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Given α ∈ (0, 1), the coverage probability of the 100(1-α)% Clopper-Pearson Confidence Interval (CPCI) for estimating a binomial parameter p is proved to be larger than or equal to 1 -α/2 for sample sizes less than a bound that depends on p. This is a mathematical evidence that, as noticed in recent papers on the basis of numerical results, the CPCI coverage probability can be much higher than the desired confidence level and thence, that the Clopper-Pearson approach is mostly inappropriate for forming confidence intervals with coverage probabilities close to the desired confidence level.

Soit α ∈ (0, 1). Considérons l'intervalle de confiance de Clopper-Pearson de niveau de confiance 100(1-α)%. On prouve que pour estimer une proportion binomiale p, la probabilité de couverture de cet intervalle est supérieure ou égale à 1 -α/2 lorsque la taille de l'échantillon est inférieure à une borne qui dépend de p. Ceci montre que, comme l'ont remarqué certains auteurs sur la base de résultats numériques, la probabilité de couverture de l'intervalle de confiance de Clopper-Pearson peut être largement supérieure au niveau de confiance 1 -α. Aussi, l'intervalle de confiance de Clopper-Pearson n'est pas adéquat dès que l'on veut garantir une probabilité de couverture proche du niveau de confiance spécifié.

Introduction

Interval estimation of a binomial proportion p is one of the most basic and methodologically important problems in practical statistics. A considerable literature exists on the topic and manifold methods have been suggested for bracketing a binomial proportion within a confidence interval.

Among those methods, the Clopper-Pearson Confidence Interval (CPCI), originally introduced in 1934 by Clopper and Pearson ([4]), is often referred as the "exact" procedure by some authors for it derives from the binomial distribution without resorting to any approximation to the binomial. However, despite this "exacteness", the CPCI is basically conservative because of the discreteness of the binomial distribution: given α ∈ (0, 1), the coverage probability of the 100(1 -α)% CPCI is above or equal to the nominal confidence level (1 -α).

In this paper, it is proved that this coverage probability is actually larger than or equal to 1 -α/2 if the sample size is less than ln(α/2)/ ln(max(p, 1p)). This bound basically depends on the proportion itself. Thence, as suggested by numerical results presented in [START_REF] Agresti | Approximate is better than "exact" for interval estimation of binomial proportions[END_REF] and [START_REF] Brown | Interval Estimation for a Binomial Distribution[END_REF], the CPCI is not suitable in practical situations when getting a coverage probability close to the specified confidence level is more desirable than guaranteeing a coverage probability above or equal to the said confidence level.

Theoretical results

Throughout the rest of this paper, α stands for some real value in the interval (0, 1) and n for some natural number.

We start by giving a description of the 100(1 -α)% CPCI, that is the CPCI with level of confidence (1 -α) where α ∈ (0, 1). This description is purposely brief for it focuses only on the material needed for stating proposition 1 below. For further details on the construction of the CPCI, the reader can refer to numerous papers and textbooks on statistics ( [START_REF] Agresti | Approximate is better than "exact" for interval estimation of binomial proportions[END_REF], [START_REF] Brown | Interval Estimation for a Binomial Distribution[END_REF], [?], [START_REF] Stuart | Kendall's Advanced Theory of Statistics, Fifth Edition[END_REF] amongst many others).

Let ( k ) k∈{0,...,n} be the sequence defined as follows. We put

0 := 0. ( 1 
)
For k ∈ {1, . . . , n}, k is defined as the unique solution in (0, 1) for θ in the equation

n i=k n i θ i (1 -θ) n-i = α/2. (2) 
Similarly, the sequence (u k ) k∈{0,...,n} is defined as follows. We set

u n := 1 (3)
and, for k ∈ {0, . . . , n -1}, u k is the unique solution in (0, 1) for θ in the equation

k i=0 n i θ i (1 -θ) n-i = α/2. ( 4 
)
Let X henceforth stand for a binomial variate for sample size n and binomial parameter p ∈ [0, 1]. In other words, X stands for the total number of successes in n independent trials with constant probability p of success. Since X is valued in {0, 1, . . . , n}, the random variables X and u X are well-defined. The 100(1 -α)% CPCI for size n is then the random interval ( X , u X ) whose lower and upper endpoints are X and u X respectively. The CPCI coverage probability is defined as the probability P ({ X < p < u X }) that the CPCI actually brackets the true value p of the proportion. The 100(1 -α)% CPCI is known to be conservative in the sense that its coverage probability is always above or equal to the confidence level ([2], [START_REF] Brown | Interval Estimation for a Binomial Distribution[END_REF], [START_REF] Clopper | The use of confidence of fiducial limits illustrated in the case of the binomial[END_REF]).

