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France Télécom, Division R&D, TECH/SSTP/VMI



1



Abstract

This paper concerns automatic segmentation algorithms of large speech
corpora when the phonetic sequences of the speech signals are known. A
direct and typical application is Text-To-Speech (TTS) synthesis by unit
selection.

We start by proposing a general approach for combining of several seg-
mentations produced by different algorithms. Several fusion methods are
derived from this approach.

In the second part, we describe and analyse three automatic segmentation
algorithms that will be used to evaluate our fusion approach. The first algo-
rithm is segmentation by Hidden Markov Models (HMM). The second one,
called refinement by boundary-model, aims at improving the segmentation
performed by HMM via a Gaussian Mixture Model (GMM) of each bound-
ary. The third one is a slightly modified version of Brandt’s Generalized
Likelihood Ratio (GLR) method; its goal is to detect signal discontinuities
within some interval determined by the HMM boundaries.

Performance measurements show that refinement by boundary-model is
the most accurate in the sense that its segmentation marks are the closest
to the manual ones.

When applied to the three segmentations obtained by the three algo-
rithms mentioned above, any of these fusion methods is more accurate than
refinement by boundary-model. With respect to the corpora considered in
this paper, the most accurate fusion method, called optimal fusion by soft
supervision, reduces by 25.5% (resp. 60%) the number of the segmentation
errors made by refinement by boundary-model (resp. standard HMM seg-
mentation).

Subjective tests are carried out in the context of corpus-based speech
synthesis. They show that the quality of the synthesized speech obtained
when the speech corpus is segmented by optimal fusion by soft supervision
approaches that obtained when the same corpus is manually segmented.

Keywords: Automatic speech segmentation, speech synthesis, HMM, Brandt’s
GLR algorithm, refinement by boundary-model, mark selection, soft super-
vision, hard supervision, subjective test.
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Résumé

Ce papier concerne la segmentation automatique de grands corpus de parole
quand la séquence phonétique des signaux de parole est connue et est sup-
posée correcte. Une application typique de ce genre de corpus est la synthèse
vocale par sélection d’unités.

Nous allons dans un premier temps proposer une approche générale pour
combiner plusieurs segmentations produites par différents algorithmes. En-
suite, plusieurs méthodes de fusion seront dérivées de cette approche.

Dans une deuxième partie, nous décrivons et analysons trois algorithmes
qui vont être utilisés pour évaluer les différentes méthodes de fusion définies.
Le premier algorithme est la segmentation par HMM (Hidden Markov Model).
Le deuxième, appelé post-traitement par modèle de frontière consiste, à amé-
liorer les marques de la segmentation produite par HMM avec des modèles
de frontières. Ces modèles de frontière sont des GMM (Gaussian Mixture
Model). Le troisième est une version légèrement modifiée de l’algorithme de
Brandt. L’objectif de cet algorithme est de détecter les discontinuités du
signal de parole dans un intervalle déterminé par les marques par HMM.

L’évaluation des performances de ces algorithmes montre que le post-
traitement par modèle de frontière produit la segmentation la plus précise et
donc la plus proche de la segmentation manuelle.

L’évaluation de l’application des méthodes de fusion aux trois algorithmes
que nous venons de citer a montré que le taux de segmentation correcte est
amélioré par rapport à celui du post-traitement par modèle de frontière. En
effet, avec la meilleure méthode de fusion, on arrive à réduire de 25.5% (re-
spectivement 60%) le nombre d’erreurs de segmentation générées par le post-
traitement par modèle de frontière (respectivement la segmentation standard
par HMM).

Les tests subjectifs réalisés dans le contexte de la synthèse vocale mon-
tre également que la qualité de la parole synthétique obtenue avec la seg-
mentation issue de la meilleure méthode de fusion approche celle issue de
l’utilisation de la segmentation manuelle.

Mots clés: Segmentation automatique, synthèse vocale, HMM, algorithme
de Brandt, post-traitement par modèle de frontière, sélection des marques,
supervision douce, supervision dure, test subjectif.
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1 Introduction

Corpus-based speech synthesizers are very popular for the synthesized voice
quality they achieve. By selecting and concatenating speech segments or
units stored in a large database, such synthesizers can select a sequence of
units that corresponds to the context of the entry text. By so proceeding, the
naturalness of the synthetic voice is significantly improved. Nevertheless, the
creation of new voices with this approach is extremely expensive because of
the different procedures that must be applied to the speech corpus to obtain
the dictionary of units.

Two important procedures are the transcription and the segmentation of
the speech signals recorded by a speaker.

This paper focuses on the segmentation phase for the following reason.
In fact, automatic segmentation methods are not always accurate enough.
Manual checking remains necessary to correct segmentation errors. Thus,
with the increasing demand for more synthetic voices, there is still the need
to improve the automation and accuracy of the segmentation process for TTS
synthesis applications.

Up to now, the HMM approach [10, 4] has been the most widely used
for automatic segmentation and it is considered as the most reliable. This
approach is linguistically constrained because it needs the true phonetic se-
quence associated with the recorded utterances in order to estimate the HMM
sequence. However, this approach still has some limitations for building
voices for TTS systems. The main limitation is that HMMs model steady
areas well but are not really suited to detecting locally the transitions be-
tween phonemes in a speech signal.

Other automatic segmentation methods are suitable for detecting segmen-
tation marks. Some of these methods are based on the refinement of marks
produced by the HMM approach. Such methods can be based on boundary
models [9]. Other methods are also suitable for segmenting speech signals by
detecting their discontinuities. Brandt’s GLR algorithm [3] is one of these.
Nevertheless, it produces insertions and omissions because it is linguistically
unconstrained.

With respect to the foregoing, the purpose of this paper is to combine
global and local automatic segmentation algorithms in order to improve the
accuracy of the resulting automatic segmentation. This is the aim of sec-
tion 2. Several fusion methods are proposed. They are based on a general
scheme presented in section 2 for the linear combination of segmentation
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marks.
Then, in order to evaluate the performance of some fusion methods, we

study and justify the choice of three automatic segmentation algorithms in
section 3. The first one is HMM segmentation. It applies a forced alignment
between the HMM sequence and the speech signal.

The second segmentation algorithm is refinement by boundary-model.
It was originally proposed in [9] to segment a Chinese corpus. It uses a
boundary model, which is estimated on a small database, to refine the HMM
segmentation marks.

The third algorithm is Brandt’s GLR method whose aim is to detect dis-
continuities in speech signals. Basically, and unlike segmentation by HMM
and refinement by boundary-model, this method needs no prior knowledge
of the transcription. Since, in the context of corpus-based speech synthe-
sis, the transcription is available, we adapt this method so as to take this
transcription into account.

