z

∞∑

h=−∞
|Cov {Ht−r1,m1(θ0)Ht−r2,m2(θ0),Ht−r1−h,m1

(θ0)Ht−r2−h,m2
(θ0)}| < K .

Proof. We denote in the sequel by
.

λj ,k the coefficient
.

λj ,k(θ0) defined in (31).
Using the fact that the process (Ht(θ0))t∈Z is centered and taking into consideration the strict

stationarity of (ǫt)t∈Z we obtain that for any t ∈ Z

∞∑

h=−∞

∣∣∣Cov
(
Ht−r1,m1(θ0)Ht−r2,m2(θ0),Ht−r1−h,m1

(θ0)Ht−r2−h,m2
(θ0)

)∣∣∣

=

∞∑

h=−∞

∣∣∣E [Ht−r1,m1(θ0)Ht−r2,m2(θ0)Ht−r1−h,m1
(θ0)Ht−r2−h,m2

(θ0)]

− E [Ht−r1,m1(θ0)Ht−r2,m2(θ0)]E [Ht−r1−h,m1
(θ0)Ht−r2−h,m2

(θ0)]
∣∣∣

≤
∞∑

h=−∞

∣∣∣cum
(
Ht−r1,m1(θ0),Ht−r2,m2(θ0),Ht−r1−h,m1

(θ0),Ht−r2−h,m2
(θ0)

)∣∣∣

+

∞∑

h=−∞
|E [Ht−r1,m1(θ0)Ht−r1−h,m1

(θ0)]| |E [Ht−r2,m2(θ0)Ht−r2−h,m2
(θ0)]|

+

∞∑

h=−∞
|E [Ht−r1,m1(θ0)Ht−r2−h,m2

(θ0)]| |E [Ht−r2,m2(θ0)Ht−r1−h,m1
(θ0)]|

≤
∞∑

h=−∞

∑

i1,j1,k1,ℓ1≥1

∣∣∣
.

λi1,m1

.

λj1,m2

.

λk1,m1

.

λℓ1,m2

∣∣∣ |cum (ǫ0ǫ−i1, ǫr1−r2ǫr1−r2−j1 , ǫ−hǫ−h−k1 , ǫr1−r2−hǫr1−r2−h−ℓ1)|

+ T
(1)
r1,m1,r2,m2

+ T
(2)
r1,m1,r2,m2

,

where

T
(1)
r1,m1,r2,m2

=

∞∑

h=−∞
|E [Ht−r1,m1(θ0)Ht−r1−h,m1

(θ0)]| |E [Ht−r2,m2(θ0)Ht−r2−h,m2
(θ0)]|

and

T
(2)
r1,m1,r2,m2

=

∞∑

h=−∞
|E [Ht−r1,m1(θ0)Ht−r2−h,m2

(θ0)]| |E [Ht−r2,m2(θ0)Ht−r1−h,m1
(θ0)]| .
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Thanks to Lemma 3 one may use the product theorem for the joint cumulants ([Bri81]) as in the
proof of Lemma A.3. in [Sha11] in order to obtain that

∞∑

h=−∞

∑

i1,j1,k1,ℓ1≥1

∣∣∣
.

λi1,m1

.

λj1,m2

.

λk1,m1

.

λℓ1,m2

∣∣∣ |cum (ǫ0ǫ−i1 , ǫr1−r2ǫr1−r2−j1, ǫ−hǫ−h−k1 , ǫr1−r2−hǫr1−r2−h−ℓ1)|

<∞.

where we have used the absolute summability of the k-th (k = 2, . . . , 8) cumulants assumed in
(A4’) with τ = 8.

Observe now that

T
(1)
r1,m1,r2,m2

=
∞∑

h=−∞
|E [Ht−r1,m1(θ0)Ht−r1−h,m1

(θ0)]| |E [Ht−r2,m2(θ0)Ht−r2−h,m2
(θ0)]|

≤ sup
h∈Z

|E [Ht−r1,m1(θ0)Ht−r1−h,m1
(θ0)]|

∞∑

h=−∞
|E [Ht−r2,m2(θ0)Ht−r2−h,m2

(θ0)]| .

For any h ∈ Z, from (30) we have

|E [Ht−r1,m1(θ0)Ht−r1−h,m1
(θ0)]| ≤

∑

i ,j≥1

∣∣∣
.

λi ,m1

∣∣∣
∣∣∣
.

λj ,m1

∣∣∣ |cum (ǫ0, ǫ−i , ǫ−h, ǫ−h−j )|

+
∑

i ,j≥1

∣∣∣
.

λi ,m1

∣∣∣
∣∣∣
.

λj ,m1

∣∣∣
{
|E [ǫ0ǫ−i ]E [ǫ−hǫ−h−j ]|

+ |E [ǫ0ǫ−h]E [ǫ−iǫ−h−j ]|+ |E [ǫ0ǫ−h−j ]E [ǫ−iǫ−h]|
}

≤
∑

i ,j≥1

|cum (ǫ0, ǫ−i , ǫ−h, ǫ−h−j )|+ σ4ǫ
∑

i≥1

∣∣∣
.

λi ,m1

∣∣∣
2
.

Under Assumption (A4’) with τ = 4 and in view of Lemma 3 we may write that

sup
h∈Z

|E [Ht−r1,m1(θ0)Ht−r1−h,m1
(θ0)]| ≤ sup

h∈Z

∑

i ,j≥1

|cum (ǫ0, ǫ−i , ǫ−h, ǫ−h−j )|+ σ4ǫ
∑

i≥1

∣∣∣
.

λi ,m1

∣∣∣
2
<∞.

Similarly, we obtain

∞∑

h=−∞
|E [Ht−r2,m2(θ0)Ht−r2−h,m2

(θ0)]| ≤
∞∑

h=−∞

∑

i ,j≥1

|cum (ǫ0, ǫ−i , ǫ−h, ǫ−h−j )|+ σ4ǫ
∑

i≥1

∣∣∣
.

λi ,m1

∣∣∣
2

<∞.

Consequently T
(1)
r1,m1,r2,m2

<∞ and the same approach yields that T
(2)
r1,m1,r2,m2

<∞ and the lemma
is proved.

Let Σ̂Hr
, Σ̂H and Σ̂H,Hr

be the matrices obtained by replacing Ĥt by Ht(θ0) in Σ̂
Ĥr

, Σ̂
Ĥ

and

Σ̂
Ĥ,Ĥr

.
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Lemma 13. Under the assumptions of Theorem 3,
√
r‖Σ̂Hr

− ΣHr
‖, √r‖Σ̂H,Hr

− ΣH,Hr
‖ and√

r‖Σ̂H − ΣH‖ tend to zero in probability as n → ∞ when r = o(n1/3).