This standard result is refined by the following proposition whose proof is given in section 3.

Proposition 2.1 With the same notations as above, (i) If n < -ln(α/2)/ ln(2), then

P ({ X < p < u X }) = 0 for p = 0, ≥ 1 -α/2 for 0 < p ≤ (α/2) 1/n , = 1 for (α/2) 1/n < p < 1 -(α/2) 1/n , ≥ 1 -α/2 for 1 -(α/2) 1/n ≤ p < 1, = 0 for p = 1. (ii) If n ≥ -ln(α/2)/ ln(2), then P ({ X < p < u X }) = 0 for p = 0, ≥ 1 -α/2 for 0 < p < 1 -(α/2) 1/n , ≥ 1 -α for 1 -(α/2) 1/n ≤ p ≤ (α/2) 1/n , ≥ 1 -α/2 for (α/2) 1/n < p < 1, = 0 for p = 1.
The following result then easily derives from the proposition above.

Lemma 2.2 With the same notations as above, for every proportion p ∈ (0, 1) and every natural number n less than ln(α/2)/ ln(max(p, 1 -p)), the CPCI coverage probability is larger than or equal to 1 -α/2.

Proof: Since max(p, 1 -p) is larger than or equal to 1/2, -ln(α/2)/ ln(2) is less than ln(α/2)/ ln(max(p, 1 -p)). If n < -ln(α/2)/ ln(2), the result then follows from proposition 1, statement (i). If -ln(α/2)/ ln(2) ≤ n < ln(α/2)/ ln(max(p, 1 -p)), p is either larger than (α/2) 1/n or smaller than 1 -(α/2) 1/n and the result follows from proposition 1, statement (ii).

The theoretical results above are thus mathematical evidences that, as suggested in [START_REF] Agresti | Approximate is better than "exact" for interval estimation of binomial proportions[END_REF] and [START_REF] Brown | Interval Estimation for a Binomial Distribution[END_REF], the CPCI is inaccurate in the sense that "[...]its actual coverage probability can be much larger than 1 -α unless the sample size n is quite large."([3, Sec. 4.2.1]). 4.2.1).

Figures 1, 2 and 3 illustrate the foregoing by displaying the coverage probability of the 95% CPCI for p = 0.1, p = 0.05 and p = 0.01 respectively and sample sizes ranging from 1 to 500. In each figure, the value of ln(α/2)/ ln(max(p, 1 -p)) is represented by a vertical red line. On the left hand side of this line, coverage probabilities are all larger than or equal to 97.5%; on the right hand side of this same line, coverage probabilities can be less than 97.5% and even close to 95%. 

Proof

Given θ ∈ [0, 1], let P θ stand for the distribution of a binomial variate for sample size n with binomial parameter θ and let F θ be the distribution function defined for every real value x by 

F θ (x) = P θ ((-∞, x]). It is then convenient to set G θ (x) = P θ ([x, ∞))
and

F u k (k) = α/2 for every k ∈ {0, . . . , n -1}. (6) 
According to [1, Eq. 6.6.4, p. 263], for every given θ ∈ [0, 1],

G θ (k) = I θ (k, n -k + 1) for k ∈ {1, . . . , n}, (7) 
and

F θ (k) = 1 -I θ (k + 1, n -k) for k ∈ {0, . . . , n -1}. (8) 
Proof: Set F = {k ∈ {0, . . . , n} : u k ≤ p}. It follows from statement (ii) of lemma 2 that F is empty if and only if 0 ≤ p < 1 -(α/2) 1/n . Therefore, if 0 ≤ p < 1 -(α/2) 1/n , u X is larger than p and statement (i) holds true. Under the condition 1 -(α/2) 1/n ≤ p < 1, F is not empty. According to statement (ii) of lemma 2 and (3), we obtain that F = {0, . . . , L} with L ≤ n -1. Therefore, the event {u X ≤ p} is the event {X ≤ L} so that P ({u X ≤ p}) = F p (L). Since u L ≤ p, it follows from statement (i) of lemma 1 that F p (L) ≤ F u L (L). According to [START_REF] Johnson | Distributions in Statistics, Discrete Distributions[END_REF], the right hand side in this inequality equals α/2 and statement (ii) follows.

Statement (iii) trivially holds true since u X ≤ 1.

