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Abstract

This paper is a contribution to the analysis of the statistical correlation of the
wavelet packet coefficients issued from the decomposition of a random pro-
cess, stationary in the wide-sense, whose power spectral density is bounded
with support in [−π, π].

Consider two quadrature mirror filters (QMF) that depend on a param-
eter r, such that these filters tend almost everywhere to the Shannon QMF
when r increases. The parameter r is called the order of the QMF under
consideration. The order of the Daubechies filters (resp. the Battle-Lemarié
filters) is the number of vanishing moments of the wavelet function (resp.
the spline order of the scaling function).

Given any decomposition path in the wavelet packet tree, the wavelet
packet coefficients are proved to decorrelate for every packet associated to a
large enough resolution level, provided that the QMF order is large enough
and above a value that depends on this wavelet packet.

Another consequence of our derivation is that, when the coefficients asso-
ciated to a given wavelet packet are approximately decorrelated, the value of
the autocorrelation function of these coefficients at lag 0 is close to the value
taken by the power spectral density of the decomposed process at a specific
point. This specific point depends on the path followed in the wavelet packet
tree to attain the wavelet packet under consideration.

Some simulations highlight the good quality of the “whitening” effect that
can be obtained in practical cases.

Keywords

Wavelet packets, wide-sense stationary random process, autocorrelation func-
tion, Daubechies filters, Battle-Lemarié filters, mean-square integral, spectral
representation of a process.
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Résumé

Dans ce papier, on analyse la corrélation statistique des coefficients des pa-
quets d’ondelettes associés à un processus aléatoire, stationnaire au sens large
et dont la densité spectrale est à support dans [−π, π].

Soient deux filtres miroirs en quadrature (FMQ) dépendant d’un paramètre
r tel que ces filtres tendent presque partout vers les FMQ idéaux de Shannon
lorsque r crôıt. Le parameter r est appelé ordre des filtres FMQ considérés.
L’ordre des filtres de Daubechies est le nombre de moments nuls de la fonc-
tion d’ondelette. L’ordre des filtres de Battle-Lemarié est l’ordre de la spline
associée à la fonction d’échelle.

Etant donné un chemin de l’arbre de décomposition en paquets d’ondelettes,
nous montrons que les coefficients des paquets d’ondelettes tendent à se
décorréler pour chaque paquet associé à un niveau de résolution suffisament
grand, à condition que l’ordre des FMQ soit lui-aussi suffisament grand et
supérieur à une valeur qui dépend du paquet d’ondelettes considéré.

Un autre conséquence de ce résultat est le suivant: lorsque les coeffi-
cients associés à un paquet d’ondelettes sont approcimativement décorrélés,
la valeur de la fonction d’autocorrélation en 0 est proche de la valeur de
la densité spectrale du processus en un point que l’on sait déterminer. Ce
point dépend du chemin suivi dans l’arbre de décomposition pour atteindre
le paquet d’ondelettes considéré.

Quelques simulations mettent en évidence la bonne qualité de l’effet de
blanchiment que l’on obtient en pratique.

Mots-clés

Paquet d’ondelettes, processus stationnaire au sens large, fonction d’autocorrélation,
filtres de Daubechies, filtres de Battle-Lemarié, intégrale en moyenne quadra-
tique, représentation spectrale.
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1 Introduction

The transforms that map an original continuous-time random process into
a set of uncorrelated random variables can be regarded as optimal discreti-
sations in the sense that the analysis of a random sequence whose elements
are not correlated is much simpler than the analysis of a continuous-time
random process. Therefore, such transforms are of much practical interest
in signal processing and communications applications. The Karhunen-Loève
(KL) expansion is a typical example of such an optimal discretisation. It
applies to any Wide-Sense-Stationary (WSS) random process, that is any
Hilbertian or second-order process X(t) (E[|X(t)|2] < ∞) whose correlation
function R(t, s) = E[X(t)X(s)] depends only on the time-increment t − s
between its two arguments.

The analysis of time-series through the Wavelet transform has then re-
ceived much interest in the recent years. Many authors have studied various
aspects of the statistical correlation of the wavelet coefficients (see [1–7],
amongst others). These works highlight that, for many stationary and non-
stationary input random processes, the between-scale and within-scale coeffi-
cients returned by a Discrete Wavelet Transform (DWT) tend to decorrelate
as the resolution level increases; for further details, the reader may refer to the
very nice overview given in [7]. The DWT can thus be regarded as a “nearly”
optimal discretisation. For WSS processes, it is a relevant alternative to the
KL theory because, unlike the KL expansion, the DWT expansion achieves
the “whitening” effect without solving any eigen equation and without hav-
ing to assume that the process is time-limited, a constraint of importance in
the KL theory. For instance, in [8], the DWT “whitening effect” serves to
design a telecommunication receiver robust in presence of WSS noise; this
system performs without knowing the noise Power Spectral Density (PSD)
and it yields Binary Error Rates comparable to those achieved by the op-
timal receiver based on the noise KL expansion. Note also that when the
autocorrelation function of a given WSS process is known, it is even possible
to construct a non-orthogonal wavelet basis in terms of which the process
can be expanded with uncorrelated coefficients; the construction of this basis
still requires no eigen equation to solve and does not need assume that the
process is time-limited [9].

In complement with the results recalled above and dedicated to the DWT,
the present paper addresses the Discrete Wavelet Packet Transform (DWPT)
of a centred WSS random process. In particular, it proposes an analysis of
the “whitening” effect that the DWPT can achieve in any path when the
resolution level increases. This analysis is motivated by the following facts.

Let (cj,n[k])k∈Z be the sequence of the DWPT within-scale coefficients
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that are returned at node (j, n) of the wavelet packet tree by decomposing
the input WSS random process; j is the resolution level and n is the shift
parameter valued in {0, 1, . . . , 2j − 1} (see section 2.2).

If n is constant with j or if the value of n depends on j but remains upper-
bounded by a constant independent of j, it follows from [10] that, when j
tends to infinity, the coefficients (cj,n[k])k∈Z tend to decorrelate and that the
autocorrelation function at lag 0 of the discrete random process (cj,n[k])k∈Z

tends to the value of the PSD of the input random process at the origin.
However, as explained below, when n is not a fixed constant or does

not remain upper-bounded by a value independent of j, the analysis of the
autocorrelation function of (cj,n[k])k∈Z becomes significantly more intricate:
In this case, given an arbitrary pair of quadrature mirror filters (QMF),
we cannot guarantee that increasing only the resolution level is sufficient
to obtain asymptotically decorrelated wavelet packet coefficients. Moreover,
even when the “whitening” effect is guaranteed, the value of the asymptotic
autocorrelation function at lag 0 of the discrete random process (cj,n[k])k∈Z

is no longer the value of the PSD at the origin but actually depends on the
sequence of the values of n in the DWPT path followed when j varies; for
example, if we choose n = 2j − 1 at every resolution level j, the value of the
asymptotic autocorrelation function at the origin is the value taken by the
PSD at π.

