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Abstract

This report investigates the behavior of automatic speech recognition (ASR)
system with spectrally reduced speech (SRS) synthesized from subband am-
plitude modulations (AMs) and frequency modulations (FMs). Acoustic
analysis shows that the resynthesis of SRS from only AM components helps
alleviate certain non-linguistic variabilities in the original speech signal. When
the SRS spectral resolution is sufficiently good, this alleviation not only has
no consequence but also yields comparable or even better ASR word accuracy
compared to that attained with original clean speech signal. In contrast, FM
components support human speech recognition but yield no significant im-
provement in terms of ASR word accuracy when the SRS spectral resolution
is sufficiently good.

Keywords

Automatic speech recognition, spectrally reduced speech, amplitude modu-
lation, frequency modulation.
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Résumé

Ce rapport étudie le comportement de système de reconnaissance automa-
tique de la parole (ASR) avec la parole réduite spectralement (SRS) synthétisée
à partir des modulations d’amplitude (AM) et de fréquence (FM). Les anal-
yses d’acoustique montrent que la resynthèse de la SRS à partir des com-
posants AM permet à s’affranchir certaines variabilités non-linguistiques dans
le signal de parole original. Lorsque la résolution spectrale de la SRS est suff-
isamment bonne, cette simplification n’a aucune conséquence tout en gardant
le précision de mot (word accuracy) de l’ASR comparable ou meilleure que
celui atteinte par le signal de parole propre original. En revanche, les com-
posants FM supportent la reconnaissance de la parole de l’être humain, mais
n’apportent pas d’amélioration significative en terme de précision de mot de
l’ASR lorsque la résolution spectrale de la SRS est suffisamment bonne.

Mots-clés

Reconnaissance automatique de la parole, parole réduite spectralement, mod-
ulation d’amplitude, modulation de fréquence.
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1 Introduction

Speech communication among humans is stable despite the great variability
in the speech signal. There are many sources of acoustic variance in the
speech signal that are not directly associated with the linguistic message,
including (1) acoustic degradations (e.g., constant or slowly varying additive
noise, microphone frequency response, talker or microphone movement, etc.)
and (2) speech production variations (e.g., accent and dialect, speaking style,
acoustic variability due to specific states of health and mental state, etc.) [1].

The spectrum of sound is considered to be an important correlate of pho-
netic quality of speech sounds [2]. However, the prime carrier of the linguistic
information are changes of the spectral envelopes of the speech signal [3]. In-
deed, the relatively narrow bandwidth of the spectral envelope modulations
is created by the relatively slow motion of the vocal tract during speech pro-
duction. In this view, the “message” (the signal containing information of
vocal tract motions with a narrow bandwidth) modulates the “carrier” signal
(high frequency) analogous to the amplitude modulation (AM) used in radio
communications. The major linguistically significant information in speech
is contained in the details of this low frequency vocal tract motion (i.e., the
spectral envelope of the speech signal) [4].

In an automatic speech recognition (ASR) system, the speech analysis
module performs feature extraction using signal processing techniques to
compensate for variability in speaker characteristics as well as acoustic en-
vironment. It can help alleviate non-linguistic components of speech signal
and improve reliability of ASR in realistic environments [2]. Most state-of-
the-art ASR systems use Mel cepstrum [5] or Perceptual Linear Predictive
(PLP) analysis [6] of speech in the speech analysis module. In the calculation
of the feature vectors, the speech spectrum at a given time instant is derived
from a segment of speech which is short enough (of the order of 10-20 ms) to
be assumed to result from a stationary process. The phase of such a short-
term spectrum is typically discarded. The fine structure of this short-term
spectrum (which carries information about the voice source) is most often
discarded as well, and it is the spectral envelope of the speech short-term
spectrum which provides a starting point for most speech features used in
ASR [2].

So what will happen if certain speech non-linguistic variabilities can be
reduced before the resulting signal being fed to the speech analysis module of
an ASR system? Will this reduction have any influence on the performance
of an ASR system and if so, how can we adjust the degree of this influence?
We thus resynthesize a new kind of speech, called spectrally reduced speech
(SRS), from original clean speech and then use this SRS in an ASR system
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(Fig. 1). By resynthesizing SRS from original clean speech signal, certain
types of speech non-linguistic variabilities can be alleviated. Shannon et al.,

Figure 1: Using SRS in ASR. SRS is first synthesized from original speech
signal and then is used in ASR.