Proof. For 1 ≤ m1,m2 ≤ p + q + 1 and 1 ≤ r1, r2 ≤ r , the ({(r1 − 1)(p + q + 1) +m1}, {(r2 −
1)(p + q + 1) +m2})−th element of Σ̂Hr

is given by:

1

n

n∑

t=1

Ht−r1,m1(θ0)Ht−r2,m2(θ0).

For all β > 0, we use (65) and we obtain

P

(√
r
∥∥∥Σ̂Hr

− ΣHr

∥∥∥ ≥ β
)
≤ r

β2
E

∥∥∥Σ̂Hr
− ΣHr

∥∥∥
2

≤ r

β2
E

∥∥∥∥∥
1

n

n∑

t=1

H r ,tH
′

r ,t − E

[
H r ,tH

′

r ,t

]∥∥∥∥∥

2

≤ r

β2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

E

(
1

n

n∑

t=1

Ht−r1,m1(θ0)Ht−r2,m2(θ0)

− E [Ht−r1,m1(θ0)Ht−r2,m2(θ0)]

)2

.

The stationarity of the process (Ht−r1,m1(θ0)Ht−r2,m2(θ0))t and Lemma 12 imply

P

(√
r
∥∥∥Σ̂Hr

− ΣHr

∥∥∥ ≥ β
)

≤ r

β2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

Var

(
1

n

n∑

t=1

Ht−r1,m1(θ0)Ht−r2,m2(θ0)

)

≤ r

(nβ)2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

n∑

t=1

n∑

s=1

Cov (Ht−r1,m1(θ0)Ht−r2,m2(θ0),Hs−r1,m1(θ0)Hs−r2,m2(θ0))

≤ r

(nβ)2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

n−1∑

h=1−n

(n − |h|)Cov (Ht−r1,m1(θ0)Ht−r2,m2(θ0),Ht−h−r1 ,m1
(θ0)Ht−h−r2,m2

(θ0))

≤ r

nβ2

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

sup
t∈Z

∞∑

h=−∞
|Cov (Ht−r1,m1(θ0)Ht−r2,m2(θ0),Ht−h−r1,m1

(θ0)Ht−h−r2,m2
(θ0))|

≤ C (p + q + 1)2r3

nβ2
.

Consequently we have

E

[
r
∥∥∥Σ̂H − ΣH

∥∥∥
2
]
≤ E

[
r
∥∥∥Σ̂H,Hr

− ΣH,Hr

∥∥∥
2
]

≤ E

[
r

∥∥∥Σ̂Hr
− ΣHr

∥∥∥
2
]

≤ C (p + q + 1)2r3

n
−−−→
n→∞

0

when r = o(n1/3). The conclusion follows.
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We show in the following lemma that the previous lemma remains valid when we replace Ht(θ0)
by Ĥt .

Lemma 14. Under the assumptions of Theorem 3,
√
r‖Σ̂

Ĥr
− ΣHr

‖, √r‖Σ̂
Ĥ,Ĥr

− ΣH,Hr
‖ and

√
r‖Σ̂

Ĥ
− ΣH‖ tend to zero in probability as n → ∞ when r = o(n(1−2(d2−d1))/5).

Proof. As mentioned in the end of the proof of the previous lemma, we only have to deal with the
term

√
r‖Σ̂

Ĥr
− ΣHr

‖.
We denote Σ̂Hr ,n

the matrix obtained by replacing ǫ̃t(θ̂n) by ǫt(θ̂n) in Σ̂
Ĥr

. We have

√
r
∥∥∥Σ̂Ĥr

−ΣHr

∥∥∥ ≤ √
r
∥∥∥Σ̂Ĥr

− Σ̂Hr ,n

∥∥∥+
√
r
∥∥∥Σ̂Hr ,n

− Σ̂Hr

∥∥∥+
√
r
∥∥∥Σ̂Hr

− ΣHr

∥∥∥ .

By Lemma 13, the term
√
r‖Σ̂H r

− ΣHr
‖ converges in probability. The lemma will be proved as

soon as we show that

√
r
∥∥∥Σ̂Ĥr

− Σ̂Hr ,n

∥∥∥ = oP(1) and (72)

√
r

∥∥∥Σ̂Hr ,n
− Σ̂Hr

∥∥∥ = oP(1), (73)

when r = o(n(1−2(d2−d1))/5). This is done in two separate steps.

Step 1: proof of (72).
For all β > 0, we have

P

(√
r
∥∥∥Σ̂Ĥr

− Σ̂Hr ,n

∥∥∥ ≥ β
)
≤

√
r

β
E

∥∥∥Σ̂Ĥr
− Σ̂Hr ,n

∥∥∥

≤
√
r

β
E

∥∥∥∥∥
1

n

n∑

t=1

Ĥ r ,tĤ
′

r ,t −
1

n

n∑

t=1

H
(n)
r ,t H

(n)′

r ,t

∥∥∥∥∥

≤ K
√
r

β

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

E

∣∣∣∣∣
1

n

n∑

t=1

Ĥt−r1,m1Ĥt−r2,m2 −
1

n

n∑

t=1

H
(n)
t−r1,m1

H
(n)
t−r2,m2

∣∣∣∣∣ ,

where

H
(n)
t,m = 2ǫt(θ̂n)

∂

∂θm
ǫt(θ̂n) and H

(n)
r ,t =

(
H

(n)′

t−1, . . . ,H
(n)′

t−r

)′

.

It is follow that

P

(√
r
∥∥∥Σ̂Ĥr

− Σ̂Hr ,n

∥∥∥ ≥ β
)
≤ 4K

√
r

nβ

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

E

∣∣∣∣∣

n∑

t=1

ǫ̃t−r1(θ̂n)
∂

∂θm1

ǫ̃t−r1(θ̂n)ǫ̃t−r2(θ̂n)
∂

∂θm2

ǫ̃t−r2(θ̂n)

− ǫt−r1(θ̂n)
∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)
∂

∂θm2

ǫt−r2(θ̂n)

∣∣∣∣∣.

(74)
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Observe now that

ǫ̃t−r1(θ̂n)
∂

∂θm1

ǫ̃t−r1(θ̂n)ǫ̃t−r2(θ̂n)
∂

∂θm2

ǫ̃t−r2(θ̂n)− ǫt−r1(θ̂n)
∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)
∂

∂θm2

ǫt−r2(θ̂n)

=
(
ǫ̃t−r1(θ̂n)− ǫt−r1(θ̂n)

) ∂

∂θm1

ǫ̃t−r1(θ̂n)ǫ̃t−r2(θ̂n)
∂

∂θm2

ǫ̃t−r2(θ̂n)

+ ǫt−r1(θ̂n)

(
∂

∂θm1

ǫ̃t−r1(θ̂n)−
∂

∂θm1

ǫt−r1(θ̂n)

)
ǫ̃t−r2(θ̂n)

∂

∂θm2

ǫ̃t−r2(θ̂n)

+ ǫt−r1(θ̂n)
∂

∂θm1

ǫt−r1(θ̂n)
(
ǫ̃t−r2(θ̂n)− ǫt−r2(θ̂n)

) ∂

∂θm2

ǫ̃t−r2(θ̂n)

+ ǫt−r1(θ̂n)
∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)

(
∂

∂θm2

ǫ̃t−r2(θ̂n)−
∂

∂θm2

ǫt−r2(θ̂n)

)
.

