
HAL Id: hal-02316456
https://hal.science/hal-02316456v1

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Walking Patterns for Real Time Path Planning
Simulation of Humanoids
Vincent Hugel, Nicolas Jouandeau

To cite this version:
Vincent Hugel, Nicolas Jouandeau. Walking Patterns for Real Time Path Planning Simulation of
Humanoids. 21st IEEE International Symposium on Robot and Human Interactive Communication,
Oct 2012, Paris, France. �hal-02316456�

https://hal.science/hal-02316456v1
https://hal.archives-ouvertes.fr

Walking Patterns for Real Time Path Planning Simulation of
Humanoids

Vincent Hugela and Nicolas Jouandeaub

Abstract— We present here a detailed description of the walk-
ing algorithm that was designed for 3D simulation of locomotion
and path planning of humanoid robots. The walking patterns
described were implemented on NAO humanoid models that
are used in the 3D simulation league of RoboCup to play
soccer. The locomotion algorithm is based on the well known
3D-LIP model that consists of defining walking primitives of
the center of mass, keeping its height constant and assuming
no torque at the support foot. This paper proposes to detail
how to connect the walking primitives, especially at the start
of the walk. The second added value of this work resides in the
rotation walking primitives that are generated differently from
the linear translation walking primitives. This enables the robot
to achieve fast rotation on the spot or about a center located
on the longitudinal axis. The paper also addresses the issue of
re-entrance, i.e. how to take into account a new walking request
in real time without waiting for the end of the current walk.

I. INTRODUCTION

RoboCup is an international project initiative that aims to
foster research in humanoid and mobile robotics, but also
in the area of edutainment. Real/simulated humanoid and
wheeled robots participate in soccer competitions. The goal
of this project is to see a team of humanoid robots play
soccer efficiently against a team of humans by the year of
2050.

Simulation leagues are useful to implement new multi-
agent behaviors and new locomotion algorithms. Develop-
ments in simulation leagues can be implemented on real
robots and vice-versa for iterative improvements, especially
between the Standard Platform League (SPL) and the Soc-
cer Simulation League (SSL) that both use NAO robots.
rcssserver3d is the official competition environment for the
3D Soccer Simulation League at RoboCup. It implements a
soccer simulation where two teams of up to eleven humanoid
robots play against each other. The official Robocup 3D
simulation server is SimSpark that is a generic physical
multiagent simulator system for agents in three-dimensional
environments. It is based on the flexible Spark application
framework. In these simulations, agents can participate in-
process or out-of-process. SimSpark comes with different
robot models that can play the role as agents.

Regarding locomotion first implementations were based
on the parameterization of leg movements using cyclic
trajectories of joint angles [1][2]. Angle trajectory parameters

aV. Hugel is with the Engineering System Lab (LISV), Uni-
versité de Versailles, 10/12 av. Europe, 78140 Vélizy - France,
hugel at lisv.uvsq.fr

b N. Jouandeau is with the Advanced Computer Science Lab (LIASD),
Université Paris 8, 2 rue de la Liberté, 93526 Saint-Denis Cedex 02, France,
n at ai.univ-paris8.fr

depend on desired longitudinal, lateral and angular velocities
that can be adjusted at each walking step. Most of today al-
gorithms use the 3D-LIP (Linear Inverted Pendulum) model
[3][4]. This model was introduced by Kajita to make first
Japanese humanoid robots walk efficiently [5]. Graf et al.
equip their SPL team of NAO robots with locomotion skills
based on the 3D-LIP model [3]. The algorithm can react in
real time because it observes the center of mass (COM) and
can adjust the next step to take into account a deviation of
the COM from the current trajectory. Xue at al. [6] propose
a variant of walking gait pattern generator by introducing a
cubic polynomial of the zero moment point (ZMP) to smooth
the COM trajectory. They also add a compensation to be
applied to the hip roll joints that are modeled as elastic joints.
The UT Austin team participates in the SPL and SSL leagues
and also implements gait patterns that can be used both for
the real robots and for simulation [4]. Footstep planning is
at the heart of precise control. A new strategy of real time
trajectory generation was proposed by Schmitz at al. that
relies on offline footstep planning [7].