The principal contribution of this paper is then theorem 1. The asymp-
totic decorrelation of the wavelet packet coefficients stated by this theorem
for a large class of WSS random processes met in practice is obtained by
considering QMF h

[r]
0 and h

[r]
1 whose Fourier transforms H

[r]
0 and H

[r]
1 tend

almost everywhere to the Fourier transforms of the Shannon QMF when r
increases. The parameter r is hereafter called the order of the QMF h

[r]
0 and

h
[r]
1 . If h

[r]
0 and h

[r]
1 are Daubechies QMF, the order r is the number of van-

ishing moments of the wavelet function associated to H
[r]
0 ; if these QMF are

Battle-Lemarié filters, the order r is the spline order of the scaling function
associated to H

[r]
0 .

Several papers already stressed the importance of parameters such as
the order r for analysing the statistical correlation of the DWT and DWPT
coefficients. For a fractional Brownian motion, [1] shows that the larger the
number of the wavelet vanishing moments, the more decorrelated the wavelet
coefficients. In [11], an asymptotic within-scale nearly-whiteness inequality is
achieved for the wavelet packet coefficients when the regularity of the scaling
function increases. Recently, [7] highlighted the role played by the length L of
the impulse response of the Daubechies filters to obtain decorrelated between-
scale wavelet coefficients: The covariance of the between-scale coefficients of
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some stationnary process tends to 0 at rate L−1/4 as L tends to infinity.
This paper is organized as follows. In section 2, the reader is reminded

with basic results concerning the wavelet packet decomposition of a random
process. In particular, we will give the expressions of the autocorrelation
functions of the discrete sequences formed by the wavelet packet coefficients.
The convergence of these function sequences when the resolution level tends
to infinity is studied in section 3, and is achieved in two steps. In section 3.2,
the asymptotic decorrelation is established for the Shannon wavelet packet
decomposition, which employs the Shannon QMF that are ideal filters. In
section 3.3, we consider QMF for which the above notion of order makes
sense. We use the convergence of such filters to the Shannon filters when
the order increases to prove that the wavelet packet coefficients tend to be
decorrelated when both the resolution level and the order of the QMF are
large enough; the order must be chosen according to the resolution level. In
section 4, we present some experimental results to illustrate the role played
by the resolution level and the order of the QMF in the decorrelation process.
Finally, we conclude in section 5.

2 Discrete wavelet packet decomposition of a

wide-sense stationary random process

In section 2.1, we present some aspects concerning the wavelet packet analy-
sis. We adopt the same notations as [12]. Section 2.2 gives the decomposition
of a WSS random process and the expressions of the autocorrelation functions
of its wavelet packet coefficients.

2.1 Discrete wavelet packet analysis

Let Φ be a function such that {τkΦ : k ∈ Z} is an orthonormal system of
L2(R), where τkΦ : t 7−→ Φ(t−k). Let U be the closure of the space spanned
by this orthonormal system.

Consider two QMF h0 and h1 and define





H0(ω) = 1√
2

∑
`∈Z

h0[`]e
−i`ω

H1(ω) = 1√
2

∑
`∈Z

h1[`]e
−i`ω.

(1)

The functions H0 and H1 are respectively the Fourier transforms of h0 and
h1 (up to the factor 1/

√
2). The quadrature mirror condition is equivalent
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to the unitarity of the matrix

M(ω) =

(
H0(ω) H1(ω)

H0(ω + π) H1(ω + π)

)
, (2)

for every ω. We assume that the functions H0 and H1 are such that

H1(ω) = e−iωH0(ω + π). (3)

where z stands for the complex conjugate of z.
We define the sequence (Wn)n≥0 of elements of L2(R) by :





W0(t) =
√

2
∑

`∈Z
h0[`]Φ(2t − `)

W1(t) =
√

2
∑

`∈Z
h1[`]Φ(2t − `),

(4)

and by setting, for all n ≥ 1,





W2n(t) =
√

2
∑

`∈Z
h0[`]Wn(2t − `)

W2n+1(t) =
√

2
∑

`∈Z
h1[`]Wn(2t − `).

(5)

The wavelet packet functions are then defined by

Wj,n(t) = 2−j/2Wn(2−jt). (6)

For j ≥ 1 and k ∈ Z, we put Wj,n,k = τ2jkWj,n, that is

Wj,n,k(t) = 2−j/2Wn(2−jt − k). (7)

The set {Wj,n,k : k ∈ Z} is orthonormal. With a slight abuse of language,
the closure of the space spanned by {Wj,n,k : k ∈ Z} will hereafter be called
the packet Wj,n.

The wavelet packet decomposition of the function space U is obtained
by recursively applying the so-called splitting lemma (see [13], for example).
We thus can write that

U = W1,0 ⊕ W1,1, (8)

and
Wj,n = Wj+1,2n ⊕ Wj+1,2n+1, (9)

for every j = 1, 2, · · · , and every n ∈ Ij with

Ij = {0, 1, · · · , 2j − 1}. (10)
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Figure 1: Wavelet packet decomposition tree down to resolution level j = 3.

The sets {Wj+1,2n,k : k ∈ Z} and {Wj+1,2n+1,k : k ∈ Z} are orthonormal
bases of the vector spaces Wj+1,2n and Wj+1,2n+1, respectively. The wavelet
packet tree of figure 1 illustrates such a decomposition

The projection of a function f ∈ U on Wj,n yields the coefficients

cj,n[k] =

∫

R

f(t)Wj,n,k(t)dt. (11)

Remark 1 With respect to what follows, it is worth emphasizing that the
decomposition concerns an arbitrary space U generated by the translated ver-
sions of Φ. Therefore, the function Φ is not necessarily the scaling function
associated to the low-pass filter H0. If Φ is this scaling function, we have
W0 = Φ in (4).

In practice, when the input data of the wavelet packet decomposition are
the samples of some function that satisfies Shannon’s sampling theorem, we
implicitly use the wavelet packet decomposition of the space U = US of those
elements of L2(R) that have their Fourier transforms with support in [−π, π].
The elements of US are said to be band-limited functions. According to Shan-
non’s sampling theorem, US is the space spanned by the translated versions
of ΦS = sinc.

2.2 Discrete wavelet packet decomposition of a second-

order WSS random process

Let (Ω,A, P ) be a probability space, where P is a probability measure on the
elements of A, and let X : R × Ω −→ R be a second-order random process:

‖X‖2
L2(Ω) = E

[
|X|2

]
=

∫

Ω

|X|2dP < ∞. (12)

We assume that X is centred and continuous in quadratic mean. The au-
tocorrelation function of X, denoted by R, is a continuous function. This
function is defined by

R(t, s) = 〈X(t), X(s)〉L2(Ω) = E[X(t)X(s)].
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The wavelet packet decomposition of X returns, at level j and for n ∈ Ij,
the random variables

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt, k ∈ Z, (13)

provided that the Riemann integral
∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (14)

exists (see appendix A). The discrete random process (cj,n[k])k∈Z, where
cj,n[k] is defined by the mean-square integral (13), represents the sequence of
the coefficients of X on the packet Wj,n.

