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Foreword

This research report is an extended version of two previous reports, namely,
“A limit theorem for sequences of independent random vectors with unknown
distributions and its applications to non-parametric detection”, RR-2004001-
SC, Collection des Rapports de Recherche de l’ENST Bretagne, November
2004, written by D. Pastor and R. Gay, and “On the detection of signals with
unknown distributions and priors in white Gaussian noise”, RR-2006001-SC,
Collection des Rapports de Recherche de l’ENST Bretagne, January 2006,
written by D. Pastor.

In this new version, the proof of the main theoretical result is improved, more
application fields and experimental results are given. Moreover, some typing
faults have been corrected.

Avant-propos

Ce rapport de recherche est une version étendue de deux rapports antérieurs,
à savoir, “A limit theorem for sequences of independent random vectors
with unknown distributions and its applications to non-parametric detec-
tion”, RR-2004001-SC, Collection des Rapports de Recherche de l’ENST
Bretagne, novembre 2004, écrit par D. Pastor et R. Gay, et “On the de-
tection of signals with unknown distributions and priors in white Gaussian
noise”, RR-2006001-SC, Collection des Rapports de Recherche de l’ENST
Bretagne, janvier 2006, écrit par D. Pastor.

Dans cette nouvelle version, la démonstration du résultat théorique est amélio-
rée, les applications ne se limitent pas à la détection de signaux et de nou-
veaux résultats expérimentaux sont présentés, quelques fautes de frappe ont
été corrigées.
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Abstract

Consider observations where signals are randomly present or absent in in-
dependent additive white Gaussian noise. We address the case where the
probability distributions and the probabilities of presence of the signals are
unknown. If the probabilities of presence of the signals are all less than or
equal to some upper-bound in [0, 1), a limit theorem established in this pa-
per states that the noise standard deviation is the only positive real number
that satisfies a specific convergence criterion when both the number of ob-
servations and the minimum amplitude of the signals tend to infinity. From
this theorem, we derive an estimate of the noise standard deviation. This
estimate is called the Essential Supremum Estimate (ESE). This estimate
serves to adjust the Essential Supremum Test (EST), a binary hypothesis
test introduced in this paper for the detection of signals with norms lower-
bounded by some known real value and probabilities of presence less than or
equal to one half.

We then present experimental results in the case of practical importance
where the signals are independent two-dimensional random vectors uniformly
distributed on a circle centred at the origin with known radius. Such random
signals model modulated sinusoidal carriers whose amplitudes equal the ra-
dius of the circle and whose phases are uniformly distributed in [0, 2π]. We
assume that the signals have their probabilities of presence less than or equal
to one half. The empirical bias and the empirical Mean-Square Error of the
ESE are computed; we also calculate the Binary Error Rate of the EST via
a Monte-Carlo simulation when the EST is used to achieve the non-coherent
detection of the carriers. Experimental results suggest that the asymptotic
conditions of the limit theorem are not so constraining and can certainly be
significantly relaxed in practice.

Keywords

Binary hypothesis testing, decision, estimation, likelihood theory, multivari-
ate normal distribution, thresholding, signal processing, statistical test.
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Résumé

Soient des observations où des signaux sont aléatoirement préents ou absents
dans un bruit blanc Gaussien additif et indépendent. Nous Considérons le cas
où les distributions de probabilité et les probabilités de présence des signaux
sont inconnues. Si les probabilités de présence sont inférieures ou égales à une
valeur de [0, 1), un théorème limite établi dans ce papier énonce que l’écart-
type du bruit est la seule valeur positive qui satisfait un critère spécifique
de convergence quand le nombre d’observations et l’amplitude minimale des
signaux tendent vers l’infini. Sur la base de ce théorème, nous proposons une
estimation de l’écart-type du bruit. Cette estimée est utilisée pour ajuster
un test d’hypothèse d’hypothèse binaire pour la détection de signaux dont
les probabilités de présence sont inférieures ou égales à un demi et dont les
normes admettent une borne inférieure connue.

Nous présentons ensuite des résultats expérimentaux dans le cas, im-
portant en pratique, où les signaux sont indépendants, de dimension 2 et
uniformément répartis sur un cercle centré à l’origine et de rayon connu. De
tels signaux peuvent être considérés comme des modèles pour des porteuses
sinusöıdales modulées dont les amplitudes sont égales au rayon du cercle et
dont les phases sont uniformément réparties sur [0, 2π]. On suppose que les
probabilités de présence des signaux sont inférieures ou égales à 1/2. Le biais
et l’écart quadratique empiriques de l’estimateur sont calculés. Par une simu-
lation de Monte-Carlo, nous évaluons aussi le Taux d’erreur Binaire de notre
test lorsque celui-ci sert à d’etecter les porteuses. Les résultats expérimentaux
suggèrent que les conditions asymptotiques du théorème limite ne sont pas
si contraignantes dans la pratique.

Mots-clés

Décision, distribution multidimensionelle Gaussienne, estimation, rapport de
vraisemblance, test d’hypothèses, test statistique, traitement du signal.
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1 Introduction

In signal processing applications, we often meet sequences of d-dimensional
real random observations that satisfy the following assumptions: each ob-
servation is either the sum of some random signal and independent noise
or noise alone; noise is assumed to be Gaussian distributed with null mean
and covariance matrix equal to σ2

0Id where Id is the d × d identity matrix.
Summarizing these assumptions, we say that noise is “white and Gaussian”
with standard deviation σ0 and that each observation results from some sig-
nal randomly present or absent in independent and Additive White Gaussian
Noise (AWGN).

In many applications, very little is known about the signals or most of
their describing parameters ([3, Section I]), so that the probability distribu-
tions of the signals are partially or definitely unknown. This issue is met
in Electronic (Warfare) Support Measure (ESM) systems faced with non-
cooperant communications. This is also the case with passive sensors such as
sonar systems that receive signals resulting from noise generated by motors
and hull vibrations transmitted through a fluctuating environment. Another
example is that of an echo received by a radar system from a target since
this echo results from some kind of convolution between a known transmitted
pulse and an unknown environment.

In situations such as those described above, the detection of the signals
cannot be achieved via standard likelihood theory because the usual Bayes,
minimax and Neyman-Pearson criteria require full knowledge of the prob-
ability distributions of these signals. Alternative solutions are then Wald’s
tests [14], which have best constant (resp. average) power on a family of
surfaces for making a decision between simple (resp. composite) hypotheses,
non-parametric and robust detection ([10, section III.E]), as well as Gen-
eralized Likelihood Ratio Tests ([4]). Constant False Alarm Rate (CFAR)
systems ([7]), standardly used in radar processing for detecting targets with a
specified false alarm rate, typically derive from such alternative approaches.

In addition to our lack of prior knowledge about the signals, the noise
standard deviation is sometimes unknown and must be estimated in order to
process the observations. In general, the estimation is achieved by resorting
to the physics of the problem. Two examples thereof are the following ones.

A radar target is detected when the observation is above a threshold
height. In order to guarantee a specified false alarm probability, the thresh-
old height must be chosen as a function of the noise standard deviation.
When the latter can fluctuate, it is estimated so as to adjust the threshold
height. By resorting to the physics of the radar, standard CFAR systems
select observations that are considered as signal-free and called “reference
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cells”; the noise standard deviation is then computed on the basis of these
reference cells. The smaller the number of reference cells that contain radar
echoes and not noise only, the better the estimate. Selecting the reference
cells is no easy task ([7]).

A second example is the denoising of speech signals corrupted by inde-
pendent AWGN since most standard filtering techniques must be adjusted
with an estimate of the noise standard deviation when the latter is unknown.
A standard solution involves estimating the noise standard deviation on the
basis of periods of time considered as signal-free by a Voice Activity Detec-
tor, which, of course, can make errors. The noise standard deviation can
also be estimated by computing the smallest eigenvalues of the noisy speech
autocorrelation matrix but the computation of the eigenvalues may prove
unstable depending on the matrix size.

Motivated by practical issues such as those described above, this paper
introduces a theoretical result and, on the basis of this result, addresses the
estimation of the noise standard deviation and the detection of the signals
when the probability distributions of the signals are unknown.

More specifically, the theoretical result, namely theorem 2.1, is estab-
lished in section 2. It concerns any sequence of mutually independent ob-
servations that are d-dimensional real random vectors where signals with
unknown probability distributions are randomly present or absent with un-
known probabilities of presence in independent AWGN. Theorem 2.1 does
not assume that the available observations are identically distributed. It de-
rives from a corollary of Kolmogorov’s classical strong limit theorem but not
from usual generalizations of the central limit theorem such as the Lindeberg
and the Lyapunov theorems.