The accuracies of these automatic segmentation methods are then evalu-
ated in section 4 on a French and on an English corpus. These accuracies are
computed at a tolerance of 20 ms with respect to a manual segmentation. A
tolerance of 20 ms is considered as an acceptable limit in order to produce
synthesized speech of good quality. By manual segmentation, we mean the
segmentation resulting from the manual checking of standard HMM segmen-
tation. In this section, we show that the three algorithms are complementary
in the sense that they are adpted to detect different types of boundaries.

Section 5.1 evaluates the accuracy of some fusion methods and section 5.2
presents the results of subjective tests that evaluate the speech quality when
the best fusion method is used to segment the French and the English corpora.
The last section concludes this paper and proposes some extensions.

2 A general fusion approach for combining

segmentations

Generally, segmentation algorithms behave differently according to the tran-
sitions they are asked to detect. The main idea here is to take into account
these different behaviours so as to favour more some segmentation marks
rather than others, given a certain type of transition to detect.

More specifically, let s be a transition to be detected between two phonemes

7



and assume that the phonetic class of the phoneme to the right (resp. to the
left) of s is cr (resp. cℓ). The principle of the proposed method is to compute
a new estimate t̂(s) of the transition instant on the basis of K time instants
t1(s), . . . , tK(s) produced by K segmentation algorithms.

This can be regarded as a problem of fusion. The solution we propose is
based on a linear combination of selected segmentation marks. The estimate
t̂(s) is the barycentre given by:

t̂(s) =
∑

k∈A

βk(cℓ, cr)tk(s), (1)

where A is the index set of the selected marks and the coefficients βk(cℓ, cr)
satisfy the relation ∑

k∈A

βk(cℓ, cr) = 1.

The estimate given by equation (1) corresponds to the case of algorithms
that make no systematic error (similar errors for similar transitions). If any
algorithm, say the kth, made a known systematic error, it would suffice to
replace in equation (1) the corresponding estimate tk(s) by tk(s)−mk where
mk is the value of this error.

Figure 1 summarizes the computation of t̂(s). We now describe the several
components of this fusion scheme. To the authors’ best knowledge, the fusion
scheme we propose is not usual for combining segmentation marks.

By introducing the mark selection whose outcome is the index set A used
to compute t̂(s), we take into account the existence of criteria that make it
possible to select marks independently of the coefficients βk(cℓ, cr). To better
understand the purpose of this phase, let us consider 6 different algorithms.
Assume that 5 of these algorithms detect the time instant of the transition
s within the same interval and that the sixth algorithm gives an estimate
of this time instant significantly further away from the other ones. In this
case, it is likely that the time instant performed by the sixth algorithm is not
correct and, thus, a simple average of the 6 estimations will be less accurate
than the average of those located in the same interval. This example shows
that it can be relevant to select some estimates among those available in
order to compute t̂(s). For instance, we will use the distance as a criterion
to select marks.

The coefficients β1(cℓ, cr), β2(cℓ, cr), . . . , βK(cℓ, cr) are obtained as follows.
With the notations introduced above, we start by scoring the K algorithms
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on the basis of a training database. The scores γk(cℓ, cr), k = 1, . . . , K,
must quantify the respective behaviour of the algorithms for detecting the
transition between the classes cℓ and cr. For example, a large value for
γk(cℓ, cr) should be assigned to the kth algorithm, if this algorithm performs
well on the pair of classes (cℓ, cr). This scoring phase is performed once for
all. We thus obtain a set of scores for all the algorithms and for all the pairs
of phonetic classes present in the training corpus.

Then, we transform the sequence γk(cℓ, cr), k = 1, . . . , K, of scores into
a sequence ω1(cℓ, cr), ω2(cℓ, cr), . . . , ωK(cℓ, cr) of weights. This step is the
score supervision. The weights indicate the quality of each algorithm in
comparison with the others. In fact, the role of this phase is similar to that
of a supervisor who decides to favour some algorithms rather than others on
the basis of his experience, his prior knowledge, some heuristic and so forth.
Note that the computation of the weights can be achieved regardless of the
scores. In particular, the score supervision can favour no algorithm by simply
assigning the same weight to every algorithm (see section 2.2.1). Note that
if the transitions between two classes ci and cj are absent from the training
database, ωk(ci, cj) is not defined and thus, we force ωk(ci, cj) to 1 for every
k.

Only the weights corresponding to the selected marks are normalized to
produce the coefficients β1(cℓ, cr), β2(cℓ, cr), . . . , βK(cℓ, cr):

βk(cℓ, cr) =
ωk(cℓ, cr)∑

j∈A

ωj(cℓ, cr)
, k = 1, . . . , K.

To perform the combination, we must choose the type of score, the mark
selection and the supervision. Many choices are possible. In what follows,
we propose and discuss some simple and efficient choices. The analysis of
more sophisticated choices is in progress.

In this paper, we propose the accuracy at 20 ms as the score. We choose
this score because, on the one hand, we are interested in the precision of
the segmentation at a tolerance of 20 ms; on the other hand, this score is
a reliable measure of the ability of a given algorithm to detect a type of
transition. Other types of score can certainly be proposed.

In the following subsections, we describe two basic choices for the mark
selection and three possible types of supervision.
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algorithm 1
t1(s)

algorithm 2
t2(s)

.

.

.

algorithm K
tK(s)

Transition (s)

(cℓ, cr)

Normalization

β1(cℓ, cr)β2(cℓ, cr) βK(cℓ, cr). . .

δ1

δ2

δK

Mark
selection

Criterion

Score supervision

ω1(cℓ, cr)ω2(cℓ, cr) ωK(cℓ, cr). . .

Scoring

γ1(cℓ, cr)γ2(cℓ, cr) γK(cℓ, cr). . .

Training database

t̂(s)

Figure 1: General scheme for computing t̂(s) by linear fusion of segmentation
marks. We have δk equal to 1 if k ∈ A, where A is the index set of the selected
marks, and 0 otherwise
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2.1 Mark selection

The mark selection involves choosing, for each transition, the marks of the
algorithms that will be used to estimate the transition time instant. It is
thus achieved by a function:

f : R
K → {0, 1}K

(t1, . . . , tK) → (δ1, . . . , δK)

2.1.1 Total selection

This is the basic case where we keep the K marks produced by the K algo-
rithms. Therefore, we have δk = 1 for each k and A = {1, 2, . . . , K}.

