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Abstract

Given p € [0, 00), let O be the set of the d-dimensional real random vectors ©
defined on a given probability space (Q2, %8, P) and such that P(/4) € (0, 1) with
H = [ 19| < Q]. Similar to Wald’s tests with uniformly best constant power
(UBCP) on a family of surfaces, tests with level y € (0, 1) and uniformly best
constant conditional power (UBCCP) on the spheres centred at the origin with
radius p € (p, oo) are defined and established to test #; when we observe Y =
©+ X where X ~ A (0,1;) is independent with ©. These results extend (A. Wald,

1943, Section 6, Definition IIT and Proposition III, p. 450).

Keywords

Binary hypothesis testing; statistical decision; uniform best constant power.

Résumé

Soit p € [0, 0co0), considérons I'ensemble 9 des vecteurs aléatoires réels © de
dimension d et définis sur un espace probabilisé (2,2, P) et tels que P(#4p) €
(0,1) ou #y = [©] <p]. Onobserve Y = 0O+ X ot X ~ A (0,1,) est indépen-
dant de ©. De maniére analogue a Wald qui définit les tests uniformément plus
puissants sur une famille de surfaces, nous définissons et établissons I'existence
de tests de niveau y € (0, 1), qui ont une puissance constante sur des sphéres et
qui sont uniformément plus puissants, conditionnellement a ces mémes spheéres,
pour tester /. Ces résultats étendent (A. Wald, 1943, Section 6, Definition III et

Proposition I1I, p. 450).
Mots-clés
Test binaire d’hypotheéses; décision statistique; tests uniformément plus puis-

sants sur des spheres.
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1. Problem statement

The notations introduced in this section are kept with always the same mean-
ing throughout. All the random vectors and variables encountered below are
assumed to be defined on the same probability space (Q2,2,P). Let p be some
given non-negative real number and 9 stand for the set of those d-dimensional
real random vectors O such that P(#}) € (0, 1) with # = [ O] < p|. Given
0 € 9, we address the testing of the composite null hypothesis /7 on the basis of
the observation ®+ X where X is a d-dimensional centred Gaussian real random

vector with known definite positive covariance matrix. We assume that ©® and X
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are independent. With no loss of generality, we can assume that this covariance
matrix is the d x d identity matrix I; and, as usual, we write X ~ A4'(0,1;). The
alternative hypothesis is the measurable subset #) = [ |©] > g | of Q. We also
say that we test the norm of ©, without mentioning /4. Below, tests of the null
hypothesis #; are non-randomized and measurable maps of R? into {7, #,}.
The performance of a given test 9 for testing /7 will be evaluated via the fol-
lowing quantities, whose definitions derive from those given in (E.L. Lehmann
and J.P. Romano, 2005). First, the size of I for testing ./ is defined as the con-
ditional

a(T) 2supP [T @+ X) = Hp | 76| )
[CXRV]

Test J is then said to have level y € [0, 1] if @(97) < y. Second, the power of I~

is defined as the conditional
A
Bo(T)=P|T (©+X) = H#n| #a]. )

Test F will be said to be more powerful that test 7' for testing # if fo(T) =
Bo(T ). For testing /4, there is no uniformly most powerful test (UMP) test at
level y, that is, no test with level y and power larger than or equal to that of any
other test with same level. Another criterion for optimality is proposed in the

next section to state our main result.

2. Tests with uniformly best constant power (UBCP) on a family of surfaces

These tests are introduced by (A. Wald, 1943, Definition III, Section 6, p. 450)
for testing the value of a deterministic but unknown distribution parameter 6
when there is no UMP test. They are alternative to tests, such as likelihood ra-
tio tests, whose power is optimal when 6 belongs to a certain subset of the pa-

rameter space but that might be very inefficient over the complementary of this



subset (M. Fouladirad and I. Nikiforov, 2005, Sec. 3.1, p. 1160). We recall Wald’s
definition before introducing, in section 3, its adaptation to the problem of test-
ing the norm of .

