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This report investigates the behavior of automatic speech recognition (ASR) system with spectrally reduced speech (SRS) synthesized from subband amplitude modulations (AMs) and frequency modulations (FMs). Acoustic analysis shows that the resynthesis of SRS from only AM components helps alleviate certain non-linguistic variabilities in the original speech signal. When the SRS spectral resolution is sufficiently good, this alleviation not only has no consequence but also yields comparable or even better ASR word accuracy compared to that attained with original clean speech signal. In contrast, FM components support human speech recognition but yield no significant improvement in terms of ASR word accuracy when the SRS spectral resolution is sufficiently good.

Résumé

Ce rapport étudie le comportement de système de reconnaissance automatique de la parole (ASR) avec la parole réduite spectralement (SRS) synthétisée à partir des modulations d'amplitude (AM) et de fréquence (FM). Les analyses d'acoustique montrent que la resynthèse de la SRS à partir des composants AM permet à s'affranchir certaines variabilités non-linguistiques dans le signal de parole original. Lorsque la résolution spectrale de la SRS est suffisamment bonne, cette simplification n'a aucune conséquence tout en gardant le précision de mot (word accuracy) de l'ASR comparable ou meilleure que celui atteinte par le signal de parole propre original. En revanche, les composants FM supportent la reconnaissance de la parole de l'être humain, mais n'apportent pas d'amélioration significative en terme de précision de mot de l'ASR lorsque la résolution spectrale de la SRS est suffisamment bonne.
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Introduction

Speech communication among humans is stable despite the great variability in the speech signal. There are many sources of acoustic variance in the speech signal that are not directly associated with the linguistic message, including (1) acoustic degradations (e.g., constant or slowly varying additive noise, microphone frequency response, talker or microphone movement, etc.) and (2) speech production variations (e.g., accent and dialect, speaking style, acoustic variability due to specific states of health and mental state, etc.) [START_REF] Morgan | Speech processing in the auditory system[END_REF].

The spectrum of sound is considered to be an important correlate of phonetic quality of speech sounds [START_REF] Hermansky | Mel cepstrum, deltas, double-deltas,.. what else is new? Robust Methods for Speech Recognition in Adverse Conditions[END_REF]. However, the prime carrier of the linguistic information are changes of the spectral envelopes of the speech signal [START_REF] Hermansky | Should recognizers have ears?[END_REF]. Indeed, the relatively narrow bandwidth of the spectral envelope modulations is created by the relatively slow motion of the vocal tract during speech production. In this view, the "message" (the signal containing information of vocal tract motions with a narrow bandwidth) modulates the "carrier" signal (high frequency) analogous to the amplitude modulation (AM) used in radio communications. The major linguistically significant information in speech is contained in the details of this low frequency vocal tract motion (i.e., the spectral envelope of the speech signal) [START_REF] Avendano | Speech processing in the auditory system[END_REF].

In an automatic speech recognition (ASR) system, the speech analysis module performs feature extraction using signal processing techniques to compensate for variability in speaker characteristics as well as acoustic environment. It can help alleviate non-linguistic components of speech signal and improve reliability of ASR in realistic environments [START_REF] Hermansky | Mel cepstrum, deltas, double-deltas,.. what else is new? Robust Methods for Speech Recognition in Adverse Conditions[END_REF]. Most state-ofthe-art ASR systems use Mel cepstrum [START_REF] Davis | Comparison of parametric representations for monosyllabic word recognition in continuous spoken sentences[END_REF] or Perceptual Linear Predictive (PLP) analysis [START_REF] Hermansky | Perceptual linear predictive (plp) analysis of speech[END_REF] of speech in the speech analysis module. In the calculation of the feature vectors, the speech spectrum at a given time instant is derived from a segment of speech which is short enough (of the order of 10-20 ms) to be assumed to result from a stationary process. The phase of such a shortterm spectrum is typically discarded. The fine structure of this short-term spectrum (which carries information about the voice source) is most often discarded as well, and it is the spectral envelope of the speech short-term spectrum which provides a starting point for most speech features used in ASR [START_REF] Hermansky | Mel cepstrum, deltas, double-deltas,.. what else is new? Robust Methods for Speech Recognition in Adverse Conditions[END_REF].

So what will happen if certain speech non-linguistic variabilities can be reduced before the resulting signal being fed to the speech analysis module of an ASR system? Will this reduction have any influence on the performance of an ASR system and if so, how can we adjust the degree of this influence? We thus resynthesize a new kind of speech, called spectrally reduced speech (SRS), from original clean speech and then use this SRS in an ASR system (Fig. 1). By resynthesizing SRS from original clean speech signal, certain types of speech non-linguistic variabilities can be alleviated. Shannon et al., Figure 1: Using SRS in ASR. SRS is first synthesized from original speech signal and then is used in ASR.