Remark 2 according to the splitting lemma (9), Wj,n is decomposed into
two packets Wj+1,2n and Wj+1,2n+1. For ε ∈ {0, 1}, the coefficients of X on
the packet Wj+1,2n+ε are defined by

cj+1,2n+ε[k] =

∫

R

X(t)Wj+1,2n+ε,k(t)dt. (15)

We have (see appendix B),

Wj+1,2n+ε,k =
∑

`∈Z

hε[` − 2k]Wj,n,` (16)

and then, we can write, with convergence in L2(Ω),

cj+1,2n+ε[k] =
∑

`∈Z

hε[` − 2k]cj,n[`]. (17)

Thus, we can obtain the wavelet packet coefficients of a second-order random
process by applying Mallat’s algorithm based on convolution and downsam-
pling [14]. The principle of the decomposition is then the same as that used
to decompose functions of L2(R), the only difference being the kind of con-
vergence involved.

Now, let Rj,n stand for the autocorrelation function of the discrete random
process cj,n defined by (13). We have

Rj,n[k, `] = E
[
cj,n[k]cj,n[`]

]

= E

[∫

R

X(t)Wj,n,k(t)dt

∫

R

X(s)Wj,n,`(s)ds

]

=

∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,`(s)dtds. (18)

10



Assume that X is a WSS random process. As usual, we write that
R(t, s) = R(t − s). We also assume that X has a Power Spectral Density
(PSD) γ, which is the Fourier transform of R, and that γ ∈ L∞(R).

If we denote by f̂ the Fourier transform of any element f of L1(R) or
L2(R), it follows from (18) and appendix C, that the discrete random process
cj,n is WSS and that

Rj,n[m] =
1

2π

∫

R

γ(
ω

2j
)|Ŵn(ω)|2eimωdω. (19)

where, with the same language abuse as above, Rj,n[k − `] = Rj,n[k, `]. This
autocorrelation function can also be written

Rj,n[m] =
1

2π

∫

R

γ(ω)|2j/2Ŵn(2jω)|2ei2jmωdω. (20)

With an easy change of variable, we obtain that

Rj,n[m] =
1

2π

∫

R

γ(ω)|Ŵj,n(ω)|2ei2jmωdω, (21)

which will prove useful in the sequel.

3 Asymptotic decorrelation of the wavelet packet

coefficients of a band-limited wide-sense sta-

tionary random process

Our purpose is to analyse the behaviour of the autocorrelation functions (21)
when the resolution level j tends to infinity.

If n is constant, Lebesgue’s dominated convergence theorem can be used
to compute the limit of Rj,n[m] when j tends to infinity. More precisely, if
we assume that the PSD γ of X is an element of L∞(R), it follows from (19)
that

|Rj,n[m]| ≤ ‖γ‖∞‖Wn‖2
L2(R) = ‖γ‖∞, (22)

and therefore, if n is constant, we have from (19) that :

lim
j→+∞

Rj,n[m] =
1

2π
γ(0)

∫

R

|Ŵn(ω)|2eimωdω. (23)

But ∫

R

|Ŵn(ω)|2eimωdω = 2π 〈τmWn, Wn〉 = 2πδ[m], (24)
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where

δ[m] =

{
1 if m = 0
0 if m 6= 0

(25)

and then
lim

j→+∞
Rj,n[m] = γ(0)δ[m]. (26)

The result thus obtained is that given in [10] and is partially proved in [15].
Note that (26) embraces the cases n = 0 and n = 1, which respectively
correspond to the approximation coefficients and the detail coefficients of
the DWT.

The situation becomes more intricate if n is a function of j. For instance,
if we choose n = 2j − 1 for all j > 0 or n = 2j−L where L ∈ N, the behaviour
of Rj,n[m] when j tends to infinity is no longer a straightforward consequence
of Lebesgue’s dominated convergence theorem.

The approach proposed below is valid whether n depends on j or not. This
approach concerns the case where the random process X is a second-order,
centred, WSS, continuous in quadratic mean, with PSD γ ∈ L∞([−π, π]).
Therefore X is a band-limited random process, and we have (see proof in
appendix D), ∫

R

X(t)ΦS(t − k)dt = X[k]. (27)

Consequently, US is the natural space of representation of such a random
process. Note that according to (27), we can initialize the decomposition with
the samples (X[k])k, by setting c0,0[k] = X[k], and calculating the wavelet
packet coefficients with the recurrence described by relation (17). From now
on, we will assume that the wavelet packet decomposition concerns the space
US.

Before detailling this approach, the next subsection reminds the reader
with a useful description of an arbitrary sequence (Wj,n)j≥1 of wavelet pack-
ets by means of a binary sequence [16]. Then, in subsection 3.2, we treat the
case where the quadrature mirror filters are the ideal low and high pass filters
of the Shannon decomposition. The general case is addressed in subsection
3.3.

12



3.1 The binary sequence associated to a given sequence
of wavelet packets

Let κ = (ε`)` ∈ {0, 1}N be an infinite binary sequence. For any natural
number j, let nj(κ), in short nj, stand for the non negative integer

nj = nj(κ) =

j∑

`=1

ε`2
j−` (28)

associated to the finite subsequence (ε`)`=1,2,...,j. Readily, nj is an element of
Ij : nj = 0 when “ ε` = 0 for all ` = 1, 2, · · · , j ”, and nj = 2j − 1 when “
ε` = 1 for all ` = 1, 2, · · · , j ”.

Given an arbitrary infinite sequence κ = (ε`)` ∈ {0, 1}N, the finite subse-
quence (ε`)`=1,2,...,j, formed by the j first terms of κ, defines a unique non
negative integer nj ∈ Ij and hence, is associated to the unique wavelet
packet located at node (j, nj) of the decomposition tree. Moreover, this
subsequence gives the unique path issued from US that leads to Wj,nj

in
the wavelet packet tree. Basically, (ε`)`=1,2,...,j corresponds to the sequence
Hε1, Hε2, . . . , Hεj

, of filters successively used to calculate the packet Wj,nj
.

Conversely, let n ∈ Ij. There exists a unique finite sequence (ε`)`∈{1,2,...,j}
of {0, 1}j such that n = nj where nj is given by (28).

From now on, given an infinite sequence κ, the natural number nj = n(κj)
and the packet Wj,nj

are said to be associated to each other. We also say
that the sequences κ and (Wj,nj

)j are associated to each other.

