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Abstract

Given α ∈ (0, 1), the coverage probability of the 100(1−α)% Clopper-Pearson
Confidence Interval (CPCI) for estimating a binomial parameter p is proved
to be larger than or equal to 1−α/2 for sample sizes less than a bound that
depends on p. This is a mathematical evidence that, as noticed in recent
papers on the basis of numerical results, the CPCI coverage probability can be
much higher than the desired confidence level and thence, that the Clopper-
Pearson approach is mostly inappropriate for forming confidence intervals
with coverage probabilities close to the desired confidence level.
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Résumé

Soit α ∈ (0, 1). Considérons l’intervalle de confiance de Clopper-Pearson de
niveau de confiance 100(1−α)%. On prouve que pour estimer une proportion
binomiale p, la probabilité de couverture de cet intervalle est supérieure ou
égale à 1−α/2 lorsque la taille de l’échantillon est inférieure à une borne qui
dépend de p. Ceci montre que, comme l’ont remarqué certains auteurs sur
la base de résultats numériques, la probabilité de couverture de l’intervalle
de confiance de Clopper-Pearson peut être largement supérieure au niveau
de confiance 1− α. Aussi, l’intervalle de confiance de Clopper-Pearson n’est
pas adéquat dès que l’on veut garantir une probabilité de couverture proche
du niveau de confiance spécifié.

Mots-clés

Intervalle de confiance, Intervalle de confiance de Clopper-Pearson, Fonction
beta incomplète, Proportion binomiale, Probabilité de couverture.
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1 Introduction

Interval estimation of a binomial proportion p is one of the most basic and
methodologically important problems in practical statistics. A considerable
literature exists on the topic and manifold methods have been suggested for
bracketing a binomial proportion within a confidence interval.

Among those methods, the Clopper-Pearson Confidence Interval (CPCI),
originally introduced in 1934 by Clopper and Pearson ([4]), is often referred
as the ”exact” procedure by some authors for it derives from the binomial
distribution without resorting to any approximation to the binomial. How-
ever, despite this ”exacteness”, the CPCI is basically conservative because
of the discreteness of the binomial distribution: given α ∈ (0, 1), the cover-
age probability of the 100(1 − α)% CPCI is above or equal to the nominal
confidence level (1 − α).

In this paper, it is proved that this coverage probability is actually larger
than or equal to 1−α/2 if the sample size is less than ln(α/2)/ ln(max(p, 1−
p)). This bound basically depends on the proportion itself. Thence, as
suggested by numerical results presented in [2] and [3], the CPCI is not
suitable in practical situations when getting a coverage probability close to
the specified confidence level is more desirable than guaranteeing a coverage
probability above or equal to the said confidence level.

2 Theoretical results

Throughout the rest of this paper, α stands for some real value in the interval
(0, 1) and n for some natural number.

We start by giving a description of the 100(1 − α)% CPCI, that is the
CPCI with level of confidence (1 − α) where α ∈ (0, 1). This description is
purposely brief for it focuses only on the material needed for stating proposi-
tion 1 below. For further details on the construction of the CPCI, the reader
can refer to numerous papers and textbooks on statistics ([2], [3], [?], [7]
amongst many others).

Let (`k)k∈{0,...,n} be the sequence defined as follows. We put

`0 := 0. (1)

For k ∈ {1, . . . , n}, `k is defined as the unique solution in (0, 1) for θ in the
equation

n
∑

i=k

(

n
i

)

θi(1 − θ)n−i = α/2. (2)
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Similarly, the sequence (uk)k∈{0,...,n} is defined as follows. We set

un := 1 (3)

and, for k ∈ {0, . . . , n − 1}, uk is the unique solution in (0, 1) for θ in the
equation

k
∑

i=0

(

n
i

)

θi(1 − θ)n−i = α/2. (4)

Let X henceforth stand for a binomial variate for sample size n and binomial
parameter p ∈ [0, 1]. In other words, X stands for the total number of
successes in n independent trials with constant probability p of success.

Since X is valued in {0, 1, . . . , n}, the random variables `X and uX are
well-defined. The 100(1 − α)% CPCI for size n is then the random interval
(`X , uX) whose lower and upper endpoints are `X and uX respectively. The
CPCI coverage probability is defined as the probability P ({`X < p < uX})
that the CPCI actually brackets the true value p of the proportion. The
100(1−α)% CPCI is known to be conservative in the sense that its coverage
probability is always above or equal to the confidence level ([2], [3], [4]).

This standard result is refined by the following proposition whose proof
is given in section 3.

Proposition 2.1 With the same notations as above,

(i) If n < − ln(α/2)/ ln(2), then

P ({`X < p < uX}) = 0 for p = 0,
≥ 1 − α/2 for 0 < p ≤ (α/2)1/n,
= 1 for (α/2)1/n < p < 1 − (α/2)1/n,
≥ 1 − α/2 for 1 − (α/2)1/n ≤ p < 1,
= 0 for p = 1.