[7] synthesized SRS by using amplitude modulations (AMs) extracted from 3 or 4 frequency bands of speech to modulate white noise and then summed up these subband signals to obtain SRS. Despite the great reduction of spectral information, perceptive tests have shown that this kind of speech could support human speech recognition in quiet environment. Recently, Nie et al., [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF] have suggested that the slowly varying frequency modulation (FM) should be integrated in the SRS described in [START_REF] Shannon | Speech recognition with primarily temporal cues[END_REF] to support human speech recognition in noisy environment. Indeed, acoustic analysis have shown that slowly varying FM components preserve dynamic information regarding speech formant transitions and fundamental frequency movements; these may help human recognize speech in noise [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF]. In this letter, we will use the SRSs proposed in [START_REF] Shannon | Speech recognition with primarily temporal cues[END_REF] and [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF] for testing with ASR because these SRSs make it possible to reduce certain non-linguistic variabilities in the resynthesized speech signal. Above a certain SRS spectral resolution, we will see that the ASR word accuracy [START_REF] Young | The HTK book (for HTK version 3.2.1)[END_REF] attained with SRS synthesized from only AM components, is surprisingly comparable to or even better than that attained with the original clean speech signal. This result suggests many prospects for future applications.

SRS Synthesis Using AM-FM Model of Speech

A speech signal s(t) can be approximated by a sum of N band-limited com- ponents, s k (t), k = 1, • • • , N . s(t) ∼ = N k=1 s k (t) (1) 
Each subband component s k (t) can be considered as an AM-FM signal [START_REF] Maragos | Energy separation in signal modulations with application to speech analysis[END_REF] which contains both amplitude and frequency modulations

s k (t) = m k (t) cos 2πf ck t + 2π t 0 g k (τ )dτ + θ k (2) 
where the signals m k (t) and g k (t) are the amplitude modulation and the frequency modulation in the k th subband whereas f ck and θ k are the k th subband central frequency and the initial phase, respectively. In this paper, we use the term AM-only SRS to designate SRS synthesized by using only the AM components in the subbands of the decomposed speech signal. To synthesize AM-only SRS, the speech signal is first decomposed into several frequency bands and AMs are extracted from the subband signals by full wave rectification followed by lowpass filtering. The extracted AMs of the subband signals are then used to modulate either white noise or sinusoids whose frequencies equal the central frequencies of the frequency subbands [START_REF] Shannon | Speech recognition with primarily temporal cues[END_REF]. The modulated subband signals from all the frequency bands are then summed up to construct the AM-only SRS. The mathematical expression s AM (t) of AM-only SRS can be written as follows

s AM (t) = N k=1 m k (t) cos(2πf ck t) (3) 
where m k (t) is the lowpass filtered AM in the k th subband. Besides, we use the acronym AM+FM SRS to designate SRS synthesized from both AM and FM components. The frequency amplitude modulation encoding (FAME) strategy [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF], which is used to synthesize AM+FM SRS, involves two steps, analysis and synthesis (Fig. 2). In the analysis stage, the speech signal is first decomposed into several frequency bands by using a critical filter bank having logarithmically increasing central frequencies to mimic the human cochlear filters. Then, two independent parallel pathways are employed to extract the slowly varying AM and FM cues from each of the filtered subband signal. In the FM extraction pathway, the extracted FM is band-limited and further lowpass filtered to obtain the slowly varying FM. In the synthesis, the slowly varying FM signal is added to the original central frequency f ck , then integrated to recover the original phase information and, finally, multiplied by the slowly varying AM signal m k (t) extracted from the same subband to recover the original subband signal [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF]. Finally, by summing the recovered subband signals from all the subbands, AM+FM SRS is obtained. This signal, s AM+FM (t), can be written as follows

s AM+FM (t) = N k=1 m k (t) cos 2π t 0 ( g k (τ ) + f ck )dτ ( 4 
)
where g k (t) stands for the slowly varying FM in the k th subband.

Figure 2: Functional block diagram of speech processing in the FAME strategy for AM+FM SRS synthesis [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF].

Detailing further the FM extraction algorithm of FAME in Fig. 3, we can see that this is a conventional FM extraction diagram followed by two blocks "Band limit" and "LPF 3" to control the FM bandwidth and the FM rate, respectively. The subband signal s k (t) is first multiplied with the outcome of a quadrature oscillator with central frequency f ck . This manipulation is equivalent to shifting the spectrum of s k (t) to 0 and 2f ck in the frequency domain. After the lowpass filterings performed by LPF 2 and LPF 2', the in-phase signal, a, and the out-of-phase signal, b, of the subband signal s k (t), are extracted. In the discrete implementation, the FM signal is calculated by the following formula [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF] 