2.1.2 Partial selection

Partial selection involves choosing a subset of the K marks we have. This
selection is achieved in two steps. The first step is to determine clusters of
marks located within the same zone. Here, we use a distance to find these
clusters. The second step is to choose one or more clusters on the basis of a
criterion. For example, we can choose the cluster that contains the largest
number of marks.

The separation of the marks into clusters is a complicated problem in the
general case. Relatively sophisticated algorithms, such as k-NN (k-Nearest
Neighbours) and genetic algorithms, can be used.

When K = 3 and since segmentation marks are real numbers, which is
our case, the marks can be easily determined as follows. We compute the
distance dij between the boundaries ti(s) and tj(s) obtained with the ith and
jth algorithms respectively, where (i, j) ∈ {1, 2, 3} × {1, 2, 3} and i 6= j. The
selected marks are those that minimize the distance. With this definition,
we choose only one cluster, which is the set of those marks that minimize
the distance. This cluster is directly A and A contains two or three indices.
In fact, it suffices that two distances are equal to each other to have A equal
to {1, 2, 3}. In what follows, this selection will be called partial selection by
distance criterion.
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2.2 Score supervision

The score supervision is basically a function that assigns the weights ω1(cℓ, cr),
. . . , ωk(cℓ, cr) to the scores γ1(cℓ, cr), . . . , γk(cℓ, cr). In this paper we consider
the particular case where the computation of the weights is achieved by us-
ing one single function f , called a weighting function, such that ωk(cℓ, cr) =
f(γk(cℓ, cr)) for k = 1, . . . , K.

Equation (1) becomes:

t̂(s) =

∑

k∈A

f(γk(cℓ, cr))tk(s)

∑

k∈A

f(γk(cℓ, cr))
. (2)

Remark 2.1 The supervision must be adapted to the type of score. If the
larger the score γk(cℓ, cr), the more accurate the kth algorithm, the weight-
ing function f must be non-decreasing. Otherwise, if the larger the score
γk(cℓ, cr), the less accurate the kth algorithm, the weighting function f must
be non-increasing.

2.2.1 Uniform supervision

This is the simplest supervision that we can suggest: f(γk(cℓ, cr)) is equal to
1, for every type of score, every algorithm and every type of transition. In
other words, the supervisor favours no algorithm. The outcome of the linear
fusion is thus the average value of the selected marks:

t̂(s) =
1

K

∑

k∈A

tk(s). (3)

2.2.2 Hard supervision

The weights assigned by the supervision are 0 or 1, hence the name hard
supervision. These binary weights are computed as follows. Let γmax be
the maximum value of the scores γk(cℓ, cr), k = 1, 2, . . . , K. The elements of
the set I = {k : γk(cℓ, cr) = γmax} are the most appropriate algorithms for
detecting transition s. In this case, the weighting function f is defined by:

f(γk(cℓ, cr)) =

{
1 if k ∈ I

0 otherwise
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The estimate t̂(s) is then given by:

t̂(s) =
1

Card(I ∩ A)

∑

k∈I∩A

tk(s), (4)

where Card(I ∩ A) is the cardinality of I ∩ A.

2.2.3 Soft supervision

In contrast to hard supervision, soft supervision assigns a non binary value.
In this paper, we propose two different weighting functions valued in R.
These functions are increasing ones. This follows from remark 2.1 since the
score we consider is the accuracy at 20 ms and thus the larger the score, the
larger the weight must be.

The two weighting functions studied in this paper are:

f(x) = x

and

f(x) =
1

1 − x
,

where x is the accuracy at 20 ms.
Many other functions can be proposed. With the first function, we con-

sider that the accuracy is a sufficiently good confidence measure. Since x

is the accuracy at 20 ms, 1 − x is the error rate at 20 ms; therefore, the
value of the second function at x is the inverse of this error rate. Similarly
to the accuracy, the inverse error rate at 20 ms is also a good confidence
measure. With this second function, we discriminate more between the dif-
ferent algorithms. For instance, given a pair of classes (cℓ, cr), suppose that
the accuracies at 20 ms of 2 algorithms are 80% and 90% respectively. The
corresponding inverse error rates are then 0.05 and 0.1. The weight of the
second algorithm is thus twice as large as that of the first one when the fu-
sion by soft supervision is performed on the basis of the inverse error rates,
whereas the weights in terms of accuracies are of the same order.

Remark 2.2 Note the analogy between the “hard” and “soft” supervisions
proposed above and hard and soft fusion procedures such as those described
in [13] or [16].
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3 The three automatic segmentation algorithms

We describe the three segmentation algorithms that will be combined via the
general fusion approach proposed above. The three algorithms are: segmen-
tation by HMM, refinement by boundary-model and Brandt’s GLR method.
This choice is justified by the fact that the algorithms behave differently fol-
lowing the classes of the transitions to be detected. In this sense, we can say
that these algorithms are complementary.

3.1 Segmentation by HMM

This approach is considered as the standard method for speech segmentation
and basically consists of two main steps. The first step is training that aims
at estimating the acoustic models. The second step uses these models to
segment the speech signal by means of the Viterbi algorithm. The latter
applies a forced alignment between the models associated with the known
phonetic sequence and the speech signal.

The training phase is crucial because the accuracy of the segmentation
by HMM depends closely on the quality of the estimated models and thus on
the initialization of these models. To initialize the models, several methods
exist.

For example, we can use iterative training [8] on the whole corpus. The
boundaries resulting from the previous iteration are used to initialize and
re-estimate the models via the Baum-Welch algorithm After a few iterations
of the training process, mismatches between the manual labels and the phone
labels produced by the HMM approach are significantly reduced. The ap-
proach that uses this type of training is standard HMM segmentation. This
approach is our reference.

Another method that can be considered is illustrated in figure 2. It uses
a small speech database segmented and labelled manually to estimate the
models [5]. Then, we segment the whole corpus with these models. The
initialization of these models is the same as in the first method. If the
small corpus contains several realizations of each phone of the database,
the initialization of the models on this small corpus is good and this latter
processing performs better than the former [7]. For this reason, we prefer to
apply the general fusion approach to the HMM segmentation that uses this
training. In what follows, we call HMMSeg the segmentation performed by
using this training procedure.
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Estimation by

Baum-Welch
Viterbi alignement

Whole corpus
Small database

Models

Initialization

Final marks

Figure 2: Segmentation by HMM based on a small corpus manually seg-
mented

3.2 Refinement by boundary model [9]

The main idea of this method is to train a set of boundary models by using a
small database manually segmented and labelled. Then, these models serve
to refine an initial segmentation ([9]). More specifically, this method is carried
out in two steps as shown in figure 3.