[7] synthesized SRS by using amplitude modulations (AMs) extracted from 3
or 4 frequency bands of speech to modulate white noise and then summed up
these subband signals to obtain SRS. Despite the great reduction of spectral
information, perceptive tests have shown that this kind of speech could sup-
port human speech recognition in quiet environment. Recently, Nie et al., [8]
have suggested that the slowly varying frequency modulation (FM) should be
integrated in the SRS described in [7] to support human speech recognition
in noisy environment. Indeed, acoustic analysis have shown that slowly vary-
ing FM components preserve dynamic information regarding speech formant
transitions and fundamental frequency movements; these may help human
recognize speech in noise [8]. In this letter, we will use the SRSs proposed in
[7] and [8] for testing with ASR because these SRSs make it possible to reduce
certain non-linguistic variabilities in the resynthesized speech signal. Above
a certain SRS spectral resolution, we will see that the ASR word accuracy
[9] attained with SRS synthesized from only AM components, is surpris-
ingly comparable to or even better than that attained with the original clean
speech signal. This result suggests many prospects for future applications.

2 SRS Synthesis Using AM-FM Model of Speech

A speech signal s(t) can be approximated by a sum of N band-limited com-
ponents, sk(t), k = 1, · · · , N .

s(t) ∼=
N∑

k=1

sk(t) (1)

Each subband component sk(t) can be considered as an AM-FM signal [10]
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which contains both amplitude and frequency modulations

sk(t) = mk(t) cos

[
2πfckt+ 2π

∫ t

0

gk(τ)dτ + θk

]
(2)

where the signals mk(t) and gk(t) are the amplitude modulation and the
frequency modulation in the kth subband whereas fck and θk are the kth

subband central frequency and the initial phase, respectively. In this paper,
we use the term AM-only SRS to designate SRS synthesized by using only
the AM components in the subbands of the decomposed speech signal. To
synthesize AM-only SRS, the speech signal is first decomposed into several
frequency bands and AMs are extracted from the subband signals by full
wave rectification followed by lowpass filtering. The extracted AMs of the
subband signals are then used to modulate either white noise or sinusoids
whose frequencies equal the central frequencies of the frequency subbands
[7]. The modulated subband signals from all the frequency bands are then
summed up to construct the AM-only SRS. The mathematical expression
ŝAM(t) of AM-only SRS can be written as follows

ŝAM(t) =
N∑

k=1

m̃k(t) cos(2πfckt) (3)

where m̃k(t) is the lowpass filtered AM in the kth subband.
Besides, we use the acronym AM+FM SRS to designate SRS synthesized

from both AM and FM components. The frequency amplitude modulation
encoding (FAME) strategy [8], which is used to synthesize AM+FM SRS,
involves two steps, analysis and synthesis (Fig. 2). In the analysis stage,
the speech signal is first decomposed into several frequency bands by using
a critical filter bank having logarithmically increasing central frequencies to
mimic the human cochlear filters. Then, two independent parallel pathways
are employed to extract the slowly varying AM and FM cues from each of the
filtered subband signal. In the FM extraction pathway, the extracted FM is
band-limited and further lowpass filtered to obtain the slowly varying FM.
In the synthesis, the slowly varying FM signal is added to the original central
frequency fck, then integrated to recover the original phase information and,
finally, multiplied by the slowly varying AM signal m̃k(t) extracted from
the same subband to recover the original subband signal [8]. Finally, by
summing the recovered subband signals from all the subbands, AM+FM
SRS is obtained. This signal, ŝAM+FM(t), can be written as follows

ŝAM+FM(t) =
N∑

k=1

m̃k(t) cos

[
2π

∫ t

0

(g̃k(τ) + fck)dτ

]
(4)
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where g̃k(t) stands for the slowly varying FM in the kth subband.

Figure 2: Functional block diagram of speech processing in the FAME strat-
egy for AM+FM SRS synthesis [8].

Detailing further the FM extraction algorithm of FAME in Fig. 3, we can
see that this is a conventional FM extraction diagram followed by two blocks
“Band limit” and “LPF 3” to control the FM bandwidth and the FM rate,
respectively. The subband signal sk(t) is first multiplied with the outcome
of a quadrature oscillator with central frequency fck. This manipulation is
equivalent to shifting the spectrum of sk(t) to 0 and 2fck in the frequency
domain. After the lowpass filterings performed by LPF 2 and LPF 2’, the
in-phase signal, a, and the out-of-phase signal, b, of the subband signal sk(t),
are extracted. In the discrete implementation, the FM signal is calculated
by the following formula [8]

FM =
b∆a− a∆b

2π(a2 + b2)× Ts

(5)

where ∆ is the differentiation and Ts is the sampling period. The mathemat-
ical development of the FM extraction process can be found in [8]. “Band
limit” is used to avoid undesirable cross-talk between adjacent bands whereas
LPF 3 is used to set the FM rate lower than 400 Hz so that it may be per-
ceived by human cochlear-implant listeners [8]. Using the slowly varying AM
signal m̃k(t) to modulate the FM full frequency range (FR) signal gk(t) taken
at c (Fig. 3), we synthesize the AM+FM SRS with full frequency range FM
component, termed FR AM+FM SRS. In the same way, by using the slowly
varying FM signal g̃k(t) taken at d, we can synthesize the AM+FM SRS with
FM slowly varying (SV) component, termed SV AM+FM SRS.
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Figure 3: Algorithm for extracting FM components in the kth subband of
the FAME strategy [8].