The walking pattern generators based on 3D-LIPM de-
scribed above do not give all the details of implementation,
especially regarding rotations. This paper proposes to detail
how to connect the walking primitives in the 3D-LIP model
at the start of the walk and how to design specific rotation
primitives that are generated differently from the linear
translation walking primitives. This enables the robot to
achieve fast rotation on the spot or about a center located
on the longitudinal axis. The paper also addresses the issue
of re-entrance, i.e. how to take into account a new walking
request in real time without waiting for the end of the current
walk.

z

x
O

zG

xP*
xG

G

Fig. 1. 3D-LIP model. xP∗ is the x-coordinate of real ZMP. (xG, zG)
are the coordinates of the center of mass in the xz plane.

P

*(0)
=P

(0)

y

x

P
*(1)

O=G
f(0)

= G
i(1)

G

f(1)
= G

i(2)

G
i(0)

 1
 2

 3

P
(1)

P
(2)

Fig. 2. First left foot step of forward-left motion. The direction of
longitudinal axis x is the forward direction. Phase 1 consists of an outward
sideways move of the COM to the left with zero initial and final velocities.
Phase 2 is an inward sideways move to the right to reach a non zero velocity
when the COM passes through the middle of the feet. This velocity is
necessary to start the next move that is the first walking primitive. Phase 3 is
the first walking primitive that starts the forward-left displacement to execute
the first step with the left foot. The shape of phase 3 is an hyperbolic curve.
In order to execute this phase the real ZMP must be behind the desired
ZMP.

II. 3D-LIP MODEL

A. Presentation

When a biped robot is supporting its body on one leg its
dominant dynamics can be represented by a single inverted
pendulum which connects the supporting foot and the center
of mass (also designated by G) of the whole robot. Figure 1
depicts such an inverted pendulum consisting of a point mass
and a massless telescopic leg.

The altitude of the COM, namely zG is kept constant,
there is no torque between ground and foot, and the robot is
assumed to walk on a horizontal plane. The equations that
link the position of the center of mass (xG, yG, zG) with the
ZMP [8] of coordinates (xP∗ , yP∗ , 0) are well known [5]:

ẍG =
g

zG
(xG − xP∗) (1)

ÿG =
g

zG
(yG − yP∗) (2)

where g is the gravity.
If we consider a constant ZMP point over each step, the
analytic solution leads to a hyperbolic shape of the COM
trajectory:

xG(t) = (x
i(n)
G − xP∗) cosh(t/TC)

+TC ẋ
i(n)
G sinh(t/TC) + xP∗ (3)

ẋG(t) = (x
i(n)
G − xP∗) sinh(t/TC)/TC

+ẋ
i(n)
G cosh(t/TC) (4)

where n is the step number, xi(n)G and ẋi(n)G) are respectively
the COM initial x-position and the COM initial x-velocity
of step n, and TC =

√
zG
g . The same holds for yG(t) and

ẏG(t).

The algorithm consists therefore of updating the COM
initial position (x

i(n)
G , y

i(n)
G), velocity (ẋ

i(n)
G , ẏ

i(n)
G) and xy-

coordinates of real ZMP (xP∗ , yP∗) for each step.
The COM position and velocity at the end of step n can

be calculated as:[
x
f(n)
G

ẋ
f(n)
G

]
=

[
C TCS

S/TC C

][
x
i(n)
G

ẋ
i(n)
G

]

+

[
1− C
−S/TC

]
x
(n)
P∗ (5)

with C = cosh(Tst/TC) and S = sinh(Tst/TC). Tst is the
step duration. A similar equation can be drawn to link yf(n)G

and ẏf(n)G with yi(n)G , ẏi(n)G and y(n)P∗ .
The resulting trajectory is named walking primitive.
The parameters that can be tuned are summarized as

follows:
• height of COM , zG,
• step duration, Tst,
• maximal step length along x-axis, `maxx ,
• maximal step length along y-axis, `maxy ,
• maximal step rotation angle, θmax.