We replace the above identity in (74) and we obtain by Hölder’s inequality that

P

(√
r
∥∥∥Σ̂Ĥr

− Σ̂Hr ,n

∥∥∥ ≥ β
)
≤ 4K

√
r

nβ

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(Tn,1 + Tn,2 + Tn,3 + Tn,4) (75)

where

Tn,1 =

n∑

t=1

∥∥∥ǫ̃t−r1(θ̂n)− ǫt−r1(θ̂n)
∥∥∥
L2

∥∥∥∥
∂

∂θm1

ǫ̃t−r1(θ̂n)

∥∥∥∥
L6

∥∥∥ǫ̃t−r2(θ̂n)
∥∥∥
L6

∥∥∥∥
∂

∂θm2

ǫ̃t−r2(θ̂n)

∥∥∥∥
L6

,

Tn,2 =

n∑

t=1

∥∥∥ǫt−r1(θ̂n)
∥∥∥
L6

∥∥∥∥
∂

∂θm1

ǫ̃t−r1(θ̂n)−
∂

∂θm1

ǫt−r1(θ̂n)

∥∥∥∥
L2

∥∥∥ǫ̃t−r2(θ̂n)
∥∥∥
L6

∥∥∥∥
∂

∂θm2

ǫ̃t−r2(θ̂n)

∥∥∥∥
L6

,

Tn,3 =
n∑

t=1

∥∥∥ǫt−r1(θ̂n)
∥∥∥
L6

∥∥∥∥
∂

∂θm1

ǫt−r1(θ̂n)

∥∥∥∥
L6

∥∥∥ǫ̃t−r2(θ̂n)− ǫt−r2(θ̂n)
∥∥∥
L2

∥∥∥∥
∂

∂θm2

ǫ̃t−r2(θ̂n)

∥∥∥∥
L6

,

Tn,4 =

n∑

t=1

∥∥∥ǫt−r1(θ̂n)
∥∥∥
L6

∥∥∥∥
∂

∂θm1

ǫt−r1(θ̂n)

∥∥∥∥
L6

∥∥∥ǫt−r2(θ̂n)
∥∥∥
L6

∥∥∥∥
∂

∂θm2

ǫ̃t−r2(θ̂n)−
∂

∂θm2

ǫt−r2(θ̂n)

∥∥∥∥
L2

.

For all θ ∈ Θδ and t ∈ Z, in view of (30) and Lemma 1, we have

∥∥∥ǫ̃t(θ̂n)− ǫt(θ̂n)
∥∥∥
L2

=


E






∑

j≥0

(
λtj (θ̂n)− λj(θ̂n)

)
ǫt−j





2




1/2

≤ sup
θ∈Θδ


E






∑

j≥0

(
λtj (θ)− λj(θ)

)
ǫt−j





2




1/2

≤ σǫ sup
θ∈Θδ

∥∥λ(θ)− λt(θ)
∥∥
ℓ2

≤ K
1

t1/2−(d2−d1)
.

It is not difficult to prove that ǫ̃t(θ) and ∂ǫ̃t(θ)/∂θ belong to L
6. The fact that ǫt(θ) and ∂ǫt(θ)/∂θ

have moment of order 6 can be proved using the same method than in Lemma 12 using the absolute
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summability of the k-th (k = 2, . . . , 8) cumulants assumed in (A4’) with τ = 8. We deduce that

Tn,1 ≤ K

n∑

t=1

∥∥∥ǫ̃t−r1(θ̂n)− ǫt−r1(θ̂n)
∥∥∥
L2

≤ K

0∑

t=1−r

∥∥∥ǫt(θ̂n)
∥∥∥
L2

+ K

n∑

t=1

∥∥∥ǫ̃t(θ̂n)− ǫt(θ̂n)
∥∥∥
L2

≤ K

(
r +

n∑

t=1

1

t1/2−(d2−d1)

)
.

Then we obtain

Tn,1 ≤ K
(
r + n1/2+(d2−d1)

)
. (76)

The same calculations hold for the terms Tn,2, Tn,3 and Tn,4. Thus

Tn,1 + Tn,2 + Tn,3 + Tn,4 ≤ K
(
r + n1/2+(d2−d1)

)
(77)

and reporting this estimation in (75) implies that

P

(√
r

∥∥∥Σ̂Ĥr
− Σ̂Hr ,n

∥∥∥ ≥ β
)
≤ Kr5/2(p + q + 1)2

nβ

(
r + n1/2+(d2−d1)

)

≤ K

(
r7/2

n
+

r5/2

n1/2−(d2−d1)

)
.

Since 2/7 > (1− 2(d2 − d1))/5, the sequence
√
r

∥∥∥Σ̂Ĥr
− Σ̂Hr ,n

∥∥∥ converges in probability to 0 as

n → ∞ when r = r(n) = o(n(1−2(d2−d1))/5).

Step 2: proof of (73).
First we follow the same approach than in the previous step. We have

∥∥∥Σ̂Hr ,n
− Σ̂Hr

∥∥∥
2
=

∥∥∥∥∥
1

n

n∑

t=1

H
(n)
r ,t H

(n)′

r ,t − 1

n

n∑

t=1

Hr ,tH
′

r ,t

∥∥∥∥∥

2

≤
r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(
1

n

n∑

t=1

H
(n)
t−r1,m1

H
(n)
t−r2,m2

− 1

n

n∑

t=1

Ht−r1,m1Ht−r2,m2

)2

≤ 16

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(
1

n

n∑

t=1

ǫt−r1(θ̂n)
∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)
∂

∂θm2

ǫt−r2(θ̂n)

−ǫt−r1(θ0)
∂

∂θm1

ǫt−r1(θ0)ǫt−r2(θ0)
∂

∂θm2

ǫt−r2(θ0)

)2

.
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Since

ǫt−r1(θ̂n)
∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)
∂

∂θm2

ǫt−r2(θ̂n)− ǫt−r1(θ0)
∂

∂θm1

ǫt−r1(θ0)ǫt−r2(θ0)
∂

∂θm2

ǫt−r2(θ0)

=
(
ǫt−r1(θ̂n)− ǫt−r1(θ0)

) ∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)
∂

∂θm2

ǫt−r2(θ̂n)

+ ǫt−r1(θ0)

(
∂

∂θm1

ǫt−r1(θ̂n)−
∂

∂θm1

ǫt−r1(θ0)

)
ǫt−r2(θ̂n)

∂

∂θm2

ǫt−r2(θ̂n)

+ ǫt−r1(θ0)
∂

∂θm1

ǫt−r1(θ0)
(
ǫt−r2(θ̂n)− ǫt−r2(θ0)

) ∂

∂θm2

ǫt−r2(θ̂n)

+ ǫt−r1(θ0)
∂

∂θm1

ǫt−r1(θ0)ǫt−r2(θ0)

(
∂

∂θm2

ǫt−r2(θ̂n)−
∂

∂θm2

ǫt−r2(θ0)

)
,

one has

∥∥∥Σ̂Hr ,n
− Σ̂Hr

∥∥∥
2
≤ 16

r∑

r1=1

r∑

r2=1

p+q+1∑

m1=1

p+q+1∑

m2=1

(Un,1 + Un,2 + Un,3 + Un,4)
2 (78)

where

Un,1 =
1

n

n∑

t=1

∣∣∣ǫt−r1(θ̂n)− ǫt−r1(θ0)
∣∣∣
∣∣∣∣
∂

∂θm1

ǫt−r1(θ̂n)

∣∣∣∣
∣∣∣ǫt−r2(θ̂n)

∣∣∣
∣∣∣∣
∂

∂θm2

ǫt−r2(θ̂n)

∣∣∣∣ ,

Un,2 =
1

n

n∑

t=1

|ǫt−r1(θ0)|
∣∣∣∣
∂

∂θm1

ǫt−r1(θ̂n)−
∂

∂θm1

ǫt−r1(θ0)

∣∣∣∣
∣∣∣ǫt−r2(θ̂n)

∣∣∣
∣∣∣∣
∂

∂θm2

ǫt−r2(θ̂n)

∣∣∣∣ ,

Un,3 =
1

n

n∑

t=1

|ǫt−r1(θ0)|
∣∣∣∣
∂

∂θm1

ǫt−r1(θ0)

∣∣∣∣
∣∣∣ǫt−r2(θ̂n)− ǫt−r2(θ0)

∣∣∣
∣∣∣∣
∂

∂θm2

ǫt−r2(θ̂n)

∣∣∣∣

Un,4 =
1

n

n∑

t=1

|ǫt−r1(θ0)|
∣∣∣∣
∂

∂θm1

ǫt−r1(θ0)

∣∣∣∣ |ǫt−r2(θ0)|
∣∣∣∣
∂

∂θm2

ǫt−r2(θ̂n)−
∂

∂θm2

ǫt−r2(θ0)

∣∣∣∣ .

Taylor expansions around θ0 yield that there exists θ and θ between θ̂n and θ0 such that

∣∣∣ǫt(θ̂n)− ǫt(θ0)
∣∣∣ ≤ wt

∥∥∥θ̂n − θ0

∥∥∥ and
∣∣∣∣
∂

∂θm
ǫt(θ̂n)−

∂

∂θm
ǫt(θ0)

∣∣∣∣ ≤ qt

∥∥∥θ̂n − θ0

∥∥∥

with wt =
∥∥∥∂ǫt(θ)/∂θ

′

∥∥∥ and qt =
∥∥∥∂2ǫt(θ)/∂θ

′

∂θm

∥∥∥. Using the fact that

E

∣∣∣∣wt−r1

∂

∂θm1

ǫt−r1(θ̂n)ǫt−r2(θ̂n)
∂

∂θm2

ǫt−r2(θ̂n)

∣∣∣∣ <∞

and that (
√
n(θ̂n − θ0))n is a tight sequence (which implies that ‖θ̂n − θ0‖ = OP(1/

√
n)), we

deduce that

Un,1 = OP

(
1√
n

)
.
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The same arguments are valid for Un,2, Un,3 and Un,4. Consequently Un,1 + Un,2 + Un,3 + Un,4 =
OP(1/

√
n) and (78) yields

∥∥∥Σ̂Hr ,n
− Σ̂Hr

∥∥∥
2
= OP

(
r2

n

)
.

When r = o(n1/3) we finally obtain
√
r‖Σ̂H r ,n

− Σ̂Hr
‖ = oP(1).

Lemma 15. Under the assumptions of Theorem 3, we have

√
r ‖Φ∗

r − Φr‖ = oP(1) as r → ∞.

Proof. Recall that by (8) and (68) we have

Ht(θ0) = ΦrH r ,t + ur ,t = Φ∗
rH r ,t +

∞∑

k=r+1

ΦkHt−k(θ0) + ut := Φ∗
rH r ,t + u∗r ,t .

By the orthogonality conditions in (8) and (68), one has

Σu∗r ,Hr
:= E

[
u∗r ,tH

′

r ,t

]
= E

[(
Ht(θ0)− Φ∗

rH r ,t

)
H

′

r ,t

]
= E

[(
ΦrHr ,t + ur ,t − Φ∗

rH r ,t

)
H

′

r ,t

]

= (Φr −Φ∗
r )ΣHr

,

and consequently
Φ∗

r − Φr = −Σu∗r ,Hr
Σ−1
Hr

. (79)

Using Lemma 11 and Lemma 12, (79) implies that

P
(√

r ‖Φ∗
r − Φr‖ ≥ β

)
≤

√
r

β

∥∥Σu∗r ,Hr

∥∥
∥∥∥Σ−1

Hr

∥∥∥

≤ K
√
r

β

∥∥∥∥∥∥
E




 ∑

k≥r+1

ΦkHt−k(θ0) + ut


H

′

r ,t



∥∥∥∥∥∥

≤ K
√
r

β

∑

k≥r+1

‖Φk‖
∥∥∥E
[
Ht−k(θ0)H

′

r ,t

]∥∥∥

≤ K
√
r

β

∑

ℓ≥1

‖Φℓ+r‖
∥∥∥E
[
Ht−ℓ−r (θ0)

(
H

′

t−1(θ0), . . . ,H
′

t−r (θ0)
)]∥∥∥

≤ K
√
r

β

∑

ℓ≥1

‖Φℓ+r‖




p+q+1∑

j=1

p+q+1∑

k=1

r∑

r1=1

|E [Ht−r−ℓ,j(θ0)Ht−r1,k(θ0)]|2



1/2

≤ K
√
r

β

∑

ℓ≥1

‖Φℓ+r‖




p+q+1∑

j=1

p+q+1∑

k=1

r∑

r1=1

E
[
H2
t−r−ℓ,j (θ0)

]
E
[
H2
t−r1,k(θ0)

]



1/2

≤ K (p + q + 1)r

β

∑

ℓ≥1

‖Φℓ+r‖ .