On the basis of theorem 2.1, an estimate of the noise standard deviation
is introduced in section 3. This estimate is called the Essential Supremum
Estimate (ESE) for the crucial role played by the essential supremum norm
in theorem 2.1. In the same section, and as a continuation of the results pre-
viously published in [8], we address the particular case where the amplitudes
of the signals are above or equal to some known α ∈ [0,∞) and the signals
are less present than absent in the sense that their probabilities of presence
are less than or equal to one half. Under these assumptions, we propose
a test for the detection of these signals in AWGN with unknown standard
deviation. This test, the Essential Supremum Test (EST), derives from the
ESE and [8, Theorem VII.1].

Section 4 presents the empirical bias and the empirical Mean-Square Error
(MSE) of the ESE, as well as the Binary Error Rate (BER) of the EST when
the observations, and thus the signals and noise, are two-dimensional random
vectors and the signals are uniformly distributed on the circle centred at
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the origin with radius α. This model is relevant in many signal processing
applications because the two components of each signal can be regarded as
the in-phase and quadrature components of a modulated sinusoidal carrier
whose amplitude is α and whose phase is uniformly distributed in [0, 2π].

Section 5 concludes this paper by providing several suggestions regarding
theoretical extensions and various applications, especially in radar process-
ing, electronic warfare and speech processing.

2 A limit theorem for sequences of indepen-

dent random vectors that have unknown

probability distributions

2.1 Notations and terminology

Every random vector and every random variable encountered hereafter is
assumed to be defined on the same probability space (Ω,B,P) and for every
ω ∈ Ω by setting this random vector or variable to 0 on any negligible subset
where it could be undefined. As usual, if a property P holds true almost
surely, we write P (a-s).

As above, d stands for some fixed natural number and every random
vector considered below is d-dimensional. The set of all the sequences of
d-dimensional random vectors defined on Ω is denoted by S.

In what follows, ‖ · ‖ is the standard Euclidean norm in R
d. For every

given random vector Y : Ω → R
d and any τ ∈ R, the notation I(‖Y ‖ ≤ τ)

stands for the indicator function of the event {‖Y ‖ ≤ τ}.
Given some positive real number σ0, we say that a sequence X = (Xk)k∈N

of d-dimensional real random vectors is a d-dimensional white Gaussian noise
(WGN) with standard deviation σ0 if the random vectors Xk, k ∈ N, are
mutually independent and identically Gaussian distributed with null mean
vector and covariance matrix σ2

0Id. For the sake of brevity, we will henceforth
write independent instead of mutually independent.

The minimum amplitude of an element Λ = (Λk)k∈N of S is defined as the
supremum a(Λ) of the set of those α ∈ [0,∞] such that, for every natural
number k, ‖Λk‖ is larger than or equal to α (a-s):

a(Λ) = sup {α ∈ [0,∞] : ∀k ∈ N, ‖Λk‖ ≥ α (a-s)} . (1)

For every given Λ = (Λk)k∈N, the reader will easily verify that a(Λ) is finite,
that ‖Λk‖ ≥ a(Λ) for every k ∈ N and that, given α ∈ [0,∞], a(Λ) ≥ α if
and only if, for every k ∈ N, ‖Λk‖ ≥ α (a-s).
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If f is some map of S into R, we will say that the limit of f is ` ∈ R

when a(Λ) tends to ∞ and write that lim
a(Λ)→∞ f(Λ) = ` if, for any positive

real value η, there exists some α0 ∈ (0,∞) such that, for every α ≥ α0 and
every Λ ∈ S such that a(Λ) ≥ α, we have |f(Λ) − `| ≤ η.

Given some non-negative real number a, let La(Ω,Rd) stand for the set
of those d-dimensional real random vectors Y : Ω → R

d for which E[‖Y ‖a] <
∞. We hereafter deal with the set of those elements Λ = (Λk)k∈N of S
such that Λk ∈ La(Ω,Rd) for every k ∈ N and supk∈N E[‖Λk‖a] is finite.
A suitable and standard notation for this set is `∞(N, La(Ω,Rd)) because,
although `∞(N, L0(Ω,Rd)) is trivially S and La(Ω,Rd) is a Banach space
only if 1 ≤ a < ∞, La(Ω,Rd) remains a complete metric space even when
0 < a < 1 ([5]).

Now, let L∞(Ω,Rd) be the Banach space whose elements are the real
random vectors Y : Ω → R

d whose essential supremum norm ‖Y ‖∞ is finite.
Consider the set `∞(N, L∞(Ω,Rd)) of those sequences Λ = (Λk)k∈N of S
such that Λk ∈ L∞(Ω,Rd) for every k ∈ N and supk∈N ‖Λk‖∞ is finite. It
is a Banach space once it is endowed with the norm ‖ · ‖∞ defined for any
element Λ = (Λk)k∈N of S by ‖Λ‖∞ = supk∈N

‖Λk‖∞. For every given k ∈ N,
‖Λk‖ is then less than or equal to ‖Λ‖∞ (a-s). If α ∈ [0,∞], ‖Λ‖∞ ≤ α if and
only if, for every k ∈ N, ‖Λk‖ ≤ α (a-s). For every k ∈ N, a(Λ) ≤ ‖Λk‖ ≤
‖Λ‖∞ (a-s).

If f is a map of `∞(N, L∞(Ω,Rd)) into R, we say that the limit of f is
` ∈ R when ‖Λ‖∞ tends to 0 and write that lim‖Λ‖∞→0 f(Λ) = ` if, given any
positive real value η, there exists some α0 ∈ (0,∞) such that, for every real
value α ≤ α0 and every Λ ∈ `∞(N, L∞(Ω,Rd)) such that ‖Λ‖∞ ≤ α, we have
|f(Λ) − `| ≤ η.

Given two (possibly extended) real numbers a and b such that 0 ≤ a ≤
b ≤ ∞, note that

`∞(N, Lb(Ω,Rd)) ⊂ `∞(N, La(Ω,Rd)). (2)

We call a thresholding function any non-decreasing continuous and
positive real function θ : [0,∞) → (0,∞) such that θ(ρ) = Cρ + γ(ρ) where
0 < C < 1, γ(ρ) is positive for sufficiently large values of ρ and limρ→∞ γ(ρ) =
0; given any q ∈ [0,∞), Υq will stand for the map of [0,∞) into [0,∞) defined
for every x ∈ [0,∞) by

Υq(x) =

∫ x

0

tq+d−1e−t2/2dt. (3)
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2.2 The theoretical result

Let ε = (εk)k∈N be a sequence of random variables valued in {0, 1}, Λ =
(Λk)k∈N stand for some sequence of d-dimensional real random vectors and
X = (Xk)k∈N be some d-dimensional WGN with standard deviation σ0. Sup-
pose that, for every k ∈ N, Λk, Xk and εk are independent.

Theorem 2.1 stated below concerns the sequence U = εΛ + X, that is,
the sequence U = (Uk)k∈N such that, for every k ∈ N, Uk = εkΛk + Xk. In
the theorem statement, the random vectors Uk, k ∈ N, are assumed to be
independent. Before stating the result, it is worth mentioning the following.

The sequence U basically models a sequence of independent observations
where random signals are either present or absent in independent AWGN:
noise is modelled by the sequence X; given k ∈ N, Λk stands for some possible
random signal and εk models the possible occurrence of Λk. The two possible
values for εk form a hypothesis pair according to which the observation is
distributed: the null hypothesis is that εk = 0 and the alternative one is εk =
1. Even though this model introduces a priori probabilities of presence and
absence, the importance of these probabilities will be significantly reduced
by theorem 2.1 since this result assumes that these probabilities are upper-
bounded by a positive real number less than one.

We now state the following theorem whose proof is given in appendix .

Theorem 2.1 Let U = (Uk)k∈N be some element of S such that U = εΛ+X
where Λ = (Λk)k∈N, X = (Xk)k∈N and ε = (εk)k∈N are an element of S, some
d-dimensional WGN with standard deviation σ0 and a sequence of random
variables valued in {0, 1} respectively.

Assume that

(Ass. 1) for every k ∈ N, Λk, Xk and εk are independent;

(Ass. 2) the random vectors Uk, k ∈ N, are independent;

(Ass. 3) the set of priors {P({εk = 1}) : k ∈ N} has an an upper bound
p ∈ [0, 1) and the random variables εk, k ∈ N, are independent;

(Ass. 4) there exists some ν ∈ (0,∞] such that Λ ∈ `∞(N, Lν(Ω,Rd)).

Let r and s be any two non-negative real numbers such that 0 ≤ s <
r ≤ ν/2. Given some natural number m and any pair (σ, T ) of positive real
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numbers, define the random variable ∆m(σ, T ) by

∆m(σ, T ) =

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ σT )

m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ σT )

− σr−sΥr(T )

Υs(T )

∣∣∣∣∣∣∣∣∣∣

. (4)

Then, given any thresholding function θ,

(i) σ0 is the unique positive real number σ such that, for every β0 ∈ (0, 1],

lim
a(Λ)→∞

∥∥∥∥ lim sup
m

∆m(σ, βθ(a(Λ)/σ))

∥∥∥∥
∞

= 0 (5)

uniformly in β ∈ [β0, 1];

(ii) if, in addition, ν = ∞, σ0 is such that, for every β0 ∈ (0, 1],

lim
‖Λ‖∞→0

∥∥∥∥ lim sup
m

∆m(σ0, βθ(‖Λ‖∞/σ0))

∥∥∥∥
∞

= 0 (6)

uniformly in β ∈ [β0, 1].