Let{Y,: p € J} be a family of surfaces in a given parameter space @ where J
is some index set. For instance, Y, may be defined by means of an analytic func-
tion (A. Wald, 1943, Section 5, p. 445) and J c R. Let Y stand for a d-dimensional
real random vector whose distribution belongs to some class 2 = {Py : 0 € ®}.
For testing the simple hypothesis Hy : 8 = 8y against the composite alternative
hypothesis Hy : 6 # 6y where 6, € @, the tests considered in this section are, as
in section 1, non-randomized and measurable maps of R% into {Ho,Ha}. The
power function Py [ff (Y)=H A] of such a test  is defined for any 6 € @ as the

probability P[ 97 (Y) = H4 | when the distribution of Y is Py.

Definition 1. [Wald’s UBCP criterion] For testingHg : 0 = 0y against Hp : 0 # 0,
whereO € @, atest T is said to be UBCPon{Y , : p € 3} ifit satisfies the following

two conditions:

(@) Test I has constant power function on every Y, p € J, in that, given any

pE€T, Py [T (Y)=Hu| =Py, [T (Y)=Hu] forany 6,,0, €Y, c .

(b) Forany 0 € @, Pg[ T (Y) = Ha] =Py [T'(Y) = Ha| for any test T' whose

power is constant on every given Y , and such thatPy, | T (Y) =H, | =Pg, [T (V)

HA].

3. Tests with uniformly best constant conditional power (UBCCP) on spheres

For testing 7 = [ 10| < o] against #4 = [1©] > p|, we transpose Wald’s
definition as follows. Since we test the norm of ® and the distribution of X is
spherically invariant, we naturally focus on tests that are UBCP, in a certain ex-

tended sense to be given, on the family of spheres {pS*™! : p € (g, 00)} where



pS%1 stands for the sphere, in R?, centred at the origin with radius p. For a given
@andagiventestJ :R? — {7, #,}, the analogue of the power function inter-
vening in definition 1 is the conditional P[f’/— O+ X) = | el=p ] defined for
any p € [0, oo) and henceforth called the conditional power of 7~ on pS?~!. Test
g is then said to be conditionally more powerful than ' on pS%~! such that
p € (p, 00) if the conditional power P[F(© + X) = #4 | ©] = p] of I on pS4~!
is larger than or equal to the conditional power P[ IO+ X) =T | I8l=p ] of

J ' on this sphere. Since

1
P(A) Jip,00)

Bo(T) = P[T©+X) =7 |l0l=p] (PIOI7")(dp) ()

where P||©] ! stands for the probability distribution of ||©||, a sufficient condi-
tion for 9 to be more powerful than ' is that 9~ be conditionally more power-

ful than I’ on every pS?~!

such that p € (p, co). This remark implies that, given
some level y, no test can be conditionally more powerful on every sphere with
radius in (g, co) than any other test with same level: if such a test I existed,
Eq. (3) implies that this test would be UMP at level y for testing %%, a contradic-
tion. However, by saying that test 9 has constant conditional power on pS%~!
if P[T(©+ X) = #,|1©] = p| does not depend on the probability distribution
PO~! of ©, we transpose Wald’s definition and define tests with uniformly best

constant conditional power (UBCCP) on {de‘l :p € (p,00)} for testing H.

Theorem 1 establishes the existence of such tests.

Definition 2. For testing #, = [ 1Ol < o] on the basis of the observation © + X
where® € 9, a test T * with level y € [0, 1] is said to be UBCCP on the family of

spheres {pS*1:pe(p,00)} if:

(i) 9 has constant conditional power on each of these spheres;



(ii) " is conditionally more powerful on each of these spheres than any other

test with level y and constant conditional power on this sphere.

Lemma 1. IftestJ * is UBCCP on the family of spheres {de’l :p€(p,00)} for
testing #y = [ O] < Q] on the basis of the observation ® + X where ® € 9, then
T * is UMP amongst the tests with same level as I * and constant conditional

power on each sphere pS%~1,p € (p, 00).
PROOE A straightforward consequence of Eq. (3) and definition 2. (]

Remark 1. For ® = €0 where0 € de’l, p € (0, 00) and € is Bernoulli, valued in
{0,1} and independent with X, P[ T (0@+X) = #, | Ol = p| =P[T 0+ X) = H4|.
By assumingP|e =1] € (0, 1), it follows from lemma I that definition 2 embraces
Wald’s definition of UBCP tests on {de’l : p € (0,00)} for testing the mean of
Y ~ N (6,1).