We now complete the proof of proposition 2.1. According to lemma 3.2, statement (iii), X < u X . Thereby, {p ≤ X } ⊂ {p < u X } so that P ({ X < p < u X }) = P ({p < u X }) -P ({p ≤ X }) = 1 -P ({p ≥ u X }) -P ({p ≤ X })

Since the condition 1-(α/2) 1/n ≤ (α/2) 1/n is equivalent to n ≥ -ln(α/2)/ ln(2), proposition 1 straightforwardly follows from lemmas 3.3 and 3.4.
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 1 Figure 1: The 95% CPCI-BS Coverage probabilities for proportion p = 0.1

  for every real value x. According to the definitions /2)/log(max(p,1-p)) = 71.9174
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 2 Figure 2: The 95% CPCI-BS Coverage probabilities for proportion p = 0.05
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 3 Figure 3: The 95% CPCI-BS Coverage probabilities for proportion p = 0.01

where I x (a, b) stands for the Incomplete Beta Function ([1, Eq. 6.2.1, p. 258, Eq. 6.6.2, p. 263, Eq. 26.5.1, p. 944]). Trivially, the maps θ ∈ [0, 1] -→ I θ (k + 1, n -k) and θ ∈ [0, 1] -→ I θ (k, n -k + 1) are strictly increasing. Thereby, we can straightforwardly state the following result.

The subsequent lemma states useful properties concerning the real values k and u k .

Lemma 3.2 With the same notations as above, (i) the sequence ( k ) k∈{0,...,n} is strictly increasing and n = (α/2) 1/n ;

(ii) the sequence (u k ) k∈{0,...,n} is strictly increasing and

(iii) for every given k ∈ {0, . . . , n}, k < u k .

Proof:

Proof of statement (i). Given k ∈ {1, . . . , n}, k ∈ (0, 1) and is therefore larger than 0 = 0. It then suffices to prove that k < k+1 for k ∈ {1, . . . , n -1} to establish the strict increasingness of the sequence

For every θ ∈ [0, 1], G θ (n) = θ n . It then follows from (5) that n n = α/2, which completes the proof of statement (i).

Proof of statement (ii). The strict increasingness of the sequence (u k ) k∈{0,...,n} derives from the same type of arguments as those used for proving statement (i). Given k ∈ {0, . . . , n -1}, u k belongs to (0, 1) and is therefore less than u n = 1. It then suffices to show that u k < u k+1 for every k ∈ {0, . . . , n -2} to establish the strict increasingness of the sequence.

Let k ∈ {0, . . . , n -2}. Trivially,

The result then follows from lemma 1, statement (i).

Given θ ∈ (0, 1), F θ (0) = (1 -θ) n . Therefore, by [START_REF] Johnson | Distributions in Statistics, Discrete Distributions[END_REF], we obtain that

Proof of statement (iii). According to (1), ( 3) and the values of n and u 0 , statement (iii) trivially holds true for k = 0 and k = n.

Consider any k ∈ {1, . . . , n -1}. We can write that

This follows from the definition of G θ , ( 5) and the fact that α < 1. Since F k (k) > F k (k -1) and α/2 = F u k (k) according to [START_REF] Johnson | Distributions in Statistics, Discrete Distributions[END_REF], we finally obtain that F k (k) > F u k (k). The fact that k < u k then straightforwardly derives from lemma 1, statement (i).

Lemma 3.3 With the same notations as above,

As far as statements (ii) and (iii) are concerned, it is convenient to introduce the set E = {k ∈ {0, . . . , n} : k ≥ p} . Statement (i) of lemma 2 implies the following facts. First, E is non empty if and only if p ≤ (α/2) 1/n ; second, if 0 < p ≤ (α/2) 1/n , E = {m, . . . , n} where m ≥ 1 according to [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF].

Thereby, X ≥ p if and only if X ≥ m. We therefore have that P ({ X ≥ p}) = G p (m). Now, since p ≤ m , it follows from lemma 1, statement (ii), that G p (m) ≤ G m (m). According to [START_REF] Johnson | Distributions in Statistics[END_REF], the right hand side in this inequality equals α/2. Therefore, we obtain that P ({ X ≥ p}) ≤ α/2.

If (α/2) 1/n < p ≤ 1, E is empty. Therefore, X < p and statement (iii) follows.

Lemma 3.4 With the same notations as above, (i) if 0 ≤ p < 1 -(α/2) 1/n , P u X ≤ p = 0, (ii) if 1 -(α/2) 1/n ≤ p < 1, P u X ≤ p ≤ α/2, (iii) if p = 1, P u X ≤ p = 1.