FM = b∆a -a∆b 2π(a 2 + b 2 ) × T s ( 5 
)
where ∆ is the differentiation and T s is the sampling period. The mathematical development of the FM extraction process can be found in [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF]. "Band limit" is used to avoid undesirable cross-talk between adjacent bands whereas LPF 3 is used to set the FM rate lower than 400 Hz so that it may be perceived by human cochlear-implant listeners [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF]. Using the slowly varying AM signal m k (t) to modulate the FM full frequency range (FR) signal g k (t) taken at c (Fig. 3), we synthesize the AM+FM SRS with full frequency range FM component, termed FR AM+FM SRS. In the same way, by using the slowly varying FM signal g k (t) taken at d, we can synthesize the AM+FM SRS with FM slowly varying (SV) component, termed SV AM+FM SRS. The analysis filter bank in this work contains bandpass filters whose central frequencies and bandwidths match those of the critical bands [START_REF] Gunawan | Speech enhancement using temporal masking and fractional bark gammatone filters[END_REF]. Each bandpass filter is constructed using a fourth-order elliptic bandpass filter having a stop-band attenuation of 50 dB and a 2 dB ripple in the pass-band to be consistent with [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF]. The original speech signal s(t) is thus decomposed into subband signals s k (t), k = 1, • • • , N with N taking values in {4, 6, 8, 10, 16, 24, 32}. Subsequently, fourth-order elliptic lowpass filter with 50 Hz cutoff frequency is used in the AM extraction. In the FM extraction, the two filters used to determine the FM depth or the FM bandwidth, LPF 2 and LPF 2', are also fourth-order lowpass Bessel filters. Their cutoff frequencies are set to either 500 Hz or the analysis subband filter bandwidth whenever this bandwidth is less than 500 Hz [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF]. Finally, the cutoff frequency of the FM-rate filter, LPF 3, is set to 400 Hz. After AM and FM extractions, the corresponding AM-only SRS, FR AM+FM SRS and SV AM+FM SRS are synthesized. Fig. 4 shows the frequency response of an analysis filter bank containing 16 fourth-order elliptic bandpass filters. The blue line in each spectrogram, estimated by using Praat software [START_REF] Boersma | Praat, a system for doing phonetic by computer[END_REF], represents the speech fundamental frequency (f 0 ) as a function of time. The range of the fundamental frequency is figured on the right-hand side vertical axis of each spectrogram. Using the extracted f 0 contour of the original clean speech as the reference, we can remark that the f 0 information is not correctly estimated from the AM-only SRSs, whether we use 4 or 16 subbands. Another remark concerns the f 0 information in the AM+FM SRSs. The f 0 information is not correctly estimated in the 4-subband SV AM+FM SRS but its estimation in the 4-subband FR AM+FM SRS is sufficiently good. This does not happen with the 16-subband SV AM+FM SRS (6(c)) and the 16-subband FR AM+FM SRS (6(d)) where Praat estimates correctly f 0 . We can therefore conclude that FM components, especially the rapidly varying ones, contain information regarding the speech fundamental frequency which is a speaker-dependent information. However, even in case of missing FM rapidly varying components, increasing the SV AM+FM SRS spectral resolution makes it possible to retrieve the f 0 information.

Acoustic Analysis of Synthesized SRS

Testing SRS with an ASR System

We construct a speaker-independent ASR system for testing the behavior of ASR with SRSs. The TIDIGITS, which is a small vocabulary, continuous speech database and the HTK speech recognition software [START_REF] Young | The HTK book (for HTK version 3.2.1)[END_REF] are used for the training of the phoneme acoustic models. Each phoneme is modeled by a context-dependent three-state left-to-right triphone Hidden Markov Model (HMM). The output distributions are modeled by multivariate Gaussian Mixtures Densities. Each mixture consists of 16 multivariate Gaussian components. Feature vectors consist of 13 Mel Frequency Cepstral Coefficients (MFCCs) in which the first coefficient C 0 is used as the energy component [START_REF] Young | The HTK book (for HTK version 3.2.1)[END_REF]. The MFCCs are calculated from every Hamming windowed speech frame of 25 ms length. The overlap between two adjacent frames is 15 ms. The delta and acceleration coefficients [START_REF] Young | The HTK book (for HTK version 3.2.1)[END_REF] are appended to the MFCCs to provide 39-dimensional feature vectors. 250 utterances from the TIDIGITS clean speech test database are selected for the tests. From this set of original clean speech signals, we synthesize the AM-only SRSs, the SV AM+FM SRSs, and the FR AM+FM SRSs. Table 1 shows the ASR word accuracies of synthesized SRSs by using the triphone HMMs trained on the TIDIGITS clean speech training database.