By (9), r
∑

ℓ≥1 ‖Φℓ+r‖ = o(1) as r → ∞. The proof of the lemma follows.
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Lemma 16. Under the assumptions of Theorem 3, we have

√
r
∥∥∥Σ̂−1

Ĥr

− Σ−1
Hr

∥∥∥ = oP(1)

as n → ∞ when r = o(n(1−2(d2−d1))/5) and r → ∞.

Proof. We have
∥∥∥Σ̂−1

Ĥr

− Σ−1
Hr

∥∥∥ ≤
(∥∥∥Σ̂−1

Ĥr

− Σ−1
Hr

∥∥∥+
∥∥∥Σ−1

Hr

∥∥∥
)∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥
∥∥∥Σ−1

Hr

∥∥∥ ,

and by induction we obtain

∥∥∥Σ̂−1

Ĥr

− Σ−1
Hr

∥∥∥ ≤
∥∥∥Σ−1

Hr

∥∥∥
∞∑

k=1

∥∥∥ΣHr
− Σ̂

Ĥr

∥∥∥
k ∥∥∥Σ−1

Hr

∥∥∥
k

.

We have

P

(√
r
∥∥Σ̂−1

Ĥr

−Σ−1
Hr

∥∥ > β
)

≤ P

(
√
r

∥∥∥Σ−1
Hr

∥∥∥
∞∑

k=1

∥∥∥ΣHr
− Σ̂

Ĥr

∥∥∥
k ∥∥∥Σ−1

Hr

∥∥∥
k

> β

)

≤ P

(
√
r

∥∥∥Σ−1
Hr

∥∥∥
∞∑

k=1

∥∥∥ΣHr
− Σ̂

Ĥr

∥∥∥
k ∥∥∥Σ−1

Hr

∥∥∥
k

> β and
∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥
∥∥∥Σ−1

Hr

∥∥∥ < 1

)

+ P

(
√
r
∥∥∥Σ−1

Hr

∥∥∥
∞∑

k=1

∥∥∥ΣHr
− Σ̂

Ĥr

∥∥∥
k ∥∥∥Σ−1

Hr

∥∥∥
k

> β and
∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥
∥∥∥Σ−1

Hr

∥∥∥ ≥ 1

)

≤ P



√
r

∥∥∥Σ−1
Hr

∥∥∥
2 ∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥

1−
∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥
∥∥∥Σ−1

Hr

∥∥∥
> β


+ P

(√
r
∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥
∥∥∥Σ−1

Hr

∥∥∥ ≥ 1
)

≤ P



√
r
∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥ > β
∥∥∥Σ−1

Hr

∥∥∥
2
+ βr−1/2

∥∥∥Σ−1
Hr

∥∥∥




+ P

(√
r
∥∥∥ΣHr

− Σ̂
Ĥr

∥∥∥ ≥
∥∥∥Σ−1

Hr

∥∥∥
−1
)
.

Lemmas 11 and 14 imply the result.

Lemma 17. Under the assumptions of Theorem 3, we have

√
r

∥∥∥Φ̂r − Φr

∥∥∥ = oP(1) as r → ∞ and r = o(n(1−2(d2−d1))/5).

Proof. Lemmas 11 and 16 yield
∥∥∥Σ̂−1

Ĥr

∥∥∥ ≤
∥∥∥Σ̂−1

Ĥr

− Σ−1
Hr

∥∥∥+
∥∥∥Σ−1

Hr

∥∥∥ = OP(1). (80)

By (68), we have

0 = E

[
ur ,tH

′

r ,t

]
= E

[(
Ht(θ0)− ΦrHr ,t

)
H

′

r ,t

]
= ΣH,Hr

− ΦrΣHr
,
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and so we have Φr = ΣH,Hr
Σ−1
Hr

. Lemmas 11, 14, 16 and (80) imply

√
r
∥∥∥Φ̂r − Φr

∥∥∥ =
√
r
∥∥∥Σ̂Ĥ,Ĥr

Σ̂−1

Ĥr

− ΣH,Hr
Σ−1
Hr

∥∥∥

=
√
r
∥∥∥
(
Σ̂
Ĥ,Ĥr

− ΣH,Hr

)
Σ̂−1

Ĥr

+ ΣH,Hr

(
Σ̂−1

Ĥr

− Σ−1
Hr

)∥∥∥

= oP(1),

and the lemma is proved.

Proof of Theorem 3

Since by Lemma 14 we have ‖Σ̂
Ĥ
−ΣH‖ = oP(r

−1/2) = oP(1) and ‖Σ̂
Ĥ,Ĥr

−ΣH,Hr
‖ = oP(r

−1/2) =

oP(1), and by Lemma 15 ‖Φ̂r − Φ∗
r ‖ = oP(r

−1/2) = oP(1), Theorem 3 is then proved.

6.5. Invertibility of the normalization matrix Pp+q+1,n

The following proofs are quite technical and are adaptations of the arguments used in [BMS18].
To prove Proposition 4, we need to introduce the following notation.
We denote St the vector of Rp+q+1 defined by:

St =
t∑

j=1

Uj =
t∑

j=1

−2J−1Hj = −2J−1
t∑

j=1

ǫj
∂

∂θ
ǫj(θ0),

and St(i) is its i−th component. We have

St−1(i) = St(i)− Ut(i). (81)

If the matrix Pp+q+1,n is not invertible, there exists some real constants d1, . . . , dp+q+1 not all
equal to zero, such that d

′

Pp+q+1,nd = 0, where d = (d1, . . . , dp+q+1)
′

. Thus we may write that∑p+q+1
i=1

∑p+q+1
j=1 djPp+q+1,n(j , i)di = 0 or equivalently

1

n2

n∑

t=1

p+q+1∑

i=1

p+q+1∑

j=1

dj

(
t∑

k=1

(Uk(j)− Ūn(j))

)(
t∑

k=1

(Uk(i)− Ūn(i))

)
di = 0.

Then

n∑

t=1

(
p+q+1∑

i=1

di

(
t∑

k=1

(Uk(i)− Ūn(i))

))2

= 0,

which implies that for all t ≥ 1

p+q+1∑

i=1

di

(
t∑

k=1

(Uk(i)− Ūn(i))

)
=

p+q+1∑

i=1

di

(
St(i)−

t

n
Sn(i)

)
= 0.

So we have

1

t

p+q+1∑

i=1

diSt(i) =

p+q+1∑

i=1

di

(
1

n
Sn(i)

)
. (82)
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We apply the ergodic theorem and we use the orthogonality of ǫt and (∂/∂θ)ǫt(θ0) in order to
obtain that

p+q+1∑

i=1

di

(
1

n

n∑

k=1

Uk(i)

)
a.s.−−−→

n→∞

p+q+1∑

i=1

diE [Uk(i)] = −2

p+q+1∑

i ,j=1

diJ
−1(i , j)E

[
ǫk
∂ǫk
∂θj

]
= 0 .