(ii) If n ≥ − ln(α/2)/ ln(2), then

P ({`X < p < uX}) = 0 for p = 0,
≥ 1 − α/2 for 0 < p < 1 − (α/2)1/n,
≥ 1 − α for 1 − (α/2)1/n ≤ p ≤ (α/2)1/n,
≥ 1 − α/2 for (α/2)1/n < p < 1,
= 0 for p = 1.

The following result then easily derives from the proposition above.
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Lemma 2.2 With the same notations as above, for every proportion p ∈
(0, 1) and every natural number n less than ln(α/2)/ ln(max(p, 1 − p)), the
CPCI coverage probability is larger than or equal to 1 − α/2.

Proof: Since max(p, 1− p) is larger than or equal to 1/2, − ln(α/2)/ ln(2)
is less than ln(α/2)/ ln(max(p, 1 − p)). If n < − ln(α/2)/ ln(2), the result
then follows from proposition 1, statement (i). If − ln(α/2)/ ln(2) ≤ n <
ln(α/2)/ ln(max(p, 1 − p)), p is either larger than (α/2)1/n or smaller than
1 − (α/2)1/n and the result follows from proposition 1, statement (ii).

The theoretical results above are thus mathematical evidences that, as
suggested in [2] and [3], the CPCI is inaccurate in the sense that “[...]its
actual coverage probability can be much larger than 1 − α unless the sample
size n is quite large.”([3, Sec. 4.2.1]). 4.2.1).

Figures 1, 2 and 3 illustrate the foregoing by displaying the coverage
probability of the 95% CPCI for p = 0.1, p = 0.05 and p = 0.01 respec-
tively and sample sizes ranging from 1 to 500. In each figure, the value of
ln(α/2)/ ln(max(p, 1 − p)) is represented by a vertical red line. On the left
hand side of this line, coverage probabilities are all larger than or equal to
97.5%; on the right hand side of this same line, coverage probabilities can be
less than 97.5% and even close to 95%.
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Figure 1: The 95% CPCI-BS Coverage probabilities for proportion p = 0.1

3 Proof

Given θ ∈ [0, 1], let Pθ stand for the distribution of a binomial variate for sam-
ple size n with binomial parameter θ and let Fθ be the distribution function
defined for every real value x by Fθ(x) = Pθ ((−∞, x]). It is then convenient
to set Gθ(x) = Pθ ([x,∞)) for every real value x. According to the definitions
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Figure 2: The 95% CPCI-BS Coverage probabilities for proportion p = 0.05
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Figure 3: The 95% CPCI-BS Coverage probabilities for proportion p = 0.01

of Fθ and Gθ, the left hand sides in (2) and (4) are trivially equal to Gθ(k)
and Fθ(k) respectively. Therefore, by definition of `k and uk,

G`k
(k) = α/2 for every k ∈ {1, . . . , n} (5)

and
Fuk

(k) = α/2 for every k ∈ {0, . . . , n − 1}. (6)

According to [1, Eq. 6.6.4, p. 263], for every given θ ∈ [0, 1],

Gθ(k) = Iθ(k, n − k + 1) for k ∈ {1, . . . , n}, (7)

and
Fθ(k) = 1 − Iθ(k + 1, n − k) for k ∈ {0, . . . , n − 1}. (8)
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where Ix(a, b) stands for the Incomplete Beta Function ([1, Eq. 6.2.1, p. 258,
Eq. 6.6.2, p. 263, Eq. 26.5.1, p. 944]). Trivially, the maps θ ∈ [0, 1] 7−→
Iθ(k + 1, n − k) and θ ∈ [0, 1] 7−→ Iθ(k, n − k + 1) are strictly increasing.
Thereby, we can straightforwardly state the following result.

Lemma 3.1 Given θ ∈ [0, 1],

(i) for every k ∈ {0, . . . , n − 1}, the map θ ∈ [0, 1] 7−→ Fθ(k) ∈ [0, 1] is
strictly decreasing;

(ii) for every k ∈ {1, . . . , n}, the map θ ∈ [0, 1] 7−→ Gθ(k) ∈ [0, 1] is strictly
increasing.

The subsequent lemma states useful properties concerning the real values
`k and uk.

Lemma 3.2 With the same notations as above,

(i) the sequence (`k)k∈{0,...,n} is strictly increasing and `n = (α/2)1/n;

(ii) the sequence (uk)k∈{0,...,n} is strictly increasing and u0 = 1 − (α/2)1/n.

(iii) for every given k ∈ {0, . . . , n}, `k < uk.

Proof:

Proof of statement (i). Given k ∈ {1, . . . , n}, `k ∈ (0, 1) and is therefore
larger than `0 = 0. It then suffices to prove that `k < `k+1 for k ∈ {1, . . . , n−
1} to establish the strict increasingness of the sequence (`k)k∈{0,...,n}.