Example 1: The following four sequences will often be used in the sequel
to illustrate the results we present. These four sequences are

κ0 = (0, 0, 0, 0, 0, 0, · · · ), κ1 = (1, 0, 0, 0, 0, 0, · · ·),
κ2 = (0, 1, 0, 0, 0, 0, · · · ), κ3 = (0, 0, 1, 0, 0, 0, · · ·),

In other words, the general term of the sequence κq, q = 0, 1, 2 and 3, is
δ[q−`] for every natural number `. Clearly, we have that nj(κ0) = 0 for every
natural number j. It is also very easy to see that, for q = 1, 2, 3, we have
nj(κq) = 0 for j = 1, 2, . . . , q − 1, and that nj(κq) = 2j−q for j = q, q + 1, . . ..
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3.2 Asymptotic decorrelation with the Shannon wavelet
packets

The QMF hS
0 and hS

1 of the Shannon wavelet packet decomposition are the
ideal low pass and high pass filters whose Fourier transforms HS

0 and HS
1 are:

c





HS
0 (ω) =

√
2
∑

`∈Z
χ∆0(ω − 2π`)

HS
1 (ω) =

√
2
∑

`∈Z
χ∆1(ω − 2π`),

(29)

where ∆0 =
[
−π

2
, π

2

]
, and ∆1 =

[
−π,−π

2
] ∪ [π

2
, π

]
. Hereafter, we will use

an upper index S in the notations of section 2 when the decomposition is
achieved by using the ideal QMF HS

0 and HS
1 .

Let us define the map G by G(0) = 0 and the recurrence

G(2`) =

{
2G(`) if G(`) is even

2G(`) + 1 if G(`) is odd,
(30)

G(2` + 1) =

{
2G(`) + 1 if G(`) is even

2G(`) if G(`) is odd.
(31)

In a more compact form, we can write that,

G(2` + ε) = 3G(`) + ε − 2

⌊
G(`) + ε

2

⌋
, (32)

where ε ∈ {0, 1} and bzc is the largest integer less than or equal to z. The
map G is a permutation of N.

For every (k, `) ∈ N2, we define the sets ∆k,` by

∆k,` =

[
−(` + 1)π

2k
,−`π

2k

]
∪

[
`π

2k
,
(` + 1)π

2k

]
. (33)

According to Coifman and Wickerhauser ( [14, p. 326], [17]), for every j > 0
and every n ∈ Ij, there exists a unique p = G(n) ∈ Ij such that

|Ŵ S
j,n(ω)| = 2j/2χ∆j,p

(ω), (34)

where, like in (6), W S
j,n(t) = 2−j/2W S

n (2−jt), W S
n stands for the map Wn

recursively defined by (5) when the pair of QMF is (HS
0 , HS

1 ), and ∆j,p is
given by (33). The set ∆j,p is the so-called subband. The wavelet packet
decomposition of a signal of US, when this decomposition is based on the
Shannon QMF, is the ideal subband coding of the signal under consideration.
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The parameters of each subband can be selected using the integers j and p.
The first one controls the bandwidth and the second one controls the central
frequency.

For every j > 0, we have G(Ij) = Ij. Hence, the restriction of G to Ij

is a permutation of Ij. This permutation makes it possible to re-order the
wavelet packets W S

j,n from the lowest to the highest frequency supports. For
further details on this re-ordering, the reader may refer to [14, p. 327].

Consider the sequence of wavelet packets (WS
j,nj

)j associated to an ar-
bitrary binary sequence κ in the sense given in subsection 3.1. At every

resolution level j, it follows from (34) that, |Ŵ S
j,nj

| = 2j/2χ∆j,pj
, with

∆j,pj
=

[
−(pj + 1)π

2j
,−pjπ

2j

]
∪

[
pjπ

2j
,
(pj + 1)π

2j

]
(35)

and pj = G(nj). When j ranges over N, (35) defines a sequence (
pjπ

2j )j. It is
easy to see that this sequence is Cauchy. Indeed, according to (9), we have
nj+1 = 2nj + ε, for some ε ∈ {0, 1}. Taking (32) into account, we can write
that pj+1 = 2pj + ε′, for some ε′ ∈ {0, 1}. With an easy recurrence, we obtain
that

pj+q = 2pj+q−1 + ε′j+q

= 2qpj + 2q−1ε′j+1 + · · ·+ 21ε′j+q−1 + ε′j+q.

Therefore,

pj+qπ

2j+q
− pjπ

2j
=

1

2j

q∑

`=1

ε′`+j

2`
≤ 1

2j
− 1

2j+q
<

1

2j
.

As the sequence (
pjπ

2j )j is Cauchy, it has a unique limit. This limit

a(κ) = lim
j→+∞

pjπ

2j
, (36)

will play a crucial role in the sequel. Note that 0 ≤ a(κ) ≤ π for every
arbitrary sequence κ.

Example 1 (continued) : Consider the four sequences kq, q = 0, 1, 2, 3,
introduced in example 1 above. For every natural number j, we have that
pj(κ0) = G(nj(κ0)) = 0 since the general term of the sequence κ0 is zero.

The first q − 1 terms of the sequence κq when q = 1, 2, 3 are also 0.
Therefore, we have pj(κq) = G(nj(κq)) = 0 for j = 1, 2, . . . , q − 1. Now,
an easy recurrence shows that pj(κq) = G(nj(κq)) = 2j−q+1 − 1 for j =
q, q + 1, . . ..

15



As far as the value of a(κq) is concerned for q = 0, 1, 2, 3, we easily see
that limj→∞ pj(κ0)/2j = 0, whereas limj→∞ pj(κq)/2j = 1/2q−1 for q 6= 0.
Therefore, we have a(κ0) = 0 and a(κq) = π/2q−1 for q = 1, 2 and 3.

We now state the following result.

Proposition 1 Let X be a second-order random process. Assume that X is
centred, WSS, continuous in quadratic mean with PSD γ ∈ L∞([−π, π]).

Let κ = (εk)k∈N be a binary sequence of {0, 1}N. If a(κ) is a continuity
point of γ, then

lim
j→+∞

RS
j,nj(κ)[m] = γ(a(κ))δ[m] (37)

uniformly in m ∈ Z, and where RS
j,nj(κ) is the autocorrelation function of the

wavelet packet coefficients of X with respect to WS
j,nj

.

Remark 3 The autocorrelation function RS
j,nj

of the Shannon wavelet packet
coefficients cj,nj

derives from (21) and, hence, is given by

RS
j,nj

[m] =
1

2π

∫

R

γ(ω)|Ŵ S
j,nj

(ω)|2ei2jmωdω. (38)

Proof: [of proposition 1]
The function γ is even because it is the Fourier transform of the even

function R. As above, we write nj for nj(κ). From (34) and (38), we derive
that

RS
j,nj

[m] =
2j

π

∫

∆+
j,pj

γ(ω) cos (2jmω)dω. (39)

where

∆+
j,pj

=

[
pjπ

2j
,
(pj + 1)π

2j

]
. (40)

Let η > 0. Since γ is continuous at a(κ), there exists a positive real
number α > 0, such that, for every ω ∈ [a(κ) − α, a(κ) + α], we have
|γ(ω) − γ(a(κ))| < η.