Reporting this convergence in (82) implies that
∑p+q+1

i=1 diSt(i) = 0 a.s. for all t ≥ 1. By (81),
we deduce that

p+q+1∑

i=1

diUt(i) = −2

p+q+1∑

i=1

di

p+q+1∑

j=1

J−1(i , j)

(
ǫt
∂ǫt
∂θj

)
= 0, a.s.

Thanks to Assumption (A5), (ǫt)t∈Z has a positive density in some neighborhood of zero and then
ǫt 6= 0 almost-surely. So we would have d

′

J−1 ∂ǫt
∂θ = 0 a.s. Now we can follow the same arguments

that we developed in the proof of the invertibility of J (see Proof of Lemma 6 and more precisely
(53)) and this leads us to a contradiction. We deduce that the matrix Pp+q+1,n is non singular.

6.6. Proof of Theorem 5

The arguments follows the one [BMS18] in a simpler context.
Recall that the Skorohod space D

ℓ[0,1] is the set of R
ℓ−valued functions on [0,1] which are

right-continuous and has left limits everywhere. It is endowed with the Skorohod topology and the

weak convergence on D
ℓ[0,1] is mentioned by

Dℓ

−→. The integer part of x will be denoted by ⌊x⌋.
The goal at first is to show that there exists a lower triangular matrix T with nonnegative

diagonal entries such that

1√
n

⌊nr⌋∑

t=1

Ut
D
p+q+1

−−−−→
n→∞

(TT
′

)1/2Bp+q+1(r), (83)

where (Bp+q+1(r))r≥0 is a (p + q + 1)−dimensional standard Brownian motion. Using (30), Ut

can be rewritten as

Ut =

(
−2

{ ∞∑

i=1

.

λi ,1 (θ0) ǫtǫt−i , . . . ,

∞∑

i=1

.

λi ,p+q+1 (θ0) ǫtǫt−i

}
J−1′

)′

.

The non-correlation between ǫt ’s implies that the process (Ut)t∈Z is centered. In order to apply
the functional central limit theorem for strongly mixing process, we need to identify the asymptotic
covariance matrix in the classical central limit theorem for the sequence (Ut)t∈Z. It is proved in
Theorem 2 that

1√
n

n∑

t=1

Ut
in law−−−→
n→∞

N (0,Ω =: 2πfU(0)) ,

where fU(0) is the spectral density of the stationary process (Ut)t∈Z evaluated at frequency 0. The
existence of the matrix Ω has already been discussed (see the proofs of lemmas 6 and 9).

Since the matrix Ω is positive definite, it can be factorized as Ω = TT
′

where the (p + q +
1)× (p + q + 1) lower triangular matrix T has nonnegative diagonal entries. Therefore, we have

1√
n

n∑

t=1

(TT
′

)−1/2Ft
in law−−−→
n→∞

N (0, Ip+q+1) ,
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where (TT
′

)−1/2 is the Moore-Penrose inverse (see [MN99], p. 36) of (TT
′

)1/2 and Ip+q+1 is the
identity matrix of order p + q + 1.

As in the proof of the asymptotic normality of (
√
n(θ̂n−θ0))n, the distribution of n−1/2

∑n
t=1 Ut

when n tends to infinity is obtained by introducing the random vector Uk
t defined for any strictly

positive integer k by

Uk
t =

(
−2

{
k∑

i=1

.

λi ,1 (θ0) ǫtǫt−i , . . . ,

k∑

i=1

.

λi ,p+q+1 (θ0) ǫtǫt−i

}
J−1′

)′

.

Since Uk
t depends on a finite number of values of the noise-process (ǫt)t∈Z, it also satisfies a

mixing property (see Theorem 14.1 in [Dav94], p. 210). The central limit theorem for strongly
mixing process of [Her84] shows that its asymptotic distribution is normal with zero mean and
variance matrix Ωk that converges when k tends to infinity to Ω (see the proof of Lemma 10):

1√
n

n∑

t=1

Uk
t

in law−−−→
n→∞

N (0,Ωk) .

The above arguments also apply to matrix Ωk with some matrix Tk which is defined analogously
as T . Consequently, we obtain

1√
n

n∑

t=1

(TkT
′

k)
−1/2Uk

t
in law−−−→
n→∞

N (0, Ip+q+1).

Now we are able to apply the functional central limit theorem for strongly mixing process of [Her84]
and we obtain that

1√
n

⌊nr⌋∑

t=1

(TkT
′

k)
−1/2Uk

t
D
p+q+1

−−−−→
n→∞

Bp+q+1(r).

Since
(TT

′

)−1/2Uk
t =

(
(TT

′

)−1/2 − (TkT
′

k)
−1/2

)
Uk
t + (TkT

′

k)
−1/2Uk

t ,

we may use the same approach as in the proof of Lemma 10 in order to prove that n−1/2
∑n

t=1((TT
′

)−1/2−
(TkT

′

k)
−1/2)Uk

t converge in distribution to 0. Consequently we obtain that

1√
n

⌊nr⌋∑

t=1

(TT
′

)−1/2Uk
t

D
p+q+1

−−−−→
n→∞

Bp+q+1(r).

In order to conclude that (83) is true, it remains to observe that uniformly with respect to n it
holds that

Ỹ k
n (r) :=

1√
n

⌊nr⌋∑

t=1

(TT
′

)−1/2Z̃ k
t

Dp+q+1

−−−−→
n→∞

0, (84)

where

Z̃ k
t =

(
−2

{ ∞∑

i=k+1

.

λi ,1 (θ0) ǫtǫt−i , . . . ,

∞∑

i=k+1

.

λi ,p+q+1 (θ0) ǫtǫt−i

}
J−1′

)′

.



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Estimation of weak FARIMA models 48

By (64)

sup
n

Var

(
1√
n

n∑

t=1

Z̃ k
t

)
−−−→
n→∞

0

and since ⌊nr⌋ ≤ n,

sup
0≤r≤1

sup
n

{∥∥∥Ỹ k
n (r)

∥∥∥
}
−−−→
n→∞

0.

Thus (84) is true and the proof of (83) is achieved.
By (83) we deduce that

1√
n




⌊nr⌋∑

j=1

(Uj − Ūn)


 D

p+q+1

−−−−→
n→∞

(TT
′

)1/2 (Bp+q+1(r)− rBp+q+1(1)) . (85)

One remarks that the continuous mapping theorem on the Skorohod space yields

Pp+q+1,n
in law−−−→
n→∞

(TT
′

)1/2
[∫ 1

0
{Bp+q+1(r)− rBp+q+1(1)} {Bp+q+1(r)− rBp+q+1(1)}

′

dr

]
(TT

′

)1/2

=(TT
′

)1/2Vp+q+1(TT
′

)1/2.