Throughout the rest of the paper, the notations introduced in the forego-
ing statement are used with the same meaning and always under assumptions
(Ass. 1-4).

For τ ∈ [0,∞), the ratio
∑m

k=1 ‖Uk‖rI(‖Uk‖ ≤ τ)/
∑m

k=1 ‖Uk‖sI(‖Uk‖ ≤ τ)
is defined everywhere for the following reason. Let x1, x2, . . . , xm be m real
numbers. If there exists at least one natural number k ∈ {1, . . . , m} such
that xk 6= 0, the finiteness of the ratio

∑m
k=1 |xk|r/

∑m
k=1 |xk|s is trivial. Since

r > s, the definition of this ratio is then extended by continuity by setting∑m
k=1 |xk|r/

∑m
k=1 |xk|s = 0 if (x1, . . . , xm) = (0, . . . , 0).

Theorem 2.1 concerns the positive solutions of Eq. (5) only because
σ = 0 trivially satisfies Eq. (5) regardless of the specific convergence involved.
Straightforwardly, Eq. (5) is also satisfied for all σ ∈ [0,∞) when r = s ≥ 0.
This explains why it is assumed that r > s ≥ 0. Finally, statement (i) is of
more interest than statement (ii). First, the former specifies the uniqueness
of the solution in σ to Eq. (5) whereas this uniqueness is not stated by
the latter and remains an open question; second, the assumption ν = ∞ is
strong since, according to Eq. (2), `∞(N, L∞(Ω,Rd)) is a subset of every
`∞(N, Lν(Ω,Rd)), ν ∈ [0,∞).

11



3 Application to the estimation of the noise

standard deviation and the detection of the

signals

3.1 The Essential Supremum Estimate

Basically, Eq. (5) means the following. Let ν ∈ (0,∞), β0 ∈ (0, 1] and
consider some positive real value η. Then, there exists some positive real
number α0 with the following property: for every real number α larger than
or equal to α0, every element Λ of Lν(Ω,Rd) whose minimum amplitude is
larger than or equal to α, and every β ∈ [β0, 1], there exists a negligible
subset Ωβ of Ω such that, for every ω ∈ Ω \Ωβ, ∆m (σ0, βθ(α/σ0)) (ω) ≤ η if
the sample size m is large enough.

Consider now a finite subset I of [β0, 1], a real number α ≥ α0 and an
element Λ of Lν(Ω,Rd) whose minimum amplitude is larger than or equal to
α. According to the foregoing, every β ∈ I can be assigned to a negligible
subset Ωβ ⊂ Ω outside which ∆m (σ0, βθ(α/σ0)) is less than or equal to η
when m is large enough. The finite union of these negligible subsets is also
a negligible subset of Ω and, outside this union, maxβ∈I ∆m (σ0, βθ(α/σ0)) is
less than or equal to η and, thus, small.

The foregoing suggests proceeding as follows to estimate σ0, given m
observations Uk = εkΛk + Xk where Λ ∈ Lν(Ω,Rd) with a(Λ) ≥ α: choose
a thresholding function θ, two values r and s such that 0 ≤ s < r ≤ ν/2, a
finite subset I of (0, 1] and a search interval included in (0,∞); estimate σ0

by a possibly local minimum σ̂0 of the discrete cost maxβ∈I ∆m (σ, βθ(α/σ))
when σ ranges over the search interval; the value σ̂0 is henceforth called the
Essential Supremum Estimate (ESE) of the noise standard deviation. In the
rest of this paper, the notation σ̂0 will always stand for this estimate.

A great number of such estimates exist, depending on our choice for the
thresholding function θ, the set I, the values r and s and the search interval.
Henceforth, the ESE is computed with the following choices for r, s and I.

In most applications of importance, the signals have “finite energy” in
the sense that the second order moments E[‖Λk‖2], k ∈ N, are finite. With
the notations used so far, this corresponds to the assumption that ν = 2.
Since the values r and s must verify the inequalities 0 ≤ s < r ≤ 1, a rather
natural choice is s = 0 and r = 1.

We set I = {β` = `/L : ` = 1, 2, . . . , L} where L is some natural number.
On the basis of preliminary experimental results such as those of section 4, we
take L = m because it seems a reasonable trade-off between computational
load and accuracy.
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Under the “finite energy” assumption and with the choice proposed above
for I, the ESE considered henceforth is a possibly local minimum σ̂0 of

sup
`∈{1,...,L}





∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖I(‖Uk‖ ≤ β`σθ(α/σ))

m∑

k=1

I(‖Uk‖ ≤ β`σθ(α/σ))

− σ

∫ β`θ(α/σ)

0

tde−t2/2dt

∫ β`θ(α/σ)

0

td−1e−t2/2dt

∣∣∣∣∣∣∣∣∣∣





(7)

when σ ranges over a search interval to specify. Any minimization routine for
scalar bounded non-linear functions is suitable for the computation of σ̂0. For
instance, the experimental results presented in the sequel were obtained with
the MATLAB routine fminbnd.m based on parabolic interpolation ([11]). In the
next section, we propound a thresholding function and a search interval under
the assumption that the signals are less present than absent in the sense that
their probabilities of presence are less than or equal to one half.

3.2 The case of signals less present than absent: a
thresholding function, a test for the signal detec-

tion and a search interval

3.2.1 A thresholding function

For every given ρ ∈ [0,∞), let ξ(ρ) be the unique positive solution for x in
the equation

0F1(d/2; ρ2x2/4) = eρ2/2, (8)

where 0F1 is the generalized hypergeometric function ([6, p. 275]).
The map ξ is a thresholding function with C = 1/2. This follows from

the three following facts: first, the increasingness of the generalized hyperge-
ometric function 0F1(d/2 ; ·) and that of the function of ρ in the right-hand
side of Eq. (8) imply the increasingness of ξ; second, ξ is a positive map
because ξ(0) =

√
d; third, ξ(ρ) = (ρ/2) + (log 2/ρ)(1 + ψ1(ρ)) if d = 1 and

ξ(ρ) = (ρ/2)+(d−1)(log ρ/ρ)(1+ψd(ρ)) otherwise, with limρ→+∞ ψd(ρ) = 0
for all d ≥ 1 ([8, Lemma VI.1]).

When the signals are less present than absent, the use of this thresholding
function for the computation of the ESE is particularly relevant. We now
explain why.

Given a thresholding function θ and under the assumptions of theo-
rem 2.1, it follows from lemma C.1 that the probability P({‖Λk + Xk‖ ≤
σ0θ(a(Λ)/σ0)}) tends to 0 uniformly in k when a(Λ) tends to infinity and
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that the faster the convergence of P({‖Λk +Xk‖ ≤ σ0θ(a(Λ)/σ0)}) to 0, the
better.

Now, assume that the signals are less present than absent. We keep this
assumption in the rest of this section. Given h ∈ [0,∞), let the thresholding
test Th with threshold height h stand for the map I[h,∞)(‖·‖), that is, the map
such that Th(u) = 1 if ‖u‖ ≥ h and Th(u) = 0 otherwise. Then, according
to [8, Theorem VII-1], for every k ∈ N, the probability of error of the test
Tσ0ξ(a(Λ)/σ0) for the decision about the value of εk is less than or equal to
V (a(Λ)/σ0) where, for every ρ ∈ [0,∞),

V (ρ) =
e−ρ2/2

2d/2Γ(d/2)

∫ ξ(ρ)

0

e−t2/2tn−1
0F1(d/2 ; ρ2t2/4)dt

+
1

2

[
1 − 1

2d/2−1Γ(d/2)

∫ ξ(ρ)

0

e−t2/2td−1dt

]
, (9)

and where Γ is, as usual, the standard (complete) gamma function. The
function V (ρ) decreases very rapidly when ρ increases. Therefore, when
a(Λ) increases, the probability of error of the test Tσ0ξ(A/σ0) and thus the
probability P({‖Λk + Xk‖ ≤ σ0ξ(a(Λ)/σ0)}) tend to 0 uniformly in k and,
above all, very rapidly. This is what we need. Thus, we recommend and use
the thresholding function ξ to compute the ESE when signals are less present
than absent.

3.2.2 The Essential Supremum Test

Given α ∈ [0,∞), the test I (‖ · ‖ ≥ σ̂0ξ(α/σ̂0)) assigns, to a given d-dimen-
sional observation, the value 1 if the norm of the observation is above or equal
to σ̂0ξ(α/σ̂0) and 0 otherwise. This test is henceforth called the Essential
Supremum Test (EST). Strictly speaking, it is not a thresholding test since
the threshold height to which the norm of a given observation is compared
is the random variable σ̂0ξ(α/σ̂0). However, with a slight abuse of language,
we will denote it by Tσ̂0ξ(α/σ̂0).