In addition, it follows from (36), that

lim
j→+∞

pjπ2−j = lim
j→+∞

(pj + 1)π2−j = a(κ), (41)

Thereby, there exists an integer j0 = j0(α), such that, for every natural
number j ≥ j0, the values pjπ2−j and (pj + 1)π2−j are within the interval

16



[a(κ) − α, a(κ) + α]. It follows that, for every natural number j ≥ j0 and
every ω ∈ ∆+

j,pj
,

|γ(ω) − γ(a(κ))| < η. (42)

Therefore, for all natural number j ≥ j0,

r
2j

π

∫

∆+
j,pj

|γ(ω) − γ(a(κ))| dω < η
2j

π

∫

∆+
j,pj

dω = η. (43)

On the other hand, we derive from (39) that for all natural number j ≥ j0,

∣∣∣RS
j,nj

[m] − 2j

π

∫

∆+
j,pj

γ(a(κ)) cos (2jmω)dω
∣∣∣

=
∣∣∣2

j

π

∫

∆+
j,pj

(γ(ω) − γ(a(κ))) cos (2jmω)dω
∣∣∣

≤ 2j

π

∫

∆+
j,pj

|γ(ω) − γ(a(κ))| dω. (44)

Hence, we derive from (43) and (44) that, for every natural number j ≥ j0

and every integer m,

|RS
j,nj

[m] − 2j

π

∫

∆+
j,pj

γ(a(κ)) cos (2jmω)dω| < η. (45)

Since
2j

π

∫

∆+
j,pj

γ(a(κ)) cos (2jmω)dω = γ(a(κ))δ[m], (46)

we conclude that, for every natural number j ≥ j0,

∣∣∣RS
j,nj

[m] − γ(a(κ))δ[m]
∣∣∣ < η (47)

uniformly in m ∈ Z.

Remark 4 Proposition 1 shows that the coefficients returned by the Shannon
wavelet packet decomposition of the process X tend to be decorrelated when
the resolution level tends to infinity.

Roughly speaking, the spectral measure of the discrete signal returned in a
given subband by the Shannon wavelet packet decomposition of a WSS process
tends, with increasing j, to γ(a(κ)).
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This result also emphasizes the dependance between the autocorrelation
function and the binary sequence κ. For instance, if we consider the four
sequences κq, q = 0, 1, 2, 3 of exemple 1, we have that

lim
j→+∞

RS
j,nj(κq)[m] = γ(π/2q−1)δ[m] (48)

for q = 1, 2 and 3, whereas

lim
j→+∞

RS
j,nj(κ0)[m] = γ(0)δ[m]. (49)

Remark 5 (On the speed of the decorrelation process) Let ω0 > 0 and

γ(ω) =

(
1 − |ω|

ω0

)
χ[−π,π]∩[−ω0,ω0](ω). (50)

We assume that γ represents the PSD of some centred WSS random process.
We have

RS
j,nj

[m] =
2j

π

∫

∆+
j,pj

∩[0,ω0]

(1 − ω

ω0
) cos (2jmω)dω. (51)

If ω0 > π, ∆+
j,pj

∩ [0, ω0] = ∆+
j,pj

, and we obtain that

rRS
j,nj

[m] =





1 − π
ω0

pj

2j − π
ω0

1
2j+1 if m = 0

(−1)mpj −(−1)m(pj+1)

πω0m22j if m 6= 0,

(52)

and thus, ∣∣∣RS
j,nj

[m] − γ(
πpj

2j
)δ[m]

∣∣∣ ≤ π

ω0

1

2j+1
. (53)

It follows that γ(πpj/2j)δ[m] is an approximation of RS
j,nj

[m] with a margin

of π/ω02
j+1. This highlights the speed of the decorrelation process for ω0 > π.

If ω0 ≤ π, then the function γ is null on [ω0, π]. If a(κ) is such that ω0 <
a(κ) ≤ π, then there exists α > 0 such that γ is null on ]a(κ) − α, a(κ) + α[
and there exists j1 such that for all j ≥ j1, ∆+

j,pj
⊂ ]a(κ) − α, a(κ) + α[.

Thus, the autocorrelation RS
j,nj

[m] is null for all j ≥ j1. Now, consider
that 0 ≤ a(κ) < ω0. Then for j greater than or equal to a certain j2,
∆+

j,pj
⊂ [0, ω0]. Thus, for all j ≥ j2, ∆+

j,pj
∩ [0, ω0] = ∆+

j,pj
and we obtain that

(53) holds true. It is also easy to see that for j greater than or equal to a
certain j3, (53) holds true when a(κ) = ω0. It follows that if ω0 ≤ π, there
exists j0 such that for all j ≥ j0, (53) holds true.
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More generally, consider an arbitrary PSD γ with support in [−π, π].
When the resolution level j is sufficiently large, γ can be seen as a linear
function in ∆+

j,pj
. Then, we can generalise the above result, saying that there

exists a finite level j0 such that for all resolution level j ≥ j0, RS
j,nj

[m] is

approximatively equivalent to γ(πpj/2j)δ[m] with a margin of A/2j. The
constant A and the level j0 depend on the shape of γ on ∆+

j,pj
.

3.3 Asymptotic decorrelation with non-ideal QMF

We consider QMF (h
[r]
0 , h

[r]
1 ) that depend on a parameter r such that, for

ε ∈ {0, 1},
lim
r→∞

H [r]
ε = HS

ε (a.e), (54)

where H
[r]
0 and H

[r]
1 are the Fourier transforms of h

[r]
0 and h

[r]
1 respectively,

and where, as above, HS
0 and HS

1 are the Fourier transforms of the Shannon
QMF. We assume that r is an integer. As mentioned in the introduction,
this parameter is called the order of the QMF H

[r]
0 and H

[r]
1 . It has different

meanings for the Daubechies and the Battle-Lemarié QMF.
According to [18–20], the Daubechies QMF satisfy (54), the order r of a

given pair (h
[r]
0 , h

[r]
1 ) of such QMF being the number of vanishing moments

of the associated Daubechies wavelet function. The order r is also the zero
multiplicity at π of H

[r]
0 .

It follows from [21] that the Battle-Lemarié filters satisfy (54) as well;

the order r of a given pair (h
[r]
0 , h

[r]
1 ) of such QMF is the spline order of the

scaling function associated to H
[r]
0 .

Theorem 1 Let X be a second-order random process that satisfies the as-
sumptions of proposition 1. Let κ = (εk)k∈N be a binary sequence of {0, 1}N.

Consider, for every r, the sequence of wavelet packets (W
[r]
j,nj(κ))j≥0 associated

to κ, where the decomposition of US is achieved by the QMF (h
[r]
0 , h

[r]
1 ).