4. Theoretical result

For every pair (p, A1) of non-negative real numbers, set

e P12

A 2
R(p, )2 f e 2N 0F (d12; p? ¢ 14) dt @)
0

2412-17(d /2)

where (F; is the generalized hypergeometric function (N.N. Lebedev, 1965, p.
275) and T the usual gamma function. Given p € [0, 00), Z(p, *) is the distri-
bution function of the square root of any random variable that follows the non-
central y? distribution with d degrees of liberty and non-central parameter p.
For any 6 in R?,

P[0+ Xl <A]=20l, 7). ®)



Given A € [0, 00), the thresholding test 5, with threshold height A is defined

for every y € R? by

b it yl<A,
Tay) 2 ()
S it |yl > A

Theorem 1. Lety € (0, 1). For testing #, = |18l < o] given ® + X with® € 9
and X ~ N (0, 1), the thresholding test T», where A* is the unique non-negative

real value such that Z(p, A*) = 1—, is such that
(i) )+ has sizey and is UBCCP on {de‘l :p € (p,00)}; its conditional power is

1-%(p, A*) on any sphere pS®~! withp € (p, 00) and

Bo(Tr) = 1-2%(p, A") (PIO17Y) (dp) @)

1 f (
P(AEA) (p,00)

(ii) )~ is UMP amongst the tests with level y and constant conditional power on

each sphere pS“~!

with p € (p, 00).
(iii) 7+ is unbiased: (T )+) =Y.

According to remark 1, (A. Wald, 1943, Proposition III, p. 450) derives from
theorem 1 above for testing the mean of Y ~ A4(0,1).
5. Proof of theorem 1

5.1. Preliminary results

Lemma 2. Forevery A€ [0,00) and (P||®]~!) - almost every p € [0, o)
P1©+XII<A|lOl=p]=2%(p,N. ®)

PROOE Let B be any Borel set of R and A be any element of [0, c0). From the

independence of ® and X and according to Eq. (5), we have

P[0+X|I<A, OleB|©=0] IO P16+ X <A]

9)

Iz(I6N Z 61, A)



where, given a set K, I is the indicator function of K: Igx(x) =1 if x € K and
Ix(x) = 0, otherwise. By the standard change-of-variable formula (P. Billingsley,

1995, Theorem 16.13), we now have
fIB(IIQII)Q?(IIQII,/l) (P@)_l)(d9)=f3%(p,/1) (Pll@)ll_l)(dp). (10)

Since P[1@+ X|| <A, [0l €B] = [P[IO©+ Xl <A,lO]€B|©=0]PO"1)(d0),
it follows from the second equality in Eq. (9) and Eq. (10) that P[ 0+ X| <
A el € B| = [3%(p, V)(PIOI~!)(dp). The result follows since P[[|© + X|| <
A, Il eB] = [P[IO+XI<A,lOleB|lO]=p]PIOI")dp). O

Lemma 3. Givenany A€ (0,00), Z(-, A) is decreasing.

PROOE This improvement of (Pastor et al, 2002, Lemma IV.2) is proved simi-
larly by refining some arguments. Let p and p’ be two real numbers such that
0<p<p <oo. LetB and @' be two colinear vectors of R? such that 0] = p
and [0’ = p’. According to Eq. (5), Z(p, A) = fB(e'Mf(x) dx and Z(p', A) =
J; .1 J (*)dx where f is the probability density function of X and B(6, 1) (resp.
B(6', 1)) is the closed ball, in R?, centred at @ (resp. ') with radius A. We have
R, M) =R, D) = [zonsen (X -fO+6 —x))dx. Let (e, ey,...,eq) be
an orthonormal basis of R such that 8 = pe; and 6’ = p’e;. We have ||6 +
0' — x|I2 = IxlI> = (o + p)(p + p' —2x1) for any x = (x1,%2,...,x4) € R4, If x €
B(0,M)\B(6', 1), then | x—0'|| > || x—6|, which implies that (o' —p)(o+p'—2x1) >0
and, thus, that p + p’ —2x; > 0 since p’ > p. Therefore, |0 + 6’ — x| > || x||. Since
f decreases with the norm of its argument, it follows that f(x) — f(6 +6' — x) >0

so that Z(p, 1) > Z(p’, 1) and the proof is complete. O

Lemma 4. Giveny € (0,1] and p € [0, 00), there exists a unique solution t,(p)

for Ainthe equation1-%(p, A) =y; Ty is increasing and continuous everywhere.