Assume that the signals are less present than absent and have norms
larger than or equal to α. If α and the sample size m are large enough, the
ESE σ̂0 should be a good estimate of σ0; therefore, we can expect that the
performance of the EST approaches that of the test Tσ0ξ(α/σ0) and, thus, that
the probability of error of the EST does not significantly exceed V (α/σ0). If
the probabilities of presence of the signals all equal one half and the signals
are uniformly distributed on αSd−1, which is the sphere centred at the origin
with radius α in R

d, the probability of error of the test Tσ0ξ(α/σ0) is V (α/σ0)
for the detection of any of these signals (see [8, Theorem VII.1]). Hence, in
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this particular case, the probability of error of the EST should become close
to V (α/σ0) when m and α are large enough.

The computation of the probability of error of the EST is still an open
issue and the foregoing claims remain intuitive only. However, the experi-
mental results presented in section 4 agree with them.

3.2.3 A search interval

We conclude this section by presenting a search interval for the computation
of the ESE. This search interval is defined so that the EST satisfies two
constraints. In what follows, U[k], k = 1, 2, . . . , m, stands for the sequence of
observations U1, U2, . . . , Um, sorted by increasing norm.

The left endpoint of the search interval is chosen so as to guarantee that
the EST accepts a minimum number of times the null hypothesis, i.e. the
hypothesis that no signal is present. More specifically, let Q be some positive
real number less than or equal to 1 − m

4(m/2−1)2
. According to Bienaymé-

Chebyshev’s inequality, the probability that the number of observations due
to noise alone is above kmin = m/2 − hm is larger than or equal to Q if
h = 1/

√
4m(1 −Q). The lower bound of the search interval is then set to

σmin = ‖U[kmin]‖/
√

d. For every non-negative real value ρ, ξ(ρ) ≥
√

d ([8]).
Therefore, an ESE above or equal to σmin guarantees a minimum of kmin

acceptances of the null hypothesis by the EST, whatever the value of the
minimum amplitude of the signals.

The right endpoint is computed so as to guarantee that the EST accepts
at least once the alternative hypothesis, i.e. the hypothesis that some signal
is present. Hence, the upper bound of the search interval is fixed to σmax =
‖U[m]‖/

√
d. An estimate σ̂0 larger than σmax would imply that ‖Uk‖ ≤

σ̂0ξ(α/σ̂0) for every k = 1, 2, . . . , m, since ξ(ρ) ≥
√

d for all ρ ∈ [0,∞).
The outcome of the EST could then be that no signal is present whereas
the full absence of signals amongst m observations is hardly probable when
m is large, provided that the probabilities of presence are not too small.
The experimental results presented in the sequel were obtained by choosing
Q = b(1 − m

4(m/2−1)2
) × 1000c/1000 where bxc rounds the real value x to the

nearest integer smaller than or equal to x.
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4 Application to modulated sinusoidal carri-

ers in AWGN: empirical bias and empirical

MSE of the ESE, non-coherent detection of

the carriers via the EST

The statistical properties of the ESE and the probabilities of error of the first
and second kind of the EST are not known yet. Hence, in this section, we
will restrict ourselves to some experimental results concerning the following
case study.

The observations considered below, and thus the signals and noise, are
two-dimensional random vectors (d = 2), or equivalently, complex random
variables. We assume that the norms of the random signals all equal some
known value α, and that each random signal is, in fact, uniformly distributed
on the circle αS1 centred at the origin with radius α. Therefore, the two
components of each signal can be regarded as the in-phase and quadrature
components of some modulated sinusoidal carrier with amplitude α and phase
uniformly distributed in [0, 2π]. This model is relevant in many applications.

In what follows, we address the case where the probabilities of presence of
the carriers all equal some unknown p ∈ (0, 1/2]. Consequently, the carriers
are less present than absent and we make use of the results of section 3.2. In
particular, note that the expression of the thresholding function ξ introduced
in paragraph 3.2.1 simplifies in the two-dimensional case considered in this
section: according to [1, Eq. 9.6.47, p. 377], for every x ∈ [0,∞),

I0(x) = 0F1(1; x2/4), (10)

where I0 is the zeroth-order modified Bessel function of the first kind. There-
fore, by setting d = 2 in Eq. (8), we obtain, in the two-dimensional case and
for every given ρ ∈ [0,∞)

ξ(ρ) = I−1
0 (eρ2/2)/ρ. (11)

In the next subsection, we present the absolute value |Bias| of the empir-
ical bias and the empirical MSE of the ESE when this estimate is obtained
by minimizing Eq. (7) when the search interval is computed according to
paragraph 3.2.3 and the thresholding function is given by Eq. (11).

In subsection 4.2, the EST of paragraph 3.2.2 is used to make a decision
about the value of every given εk, k = 1, 2, . . . , m. This amounts to achieving
the so-called “non-coherent detection of the modulated sinusoidal carriers”
([10, Example III.B.5, p. 65]), the modulated carriers being represented by
the random signals Λk, k = 1, 2, . . . , m. This detection problem is standard
and arises in many applications.
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4.1 Empirical bias and MSE of the ESE when obser-
vations are noisy modulated sinusoidal carriers

Given N independent copies of the sequence U1, U2, . . . , Um, where the ob-
servations U1, U2, . . . , Um obey the assumptions introduced above, we can
obtain N samples of the ESE and, then, calculate the empirical bias and
the empirical MSE of the ESE. In this respect, tables 1, 2 and 3 display the
absolute value of the empirical bias and the empirical MSE on the basis of
N = 500 samples of the ESE, when the signals have the same amplitude α
and the same probability of presence p equal to 0.1, 0.3 and 0.5, respectively.
These results comply with theorem 2.1 since the larger the amplitude α, the
smaller the bias and the MSE of the estimate. These experimental results
also show that the ESE quite rapidly becomes a reasonably good estimate of
σ0 with increasing values for α and m.

α 0.5 1 1.5 2 2.5 3 3.5 4

m = 100
|Bias| 0.212 0.119 0.095 0.063 0.044 0.039 0.038 0.048
MSE 0.166 0.095 0.068 0.038 0.025 0.020 0.015 0.012

m = 200
|Bias| 0.136 0.114 0.048 0.012 0.011 0.028 0.019 0.021
MSE 0.088 0.056 0.041 0.037 0.026 0.014 0.011 0.008

m = 400
|Bias| 0.101 0.056 0.023 0.019 0.016 0.003 0.001 0.009
MSE 0.051 0.034 0.019 0.011 0.007 0.005 0.004 0.003

m = 800
|Bias| 0.060 0.044 0.022 0.001 0.013 0.001 0.003 0.013
MSE 0.020 0.015 0.009 0.004 0.004 0.003 0.002 0.002

Table 1: Absolute value of the empirical bias and empirical MSE of the ESE
when signals are uniformly distributed on the circle centred at the origin
with radius α and have a probability of presence equal to 0.1.

4.2 Application of the EST to the non-coherent detec-
tion of the carriers

Since we assume that each signal is uniformly distributed on αS1 and that
the probabilities of presence of the signals all equal some p ∈ (0, 1/2], the
probability of error of the test Tσ0ξ(α/σ0) is less than or equal to V (α/σ0) for
making a decision about the value of εk, given k ∈ N (see paragraph 3.2.2).

The following fact, which can easily be derived from [10, Example II.E.1,
p. 33, & Section III.B, p. 69] and is a straightforward consequence of [8,
Theorem VII.1] also holds true. If P({εk = 1}) = 1/2 and since Λk is
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α 0.5 1 1.5 2 2.5 3 3.5 4

m = 100
|Bias| 0.148 0.102 0.019 0.022 0.030 0.015 0.013 0.024
MSE 0.140 0.113 0.077 0.057 0.043 0.031 0.021 0.016

m = 200
|Bias| 0.118 0.160 0.019 0.044 0.031 0.022 0.018 0.017
MSE 0.087 0.056 0.041 0.038 0.026 0.014 0.011 0.008

m = 400
|Bias| 0.054 0.016 0.044 0.056 0.056 0.051 0.022 0.011
MSE 0.042 0.028 0.023 0.019 0.013 0.010 0.008 0.004

m = 800
|Bias| 0.047 0.005 0.039 0.084 0.080 0.042 0.019 0.008
MSE 0.022 0.013 0.011 0.013 0.013 0.006 0.003 0.002

Table 2: Absolute value of the empirical bias and empirical MSE of the ESE
when signals are uniformly distributed on the circle centred at the origin
with radius α and have a probability of presence equal to 0.3.