For every given natural number j, let R
[r]
j,nj(κ) stands for the autocorrela-

tion function of X with respect to the packet W
[r]
j,nj(κ).

i) We have

lim
r→+∞

R
[r]
j,nj

[m] = RS
j,nj

[m], (55)

and this convergence is uniform in m ∈ Z.
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ii) In addition, if γ is continuous at a(κ), then,

lim
j→+∞

(
lim

r→+∞
R

[r]
j,nj(κ)[m]

)
= γ(a(κ))δ[m] (56)

uniformly in m ∈ Z.

Remark 6 According to theorem 1 and if γ is continuous at a(κ), then, for
every given real number η > 0, there exists a natural number j0 with the
following property: For every j ≥ j0, there exists r0 = r0(j, nj) > 0 such
that, for every r ≥ r0 and every m ∈ Z,

∣∣∣R[r]
j,nj(κ)[m] − γ(a(κ))δ[m]

∣∣∣ < η. (57)

Thus, according to (57) we obtain nearly-white DWPT coefficients (with a
margin of η) at resolution level j0 and by using QMF with order r0.

Proof: As above, we set nj = nj(κ). The autocorrelation function R
[r]
j,nj

derives from (21) and is equal to

R
[r]
j,nj

[m] =
1

2π

∫

R

γ(ω)|̂W [r]
j,nj

(ω)|2ei2jmωdω. (58)

For every m ∈ Z, we have that,
∣∣ R

[r]
j,nj

[m] − RS
j,nj

[m]
∣∣

≤ 1

2π

∫

R

|γ(ω)|
∣∣∣∣ |

̂
W

[r]
j,nj

(ω)|2 − |Ŵ S
j,nj

(ω)|2
∣∣∣∣ dω. (59)

But from appendix E, we have

Ŵ S
nj

(ω) =

[
j∏

`=1

HS
ε`
(

ω

2j+1−`
)

]
Φ̂S(

ω

2j
), (60)

and

Ŵ
[r]
nj (ω) =

[
j∏

`=1

H [r]
ε`

(
ω

2j+1−`
)

]
Φ̂S(

ω

2j
). (61)

Thus, from (6), (54), (60) and (61), and taking into acount that |H [r]
ε` (ω)|

and |HS
ε`
(ω)| are less than or equal to 1, we obtain that

lim
r→+∞

|̂W [r]
j,nj

|2 = |Ŵ S
j,nj

|2 (a.e), (62)
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and ∣∣∣∣ |
̂
W

[r]
j,nj

(ω)|2 − |Ŵ S
j,nj

(ω)|2
∣∣∣∣ ≤ 2j+1

∣∣∣Φ̂S(ω)
∣∣∣
2

. (63)

Statement i) follows from (59), (62), (63), and Lebesgue’s dominated
convergence theorem.

We just obtain statement ii) from proposition 1 and statement i).

4 Experimental results

The theoretical results presented above are of asymptotic nature. The role
of this section is to reflect the manner in which the decorrelation appears in
practice when the resolution level and the order of the filters are finite.

Consider a random process satisfying the assumptions of theorem 1. With
the same notations as those used above, a consequence of theorem 1 is the
existence of some resolution level j and some order r such that (57) holds
true when the wavelet packet decomposition is initialized with the samples of
the process. Equation (56) also tells us that the value of the autocorrelation
function at lag 0 of the wavelet packet coefficients tend to the value of the
PSD at a specific point that depends on the path followed in the wavelet
packet tree. The following experimental results are aimed at illustrating
these two facts.

We carried out experimental tests where the samples (X(k))k of the
process X at the input of the wavelet packet decomposition form a dis-
crete Auto-Regressive (AR) process. This AR process is such that X(k) =
aX(k− 1)+W (k), where 0 < a < 1, and k = 1, 2, . . . , 220. The random vari-
ables (W (k))k are Gaussian, independant and identically distributed with
null mean and unitary standard-deviation. The samples (X(k))k were gen-
erated by filtering the discrete random process (W (k))k through the discrete
AR filter whose transfert function is (1 − a)/(1 − az−1). We present the re-
sults obtained with a = 0.5 and a = 0.9. The corresponding PSDs are those
displayed in figure 2, and the autocorrelations are displayed in figure 3.

The experimental results presented below show that, for the AR processes
considered above, the asymptotic decorrelation stated by theorem 1 can ac-
tually be attained with reasonable values for the resolution level j and the
order r of the filters.

We begin with experimental results illustrating the influence of the res-
olution level and the order of the QMF on the decorrelation process. We
then address the convergence of the autocorrelation functions of the wavelet
packet coefficients at lag 0.
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Figure 2: PSDs of the random processes employed to carried out experimental
tests. These random processes were synthesized by filtering some white noise
with a first order AR filter.
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Figure 3: Autocorrelation functions of the random processes whose PSDs are
plotted in figure 2.

4.1 Influence of the resolution level and the order of

the filters on the decorrelation process

We consider two full wavelet packet decompositions of the two random pro-
cesses described above. These decompositions are obtained by using the
Daubechies filters with orders 1 and 7. The empirical autocorrelation func-
tions of the wavelet packet coefficients cj,nj(κq) for q = 0, 1, 2, 3, (see example
1) were calculated (we use 1500 points for every packet Wj,nj(κq)).

It turns out that the wavelet packet coefficients can be considered as
significantly decorrelated when the resolution level is 6 and the order of the
QMF is 7. For instance, figures 5 to 8 display the empirical normalized
autocorrelation functions at resolution levels 3 and 6, when r equals 1 and 7
for the two AR processes. These autocorrelation functions are normalized in
order to appreciate the gain in decorrelation. These figures underscore the
importance of the role played by the resolution level and the order of the
QMF.

The importance of the resolution level can be appreciated by noting that
for the two processes, the coefficients at resolution level 6 are less correlated
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than those obtained at level 3 (compare figure 5 and figure 6, then compare
figure 7 to figure 8).

The role played by the QMF order is the following. At level 6 and for every
wavelet packet, the decomposition based on the Daubechies QMF with order
7 yields a greater decorrelation than that obtained by the decomposition
based on the Daubechies QMF with order 1 (in each of figures 6 and 8,
compare the first and the second columns). This is not true at resolution
level 3 (in each of figures 5 and 7, compare the first and the second columns).
We can reasonably think that, at resolution level 3, we have not attained yet
the resolution level j0 pointed out by theorem 1, and above which a nearly-
decorrelation can be obtained if the QMF order is large enough.

4.2 The limit value of the correlation function at lag 0

Consider the sequence (R
[r]
j,nj

)j where, for every natural number j, R
[r]
j,nj

is
the autocorrelation function of the wavelet packet coefficients associated to
X with respect to the sequence (W

[r]
j,nj

)j. According to theorem 1, the value

R
[r]
j,nj

(m) must be close to γ(a(κ))δ[m] if j and r are both large enough, r
being above a value that depends on j. We recall that γ(a(κ)) is the value
of the PSD of the random process X at a(κ) where a(κ) is given by (36) and

κ is the binary sequence associated to (W
[r]
j,nj

)j.
Let us illustrate this result for the value of the autocorrelation function

at lag 0 and the binary sequences κ0, κ1, κ2, and κ3, introduced in example
1. We focus on the Daubechies QMF with order r = 7.