For each boundary of the training database, we create a super vector by
concatenating the acoustic vectors of the (2N + 1) frames that are around
the manual boundary (see figure 4). Since each boundary B depends on the
phoneme X to its left and on the phoneme Y to its right, the boundary B

is henceforth called the pseudo-triphone X − B + Y as proposed in [9] (see
figure 5). Because the number of labelled data is limited in practice, the
pseudo-triphones are clustered into a reduced number of classes via a Classi-
fication And Regression Tree (CART). A Gaussian Mixture Model (GMM)
is then estimated for each class. The questions put during the construction
of the CART concern the phonetic classes and phonemic identity.

The second step aims at refining each boundary of an initial segmentation.
Given a labelled sentence and its initial segmentation, we seek in a certain
vicinity of each boundary the time instant that maximizes the likelihood of
the super vector corresponding to this instant. This likelihood is computed
as follows. For each possible time instant around the initial boundary, we
form a super vector centred on the current frame as in the training step; since
this super vector is assumed to represent a given pseudo-triphone, we use the
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CART [11] to determine the class corresponding to this pseudo-triphone; the
likelihood is finally calculated according to the GMM associated with the
class thus obtained and the super vector.

This algorithm is linguistically constrained because it needs prior knowl-
edge of the phonetic sequence in order to create the boundary models. How-
ever, it can be applied to any segmentation that contains no omission and
no insertion. For example, in [9], refinement by boundary-model was applied
to HMM segmentation based on forced alignment.

Initial

Segmentation

Refinement around

the boundaries

of the segmentation

Final segmentation

Training corpus
segmented and

labelled manually

GMM models

Figure 3: The different steps of refinement by boundary-model

3.3 Brandt’s GLR algorithm

3.3.1 The basic algorithm

The aim of this method is to detect discontinuities in speech signals. Speech
signals are assumed to be sequences of homogeneous segments. Each segment
w is a finite sequence w = (yn) of samples that are assumed to obey an
autoregressive (AR) model:

yn =

p∑

i=1

aiyn−i + en

In this equation, p is the model order, which is assumed to be constant for
all the segments, and en is a zero mean white Gaussian noise with variance
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Frame step
Frame
size

Boundary (B)

Size of the super vector (2N + 1)Nc

−N . . . 0 . . . N

Figure 4: Construction of a super vector. We consider N non overlapping
frames to the right and N non overlapping frames to the left of a boundary.
In addition, we take into account the frame centred on the boundary. The
(2N + 1) acoustic vectors of these (2N + 1) frames form the super vector.

Figure 5: The pseudo triphones of the French sentence “On comptait deux
projets d’entreprise distincts”

equal to σ2. Such a segment is thus characterized by the parameter vector
Θ = (a1, . . . , ap, σ). Let w0 be some segment of N samples and Θ0 be the
corresponding parameter vector. Brandt attempts in [3] to decide whether
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w0 should be split into two subsegments w1 and w2 or not. A possible split
results from the detection of a jump between the parameter vectors Θ1 and
Θ2 of w1 and w2 respectively. Brandt’s GLR method decides that such a
jump has occurred by comparing:

maxr(DN (r))

to a predefined threshold λ. In this equation, for the Gaussian case, DN(r)
has a simple expression :

DN(r) = Nlogσ̂0 − rlogσ̂1 − (N − r)logσ̂2

Note that DN is the generalized likelihood ratio (GLR). In the equation
above, r is the size of the time interval covered by w1, whereas σ̂1 and σ̂2 are
the noise standard deviation estimates of the models characterized by the
parameter vectors Θ1 and Θ2 respectively. Thus, the change instant is the
value r̂ = arg(maxr(DN(r)) ≥ λ).

A direct implementation of this method is computationally expensive. A
sub-optimal version is recommended in [2]. In particular, the length of w2 is
fixed to a predefined value L. For further details, the reader can refer to [2].

3.3.2 Brandt’s GLR algorithm with known phonetic transcription

As mentioned above, the purpose of Brandt’s GLR method is to detect dis-
continuities of speech signals without any further knowledge of the phonetic
sequence. This algorithm is linguistically unconstrained and makes insertions
and omissions.

We propose here an adaptation of Brandt’s GLR method when the pro-
nounced phonetic sequence is available as often assumed for the segmentation
of speech synthesis corpora. In such a case, an initial segmentation can be
obtained, for example, by an HMM-based method. For each initial segmenta-
tion mark, we define a time interval over which a modified version of Brandt’s
GLR method is applied so as to provide one single segmentation mark.

More specifically, let (U0, U1, . . . , UL) be the boundaries of the initial seg-
mentation. For i in {1, . . . , L − 1}, we seek a speech discontinuity between

Vi = (Ui−1+Ui)
2

and Vi+1 = (Ui+Ui+1)
2

by determining the time instant that max-
imizes the GLR. By removing the thresholding, we make no omission and
no insertion. This is the method used below and despite the modification
proposed, we still call it Brandt’s GLR method.
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4 Evaluation of the three segmentation algo-

rithms

The general fusion approach proposed in section 2 is basically aimed at
achieving a more accurate segmentation than that produced by the different
segmentation algorithms that are combined. Hence, we evaluate the perfor-
mance of each of the three algorithms proposed above and we will verify that
they are complementary.

4.1 Description of the corpora

The performance of each algorithm is evaluated on a French and on an En-
glish corpus. The French corpus, hereafter called FRcorpus, contains 7300
sentences uttered by a woman and sampled at 16 kHz. The English cor-
pus, called ENcorpus, is also pronounced by a female speaker and sampled
at 16 kHz. It contains 8900 sentences. The training phase of refinement by
boundary-model and that required to compute HMMSeg (see section 3.1) are
carried out successively on databases containing 100, 300 and 700 sentences.

Each database is chosen randomly within the speech corpora. This ran-
dom choice is made up to a minimum number of realizations per phone. We
choose this minimum equal to 3.

In order to provide a rigorous analysis, we use a cross-validation procedure
that includes three different training databases of the same size.

4.2 Parameters

The segmentation HMMSeg is performed by using the HTK tool [17] for the
acoustic analysis, the model training and the segmentation. For each phone,
we consider a left-to-right three-state model; the observation probabilities are
modelled by the mixture of two Gaussian distributions. The acoustic vectors
contain 39 coefficients each. These coefficients are the 12 Mel Frequency
Cepstral Coefficients (MFCCs), the normalized energy, and the first and
second derivatives of these 13 coefficients. Twenty iterations of the Baum-
Welch algorithm are applied to train the HMM.