α 0.5 1 1.5 2 2.5 3 3.5 4

m = 100
|Bias| 0.142 0.780 0.071 0.118 0.178 0.130 0.050 0.023
MSE 0.140 0.113 0.077 0.057 0.043 0.031 0.021 0.016

m = 200
|Bias| 0.105 0.006 0.117 0.192 0.199 0.114 0.062 0.017
MSE 0.078 0.067 0.066 0.093 0.102 0.051 0.025 0.015

m = 400
|Bias| 0.067 0.031 0.144 0.203 0.204 0.149 0.071 0.017
MSE 0.051 0.039 0.052 0.073 0.076 0.042 0.017 0.006

m = 800
|Bias| 0.025 0.062 0.165 0.208 0.222 0.146 0.072 0.040
MSE 0.017 0.021 0.044 0.058 0.060 0.031 0.010 0.005

Table 3: Absolute value of the empirical bias and empirical MSE of the ESE
when signals are uniformly distributed on the circle centred at the origin
with radius α and have a probability of presence equal to 0.5.
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uniformly distributed on αS1, the test Tσ0ξ(α/σ0), where ξ is given by Eq.
(11), is the Bayesian likelihood ratio test guaranteeing the least probability
of error among all the possible tests for deciding about the value of εk. The
probability of error of this test is then

V (ρ) =
1

2
e−ρ2/2

∫ ξ(ρ)

0

te−t2/2I0(ρt)dt+
1

2
e−ξ(ρ)2/2, (12)

which follows from Eqs. (9) with d = 2, (10) and (11).
Since the empirical bias and the empirical MSE of the ESE presented

above suggest that the ESE is a reasonably good estimate of σ0 when α and
m are large enough, we can reasonably expect that, for large values of α and
m, the EST behaves as described in section 3.2.2: if P({εk = 1}) ≤ 1/2,
the probability of error of the EST should not exceed V (α/σ0) and become
rather close to V (α/σ0) when P({εk = 1}) = 1/2.

In the absence of theoretical results about the probability of error of the
EST, even under the assumptions made in this section, the foregoing claim
remains intuitive only. This is why, for different values of α, m and p, we
computed the BER of the EST via a Monte-Carlo simulation: for every
k ∈ {1, 2, . . . , m}, the EST was used to make a decision about the value
of εk and, since the m observations and the m successive decisions made
by the EST are independent, we calculated the BER of the EST by count-
ing the number of errors made by the EST. More specifically, the several
Monte-Carlo simulations yielding the results presented below were achieved
according to the following protocol, standardly employed to assess telecom-
munication systems.

Given α, m and p, independent trials of m observations each were carried
out until two conditions were fulfilled. First, the total number Ne of errors
made by the EST had to be above or equal to a specified number N . Second,
a minimum number M of trials had to be achieved. The reason for this second
condition is the following one. Inasmuch as the decision about the presence
or the absence of signals is made on the observations used for estimating σ0,
the accuracy of the estimate affects m decisions at one go. This effect is then
reduced by performing a minimum number of trials. If j is the first trial
number larger than or equal to M and for which the total number of errors
Ne becomes larger than or equal to N , the BER is then defined as the ratio
Ne/(j ×m). The simulations presented below were performed with σ0 = 1.
The pre-specified number of errors was fixed to N = 400 and the minimum
number of trials was set to M = 150.

When the signals have the same amplitude α and the same probability
of presence p ≤ 1/2, the BER’s of the EST for different values of α, p and
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m are those of figure 1. These results show that, under the experimental
conditions considered in this section, the EST behaves as expected: when
p = 1/2, the larger α and m, the smaller the difference between the BER
of the EST and V (α/σ0); yet for p = 1/2, for every tested sample size, the
difference between the BER of the EST and V (α/σ0) becomes rapidly small
when the value of α increases; when p is less than one half, the BER of the
EST remains less than or equal to V (α/σ0).

Now, assume that the amplitudes of the signals all equal κα where κ is
some real number larger than 1 and that the probabilities of presence of these
signals all equal some p ∈ (0, 1/2]. The expected behaviour of the EST (see
section 3.2.2) is that the probability of error of the EST remains less than or
equal to V (α/σ0) if α and m are large enough. Monte-Carlo simulations of
the same type as those described above were carried out for different values
of α and p. When κ = 1.1220, that is, when the actual norms of the signals
are one dB larger than the value α with respect to which the EST is adjusted,
the results obtained are then those of figure 2: the BER of the EST remains,
as expected, less than or equal to V (α/σ0) for every α, every m and every p.

5 Perspectives and extensions

This paper has presented a limit theorem, namely theorem 2.1, that concerns
independent observations deriving from the random presence or absence of
signals whose probability distributions and prior probabilities of presence
are unknown in independent AWGN. On the basis of this theorem, we have
introduced the Esssential Supremum Estimate (ESE), an estimate of the
noise standard deviation. The Essential Supremum Test (EST) is a binary
hypothesis test also introduced in this paper for the detection of signals that
are less present than absent and whose norms are equal to or above some
known α ∈ [0,∞). The ESE and the EST have been tested in the particular
case, relevant in many applications, where the signals are two-dimensional
random vectors representing modulated sinusoidal carriers whose amplitudes
all equal some known α ∈ [0,∞) and whose phases are uniformly distributed
in [0, 2π]. Experimental results obtained when the signals are less present
than absent suggest that, under the assumptions made for the signals, the
convergence stated by theorem 2.1 is fast.

This is the reason why complementary theoretical studies in progress are
aimed at analysing to what extent the asymptotic conditions of theorem 2.1
can actually be relaxed, as well as studying the statistical properties of the
ESE and the performance of the EST. In particular, the influence of L, r, s
and the thresholding function must be addressed.
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Figure 1: BER of the EST for different values of m and α in comparison to
V (α/σ0)

.
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Figure 2: BER of the EST versus V (α/σ0) for different values for m and α
and when the amplitudes of the signals all equal κα with κ = 1.1220, that is
when the amplitudes of the signals are one dB larger than expected.

22



In fact, for signals less present than absent, the author’s feeling is that
theorem 2.1 and the ESE can be exploited to derive an estimate that requires
no lower bound for the norms of the signals. Attempts of this type are
presented in [2] and [9]. In these papers, methods for denoising speech signals
corrupted by independent AWGN are adjusted by an estimate of the noise
standard deviation. This estimate is performed on the basis of the ESE
obtained by setting α = 0, a trivial lower bound for the amplitudes of the
signals. The performance of the denoising so adjusted is very close to that
achieved by using the exact value of the noise standard deviation.

In order to state results that extend theorem 2.1 and give better insight
into the behaviour of the ESE and the EST, we are strongly interested in
establishing links between theorem 2.1, [8, Theorem VII.1] and Wald’s fun-
damental paper [14].

Although theorem 2.1 is stated for signals whose probabilities of presence
are upper-bounded by p ∈ [0, 1), the EST and the experiments of section 4
concern the particular case p = 1/2 and the thresholding function ξ. Can
the thresholding function ξ be used even when the upper bound for the
probabilities of presence exceeds one half? From a more general point of
view, we are looking for thresholding functions other than those proposed in
the paper and, to deal with situations where signals may have probabilities
of presence above one half, we plan to analyse the behaviour of the ESE
adjusted with such thresholding functions so as to derive extensions of the
EST.

As far as practical applications of the contents of this paper are con-
cerned, speech denoising has already be mentioned as a promising field of
application of the foregoing results (see [2] and [9]). A rather natural ap-
plication of the approach presented in this paper is the design of Constant
False Alarm Rate (CFAR) systems for the detection of radar targets. Our
intention is to study to what extent theorem 2.1, the ESE and the EST are
complementary to standard results and algorithms such as those described
in [7]. ESM is also a possibly relevant field of application where the ESE and
the EST could contribute to the interception of non-cooperant communica-
tions. Proximity sensing aimed, for instance, at informing a robot that it is
approaching an object or that something is near it, can also be regarded as
a potential application area where our results could apply. Finally, another
possibly relevant and exciting field of theoretical and practical application of
the material presented in this paper is the design and analysis of distributed
detection systems (see [13]), where the absence of prior knowledge about the
statistics of the observations is one of the main issues to overcome.
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Appendix

The notations introduced in theorem 2.1 are kept with the same meaning
throughout this proof.

After stating some preliminary results in the next subsection, our first
purpose is to prove that the noise standard deviation satisfies Eqs. (5) and
(6). This will be achieved in three steps, namely subsections B, C and D.

More specifically, in subsection B, the behaviour of
∑m

k=1 ‖Uk‖qI(‖Uk‖ ≤
T ) is studied when m is large, T is a positive real value and q is any non-
negative real number. A corollary of Kolmogorov’s classical strong limit
theorem shows the almost sure convergence of the ratio

m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ T )/E

[
m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ T )

]

to 1. From this almost sure convergence, we derive that of the ratio

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ T )/

m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ T )

m∑

k=1

E [‖Uk‖rI(‖Uk‖ ≤ T )] /
m∑

k=1

E [‖Uk‖sI(‖Uk‖ ≤ T )]

when 0 ≤ r < s ≤ ν/2 and ν ∈ (0,∞]. In subsection C, we then anal-
yse the behaviour of the denominator of the ratio above when T is βθ(α),
Λ ∈ `∞(N, Lν(Ω,Rd)), a(Λ) ≥ α if ν 6= ∞ and ‖Λ‖∞ ≤ α otherwise. We
will then see that this ratio can be approximated by Υr(βθ(α))/Υs(βθ(α)).
In subsection D, the two types of convergence studied previously will be
combined to conclude that σ0 actually satisfies Eqs. (5) and (6).
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In subsection E, we complete the proof of statement (i) by showing that
the noise standard deviation is the sole solution in σ to Eq. (5).