PROOE. [Existence and unicity] : Given p € [0, 0co), it follows from Eq. (4) that
Z(p, ) is increasing and continuous and, thus, a one-to-one mapping of [0, 00)

into [0, 1). Thence, the existence and the unicity of 7, (p) for y € (0, 1].

[Increasingness of 7,] : Let p and p' be two non-negative real number such that
p < p'. According to lemma 3, Z(p’, 7y(0)) < Z(p, Ty(p)). The right hand side
(rhs) in this inequality equals 1 -y and, thus, Z(p’, 7 (p)). The result then fol-

lows from the increasingness of Z(p’, -).

[Continuity of 7] : Given pg € [0, c0), the increasingness of 7, implies the ex-
istence of a limit 7y (p) € [0, co) when p tends to po from below and the exis-
tence of a limit 7, (p;) € [0, co) when p tends to po from above. Since £ is con-
tinuous in the plane and Z(p, 7, (p)) =y for every p € [0, 00), Z(po, Ty(py)) =
R(po, Ty(pg)) = . Since Z(po, -) is one-to-one, 7, (p,) = Ty (p;) = Ty(po) and 7,

is continuous. ([
Lemma5. Z(, ) <P[[0+X[<A|IOl<p]|<%0,1)

PROOE. By Bayes'sruleandsinceP[[|©] <o | #0,wehaveP[ [0+X| <A |[O] <
o] =P[IO+Xl<A,Ol<p]|/P[l®l<p]. From the definition of a condi-
tional and lemma 2, P[ |0+ X| < A, IOl < @] = [, ,;%(p, D) (PIOI~")(dp).

The result then follows from lemma 3. O

Lemma 6. For every real number v = 1/2 and every pair of non-negative real
numbers pg and py such that0 < pg < p1, the map defined for every x € [0, co) by

oF1 (v; p3x?14)/oF (v; p3x?14) is increasing.

PROOE. Set f(x) = oF (v; p7x*/4)/oF1 (v; p5x*/4) for any x € [0, co). We have
f(0) =1 and since ¢F;(v; ) is increasing, we have f(x) = 1 for any x = 0. For
x € (0, 00), the derivative of oF; (v; x) with respect to x follows from (N.N. Lebe-

dev, 1965, Sec. 9.14, p.275) and some routine algebra shows that the sign of
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pF oF1(v+1;0%x%/4)  oFi(v+1;p3x®/4)

! s —
f(x) Is that of g(x) = 02 oF1(v;p3x%i4) oF1(v;03x2/4)

Put g(1) = L, (1)1 Iy-1(2),
t € [0, 00), where I, is the modified Bessel function (M. Abramowitz and I. Ste-
gun, 1972, Sec. 9.6, p. 374). According to (M. Abramowitz and I. Stegun, 1972,
p- 377, Eq. 9.6.47), we have g(t) = %%, t € [0, 00). Therefore, g(x) =
% (p18(p1%) — pog(pox)) whose sign is that of p1g(p1x) — pog(pox). It follows
from (Pastor et al, 2002, Lemma B.1, Appendix B, p. 237), g is increasing. Since
po < p1, it follows that pgg(pox) < p1g(pox) < p18(p1x) and the proof is com-

plete. ]

Corollary 1. The family of the non-central y* distributions with d degrees of lib-

erty has monotone likelihood ratio with its non-central parameter.

Although lemma 6 and its corollary are probably standard, we did not find

precise references. So, we have provided a proof of lemma 6.

Proposition 1. Lety € (0, 1]. With the notations of theorem 1, assume that © =
(1-¢€)ppBg +€p 101 where py < p1, Oy and Oy are independent and uniformly
distributed on S, ¢ is valued in {0,1} and independent of ©y and ©,. There
exists a UMP test Jymp With sizey for testing hy = [€ = 0] against h; = [ = 1].

This test is given for every y € R% by

ho if Nyl <Ty(po),
LO/—UMP()/):{ ° o (11)
hy if  llyll>7y(po)

where T, (po) is the unique solution for A in the equation 1 —%(pg, A) =y (see

lemma 4). The power of this UMP test is 1 — 2Z(p1, Ty(po)).

PROOE Under each hypothesis /iy and #;, the probability density function of

the observation © + X is given by (Pastor et al, 2002, Proposition V.1, Eq. (18), p.