The segmentation obtained by applying refinement by boundary-model
to HMMSeg is called RefinedHMMSeg. For every boundary of the HMM
segmentation, the refined boundary is searched for within an interval of 60
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ms centred on this boundary with a search step fixed to 5 ms. The super
vector is computed with N = 2, a frame step equal to 30 ms and a frame
size equal to 20 ms. The length of the acoustic vector of each frame is still
39. Thus, each super vector contains 39(2 × 2 + 1) = 165 coefficients. The
parameter values given above were originally determined for a Chinese corpus
in [9]. In [6], it is shown that these values remain suitable for a French corpus.

For Brandt’s GLR method, the input segmentation is HMMSeg. There-
fore, we search for a discontinuity around each HMM boundary. The seg-
mentation obtained is called BrandtSeg. The AR model order is set to 12
and the minimal length of w1 and w2 is equal to 10 ms.

4.3 Results and discussion

All the accuracies presented below were computed on the whole corpus except
the sentences used for the training processes.

Tables 1 and 2 depict the accuracies at a tolerance equal to 20 ms with
respect to the manual segmentation.

We choose a tolerance of 20 ms because, as mentioned in the introduction,
this tolerance is an acceptable limit for TTS applications.

Table 1: Accuracies of the standard HMM segmentation
Accuracies

FRcorpus 88.53%
ENcorpus 87.77%

Table 2: Accuracies of HMMSeg, RefinedHMMSeg and BrandtSeg
AlgSize HMMSeg RefinedHMMSeg BrandtSeg

FRcorpus
100

91.71% 91.08% 83.22%
ENcorpus 91.98% 89.58% 86.78%
FRcorpus

300
92.51% 93.26% 83.39%

ENcorpus 92.95% 92.46% 87.10%
FRcorpus

700
92.47% 94.00% 83.38%

ENcorpus 93.00% 93.50% 87.09%

As explained in section 4.1, HMMSeg and RefinedHMMSeg require a pre-
liminary training phase. The size of the database used for this training phase
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Table 3: The performance limit of each algorithm
HMMSeg RefinedHMMSeg BrandtSeg

FRcorpus 92.68% 95.00% 83.22%
ENcorpus 93.17% 94.30% 87.19%

is hereafter called AlgSize. Three different values for AlgSize, namely 100,
300 and 700, are tested. Table 1 presents the accuracies of the standard
HMM segmentation which is our reference and table 2 presents those of the
segmentations HMMSeg, RefinedHMMSeg and BrandtSeg.

According to these tables, we can make the following remarks:

• HMMSeg is always more accurate than the standard HMM segmenta-
tion. This shows that an initialization of the models via a small man-
ually segmented database yields better results than a standard HMM
initialization based on the whole corpus;

• RefinedHMMSeg is more accurate than HMMSeg provided that the
boundary models are well trained i.e. if the number of boundaries
available in the training database is large enough. 300 sentences for
the French corpus and 700 for the English corpus are sufficient for
RefinedHMMSeg to outperform the others; 300 sentences of FRcorpus
correspond approximatly to 10000 boundaries and 700 sentences of EN-
corpus contain around 30000 boundaries;

• Brandt’s GLR method is inaccurate at 20 ms in comparison with the
other algorithms.

Table 3 shows the performance limit of each algorithm. The performance
limit of a given algorithm is the accuracy obtained by training this algorithm
on the whole database. With a training database of 700 sentences, we can
observe that the accuracies of the three algorithms approaches those of their
perfomance limits.

Because the accuracy at 20 ms is regarded as an important objective cri-
terion in TTS applications, it seems reasonable to conclude from table 2 that
refinement by boundary-model is the most accurate algorithm. Nevertheless,
we should not forget that the algorithms are not suitable for the same pho-
netic classes. During these tests, it turned out that Brandt’s GLR method
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detects some boundaries well, like silence/speech and voiced/voiceless tran-
sitions. Similarly, refinement by boundary-model and the HMM approach
well detect the time instants of some transitions that are not well estimated
by Brandt’s GLR method. We say in this case that refinement by boundary-
model and Brandt’s GLR method are complementary.

To convince the reader that the three algorithms behave differently, for
the french corpus, we determined (see table 4) the best algorithm for each
pair of phonetic classes. To construct this table, by using the same test
corpus, we computed the error rate at 20 ms for each algorithm and each
class of transition. We observe from this table that each algorithm is useful.
In fact, for a given algorithm, there is a number of transition classes for which
this algorithm gives the most accurate marks. For example, Brandt’s GLR
method is the best algorithm for detecting the boundaries between voiced
plosives and unvoiced plosives. Refinement by boundary-model is the best
algorithm to find marks between nasal vowels and unvoiced plosives. Finally,
the HMM approach is the most adapted to detecting the marks between
voiced plosives and nasal vowels.

5 Experimental results for the general fusion

approach

In section 5.1, we presented a score, two types of selection marks and three
types of supervisions. In what follows, by fusion method, we mean a linear
combination defined by a score, a mark selection, a score supervision and a
weighting function. For hard and uniform supervisions, the weighting func-
tions are determined. However, for soft supervision, we defiend two possible
weighting functions. Therefore, we have 8 possible combinations between the
score, the two selection marks, the three supervisions and the two weight-
ing functions of the soft supervision. These 8 combinations are our fusion
methods.

In this section, we start by identifying the best fusion method among
the 8 chosen. This is achieved in section 5.1 by comparing the segmenta-
tion accuracies computed when the fusion methods are applied to the triplet
(HMMSeg, RefinedHMMSeg, BrandtSeg).

We conclude from this comparison that fusion with total selection, and
soft supervision of the inverse error rates, that is, when f(x) = 1

1−x
, give the
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Table 4: The best algorithm for each pair of phonetic classes and for the
French corpus. The terms “H”, “G” et “B” refer to HMM segmentation,
refinement by boundary-model and Brandt’s GLR method respectively. The
French phonetic classes are: oral vowels (OV), nasal vowels (NV), unvoiced
plosives (UVP), voiced plosives (VP), unvoiced fricatives (UVF), voiced frica-
tives (VF), diphthongs (DIPH), nasal consonants (NC), liquid consonants
(LC), semivowels (SV), pauses (SP) and silences (SIL). − − − means that
no transition between the pair of classes is available in the corpus.