We still consider the two AR random processes introduced above and
whose PSDs are those of figure 2. We observe that, quite rapidly, the terms
of the sequence (R

[7]
j,nj

[0])j becomes close to γ(a(κ)) when j increases. This

shown in figure 9 and 10. These figures display the values R
[7]
j,nj(κq)(0) for

j = 0, 1, 2, · · · , 9 and q = 0, 1, 2, 3. We plotted the limit value γ(a(κ)) in
dotted line in these figures. We see that, as the resolution level j increases
up to 6, the value at 0 of the autocorrelation function of the wavelet packet
coefficients associated to each of the four sequences is sufficiently close to the
value of the PSD at a(κ).

5 Conclusion

This paper provides further details concerning the asymptotic decorrelation
of the wavelet packet coefficients issued from the decomposition of a band-
limited WSS random process. By choosing a sufficiently large resolution level
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and, then, by increasing the order of the filters with respect to the chosen
resolution level, the wavelet packet coefficients tend to become decorrelated.
The results presented in this paper complements those established in [10,11,
15].

Figures 5 to 8 highlight the quality of the decorrelation process. This
quality can be regarded as rather good: Compare the autocorrelation func-
tions of the input WSS processes (figure 3) to the autocorrelation functions
of the associated coefficients at level 6 (figure 6 and figure 8). The perfor-
mance of this experiment can be improved by increasing the order of the
QMF (compare the first and the second column of figure 8). These results
suggest using a full wavelet packet decomposition with six or more resolu-
tion levels and Daubechies filters with seven or more vanishing moments.
The experimental results presented in this paper indicate that the asymp-
totic decorrelation can be attained in practice with reasonable values for the
resolution level and the order of the QMF. This relates to the convergence
speed of the Daubechies QMF to the Shannon filters (see figure 4) and also
to the speed of the decorrelation process (see remark 5).
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Figure 4: Magnitude response of some Daubechies scaling filters. This figure
illustrates the convergence speed of the Daubechies QMF to the Shannon
filters. It displays the magnitude response of the Daubechies scaling filters
with orders 1, 2, 4, 7, 20, and 40: dbr stands for the Daubechies scaling filter
of order r. This scaling filter is obtained by using the matlab routine dbaux
of the wavelet toolbox.
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Figure 5: Autocorrelation functions of the wavelet packet coefficients re-
turned by the decomposition of the random process whose PSD is that of
figure 2, with a = 0.5. The resolution level is j = 3. The first column displays
the results obtained by using the Daubechies filters with order 1. The second
column displays the results obtained by using the Daubechies filters with or-
der 7. Each line corresponds to one of the four sequences κq, q = 0, 1, 2, and
3 considered in example 1. The autocorrelation functions are normalized for
a better appreciation of the difference between the autocorrelation functions.
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Figure 6: Autocorrelation functions of the wavelet packet coefficients re-
turned by the decomposition of the random process whose PSD is that of
figure 2, with a = 0.5. The resolution level is j = 6. The first column displays
the results obtained by using the Daubechies filters with order 1. The second
column displays the results obtained by using the Daubechies filters with or-
der 7. Each line corresponds to one of the four sequences κq, q = 0, 1, 2, and
3 considered in example 1. The autocorrelation functions are normalized for
a better appreciation of the difference between the autocorrelation functions.
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Figure 7: Autocorrelation functions of the wavelet packet coefficients re-
turned by the decomposition of the random process whose PSD is that of
figure 2, with a = 0.9. The resolution level is j = 3. The first column displays
the results obtained by using the Daubechies filters with order 1. The second
column displays the results obtained by using the Daubechies filters with or-
der 7. Each line corresponds to one of the four sequences κq, q = 0, 1, 2, and
3 considered in example 1. The autocorrelation functions are normalized for
a better appreciation of the difference between the autocorrelation functions.
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Figure 8: Autocorrelation functions of the wavelet packet coefficients re-
turned by the decomposition of the random process whose PSD is that of
figure 2, with a = 0.9. The resolution level is j = 6. The first column displays
the results obtained by using the Daubechies filters with order 1. The second
column displays the results obtained by using the Daubechies filters with or-
der 7. Each line corresponds to one of the four sequences κq, q = 0, 1, 2, and
3 considered in example 1. The autocorrelation functions are normalized for
a better appreciation of the difference between the autocorrelation functions.
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Figure 9: Convergence of R
[7]
j,nj(κq)[0] to γ(a(κq)) with j, for the four test

sequences κq introduced in example 1 for q = 0, 1, 2, 3. The decomposition
concerns the random process whose PSD is that of figure 2, with a = 0.5,
and was achieved by using the Daubechies filters with order 7. The values
of a(κq) and γ(a(κq)), q = 0, 1, 2, 3, are given in example 1 (continued) and
remark 4. As a matter of fact, we have that a(κ0) = 0 and a(κq) = π/2q−1

for q = 1, 2 and 3. The dotted lines on these figures represent the value of
γ(a(κq)) for q = 0, 1, 2, 3.
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Figure 10: Convergence of R
[7]
j,nj(κq)[0] to γ(a(κq)) with j for the four test

sequences κq introduced in example 1 for q = 0, 1, 2, 3. The decomposition
concerns the random process whose PSD is that of figure 2, with a = 0.9,
and was achieved by using the Daubechies filters with order 7. The values
of a(κq) and γ(a(κq)), q = 0, 1, 2, 3, are given in example 1 (continued) and
remark 4. As a matter of fact, we have that a(κ0) = 0 and a(κq) = π/2q−1

for q = 1, 2 and 3. The dotted lines on these figures represent the value of
γ(a(κq)) for q = 0, 1, 2, 3.

30



Appendix A

According to Loeve’s lemma ( [22]), and for −∞ < a ≤ b < ∞, the stochastic
integral ∫ b

a

X(t)Wj,n,k(t)dt (64)

is well defined if, and only if

E

[∫ b

a

X(t)Wj,n,k(t)dt

∫ b

a

X(s)Wj,n,k(s)ds

]
(65)

is well defined, i.e. if, and only if the Riemann integral

∫ b

a

∫ b

a

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (66)

exist and is finite. We can then define the stochastic integral

∫

R

X(t)Wj,n,k(t)dt (67)

as the limit of
∫ b

a
X(t)Wj,n,k(t)dt (with convergence in quadratic mean) when

a → −∞ and b → +∞, and this, provided that the integral

∫∫

R2

R(t, s)Wj,n,k(t)Wj,n,k(s)dtds (68)

exists. This is the case if we suppose that Wn is compactly supported or has
a sufficiently fast decay (see [6] among others). Given a resolution level j
and n ∈ Ij (so, given Wj,n), the wavelet packet decomposition of X returns
the random variables

cj,n[k] =

∫

R

X(t)Wj,n,k(t)dt, k ∈ Z. (69)

Appendix B

According to (5), (6) and (7), and for ε ∈ {0, 1}, we have

Wj+1,2n+ε,k(t) = τ2j+1kWj+1,2n+ε(t)

= τ2j+1k2
−(j+1)/2W2n+ε(2

−(j+1)t)

= τ2j+1k2
−(j+1)/2

√
2
∑

`∈Z

hε[`]Wn(2−jt − `)
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= τ2j+1k2
−j/2

∑

`∈Z

hε[`]Wn(2−jt − `)

= 2−j/2
∑

`∈Z

hε[`]Wn(2−jt − 2k − `)

= 2−j/2
∑

`∈Z

hε[` − 2k]Wn(2−jt − `)

=
∑

`∈Z

hε[` − 2k]Wj,n,`(t), (70)

and thus Wj+1,2n+ε,k =
∑

`∈Z
hε[` − 2k]Wj,n,`. The equalities above must be

understood in the quadratic sense. If the impulse response of the filters have
finite length, these equalities hold true pointwise.