From now on, we assume that σ0 = 1 and carry out the proof in this
case. The reader will easily verify that this simplification infers no loss of
generality.

A Preliminary results

For every k ∈ N, Xk and Λk are assumed to be independent and the distri-
bution of Xk is absolutely continuous with respect to Lebesgue’s measure in
R

d. Therefore, given k ∈ N, the distribution of the random vector Λk +Xk is
absolutely continuous with respect to Lebesgue’s measure in R

n. Its density,
denoted hereafter by fΛk+Xk

, is given by

fΛk+Xk
(u) =

1

(2π)d/2

∫

Rd

e−‖u−λ‖2/2 PΛk
(dλ), u ∈ R

d (13)

where the probability distribution PΛk
is the positive measure such that

PΛk
(E) = P(Λ−1

k (E)) for any Borel set E of R
d.

For every k ∈ N, the distribution of ‖Λk + Xk‖ is absolutely continuous
with respect to Lebesgue’s measure. The density f‖Λk+Xk‖ of this distribution
is given, for any non-negative real number x, by

f‖Λk+Xk‖(x) =
2πd/2

Γ(d/2)
xd−1

∫

Sd−1

fΛk+Xk
(xu)Σ(du), (14)

where Σ stands for the rotation-invariant positive Borel measure on the
sphere Sd−1 = {u ∈ R

d : ‖u‖ = 1} for which Σ(Sd−1) = 1 and Γ is the
usual complete Gamma function. It then follows from Eqs. (13) and (14),
and Fubini’s theorem, that, for any non-negative real number x,

f‖Λk+Xk‖(x)=
e−x2/2xd−1

2d/2−1Γ(d/2)

∫

Rd

e−‖λ‖2/2

(∫

Sd−1

ex(λ|u)Σ(du)

)
PΛk

(dλ), (15)

where
(
u|v
)

=
∑d

i=1 uivi, u, v ∈ R
d, is the usual scalar product in R

d. It is
then known ([8, Lemma A.1]) that

∫

Sd−1

ex(λ|u)Σ(du) = 0F1(d/2 ; x2‖λ‖2/4),

where 0F1 is the generalized hypergeometric function ([6, p. 275]). We thus
derive from Eq. (15) that

f‖Λk+Xk‖(x)=
e−x2/2xd−1

2d/2−1Γ(n/2)

∫

Rd

e−‖λ‖2/2
0F1(d/2; x2‖λ‖2/4) PΛk

(dλ). (16)
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For any non-negative real numbers q and T , the following equalities are trivial
but will prove very useful in the sequel. To begin with, we have

E [‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ T )] =

∫ T

0

xqf‖Λk+Xk‖(x)dx (17)

and

E [‖Xk‖qI(‖Xk‖ ≤ T )] =

∫ T

0

xqfd(x)dx, (18)

where

fd(x) =
1

2d/2−1Γ(d/2)
e−x2/2xd−1, x ≥ 0. (19)

is the probability density function of the square root of any centred chi-2
distribution with d degrees of freedom.

With pk and qk henceforth standing for P({εk = 1}) and 1 − pk respec-
tively, we also can write that

E [‖Uk‖qI(‖Uk‖ ≤ T )] =

pkE [‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ T )] + qk

∫ T

0

xqfd(x)dx. (20)

B The case of large sample sizes

The behaviour of
∑m

k=1 ‖Uk‖rI(‖Uk‖ ≤ T )/
∑m

k=1 ‖Uk‖sI(‖Uk‖ ≤ T ) is given
in lemma B.2 when m is large and T is any positive real value. The start-
ing point is the following corollary ([12, chapter 5, p 108, corollary 3]) of
Kolmogorov’s classical strong limit theorem.

Lemma [Rao] B.1 If Y1, Y2, . . . is a sequence of independent random vari-
ables with non-negative means α1, α2, . . . , and variances σ2

1 , σ
2
2, . . . , such that∑+∞

m=1 αm = +∞ (i) and
∑+∞

m=1 σ
2
m/a

2
m < +∞ (ii), where am =

∑m
k=1 αk,

then limm(1/am)
∑m

k=1 Ym = 1 (a-s).

Proposition B.2 Under assumptions (Ass. 2), (Ass. 3) and (Ass. 4),
for every non-negative real number q less than or equal to ν/2 and every po-
sitive real number T ,

lim
m→+∞

m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ T )/E

[
m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ T )

]
= 1 (a-s).

Proof: The proof involves establishing that

(i’) the sequence (V ar (‖Uk‖qI(‖Uk‖ ≤ T )))k∈N
is upper-bounded;
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(ii’) the sequence (E [‖Uk‖qI(‖Uk‖ ≤ T )])k∈N
is bounded away from 0.

Actually, the two conditions (i’) and (ii’) are sufficient to guarantee that the
sequence (‖Uk‖qI(‖Uk‖ ≤ T ))k∈N

of independent variables fulfils conditions
(i) and (ii) of lemma B.1 and, thereby, to conclude.

Clearly, X ∈ `∞(N, L2q(Ω,Rd)); on the other hand, it follows from Eq. (2)
that `∞(N, Lν(Ω,Rd)) is a subset of `∞(N, L2q(Ω,Rd)). Therefore, Λ+X is an
element of `∞(N, L2q(Ω,Rd)). Condition (i’) then holds true as a consequence
of the inequality V ar(‖Uk‖qI(‖Uk‖ ≤ T )) ≤ E [‖Λk +Xk‖2q] + E [‖Xk‖2q] ,
which straightforwardly follows from Eq. (20).

Condition (ii’) derives from the non-vanishing behaviour of the probabil-
ities of absence qk, k ∈ N, the fact that T is positive and the easy inequality

E[‖Uk‖qI(‖Uk‖ ≤ T )] ≥ (1 − p)

∫ T

0

xqfd(x)dx,

which also follows from Eq. (20).

The subsequent result straightforwardly derives from the foregoing.

Corollary B.3 Under assumptions (Ass. 2), (Ass. 3) and (Ass. 4),
for every pair (r, s) of real numbers such that 0 ≤ s < r ≤ ν/2 and every
positive real number T ,

lim
m→∞




m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ T )

m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ T )

×
E

[ m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ T )
]

E

[ m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ T )
]




= 1 (a-s).

C The case of large and small amplitudes

The thresholding function θ is of most importance in the present section
where, given β ∈ [0, 1], we derive the behaviour of the ratio

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

]
/E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

]

when a(Λ) tends to ∞ and that of

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(‖Λ‖∞))

]
/E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(‖Λ‖∞))

]

when ‖Λ‖∞ tends to 0. The starting point of the analysis is the following
result.
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Lemma C.1 Under assumption (Ass. 1), for every given q ∈ [0,∞),

(i) lim
a(Λ)→∞

E [‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ βθ(a(Λ)))] = 0, uniformly in k and

β ∈ [0, 1].

(ii) If Λ ∈ `∞(N, L∞(Ω,Rd)), then, in addition to statement (i),

lim
‖Λ‖∞→0

(
E [‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ βθ(‖Λ‖∞))]

−E
[
‖Xk‖qI(‖Xk‖ ≤ βθ(‖Λ‖∞))

])
= 0,

uniformly in k and β ∈ [0, 1].

Proof: We start by proving statement (i). For the sake of simplifying
notations, we put ρ = a(Λ). Given any β ∈ [0, 1], we easily derive from
Eq. (17) that E [‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ βθ(ρ))] is less than or equal to
θ(ρ)qP ({‖Λk + Xk‖ ≤ θ(ρ)}). Our proof involves showing that the latter
quantity tends to 0 uniformly with k when ρ tends to ∞.

We derive from the properties of θ that, for ρ large enough, Cρ < θ(ρ) ≤
ρ. According to Eq. (13) and since, for any natural number k, ‖Λk‖ ≥ ρ
(a-s), the probability that Λk + Xk lies inside the ball of radius θ(ρ) can be
written as follows:

P ({‖Λk +Xk‖ ≤ θ(ρ)})

=
1

(2π)d/2

∫

‖x‖≤Cρ

∫

‖λ‖≥ρ

e−‖x−λ‖2/2 PΛk
(dλ)dx,

+
1

(2π)d/2

∫

Cρ<‖x‖≤θ(ρ)

∫

‖λ‖≥ρ

e−‖x−λ‖2/2 PΛk
(dλ)dx. (21)

Because ‖x − λ‖ ≥ ρ(1 − C) for ‖x‖ ≤ Cρ and ‖λ‖ ≥ ρ, the first term in
the right-hand side of Eq. (21) is bounded by a constant multiplied with

ρde−
(1−C)2

2
ρ2

.
For Cρ < ‖x‖ ≤ θ(ρ) and ‖λ‖ ≥ ρ, ‖x − λ‖ is larger than or equal

to ρ(1 − C) − γ(ρ). Hence, by taking into account the volume of the shell
{x ∈ R

d : Cρ < ‖x‖ ≤ θ(ρ)}, the second term in the right-hand side of Eq.