The analysis filter bank in this work contains bandpass filters whose cen-
tral frequencies and bandwidths match those of the critical bands [11]. Each
bandpass filter is constructed using a fourth-order elliptic bandpass filter
having a stop-band attenuation of 50 dB and a 2 dB ripple in the pass-band
to be consistent with [8]. The original speech signal s(t) is thus decom-
posed into subband signals sk(t), k = 1, · · · , N with N taking values in
{4, 6, 8, 10, 16, 24, 32}. Subsequently, fourth-order elliptic lowpass filter with
50 Hz cutoff frequency is used in the AM extraction. In the FM extraction,
the two filters used to determine the FM depth or the FM bandwidth, LPF
2 and LPF 2’, are also fourth-order lowpass Bessel filters. Their cutoff fre-
quencies are set to either 500 Hz or the analysis subband filter bandwidth
whenever this bandwidth is less than 500 Hz [8]. Finally, the cutoff frequency
of the FM-rate filter, LPF 3, is set to 400 Hz. After AM and FM extractions,
the corresponding AM-only SRS, FR AM+FM SRS and SV AM+FM SRS
are synthesized. Fig. 4 shows the frequency response of an analysis filter
bank containing 16 fourth-order elliptic bandpass filters.

3 Acoustic Analysis of Synthesized SRS

Fig. 5 shows spectrograms of a continuous speech utterance “one oh four
six”, pronounced by a female speaker, from the TIDIGITS speech database.
The spectrogram of the original clean speech utterance is shown in 5(a)
whereas 5(b), 5(c), and 5(d) show the spectrograms of the 4-subband syn-
thesized SRSs; 5(b): 4-subband AM-only SRS, 5(c): 4-subband SV AM+FM
SRS, and 5(d): 4-subband FR AM+FM SRS. Similarly, Fig. 6 presents the
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Figure 4: Frequency response of an analysis filter bank containing 16 fourth-
order elliptic bandpass filters used for speech signal decomposition. The
speech signal is sampled at 8 kHz.

spectrograms of 16-subband synthesized SRSs for the same utterance; 6(a):
original clean speech, 6(b): 16-subband AM-only SRS, 6(c): 16-subband SV
AM+FM SRS, and 6(d): 16-subband FR AM+FM SRS. We can see that
the formant transitions (e.g., at positions of the arrows in Fig. 5 and Fig.
6) are present in 5(a), 5(c), and 5(d) (idem for 6(a), 6(c), and 6(d)) but
not in 5(b). Fig. 5(b) is the spectrogram of the 4-subband AM-only SRS
in which the FM component is not integrated. However, it seems that the
formant transitions are still preserved in the 16-subband AM-only SRS (see
Fig. 6(b)), in which the spectral resolution is sufficiently good.

The blue line in each spectrogram, estimated by using Praat software
[12], represents the speech fundamental frequency (f0) as a function of time.
The range of the fundamental frequency is figured on the right-hand side
vertical axis of each spectrogram. Using the extracted f0 contour of the
original clean speech as the reference, we can remark that the f0 informa-
tion is not correctly estimated from the AM-only SRSs, whether we use 4 or
16 subbands. Another remark concerns the f0 information in the AM+FM
SRSs. The f0 information is not correctly estimated in the 4-subband SV
AM+FM SRS but its estimation in the 4-subband FR AM+FM SRS is suf-
ficiently good. This does not happen with the 16-subband SV AM+FM SRS
(6(c)) and the 16-subband FR AM+FM SRS (6(d)) where Praat estimates
correctly f0. We can therefore conclude that FM components, especially the
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Figure 5: Spectrograms of synthesized SRSs of the speech utterance “one
oh four six” from the TIDIGITS database, pronounced by a female speaker.
(a) original clean speech, (b) 4-subband AM-only SRS, (c) 4-subband SV
AM+FM SRS, (d) 4-subband FR AM+FM SRS. Arrows indicate formant
transitions from vowel /o/ in “oh” to consonant /f/ in “four”. These formant
transitions are absent in (b), the spectrogram of the 4-subband AM-only SRS.
The blue lines, estimated by Praat [12], represent the speech fundamental
frequency f0. The f0 frequency range is [75 Hz - 500 Hz] (see the right-hand
side vertical axis).

rapidly varying ones, contain information regarding the speech fundamental
frequency which is a speaker-dependent information. However, even in case
of missing FM rapidly varying components, increasing the SV AM+FM SRS
spectral resolution makes it possible to retrieve the f0 information.