Let k ∈ {1, . . . , n − 1}. Trivially, G`k+1
(k + 1) < G`k+1

(k). According to
(5), G`k+1

(k+1) = G`k
(k). It thus follows that G`k

(k) < G`k+1
(k). According

to lemma 1, statement (ii), we can conclude that `k < `k+1.
For every θ ∈ [0, 1], Gθ(n) = θn. It then follows from (5) that `n

n = α/2,
which completes the proof of statement (i).

Proof of statement (ii). The strict increasingness of the sequence (uk)k∈{0,...,n}

derives from the same type of arguments as those used for proving statement
(i). Given k ∈ {0, . . . , n − 1}, uk belongs to (0, 1) and is therefore less than
un = 1. It then suffices to show that uk < uk+1 for every k ∈ {0, . . . , n − 2}
to establish the strict increasingness of the sequence.

Let k ∈ {0, . . . , n − 2}. Trivially, Fuk+1
(k + 1) > Fuk+1

(k). According to
(6), Fuk+1

(k + 1) = Fuk
(k). Therefore, Fuk

(k) > Fuk+1
(k). The result then

follows from lemma 1, statement (i).
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Given θ ∈ (0, 1), Fθ(0) = (1 − θ)n. Therefore, by (6), we obtain that
Fu0

(0) = (1 − u0)
n = α/2.

Proof of statement (iii). According to (1), (3) and the values of `n and u0,
statement (iii) trivially holds true for k = 0 and k = n.

Consider any k ∈ {1, . . . , n − 1}. We can write that F`k
(k − 1) = 1 −

G`k
(k) = 1 − (α/2) > α/2. This follows from the definition of Gθ, (5) and

the fact that α < 1. Since F`k
(k) > F`k

(k − 1) and α/2 = Fuk
(k) according

to (6), we finally obtain that F`k
(k) > Fuk

(k). The fact that `k < uk then
straightforwardly derives from lemma 1, statement (i).

Lemma 3.3 With the same notations as above,

(i) if p = 0, P
({

`X ≥ p
})

= 1,

(ii) if 0 < p ≤ (α/2)1/n, P
({

`X ≥ p
})

≤ α/2

(iii) if (α/2)1/n < p ≤ 1, P
({

`X ≥ p
})

= 0.

Proof: Statement (i) is trivial since `X ≥ 0.
As far as statements (ii) and (iii) are concerned, it is convenient to intro-

duce the set E = {k ∈ {0, . . . , n} : `k ≥ p} . Statement (i) of lemma 2 implies
the following facts. First, E is non empty if and only if p ≤ (α/2)1/n; second,
if 0 < p ≤ (α/2)1/n, E = {m, . . . , n} where m ≥ 1 according to (1).

Thereby, `X ≥ p if and only if X ≥ m. We therefore have that P ({`X ≥
p}) = Gp(m). Now, since p ≤ `m, it follows from lemma 1, statement (ii),
that Gp(m) ≤ G`m

(m). According to (5), the right hand side in this inequal-
ity equals α/2. Therefore, we obtain that P ({`X ≥ p}) ≤ α/2.

If (α/2)1/n < p ≤ 1, E is empty. Therefore, `X < p and statement (iii)
follows.

Lemma 3.4 With the same notations as above,

(i) if 0 ≤ p < 1 − (α/2)1/n, P
({

uX ≤ p
})

= 0,

(ii) if 1 − (α/2)1/n ≤ p < 1, P
({

uX ≤ p
})

≤ α/2,

(iii) if p = 1, P
({

uX ≤ p
})

= 1.
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Proof: Set F = {k ∈ {0, . . . , n} : uk ≤ p}. It follows from statement (ii)
of lemma 2 that F is empty if and only if 0 ≤ p < 1 − (α/2)1/n. Therefore,
if 0 ≤ p < 1 − (α/2)1/n, uX is larger than p and statement (i) holds true.

Under the condition 1 − (α/2)1/n ≤ p < 1, F is not empty. According
to statement (ii) of lemma 2 and (3), we obtain that F = {0, . . . , L} with
L ≤ n − 1. Therefore, the event {uX ≤ p} is the event {X ≤ L} so that
P ({uX ≤ p}) = Fp(L). Since uL ≤ p, it follows from statement (i) of lemma 1
that Fp(L) ≤ FuL

(L). According to (6), the right hand side in this inequality
equals α/2 and statement (ii) follows.

Statement (iii) trivially holds true since uX ≤ 1.

We now complete the proof of proposition 2.1. According to lemma 3.2,
statement (iii), `X < uX . Thereby, {p ≤ `X} ⊂ {p < uX} so that

P ({`X < p < uX}) = P ({p < uX}) − P ({p ≤ `X})
= 1 − P ({p ≥ uX}) − P ({p ≤ `X})

Since the condition 1−(α/2)1/n ≤ (α/2)1/n is equivalent to n ≥ − ln(α/2)/ ln(2),
proposition 1 straightforwardly follows from lemmas 3.3 and 3.4.
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