OV NV DIPH VP UVP VF UVF NC LC SV SP SIL

OV B G B B G H H B G B B B

NV G G B H G B B B H B H H

DIPH H H/G B B B H H B G G B H

VP H G H B B H G H G H B B

UVP H H H B G H H/G G G H B G

VF G G H B B H B H B H B B

UVF H H/B G H/B G H B H/G B H G B

NC G G H H G H/G/B G/B B H G G B

LC G H H B B G/B B G B H/G G G

SV G G B B B B B B B G/B G B

SP B G/B H/G/B G G G H G G B H/G/B H/G/B

SIL B B H/G/B G G B G G/B G G/B H/G/B H/G/B

best results. For the sake of brevity, this fusion method will be called the op-
timal fusion by soft supervision. Then, in section 5.2, we compare the quality
of the synthetic speech obtained by using the segmentation produced by this
fusion method to that achieved when the HMM and manual segmentations
are used.

5.1 Accuracies

Let SizeComb denote the number of sentences of the training database used
to score HMMSeg, RefinedHMMSeg and BrandtSeg. Three different values for
SizeComb are considered: 100, 300 and 700. The sentences of the training
databases used for the scoring are chosen randomly within the whole cor-
pus and are different from those used for the training required to compute
HMMSeg and RefinedHMMSeg.

The accuracies given in this section are computed at a tolerance of 20
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ms and evaluated on all the sentences of the database except those needed
to train the models for the computation of HMMSeg, RefinedHMMSeg and
the different fusion methods we use to combine them. As in section 3, the
results presented here are obtained by averaging the accuracies using a cross-
validation procedure.

For FRcorpus, the fusion was achieved by using 12 classes: unvoiced
plosives, voiced plosives, unvoiced fricatives, voiced fricatives, oral vowels,
nasal vowels, diphthongs, nasal consonants, liquid consonants, semivowels,
pauses and silences. For ENcorpus, 11 classes were considered: vowels,
voiced/unvoiced plosives, voiced/unvoiced fricatives, affricates, nasal con-
sonants, liquid consonants, semivowels, pauses and silences.

The accuracies at a tolerance of 20 ms achieved by the fusion methods on
FRcorpus and ENcorpus are given in tables 5 and 6. For every pair (Size-
Comb,AlgSize), every fusion method yields a segmentation more accurate
than HMMSeg, RefinedHMMSeg and BrandtSeg. For instance, according to
table 5, optimal fusion by soft supervision achieves an accuracy of 94.98%
for FRcorpus when (SizeComb, AlgSize) = (300, 300). If we compare this
accuracy to those given in table 2 for the same corpus and AlgSize = 300, we
observe a reduction of 25.50% for the error rate as compared to RefinedHMM-
Seg.

Similarly to table 3, table 7 displays the results obtained by using the
whole corpus for the training phases needed to compute HMMSeg, RefinedHMM-
Seg and estimate the scores for the fusion methods. These results are the
maximum accuracies that the fusion methods can attain and can thus be re-
garded as the limit performance measurements of these fusion methods. The
accuracies given in tables 5 and 6 are reasonably close to these performance
limits when AlgSize ≥ 300.

For instance, the maximum accuracies attained by optimal fusion by soft
supervision are 95.72% and 95.53% for FRcorpus and ENcorpus respectively.
For (SizeComb, AlgSize) = (700, 700), the accuracies of the same method
are 95.22% and 95.23% for FRcorpus and ENcorpus respectively.

The training database used to tune the fusion methods is different from
that used to train the models for HMM segmentation and refinement by
boundary-model. Of course, in practice, it is more appropriate to choose the
same database so as to reduce the number of sentences to segment manually.
This is possible without any significant performance loss. Table 8 shows the
accuracies at 20 ms when the database is the same for the scoring and for
training the models to produce HMMSeg and RefinedHMMSeg. To compute
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these accuracies, we use the 4 fusion methods that are derived from the
use of the total mark selection and the three types of supervision. For a
training database of size 700, the accuracies attained by optimal fusion by soft
supervision are 95.26% and 95.17% for FRcorpus and ENcorpus respectively.
However, with hard supervision, we obtain accuracies equal to 94.39% and
94.36%. This means that in comparison with the uniform supervision, the
number of segmentation errors is reduced by 15.5% and 14.3% respectively
when we use soft supervision. Moreover, the computational loads of the two
processings are the same. We can conclude that the estimation of the scores
via the training phase is useful.

The results presented in this section show that optimal fusion by soft su-
pervision significantly improves the accuracy at 20 ms in comparison with
standard HMM segmentation. It is now interesting to see if optimal fusion
by soft supervision is capable of removing most of the coarse errors. By
coarse error, we mean a segmentation error larger than 50 ms. In this re-
spect, table 9 presents, for different tolerances, the accuracies of standard
HMM segmentation and the segmentation achieved by optimal fusion by soft
supervision when the same database of size 300 is used for the scoring and
the computation of HMMSeg and RefinedHMMSeg. From this table, we can
observe that the number of coarse errors made by the standard HMM seg-
mentation is reduced by a fifth via optimal fusion by soft supervision.

Table 5: Accuracies at 20 ms for FRcorpus when linear fusion is achieved
with different score supervisions and mark selections

SizeComb AlgSize Total selection Selection by distance criterion

uniform hard soft uniform hard soft

f(x) = x f(x) = 1
1−x

f(x) = x f(x) = 1
1−x

100 93.67% 93.04% 94.20% 94.13% 93.13% 93.02% 93.16% 93.08%
100 300 94.38% 93.81% 94.82% 94.75% 94.06% 93.99% 94.07% 94.02%

700 94.58% 94.14% 94.97% 94.84% 94.32% 94.28% 94.33% 94.29%
100 93.68% 92.89% 94.23% 94.34% 94.14% 93.02% 93.15% 93.16%

300 300 94.39% 93.77% 94.88% 94.98% 94.07% 94.01% 94.10% 94.14%
700 94.58% 94.18% 95.07% 95.17% 94.32% 94.28% 94.35% 94.36%
100 93.66% 93.10% 94.22% 94.45% 93.12% 93.01% 93.14% 93.18%

700 300 94.40% 93.88% 94.91% 95.10% 94.07% 94.00% 94.09% 94.15%
700 94.58% 94.32% 95.08% 95.22% 94.33% 94.28% 94.34% 94.40%
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Table 6: Accuracies at 20 ms for ENcorpus when linear fusion is achieved
with different score supervisions and mark selections