(21) is less than a constant times
(
(1 + γ(ρ)

Cρ
)d − 1

)
ρne−

(
(1−C)−γ(ρ)/ρ

)2

(ρ2/2).

In addition, θ(ρ) ∼ Cρ when ρ tends to +∞. It thus follows from the fore-
going that, for every non-negative real number q, θ(ρ)qP ({‖Λk +Xk‖ < θ(ρ)})
tends to 0 uniformly with k when ρ = a(Λ) tends to ∞, which completes the
proof of statement (i).
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We now turn our attention to the proof of statement (ii). Still for nota-
tional sake, we set ρ = ‖Λ‖∞. An easy consequence of Eq. (17) is that, for
any β ∈ [0, 1], the absolute value of the difference

E

[
‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ βθ(ρ))

]
− E

[
‖Xk‖qI(‖Xk‖ ≤ βθ(ρ))

]

is less than or equal to θ (ρ)q ∫ θ(ρ)

0
|f‖Λk+Xk‖(x) − fd(x)|dx. Our intention is

then to prove that the latter quantity tends to 0 uniformly in k when ρ tends
to 0. The hypergeometric function 0F1(d/2 ; ·) is continuous, increasing and

0F1(d/2 ; 0) = 1. Hence, for ‖λ‖ ≤ ρ and x ∈ [0, θ(ρ)],

1 ≤ 0F1

(
d/2 ; x2‖λ‖2/4

)
≤ 0F1

(
d/2 ; ρ2θ(ρ)2/4

)
.

From the inequality above, Eqs. (16) and (19), and the fact that for every
k ∈ N, ‖Λk‖ is less than or equal to ρ (a-s), it follows that, for all x ∈ [0, θ(ρ)],

e−x2/2xd−1

2d/2−1Γ(d/2)

(
e−ρ2/2 − 1

)
≤ f‖Λk+Xk‖(x) − fd(x)

and

f‖Λk+Xk‖(x) − fd(x) ≤
e−x2/2xd−1

2d/2−1Γ(d/2)

(
0F1

(
d/2 ; ρ2θ(ρ)2/4

)
− 1
)
.

The two functions of ρ that bracket f‖Λk+Xk‖(x) − fd(x) in the inequalities
above both trivially tend to 0 independently of k when ρ tends to 0. Since θ
is continuous at the origin, we have

lim
ρ→0

I[0,θ(ρ)](x)θ(ρ)
q
∣∣ f‖Λk+Xk‖(x) − fd(x)

∣∣ = 0,

uniformly in k. It follows from Lebesgue’s dominated convergence theorem

that θ(ρ)q
∫ θ(ρ)

0
| f‖Λk+Xk‖(x) − fd(x) | dx tends to 0 uniformly in k when ρ

tends to 0, which completes the proof.

Proposition C.2 Under assumptions (Ass. 1), (Ass. 2) and (Ass. 3),
for every given β0 ∈ (0, 1] and every given pair (r, s) of non-negative real
numbers such that 0 ≤ s < r,

lim
a(Λ)→∞




E

[
m∑

k=1

‖Uk‖rI (‖Uk‖ ≤ βθ(a(Λ)))

]

E

[
m∑

k=1

‖Uk‖sI (‖Uk‖ ≤ βθ(a(Λ)))

] − Υr (βθ(a(Λ)))

Υs (βθ(a(Λ)))




= 0 (22)
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uniformly in m and β ∈ [β0, 1].

Furthermore, if Λ belongs to `∞(N, L∞(Ω,Rd)),

lim
‖Λ‖∞→0




E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(‖Λ‖∞))

]

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(‖Λ‖∞))

] − Υr (βθ(‖Λ‖∞))

Υs (βθ(‖Λ‖∞))




= 0 (23)

uniformly in m and β ∈ [β0, 1].

Proof: We prove Eqs. (22) and (23) together. As above, let ρ stand
for either a(Λ) or ‖Λ‖∞. In the latter case, it is implicitly assumed that
Λ ∈ `∞(N, L∞(Ω,Rd)).

Let q be any non-negative real value, β0 any element of (0, 1] and β any
element of [β0, 1]. It follows from Eq. (20) that

E

[
m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ βθ(ρ))

]

=

m∑

k=1

pk

(
E [ ‖Λk +Xk‖qI(‖Λk +Xk‖ ≤ βθ(ρ)) ]

−δ`,0E [ ‖Xk‖qI(‖Xk‖ ≤ βθ(ρ)) ]

)

+

(
m∑

k=1

qk + δ`,0

m∑

k=1

pk

)∫ βθ(ρ)

0

xqfd(x)dx, (24)

where ` = ∞ if ρ = a(Λ) and ` = 0 otherwise and δa,b, a, b ∈ R, stands for
the usual Kronecker symbol: δa,b = 1 if a = b and δa,b = 0 otherwise.

According to lemma C.1, if ρ = a(Λ) (resp. ρ = ‖Λ‖∞), there exists
some positive real number α0 such that, for every α ≥ α0 (resp. α ≤ α0),
every Λ such that a(Λ) ≥ α (resp. ‖Λ‖∞ ≤ α) and every β ∈ [β0, 1], each
factor of pk in the right-hand side of Eq. (24) is less than or equal to η. By
taking into account that each pk is smaller than or equal to p < 1 and that∑m

k=1 qk + δ`,0
∑m

k=1 pk remains positive, it follows that
∣∣∣∣∣∣∣∣∣∣

E

[
m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ βθ(ρ))

]

m∑

k=1

qk + δ`,0

m∑

k=1

pk

−
∫ βθ(ρ)

0

xqfd(x)dx

∣∣∣∣∣∣∣∣∣∣

≤ p

1 − p
η
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for ρ large enough (resp. small enough). The right-hand side of the latter
inequality does not depend on m. Moreover,

lim
ρ→`

∫ βθ(ρ)

0

xqfd(x)dx =

∫ βθ(`)

0

xqfd(x)dx,

whether ` = 0 or ` = ∞ since θ(0) > 0, θ(∞) = ∞ and β ≥ β0 > 0. Thereby,
we obtain

lim
ρ→`

E

[
m∑

k=1

‖Uk‖qI(‖Uk‖ ≤ βθ(ρ))

]

m∑

k=1

qk + δ`,0

m∑

k=1

pk

=

∫ βθ(`)

0

xqfd(x)dx ∈ (0,∞),

uniformly in m and β ∈ [β0, 1]. Given two real numbers r > s ≥ 0, it
straightforwardly follows that

lim
ρ→`

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(ρ))

]

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(ρ))

] =

∫ βθ(`)

0

xrfd(x)dx

∫ βθ(`)

0

xsfd(x)dx

,

which concludes the proof.

D Combining large sample sizes and large or small am-
plitudes

Corollary B.3 holds true for any threshold T and real values r and s such
that 0 ≤ s < r ≤ ν/2. Proposition C.2 is valid for all non-negative real
values r and s such that s < r and thresholds deriving from the thresholding
function θ. Hence, the following lemma D.1 particularizes corollary B.3 to
such thresholds. The rest of the section then combines proposition C.2 and
lemma D.1.

Lemma D.1 Under assumptions (Ass. 1), (Ass. 2), (Ass. 3), (Ass. 4),
let r and s be two real numbers such that 0 ≤ s < r ≤ ν/2. Then, for
any β0 ∈ (0, 1], there exists some positive real number α0 (resp. α1) such
that, for any α in [α0,∞) (resp. (0, α1]), any Λ ∈ `∞(N, Lν(Ω,Rd)) (resp.
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Λ ∈ `∞(N, L∞(Ω,Rd)) ) such that a(Λ) ≥ 1 (resp. ‖Λ‖∞ ≤ α) and any
β ∈ [β0, 1],

lim
m→+∞




m∑

k=1

‖Uk‖rI(‖U‖≤βθ(ρ))

m∑

k=1

‖Uk‖sI(‖U‖≤βθ(ρ))
−

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖≤βθ(ρ))
]

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖≤βθ(ρ))
]




= 0 (a-s)

(25)
with ρ = a(Λ) (resp. ρ = ‖Λ‖∞ ).

Proof: By differentiating Υr(x)/Υs(x) with respect to x ≥ 0, it follows
that Υr/Υs is a non-decreasing map of [0,∞] into [0,Υr(∞)/Υs(∞)] with
Υr(∞)/Υs(∞) <∞.