4 Testing SRS with an ASR System

We construct a speaker-independent ASR system for testing the behavior of
ASR with SRSs. The TIDIGITS, which is a small vocabulary, continuous
speech database and the HTK speech recognition software [9] are used for
the training of the phoneme acoustic models. Each phoneme is modeled by
a context-dependent three-state left-to-right triphone Hidden Markov Model
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Figure 6: Spectrograms of the synthesized SRSs of the same utterance as
in Fig. 5. (a) original clean speech, (b) 16-subband AM-only SRS, (c) 16-
subband SV AM+FM SRS, (d) 16-subband FR AM+FM SRS.

(HMM). The output distributions are modeled by multivariate Gaussian Mix-
tures Densities. Each mixture consists of 16 multivariate Gaussian compo-
nents. Feature vectors consist of 13 Mel Frequency Cepstral Coefficients
(MFCCs) in which the first coefficient C0 is used as the energy component
[9]. The MFCCs are calculated from every Hamming windowed speech frame
of 25 ms length. The overlap between two adjacent frames is 15 ms. The
delta and acceleration coefficients [9] are appended to the MFCCs to provide
39-dimensional feature vectors. 250 utterances from the TIDIGITS clean
speech test database are selected for the tests. From this set of original clean
speech signals, we synthesize the AM-only SRSs, the SV AM+FM SRSs,
and the FR AM+FM SRSs. Table 1 shows the ASR word accuracies of syn-
thesized SRSs by using the triphone HMMs trained on the TIDIGITS clean
speech training database.

The recognition results show that among the three kinds of SRS studied,
the AM-only SRSs give the best ASR word accuracies when the SRSs are
synthesized on the basis of AM and FM components of at least 16 subbands.
We thus use the model of 16-subband AM-only SRS, the AM-only SRS who
gave the best ASR word accuracy in Table 1, to resynthesize the TIDIGITS
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Table 1: ASR word accuracies (in %) of synthesized SRSs using triphone
HMMs trained on the TIDIGITS clean speech training database. The ASR
word accuracy computed on 250 original clean speech utterances is 99.76%.

Number of frequency bands
SRS 4 6 8 10 16 24 32

AM-only 35.57 41.05 84.23 98.48 99.82 99.70 99.57
SV AM+FM 64.43 97.87 98.42 99.09 99.33 98.36 96.41
FR AM+FM 82.95 92.81 93.61 94.15 94.76 94.88 94.70

training database. Using the triphone HMMs trained on this new training
database for recognition of the testing SRSs, we obtain the ASR word ac-
curacies of Table 2. These results confirm the conclusion mentioned above:

Table 2: ASR word accuracies (in %) of synthesized SRSs using triphone
HMMs trained on the TIDIGITS training database resythesized from the
16-subband AM-only SRS model. The ASR word accuracy computed on the
same 250 original clean speech utterances mentioned above is 99.45%.

Number of frequency bands
SRS 4 6 8 10 16 24 32

AM-only 34.59 39.77 89.89 99.39 99.76 99.70 99.70
SV AM+FM 40.13 85.08 95.43 97.99 98.96 94.58 87.76
FR AM+FM 68.94 88.86 91.60 91.72 94.28 94.40 93.85

AM-only SRSs give the best ASR word accuracies when the SRSs spectral
resolution is sufficiently good (10 subbands in this case).

5 Conclusions

We have investigated the behavior of ASR with SRSs synthesized from sub-
band AMs and FMs. For the small vocabulary, continuous speech database
(TIDIGITS) studied in this letter, the following conclusions can be formu-
lated:

• Above a certain SRS spectral resolution, AM-only SRS gives the best
ASR word accuracy among the three kinds of SRS studied.

• We can use AM-only SRSs synthesized from 10 subbands or more to
achieve comparable or even better ASR word accuracies compared to
those attained with original clean speech (see Table 1 and Table 2).

• FM components support human speech recognition [8] but yield no
significant improvement in terms of ASR word accuracy when the SRSs
spectral resolution is sufficiently good.
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The acoustic analysis of synthesized SRSs has shown that even though
the formant transitions are not clearly visible and the fundamental frequency
information is absent in the AM-only SRS, this kind of SRS still provides
the best ASR word accuracy when the SRS spectral resolution is sufficiently
good. This suggests that certain non-linguistic variabilities in the speech
signal can actually be alleviated via SRS resynthesis. Using appropriate syn-
thesized SRSs in ASR can help achieve comparable or even better ASR word
accuracies compared to those attained with original clean speech. Future
work will extend the study to large vocabulary and focus on finding new
kinds of SRS that make it possible to reduce more speech acoustic variances
while yielding good ASR word accuracy.
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