Using (83), (85) and the continuous mapping theorem on the Skorohod space, one finally obtains

n
(
θ̂n − θ0

)′
P−1
p+q+1,n

(
θ̂n − θ0

)

Dp+q+1

−−−−→
n→∞

{
(TT

′

)1/2Bp+q+1(1)
}′ {

(TT
′

)1/2Vp+q+1(TT
′

)1/2
}−1 {

(TT
′

)1/2Bp+q+1(1)
}

= B
′

p+q+1(1)V
−1
p+q+1Bp+q+1(1) := Up+q+1.

The proof of Theorem 5 is then complete.

6.7. Proof of Theorem 6

In view of (15) and (18), we write P̂p+q+1,n = Pp+q+1,n + Qp+q+1,n where

Qp+q+1,n =
(
J(θ0)

−1 − Ĵ−1
n

) 1
n2

n∑

t=1




t∑

j=1

(Hj − 1
n

∑n
k=1 Hk)






t∑

j=1

(Hj − 1
n

∑n
k=1 Hk)




′

+ Ĵ−1
n

1

n2

n∑

t=1

{


t∑

j=1

(Hj − 1
n

∑n
k=1 Hk)






t∑

j=1

(Hj − 1
n

∑n
k=1 Hk)




′

−




t∑

j=1

(Ĥj − 1
n

∑n
k=1 Ĥk)






t∑

j=1

(Ĥj − 1
n

∑n
k=1 Ĥk)




′ }
.

Using the same approach as in Lemma 8, Ĵn converges almost surely to J. Thus we deduce that
the first term in the right hand side of the above equation tends to zero in probability.
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The second term is a sum composed of the following terms

q
i ,j ,k,l
s,t = ǫs(θ0)ǫt(θ0)

∂ǫs(θ0)

∂θi

∂ǫt(θ0)

∂θj
− ǫ̃s(θ̂n)ǫ̃t(θ̂n)

∂ǫ̃s(θ̂n)

∂θk

∂ǫ̃t(θ̂n)

∂θl
.

Using similar arguments done before (see for example the use of Taylor’s expansion in Subsection

6.4, we have q
i ,j ,k,l
s,t = oP(1) as n goes to infinity and thus Qp+q+1,n = oP(1). So one may find a

matrix Q∗
p+q+1,n that tends to the null matrix in probability and such that

n
(
θ̂n − θ0

)′

P̂−1
p+q+1,n

(
θ̂n − θ0

)
= n

(
θ̂n − θ0

)′

(Pp+q+1,n + Qp+q+1,n)
−1
(
θ̂n − θ0

)

= n
(
θ̂n − θ0

)′

P−1
p+q+1,n

(
θ̂n − θ0

)

+ n
(
θ̂n − θ0

)′

Q∗
p+q+1,n

(
θ̂n − θ0

)
.

Thanks to the arguments developed in the proof of Theorem 5, n(θ̂n − θ0)
′

P−1
p+q+1,n(θ̂n − θ0)

converges in distribution. So n(θ̂n − θ0)
′

Q∗
p+q+1,n(θ̂n − θ0) tends to zero in distribution, hence in

probability. Then n(θ̂n − θ0)
′

P̂−1
p+q+1,n(θ̂n − θ0) and n(θ̂n − θ0)

′

P−1
p+q+1,n(θ̂n − θ0) have the same

limit in distribution and the result is proved.
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7. Figures and tables
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Fig 1. LSE of N = 1, 000 independent simulations of the FARIMA(1, d , 1) model (19) with size n = 2, 000 and
unknown parameter θ0 = (a, b, d) = (−0.7,−0.2, 0.4), when the noise is strong (left panel), when the noise is
semi-strong (20) (middle panel) and when the noise is weak of the form (21) (right panel). Points (a)-(c), in the
box-plots, display the distribution of the estimation error θ̂n(i) − θ0(i) for i = 1, 2, 3.
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Fig 2. LSE of N = 1, 000 independent simulations of the FARIMA(1, d , 1) model (19) with size n = 2, 000 and
unknown parameter θ0 = (a,b, d) = (−0.7,−0.2, 0.4). The top panels present respectively, from left to right, the
Q-Q plot of the estimates ân, b̂n and d̂n of a, b and d in the strong case. Similarly the middle and the bottom panels
present respectively, from left to right, the Q-Q plot of the estimates ân, b̂n and d̂n of a, b and d in the semi-strong
and weak cases.
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Fig 3. LSE of N = 1, 000 independent simulations of the FARIMA(1, d , 1) model (19) with size n = 2, 000 and
unknown parameter θ0 = (a,b, d) = (−0.7,−0.2, 0.4). The top panels present respectively, from left to right, the
distribution of the estimates ân, b̂n and d̂n of a, b and d in the strong case. Similarly the middle and the bottom
panels present respectively, from left to right, the distribution of the estimates ân, b̂n and d̂n of a, b and d in the
semi-strong and weak cases. The kernel density estimate is displayed in full line, and the centered Gaussian density
with the same variance is plotted in dotted line.
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Fig 4. Comparison of standard and modified estimates of the asymptotic variance Ω of the LSE, on the simulated
models presented in Figure 1. The diamond symbols represent the mean, over N = 1, 000 replications, of the
standardized errors n(ân +0.7)2 for (a) (1.90 in the strong case and 4.32 (resp. 1.80) in the semi-strong case (resp.
in the weak case)), n(b̂n + 0.2)2 for (b) (5.81 in the strong case and 11.33 (resp. 8.88) in the semi-strong case
(resp. in the weak case)) and n(d̂n − 0.4)2 for (c) (1.28 in the strong case and 2.65 (resp. 1.40) in the semi-strong
case (resp. in the weak case)).
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Fig 5. A zoom of the left-middle and left-bottom panels of Figure 4



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Estimation of weak FARIMA models 57

(a) (b) (c)

0
10

20
30

40
50

Estimates of diag(Ω)

Semi−strong FARIMA

(a) (b) (c)

0
10

20
30

40
50

Estimates of diag(Ω)

Weak FARIMA

Fig 6. A zoom of the right-middle and right-bottom panels of Figure 4
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Table 1

Empirical size of standard and modified confidence interval: relative frequencies (in %) of rejection.
Modified SN stands for the self-normalized approach. In Modified we use the sandwich estimator of the

asymptotic variance Ω of the LSE while in Standard we use Ω̂S . The number of replications is N = 1000.