SizeComb AlgSize Total selection Selection by distance criterion

uniform hard soft uniform hard soft

f(x) = x f(x) = 1
1−x

f(x) = x f(x) = 1
1−x

100 93.68% 93.02% 93.96% 93.98% 93.26% 93.21% 93.29% 93.15%
100 300 94.36% 93.74% 94.69% 94.64% 94.11% 94.10% 94.13% 94.03%

700 94.58% 94.10% 94.91% 94.97% 94.41% 94.41% 94.42% 94.36%
100 93.66% 93.08% 93.98% 94.17% 93.24% 93.18% 93.27% 93.24%

300 300 94.37% 93.80% 94.70% 94.89% 94.12% 94.11% 94.13% 94.13%
700 94.58% 94.25% 94.92% 95.14% 94.40% 94.40% 94.42% 94.43%
100 93.66% 93.21% 93.97% 94.25% 93.25% 93.19% 93.27% 93.33%

700 300 94.37% 93.97% 94.69% 94.98% 94.11% 94.11% 94.14% 94.17%
700 94.60% 94.23% 94.93% 95.23% 94.41% 94.41% 94.43% 94.46%

Table 7: The limit performance of the fusion methods with different score
supervisions and mark selections

Total selection Selection by distance criterion
uniform hard soft uniform hard soft

f(x) = x f(x) = 1
1−x

f(x) = x f(x) = 1
1−x

FRcorpus 94.86% 95.11% 95.39% 95.72% 94.75% 94.75% 94.77% 94.88%
ENcorpus 94.85% 94.70% 95.19% 95.53% 94.77% 94.77% 94.78% 94.82%

Table 8: Accuracies of the segmentation obtained by fusion by soft supervi-
sion when the same database is used for the scoring and the computation of
HMMSeg, RefinedHMMSeg

uniform hard soft
f(x) = x f(x) = 1

1−x

100 FRcorpus 93.68% 92.50% 94.08% 93.77%
ENcorpus 93.67% 92.35% 93.92% 93.77%

300 FRcorpus 94.39% 93.83% 94.87% 94.92%
ENcorpus 94.36% 93.10% 94.67% 94.77%

700 FRcorpus 94.59% 94.31% 95.09% 95.26%
ENcorpus 94.58% 93.81% 94.93% 95.17%
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Table 9: Accuracies, for different tolerances, of the standard HMM segmen-
tation and the segmentation obtained by optimal fusion by soft supervision
when the same database with size 300 is used for the scoring and the training
of the models needed to create HMMSeg, RefinedHMMSeg

10 ms 20 ms 50 ms 80 ms
300 FRcorpus 79.90% 94.92% 99.47% 99.90%

(f(x) = 1
1−x

) ENcorpus 81.71% 94.77% 99.43% 99.87%

HMM FRcorpus 67.12% 88.53% 97.21% 98.92%
segmentation ENcorpus 66.16% 87.77% 97.44% 99.43%

5.2 Subjective tests

In the previous section, optimal fusion by soft supervision turned out to be
the most accurate method among those studied. In the present section, we
want to assess this method in terms of speech quality. This can be achieved by
means of objective or subjective tests. We focus our attention on subjective
tests because they are often regarded as more reliable than objective ones.
This is because subjective tests are based on direct ratings by human listeners
and thus predict user satisfaction.

For synthesis systems, several subjective tests are available. The proce-
dure of such tests is simple. Human subjects are asked to listen to speech
signals and rate them according to the categories chosen for the subjective
test.

The Mean Opinion Score (MOS) [12] is the most widely used subjective
method. It uses an Absolute Category Rating (ACR) procedure because
subjects are asked to rate the quality of several speech utterances without
listening to the original signal. The scores given by the subjects must belong
to {1, 2, 3, 4, 5}. These values refer to the categories shown in table 10. The
MOS score is simply the mean of the scores collected from the listeners.

We apply the MOS test to assess the quality of French and English syn-
thesized speech signals. The synthesis is performed by unit selection and
performed by the baratinoo system developed by France Telecom. It needs a
large database of segmented and labelled diphones. A diphone starts from the
middle of one phoneme steady zone to the middle of the next phoneme steady
zone. Because the middle of the steady zone of a phoneme can reasonably be
approximated by the middle of this phoneme, the segmented diphones derive
easily from the phonetic segmentation of the initial speech database.
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It would be very interesting to carry out MOS tests so as to compare, in
terms of synthesized speech quality, the segmentation obtained by optimal
fusion by soft supervision versus the reference HMM segmentation, the man-
ually produced reference segmentation and the HMMSeg, RefinedHMMSeg
and BrandtSeg segmentations that are used for the fusion. In a forthcoming
work, we plan to carry out this complete experiment. Here, we focus our
attention on comparing the segmentation provided by optimal fusion by soft
supervision with the two references (standard HMM segmentation and the
manual segmentation).

Given the diphone segmentations derived from these 3 phonetic segmen-
tations, three diphone acoustic dictionaries are built. Then, with the France
telecom TTS system, these three dictionaries are used to synthesize a set of
test sentences. This set of sentences needs to be carefully designed. Indeed,
given the relatively low error rate provided by most segmentation algorithms,
no segmentation problem should occur when synthesizing a given sentence.
Therefore, we propose to carry out subjective tests on synthetic utterances
containing diphones for which segmentation problems occured, i.e. whose
distance to the corresponding manual mark exceeds 20 ms.

To achieve this, we first collected 2000 sentences from books of the “Guten-
berg” project. The Gutenberg project was started in 1971 and consists of
a large electronic library of nearly 17000 books that are free downloadable.
Next, the 2000 sentences were synthesized via the diphone corpus derived
from the HMM segmentation. We then computed the number of segmen-
tation errors for each synthesized sentence and selected the 20 sentences
with the largest numbers of errors. The synthesis of these 20 sentences gave
us a first set. We considered the synthesized speech signals that contain
the largest numbers of erroneous diphone marks due to HMM segmentation
because optimal fusion by soft supervision can be expected to provide less
erroneous diphone marks.

To select the text corpus, segmentation errors made on pauses and si-
lences of diphones are not counted for two reasons. On the one hand, HMM
segmentation performs poorly on silences and pauses. On the other hand,
our purpose is to consider the largest variety of HMM segmentation errors.
Thus, if we took into account the errors on silences and pauses, we might
select sentences where most errors are due to silences.

The listeners were asked to mark these 60 synthesized sentences. Note
that all the listeners are native speakers and naive and a phase of training
with 5 sentences is done before the test. This training phase allows the
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listeners to have a good idea about the quality of the synthetic voice in order
to use the whole range of marks appropriately.