The recognition results show that among the three kinds of SRS studied, the AM-only SRSs give the best ASR word accuracies when the SRSs are synthesized on the basis of AM and FM components of at least 16 subbands. We thus use the model of 16-subband AM-only SRS, the AM-only SRS who gave the best ASR word accuracy in Table 1, to resynthesize the TIDIGITS AM-only SRSs give the best ASR word accuracies when the SRSs spectral resolution is sufficiently good (10 subbands in this case).

Conclusions

We have investigated the behavior of ASR with SRSs synthesized from subband AMs and FMs. For the small vocabulary, continuous speech database (TIDIGITS) studied in this letter, the following conclusions can be formulated:

• Above a certain SRS spectral resolution, AM-only SRS gives the best ASR word accuracy among the three kinds of SRS studied.

• We can use AM-only SRSs synthesized from 10 subbands or more to achieve comparable or even better ASR word accuracies compared to those attained with original clean speech (see Table 1 and Table 2).

• FM components support human speech recognition [START_REF] Nie | Encoding frequency modulation to improve cochlear implant performance in noise[END_REF] but yield no significant improvement in terms of ASR word accuracy when the SRSs spectral resolution is sufficiently good.

The acoustic analysis of synthesized SRSs has shown that even though the formant transitions are not clearly visible and the fundamental frequency information is absent in the AM-only SRS, this kind of SRS still provides the best ASR word accuracy when the SRS spectral resolution is sufficiently good. This suggests that certain non-linguistic variabilities in the speech signal can actually be alleviated via SRS resynthesis. Using appropriate synthesized SRSs in ASR can help achieve comparable or even better ASR word accuracies compared to those attained with original clean speech. Future work will extend the study to large vocabulary and focus on finding new kinds of SRS that make it possible to reduce more speech acoustic variances while yielding good ASR word accuracy.
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 3 Figure 3: Algorithm for extracting FM components in the k th subband of the FAME strategy [8].

Fig. 5

 5 Fig. 5 shows spectrograms of a continuous speech utterance "one oh four six", pronounced by a female speaker, from the TIDIGITS speech database. The spectrogram of the original clean speech utterance is shown in 5(a) whereas 5(b), 5(c), and 5(d) show the spectrograms of the 4-subband synthesized SRSs; 5(b): 4-subband AM-only SRS, 5(c): 4-subband SV AM+FM SRS, and 5(d): 4-subband FR AM+FM SRS. Similarly, Fig. 6 presents the

Figure 4 :

 4 Figure 4: Frequency response of an analysis filter bank containing 16 fourthorder elliptic bandpass filters used for speech signal decomposition. The speech signal is sampled at 8 kHz.

Figure 5 :

 5 Figure 5: Spectrograms of synthesized SRSs of the speech utterance "one oh four six" from the TIDIGITS database, pronounced by a female speaker. (a) original clean speech, (b) 4-subband AM-only SRS, (c) 4-subband SV AM+FM SRS, (d) 4-subband FR AM+FM SRS. Arrows indicate formant transitions from vowel /o/ in "oh" to consonant /f/ in "four". These formant transitions are absent in (b), the spectrogram of the 4-subband AM-only SRS. The blue lines, estimated by Praat [12], represent the speech fundamental frequency f 0 . The f 0 frequency range is [75 Hz -500 Hz] (see the right-hand side vertical axis).
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 6 Figure 6: Spectrograms of the synthesized SRSs of the same utterance as in Fig. 5. (a) original clean speech, (b) 16-subband AM-only SRS, (c) 16subband SV AM+FM SRS, (d) 16-subband FR AM+FM SRS.

  

Table 1 :

 1 ASR word accuracies (in %) of synthesized SRSs using triphone HMMs trained on the TIDIGITS clean speech training database. The ASR word accuracy computed on 250 original clean speech utterances is 99.76%. Using the triphone HMMs trained on this new training database for recognition of the testing SRSs, we obtain the ASR word accuracies of Table2. These results confirm the conclusion mentioned above:

				Number of frequency bands		
	SRS	4	6	8	10	16	24	32
	AM-only	35.57	41.05	84.23	98.48	99.82	99.70	99.57
	SV AM+FM	64.43	97.87	98.42	99.09	99.33	98.36	96.41
	FR AM+FM	82.95	92.81	93.61	94.15	94.76	94.88	94.70
	training database.							

Table 2 :

 2 ASR word accuracies (in %) of synthesized SRSs using triphone HMMs trained on the TIDIGITS training database resythesized from the 16-subband AM-only SRS model. The ASR word accuracy computed on the same 250 original clean speech utterances mentioned above is 99.45%.

				Number of frequency bands		
	SRS	4	6	8	10	16	24	32
	AM-only	34.59	39.77	89.89	99.39	99.76	99.70	99.70
	SV AM+FM	40.13	85.08	95.43	97.99	98.96	94.58	87.76
	FR AM+FM	68.94	88.86	91.60	91.72	94.28	94.40	93.85
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