Model Length n Level Standard Modified Modified SN

ân b̂n d̂n ân b̂n d̂n ân b̂n d̂n

α = 1% 2.8 2.7 2.1 3.7 3.1 2.5 2.5 2.5 2.0

Strong FARIMA n = 200 α = 5% 7.1 7.3 5.2 8.2 8.0 5.4 8.4 6.9 5.6

α = 10% 11.8 11.2 8.3 12.8 12.4 9.5 14.5 11.5 10.6

α = 1% 1.1 1.6 0.7 1.3 1.6 1.0 1.6 1.0 0.8

Strong FARIMA n = 2, 000 α = 5% 5.8 6.9 5.1 6.1 6.8 5.3 5.6 6.4 3.8

α = 10% 10.9 13.0 9.5 11.4 12.8 9.5 10.3 12.4 9.0

α = 1% 1.3 1.2 0.7 1.2 1.2 0.8 0.8 1.3 1.2

Strong FARIMA n = 5, 000 α = 5% 5.3 4.9 5.2 5.7 5.1 5.4 5.1 4.9 5.3

α = 10% 10.6 10.3 11.4 10.7 10.2 11.7 11.8 10.8 11.4

α = 1% 5.3 3.7 2.3 4.8 3.4 3.2 4.0 2.8 1.4

Semi-strong FARIMA n = 200 α = 5% 11.2 9.5 6.1 10.7 9.1 5.9 11.1 8.5 5.7

α = 10% 16.8 14.5 8.6 16.7 14.7 10.0 17.1 13.9 10.9

α = 1% 6.8 7.7 7.8 1.7 0.9 1.4 2.3 2.0 0.8

Semi-strong FARIMA n = 2, 000 α = 5% 19.5 17.7 14.9 6.5 5.8 5.5 8.1 6.8 6.5

α = 10% 26.5 26.7 21.5 13.5 11.0 9.9 14.6 12.8 12.5

α = 1% 11.2 9.8 9.4 1.6 1.5 1.1 1.6 1.3 1.2

Semi-strong FARIMA n = 5, 000 α = 5% 20.8 20.2 20.9 6.4 5.7 5.3 5.7 6.2 7.2

α = 10% 28.2 28.4 28.4 12.2 9.8 11.3 12.0 13.0 13.9

α = 1% 2.6 4.4 1.2 6.2 6.9 4.3 4.1 4.2 2.6

Weak FARIMA n = 200 α = 5% 6.6 11.3 4.3 13.8 14.6 10.2 12.0 10.5 8.9

α = 10% 10.9 18.8 7.1 20.3 21.9 16.3 17.7 17.4 15.4

α = 1% 1.1 5.3 1.3 1.5 1.2 1.6 1.2 1.1 0.9

Weak FARIMA n = 2, 000 α = 5% 5.4 13.4 5.8 7.0 6.8 5.5 5.7 6.5 6.4

α = 10% 11.4 21.2 9.6 12.8 12.0 11.2 11.3 11.9 12.2

α = 1% 1.3 4.6 1.7 1.2 1.3 1.2 1.3 1.4 0.9

Weak FARIMA n = 5, 000 α = 5% 6.3 14.4 6.0 6.7 6.3 5.9 6.2 6.2 5.0

α = 10% 11.5 22.3 11.6 12.1 12.3 10.8 10.6 10.9 10.0
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Fig 7. Closing prices of the four stock market indices from the starting date of each index to February 14, 2019.
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Fig 8. Returns of the four stock market indices from the starting date of each index to February 14, 2019.
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Fig 9. Sample autocorrelations of squared returns of the four stock market indices.

Table 2

Fitting a FARIMA(1, d , 1) model to the squares of the 4 daily returns considered. The corresponding
p−values are reported in parentheses. The last column presents the estimated residual variance.

Series Length n θ̂n Var(ǫt)

ân b̂n d̂n σ̂
2
ǫ

CAC n = 7, 341 0.1199 (0.1524) 0.5296 (0.0000) 0.4506 (0.0000) 19.6244 × 10−8

DAX n = 7, 860 0.1598 (0.1819) 0.4926 (0.0000) 0.3894 (0.0000) 25.9383 × 10−8

Nikkei n = 13, 318 -0.0217 (0.9528) 0.1579 (0.6050) 0.3217 (0.0000) 25.6844 × 10−8

S&P 500 n = 17, 390 -0.3371 (0.0023) -0.1795 (0.0227) 0.2338 (0.0000) 22.9076 × 10−8

Table 3

Modified confidence interval at the asymptotic level α = 5% for the parameters estimated in Table 2.
Modified SN stands for the self-normalized approach while Modified corresponds to the confidence

interval obtained by using the sandwich estimator of the asymptotic variance Ω of the LSE.

Series Modified Modified SN

ân b̂n d̂n ân b̂n d̂n

CAC [−0.044, 0.284] [0.319, 0.740] [0.251, 0.651] [0.049, 0.193] [0.432, 0.627] [0.358, 0.543]
DAX [−0.075, 0.394] [0.272, 0.714] [0.263, 0.516] [−0.219, 0.537] [0.422, 0.563] [0.158, 0.621]
Nikkei [−0.741, 0.698] [−0.440, 0.756] [0.206, 0.437] [−0.823, 0.779] [−0.407, 0.717] [0.156, 0.488]
S&P 500 [−0.554,−0.121] [−0.334,−0.025] [0.162, 0.306] [−0.430,−0.244] [−0.297,−0.062] [0.101, 0.366]



Y. Boubacar Maïnassara, Y. Esstafa and B. Saussereau/Estimation of weak FARIMA models 62

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Least squares estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Notations and assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Asymptotic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Estimating the asymptotic variance matrix . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Estimation of the asymptotic matrix I (θ0) . . . . . . . . . . . . . . . . . . . . . . 7
3.2 A self-normalized approach to confidence interval construction in weak FARIMA models 9

4 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Simulation studies and empirical sizes for confidence intervals . . . . . . . . . . . . 11
4.2 Application to real data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6.2 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6.3 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.4 Proof of the convergence of the variance matrix estimator . . . . . . . . . . . . . . 33
6.5 Invertibility of the normalization matrix Pp+q+1,n . . . . . . . . . . . . . . . . . . 45
6.6 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.7 Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7 Figures and tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52


	Introduction
	Least squares estimation
	Notations and assumptions
	Asymptotic properties

	Estimating the asymptotic variance matrix
	Estimation of the asymptotic matrix I(0)
	A self-normalized approach to confidence interval construction in weak FARIMA models

	Numerical illustrations
	Simulation studies and empirical sizes for confidence intervals
	Application to real data

	Conclusion
	Proofs
	Preliminary results
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of the convergence of the variance matrix estimator
	Invertibility of the normalization matrix Pp+q+1,n
	Proof of Theorem 5
	Proof of Theorem 6

	References
	Figures and tables