The results for the French and the English voices and each segmentation
are given in table 11. Each value in the fourth column of this table represents
the average mark of the synthesized voice quality calculated on the whole set
of sentences and listeners.

Table 10: MOS and speech quality
Score Category

5 Excellent
4 Good
3 Acceptable
2 Poor
1 Bad

Table 11: Results of the MOS test for the French and the English voices
Number Score Standard

of subjects deviation
HMM segmentation 2.86 0.41

French Soft fusion 16 3.15 0.37
Manual segmentation 3.35 0.4
HMM segmentation 3.04 0.37

English Soft fusion 11 3.13 0.41
Manual segmentation 3.06 0.44

The results given in table 11 for the French and the English voices show
that the synthesized voice quality achieved by using a database segmented
using optimal fusion by soft supervision is better than the quality obtained
by using the standard HMM segmentation.

It also turns out that the synthetic voice quality achieved by using a
database segmented with optimal fusion by soft supervision is closer to the
quality obtained by using the manual segmentation for the French voice and
outperforms this quality for the English voice.

A possible explanation is the following one. Actually, the so-called manual
segmentation results from the manual correction of the segmentation errors
made by the standard HMM algorithm. As such, it may still contain some
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errors. This could also explain that the MOS for the English and French
voices is quite poor (around 3) when the synthesis is performed with the
manually segmented corpus.

6 Conclusion and extensions

In this paper, we have proposed a general approach capable of merging several
segmentations produced by different automatic algorithms in order to obtain
a more accurate segmentation than the combined segmentations. The idea
of this approach was a result of the following fact. Segmentation algorithms
do not perform equally on the same type of boundary.

To evaluate the performance of this approach, we have proposed to com-
bining the segmentations performed by three methods: HMM segmentation,
refinement by boundary-model and Brandt’s GLR method. In this respect,
we have proposed and tested several fusion methods.

From a more general point of view, combining several segmentations
seems to be a good solution for segmenting large corpora, especially for
TTS synthesis applications. The accuracy improves: for instance, optimal
fusion by soft supervision reduces by 60% the number of errors made by the
standard HMM segmentation.

Because the time duration required to perform HMMSeg, RefinedHMMSeg
and BrandtSeg together is about twice that needed to achieve the standard
HMM segmentation and since the fusion process is, moreover, negligible, the
overall computational load of the proposed method is reasonable.

The fusion approach is flexible. In fact, the approach proposed in section 2
and summarized in figure 1 is a general framework and many other types of
score, many other weighting functions and different criteria for the mark
selection can be proposed. For example, we are currently studying the use
of polynomials as weighting functions. In this paper, the algorithms are
scored by their accuracies at 20 ms because a deviation of at most 20 ms is
considered to be an acceptable upper limit for guaranteeing good quality of
synthesized voice; however, the standard deviation of the segmentation error
at 20 ms could also be a relevant type of score.

This approach can involve other segmentations in addition to or instead of
those studied above. In order to obtain good performance measurements, we
recommend the following: the segmentations that are to be combined should
contain no insertion and no omission; the segmentation methods should per-
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form differently depending on the type of transition classes so as to guarantee
some complementarity. The fusion approach can, for example, apply to al-
gorithms such as those presented in [1, 8, 14, 15]

In order to attain better accuracy, attention should be given to the types
of boundary that still cause many segmentation errors so as to develop some
processing dedicated to them. We highlight such types of boundary as fol-
lows.

Given a pair of phonetic classes and thus a type of boundary, we compute
the number of segmentation errors at a tolerance of 20 ms; we also compute
the ratio between this number of errors and the total number of boundaries
of this type. The results are presented in tables 12 and 13. The former
concerns FRcorpus and the latter corresponds to ENcorpus. These results
were obtained on the basis of the segmentation achieved by optimal fusion
by soft supervision when (SizeComb, AlgSize) = (300, 300). From these
figures, we note that most errors are made in detecting a transition between
a phonetic class and the classes SIL (silence) and SP (pause).

To show the reader that decreasing the number of errors for these pairs
of classes is important, we compute the accuracy at 20 ms by using manual
segmentation to correct all the errors between any class and SIL. We attain
an accuracy of 95.70% at 20 ms for FRcorpus and of 95.47% for ENcorpus.
By removing all the errors between any class and SP , we arrive at 96.20%
for FRcorpus and 95.73% for ENcorpus.

In terms of accuracy, these values clearly suggest using very accurate
speech/silence detection. In terms of speech synthetic quality, it would be
relevant to evaluate the gain provided by such speech/silence detection.

Another focus of interest would be to evaluate optimal fusion by soft
supervision when the phonetic transcription contains errors.

It would also be interesting to assess optimal fusion by soft supervision
for the segmentation of large corpora dedicated to other applications such as
speech recognition. This would make it possible to verify the robustness of
the fusion approach to uncontrolled or variable recording conditions and to
noisy signals.
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Table 12: For every given pair of French phonetic classes, the number of segmentation errors at
tolerance 20 ms and error rate conditionally to this pair of classes. The error rate is defined as the ratio
between the number of segmentation errors at tolerance 20 ms and the total number of boundaries available
for the pair of classes under consideration. The French phonetic classes are: oral vowels (OV), nasal vowels
(NV), unvoiced plosives (UVP), voiced plosives (VP), unvoiced fricatives (UVF), voiced fricatives (VF),
diphthongs (DIPH), nasal consonants (NC), liquid consonants (LC), semivowels (SV), pauses (SP) and
silences (SIL). A class in the first column represents the phonetic class of the phoneme located to the left
of a boundary and a class in the first line represents the class of the phoneme which is at the right of this
boundary. For instance, if we consider the pair (OV, UV P ) of phonetic classes, there were 676 errors in
detecting the transitions between these two classes when the phonemes to the left are oral vowels and the
phonemes to the right are voiceless stops. The error rate for this pair of classes equals 4.10%: this means
that 4.10% of the boundaries of this type are erroneously detected. In this table, and in the subsequent
one, we emphasize the pairs of classes with large numbers of errors and large error rates. − − − means
that no transition between the pair of classes is available in the corpus.
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Table 13: For every given pair of English phonetic classes, the number of segmentation errors at
tolerance 20 ms and error rate conditionally to this pair of classes. The English phonetic classes are:
vowels (V), voiced plosives (VP), unvoiced plosives (UVP), voiced fricatives (VF), unvoiced fricatives
(UVF), affricates (AF), nasal consonants (NC), liquid consonants (LC), semivowels (SV), pauses (SP)
and silences (SIL). This table reads like table 12.
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