11



232). The likelihood ratio for testing h against h, is thus

p220F1 (d/2; pT1y1%/4) .

2
A(y) = e 1™ Y€
oF1(d/2; p3llyl2/4)

According to the Neyman-Pearson lemma (E.L. Lehmann and J.P. Romano, 2005,
Theorem 3.2.1, Sec. 3.2, p. 60), there exists a UMP test Jyymp with size y for
testing hp against h;. This test compares A to a threshold whose value guar-
antees that the false alarm probability of Jymp is y. According to lemma 6,
A(y) increases with || y|l. Therefore, given y € R4, Jump(y) = ho if ||yl < and
Jump(y) = hy if || yll > ¢ where ( is determined so as Jyyp has size y. From Eq.
(4) and (Pastor et al, 2002, Proposition V.1, Eq. (17), p. 232), the size of Jwp is
P[lpo®+ Xl > | =1-2(po, ). Thus, according to lemma 4, { = 7,(po). The
power P[ 0101+ X| > 7y(po) | of test Tymp now follows from Eq. (4) and (Pastor

et al, 2002, Proposition V.1, Eq. (17), p. 232) again. ([

5.2. Proof of statement (i)

According to lemma 4, A* = 7,(p) is the unique non-negative real number

such that 1-2(p, A*) = y. We now prove that 9 has size y. Then, we prove
that 97~ is UBCCP on the appropriate family of spheres.
[Size] : According to lemma 5, P[ @+ X[ > A* | Ol <p ] <1-%(p, A*) for any
©. By definition of A%, it follows from Eq. (1) that a(J-) <y. Now, if ® =6
(a-s) with 8 € pS%~!, Egs. (1) and (5) imply that a(J3:) = P[1©@ + X|| > A*] =
1-%(p, A*) =v. Therefore, a(J)-) =7.

[UBCCP on spheres] : For any p € (p, 00), it follows from Eq. (8) that
P[T):©+X)=Hn|lOl =p] =1-Z(p, 1), (12)

which proves that - has constant conditional power on pS%~!. Eq. (7) is then

a direct consequence of the equality above and Eq. (3). To prove that 9. is

12



UBCCB assume that 9 is a test with level y and constant conditional power on
a given sphere p;S?~! where p; € (g, 00). The value of P[ T (@ + X) = #, | O] =
p1] does not depend on ©. Therefore, we calculate it by considering the par-
ticular case ©® = (1 —€)ppBp + €p10; where 0 < pg < g, ©p and O; are uniformly

sd—l

distributed on , € is a random variable valued in {0, 1} independent with ©,

and ©;. We have
P[T(O@+X)=F0|10l=p1]|=P[T (0101 + X) = H4]. (13)

To compare the power of 9 to that of 9-, we test hy = [¢ = 0] against h; = [€ =
1] given the observation ®+ X = (1-¢) pg Bp+€p 101+ X. Let T stand for the test
defined for every y € R by T (y) = hy if T (y) = #, and T (y) = ho if T (y) = H.
The size of this test is a(J) = P [T (00O + X) = #) |. According to Eq. (1) and
since a(9) < v, we have a(§: ) < 7 so that T tests hy against h, atlevel y. The

power ﬁ@(f ) of T~ is now given by
Be(T) =P [T (010; + X) = H#4 |. (14)

According to proposition 1, the UMP test Jymp with size y for testing hy against
hy is given by Eq. (11) and its power is fBe(Jump) = 1 — Z(p1, Ty(po)). Since
Jump is more powerful than any other test for testing hg against k;, we have
Bo(Tump) = Po (9). It follows from the latter inequality together with Egs. (13)

and (14) that
P[T(O+X) =410l =p1] <1-2%(p1, T4(p0). (15)

Since 7y is continuous, lim,, ., Ty (po) = Ty (0) = A*. By continuity of Z(p1, ),
the rhs in inequality (15) tends to 1 — %(p;, A*) when pg tends to p. Therefore,
by taking into account Eq. (12), P[T (@ + X) = #,|1®] =p| <P[T1- O+ X) =
J£A| I8l =p ] This proves that 9+ is UBCCP on the family of spheres with

radius in (o, 00).

13



5.3. Proof of statements (ii) and (iii)
Statement (ii) results from lemma 1. Statement (iii) derives from Eq. (7) and

lemma 3.
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