On the other hand, since θ(x) ≥ θ(0) > 0 for every non-negative real
number x, a consequence of Eqs. (17) and (20) is that, for all β > 0,

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

]
/E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

]
> 0

Let β0 be an element of (0, 1] and η be some positive real number. It
follows from proposition C.2 and the remarks above that there exists some
positive real number α0 such that, for any real number α larger than or equal
to α0, any Λ ∈ `∞(N, Lν(Ω,Rd)) such that a(Λ) ≥ α, any β ∈ [β0, 1] and any
m ∈ N,

0 <

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

]

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

] ≤ Υr(∞)

Υs(∞)
+ η.
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If α ∈ [α0,∞) and β ∈ [β0, 1], the latter inequality implies that, for every
ω ∈ Ω and every m ∈ N,

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk(ω)‖rI[0,βθ(a(Λ))](‖Uk(ω)‖)

m∑

k=1

‖Uk(ω)‖sI[0,βθ(a(Λ))](‖Uk(ω)‖)
−

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

]

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

]

∣∣∣∣∣∣∣∣∣∣

≤
(

Υr(∞)

Υs(∞)
+ η

)

×

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk(ω)‖rI[0,βθ(a(Λ))](‖Uk(ω)‖)

m∑

k=1

‖Uk(ω)‖sI[0,βθ(a(Λ))](‖Uk(ω)‖)

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

]

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

] − 1

∣∣∣∣∣∣∣∣∣∣

,

where IK stands for the indicator function of a given set K. According to
corollary B.3, for every ω in some measurable subset with measure 1 of Ω,
the second factor in the right-hand side of the inequality above can be made
arbitrarily small for m large enough, which completes the proof for a(·). The
reader will then easily obtain the same result for ‖ · ‖∞ by mimicking the
foregoing.

We now combine the almost everywhere convergence established by the
latter lemma with the uniform convergence stated in proposition C.2 so as
to complete the proof that σ = 1 satisfies Eqs. (5) and (6). In fact, we prove
Eq. (5) only, because the proof of Eq. (6) can be achieved in exactly the
same way as below by replacing a(·) with ‖ · ‖∞.

Let β0 ∈ (0, 1] and η be any positive real number. Let α1 be a positive
real value such that, for all α ∈ [α1,∞), all Λ ∈ `∞(N, Lν(Ω,Rd)) such that
a(Λ) ≥ α and every β ∈ [β0, 1], Eq. (25) holds true with ρ = a(Λ).

We derive from proposition C.2 the existence of another positive real
number α2 such that, for any α ∈ [α2,∞), any Λ ∈ `∞(N, Lν(Ω,Rd)) with
a(Λ) ≥ α, any β ∈ [β0, 1] and any natural number m,

∣∣∣∣∣∣∣∣∣∣

E

[
m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

]

E

[
m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

] − Υr(βθ(a(Λ)))

Υs(βθ(a(Λ)))

∣∣∣∣∣∣∣∣∣∣

≤ η. (26)
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For any α larger than or equal to α0 = max(α1, α2), any Λ in `∞(N, Lν(Ω,Rd))
such that a(Λ) ≥ α and any β ∈ [β0, 1], Eqs. (25) and (26) imply that

lim sup
m

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

− Υr(βθ(a(Λ)))

Υs(βθ(a(Λ)))

∣∣∣∣∣∣∣∣∣∣

≤ η (a-s),

or equivalently, that

∥∥∥∥∥∥∥∥∥∥

lim sup
m

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ βθ(a(Λ)))

m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ βθ(a(Λ)))

− Υr(βθ(a(Λ)))

Υs(βθ(a(Λ)))

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥
∞

≤ η. (27)

Summarizing, for any given real number β0 ∈ (0, 1] and any positive
real number η, we have found a positive real number α0 such that, for any
α ∈ [α0,∞), any Λ ∈ `∞(N, Lν(Ω,Rd)) that satisfies a(Λ) ≥ α and any
β ∈ [β0, 1], Eq. (27) holds true. This means that σ = 1 satisfies Eq. (5).

E Uniqueness of the solution to equation

Assume the existence of two positive real numbers σ1 ≥ σ2 > 0 that both
satisfy Eq. (5). For notational sake, put ρi = a(Λ)/σi, i ∈ {1, 2} and set
βi = θ(ρi)/ρi, i = 1, 2. For every positive real number x, 0 < Υr(x)/Υs(x) <
∞. Therefore, for any given pair (m,ω) ∈ N × Ω, we can write that

∣∣∣∣σr−s
1

Υr(β2θ(ρ1))

Υs(β2θ(ρ1))
− σr−s

2

Υr(β1θ(ρ2))

Υs(β1θ(ρ2))

∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI[0,β2σ1θ(ρ1)](‖Uk(ω)‖)

m∑

k=1

‖Uk‖sI[0,β2σ1θ(ρ1)](‖Uk(ω)‖)
− σr−s

1

Υr(β2θ(ρ1))

Υs(β2θ(ρ1))

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI[0,β2σ1θ(ρ1)](‖Uk(ω)‖)

m∑

k=1

‖Uk‖sI[0,β2σ1θ(ρ1)](‖Uk(ω)‖)
− σr−s

2

Υr(β1θ(ρ2))

Υs(β1θ(ρ2))

∣∣∣∣∣∣∣∣∣∣

.
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We derive from this inequality that

∣∣∣∣σr−s
1

Υr(β2θ(ρ1))

Υs(β2θ(ρ1))
− σr−s

2

Υr(β1θ(ρ2))

Υs(β1θ(ρ2))

∣∣∣∣ ≤
∥∥∥∥∥∥∥∥∥∥

lim sup
m

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ β2σ1θ(ρ1))

m∑

k=1

‖Uk‖sI(‖Uk‖ ≤ β2σ1θ(ρ1))

− σr−s
1

Υr(β2θ(ρ1))

Υs(β2θ(ρ1))

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥∥∥∥∥

lim sup
m

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ β2σ1θ(ρ1))

m∑

k=1

‖Uk‖rI(‖Uk‖ ≤ β2σ1θ(ρ1))

− σr−s
2

Υr(β1θ(ρ2))

Υs(β1θ(ρ2))

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥
∞

.

Since β1σ2θ(ρ2) = β2σ1θ(ρ1), it follows from the inequality above and the
definition of ∆m given by Eq. (4) that

∣∣∣∣σr−s
1

Υr (β2θ(ρ1))

Υs (β2θ(ρ1))
− σr−s

2

Υr(β1θ(ρ2))

Υs(β1θ(ρ2))

∣∣∣∣
≤
∥∥lim sup

m
∆m(σ1, β2θ(ρ1))

∥∥
∞

+
∥∥lim sup

m
∆m(σ2, β1θ(ρ2))

∥∥
∞
. (28)

According to the asymptotic behaviour of θ, if a(Λ) is large enough, β1 and β2

are both elements of (0, 1]; moreover, σ1 and σ2 are both assumed to satisfy
statement (i) of theorem 2.1. Therefore, for every given positive real number
η, there exists some α0 ∈ (0,∞) such that, for every real number α ≥ α0 and
every Λ ∈ `∞(N, Lν(Ω,Rd)) that satisfies a(Λ) ≥ α,

∥∥lim sup
m

∆m(σ1, β2θ(ρ1))
∥∥
∞

≤ η and
∥∥lim sup

m
∆m(σ2, β1θ(ρ2))

∥∥
∞

≤ η. (29)

Writing ρi and βi in function of α and σi, i = 1, 2, it then follows from Eqs.
(28) and (29) that

lim
ρ→∞

(
σr−s

1

Υr(θ(ρ/σ1)θ(ρ/σ2)/(ρ/σ2))

Υs(θ(ρ/σ1)θ(ρ/σ2)/(ρ/σ2))
− σr−s

2

Υr(θ(ρ/σ1)θ(ρ/σ2)/(ρ/σ1))

Υs(θ(ρ/σ1)θ(ρ/σ2)/(ρ/σ1))

)
=0.

According to the asymptotic behaviour of θ, the limits of the respective coeffi-
cients of σr−s

1 and σr−s
2 in the equality above are both equal to Υr(∞)/Υs(∞)

when ρ tends to ∞. Since this common limit is positive and finite, it follows
that σ1 = σ2 since r > s.

35



References

[1] M. Abramowitz, I. Stegun, 1972. Handbook of Mathematical Functions.
Ninth printing. Dover Publications Inc., New York.

[2] A. Amehraye, D. Pastor, S. Ben Jebara, 2006. On the Application of
Recent Results in Statistical Decision and Estimation Theory to Percep-
tual Filtering of Noisy Speech Signals, Proceedings of the second IEEE-
EURASIP International Symposium on Control, Communications, and
Signal Processing, ISCCSP’06, Marrakech, Morocco, 2006.

[3] T. Kailath, H. V. Poor, 1998. Detection of Stochastic Processes. IEEE
Transactions on Information Theory. 44, 2230-2259.

[4] S. M. Kay, 1998. Fundamentals of Statistical Signal Processing. Volume
II: Detection Theory. Prentice Hall, Upper Saddle River.
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