Appendix C

With the notations of appendix A, we assume that the mean-square integral
(64) is well defined. The autocorrelation function Rj,n of the discrete random
process cj,n is defined by

Rj,n[k, `] =

∫∫

R2

R(t − s)Wj,n,k(t)Wj,n,`(s)dtds, (71)

which can be written in the following form

Rj,n[k, `] =

∫∫

R2

R(t)Wj,n,k(t + s)Wj,n,`(s)dtds. (72)

In addition, since Wj,n,k(t) = 2−j/2Wn(2−jt − k), we have

∫

R

Wj,n,k(t + s)Wj,n,`(s)ds,

=

∫

R

Wn(s + 2−jt − k)Wn(s − `)ds,

= 〈τk−`−2−jtWn, Wn〉L2(R) ,

=
1

2π

∫

R

|Ŵn(ω)|2ei(k−`−2−jt)ωdω, (73)

where we used the Parseval formula to obtain the last equality. We thus have

rRj,n[k, `] =
1

2π

∫∫

R2

R(t)|Ŵn(ω)|2ei(k−`−2−jt)ωdtdω. (74)
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And since ∫

R

R(t)e−i2−j tωdt = γ(
ω

2j
), (75)

we derive that

Rj,n[k, `] =
1

2π

∫

R

γ(
ω

2j
)|Ŵn(ω)|2ei(k−`)ωdω. (76)

Appendix D

Let Z be the orthogonal stochastic measure, associated with the spectral
measure m of the continuous and second order WSS random process X
(Wiener-Khintchine’s theorem). We have that

m(dω) =
1

2π
γ(ω)dω, (77)

where γ is the PSD of X, γ has support in [−π, π]. Then, we can write X(t)
as a stochastic integral :

X(t) =

∫

R

eitωZ(dω). (78)

Now, according to [23, lemma 5, p. 197-198], we have
∫

R

X(t)ΦS(t − k)dt =

∫

R

(∫

R

eitωZ(dω)

)
ΦS(t − k)dt,

=

∫

R

(∫

R

ΦS(t − k)eitωdt

)
Z(dω),

=

∫

R

Φ̂S(ω)eikωZ(dω). (79)

We obtain that

X(k) −
∫

R

X(t)ΦS(t − k)dt =

∫

R

eikω(1 − Φ̂S(ω))Z(dω), (80)

and then,

E

[∣∣∣∣X(k) −
∫

R

X(t)ΦS(t − k)dt

∣∣∣∣
2
]

=

∫

R

∣∣∣1 − Φ̂S(ω)
∣∣∣
2

m(dω).

=
1

2π

∫ π

−π

∣∣∣1 − Φ̂S(ω)
∣∣∣
2

γ(ω)dω. (81)
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Taking into account the fact that Φ̂S = χ[−π,π], we derive that

E

[∣∣∣∣X(k) −
∫

R

X(t)ΦS(t − k)dt

∣∣∣∣
2
]

= 0, (82)

and thus, that

X(k) =

∫

R

X(t)ΦS(t − k)dt (83)

in quadratic mean.

Appendix E

Lemma 1 With the same notations as in section 2.1, and for n =
∑j

`=1 ε`2
j−`,

we have that

Ŵn(ω) =

[
j∏

`=1

mε`
(

ω

2j+1−`
)

]
Φ̂(

ω

2j
). (84)

Proof: According to (5), for ε ∈ {0, 1}, we have

Ŵ2n+ε(ω) = mε(
ω

2
)Ŵn(

ω

2
). (85)

By taking of account (28), we obtain successively

Ŵn(ω) = mεj
(
ω

2
)Ŵn−εj

2

(
ω

2
),

= mεj
(
ω

2
)mεj−1

(
ω

22
) · · ·mε1(

ω

2j
)Φ̂(

ω

2j
), (86)

and thus

Ŵn(ω) =

[
j∏

`=1

mε`
(

ω

2j+1−`
)

]
Φ̂(

ω

2j
). (87)

34



References

[1] A. H. Tewfik and M. Kim, “Correlation structure of the discrete wavelet
coefficients of fractional brownian motion,” IEEE Transactions on In-
formation Theory., vol. 38, no. 2, pp. 904–909, Mar. 1992.

[2] P. Flandrin, “Wavelet analysis and synthesis of fractional brownian mo-
tion,” IEEE Transactions on Information Theory., vol. 38, no. 2, pp.
910–917, Mar. 1992.

[3] A. Cohen, Ondelettes et traitement numérique du signal. Masson, Paris,
1992.

[4] R. W. Dijkerman and R. R. Mazumdar, “On the correlation structure of
the wavelet coefficients of fractional brownian motion,” IEEE Transac-
tions on Information Theory., vol. 40, no. 5, pp. 1609–1612, Sep. 1994.

[5] G. G. Walter, Wavelets and other orthogonal systems with applications.
CRC Press, 1994.
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litehnica, Timişoara, Roumanie, 1998.

[16] Y. Meyer, Wavelets, Algorithms and Applications. SIAM, Philadelphie,
1993.

[17] M. V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software.
AK Peters, 1994.

[18] N. Saito and G. Beylkin, “Multiresolution representation using the au-
tocorrelation functions of compactly supported wavelets,” IEEE Trans-
actions on Signal Processing, vol. 41, 1993.

[19] J. Shen and G. Strang, “Asymptotic analysis of daubechies polyno-
mials,” Proceedings of the American Mathematical Society., vol. 124,
no. 12, pp. 3819+, December 1996.

[20] ——, “Asymptotics of daubechies filters, scaling functions, and
wavelets,” Applied and Computational Harmonic Analysis., vol. 5, no.
HA970234, pp. 312+, 1998.

[21] A. Aldroubi, M. Unser, and M. Eden, “Cardinal spline filters: Stability
and convergence to the ideal sinc interpolator,” Signal Process., vol. 28,
no. 8, pp. 127–138, Aug. 1992.
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