III. FORWARD AND SIDEWAYS WALKING PATTERNS

A. Initiating the walk from standstill position

To initiate the walk it is necessary to execute an outward
sideways move, namely phase 1, and then to execute an
inward sideways move, namely phase 2 (see example of
figure 2). In phase 1, initial and final velocities are zero.
The first phase is useful to transfer the robot’s load to one
side so that P ∗(0) can serve as center of pressure for the
execution of phase 2. Phase 2 is used to enable P ∗(1) to
serve as next desired center of pressure for the first walking
primitive, namely phase 3.

To set up the initiation of the walk, the first step consists
of calculating the lateral offset of the outward sideways move
in phase 1. This offset of the COM is noted yi(0)G .

We denote by P (n) the successive desired ZMP points
under the foot. These points belong to the support foot and
they are always at the same location with respect to the
support foot, for example at the ankle joint center.

It must be noted that the desired ZMP points P (n) do not
necessarily match the real ZMP points P ∗(n) as in the case
of acceleration and deceleration. The case of acceleration
occurs at the beginning of the walk (first step). The case
of deceleration occurs at the end of the walk (last step). In
figure 2, it can be observed that the real ZMP point is behind
the desired ZMP point due to the acceleration. In the case of
deceleration the real ZMP point will be ahead of the desired
ZMP point. These considerations are very important since
the walking algorithm must ensure that the real ZMP point
remains inside the support area of the foot, otherwise the
balance of the robot will be in jeopardy.

Phase 2 can be considered as a pre-step phase that obeys
equation 2. The time period of this phase, denoted by T (0),

can be adjusted. Using eq. 5, we can write:

y
f(0)
G = C0y

i(0)
G + TCS0ẏ

i(0)
G + (1− C0)y

(0)
P∗ (6)

ẏ
f(0)
G = S0y

i(0)
G /TC + C0ẏ

i(0)
G − S0y

(0)
P∗/TC (7)

where C0 = cosh(T (0)/TC), S0 = sinh(T (0)/TC).
Since yf(0)G = 0 and ẏi(0)G = 0, it comes:

y
i(0)
G = (C0 − 1)/C0y

(0)
P (8)

ẏ
f(0)
G = −(Th0/TC)y

(0)
P (9)

with Th0 = S0/C0, and we constrain the real ZMP to be at
P (0), i.e. P ∗(0) = P (0). P (0) is known. T (0) is the unknown.

Considering phase 3 and using eq. 5, we have:

y
f(1)
G = Cy

i(1)
G + TCSẏ

i(1)
G + (1− C)y

(1)
P∗ (10)

We can take T (1)
st = Tst that is the cruise walk step period.

To connect the first two primitives, we must have:

y
i(1)
G = y

f(0)
G = 0 (11)

ẏ
i(1)
G = ẏ

f(0)
G (12)

We constrain the COM final position in phase 3 to be in
the middle of [P (1)P (2)], and we also constrain y(1)P∗ = y

(1)
P ,

which is known, therefore:

(y
(1)
P + y

(2)
P)/2 = TCSẏ

f(0)
G + (1− C)y

(1)
P (13)

And, using eq. 9:

Th0 = −
[
(y

(1)
P + y

(2)
P)/2 + (C − 1)y

(1)
P

]
/(Sy

(0)
P) (14)

This equation permits to calculate the time period of the
pre-step phase (phase 2):

T (0) = TC tanh−1(Th0) (15)

and to get yi(0)G through eq. 8.
Phase 1 is planned as a 5th order polynomial with minimal

acceleration, i.e lateral velocity increases from zero to reach
a peak and then decreases to zero.

B. Cruise walking primitives

In cruise mode, that is after the first walking primitive
along the y-axis, it is necessary to determine the coordinates
of the real ZMP point in order to achieve the desired
trajectory of the COM.

Given the initial position and velocity of the COM, the real
ZMP for the next step to be achieved permits to completely
define the COM trajectory thanks to eq. 3 and the similar
equation for yG(t).

The real ZMP x-coordinate is calculated by minimizing
the quantity Qx below [5], given the desired final position
of the COM (xdG, ẋ

d
G) (y-coordinate is managed in a similar

way):

Qx = α(xdG − x
f(n)
G)2 + β(ẋdG − ẋ

f(n)
G)2 (16)

where α and β are positive weights. The minimizing of Qx
through ∂Qx/∂xP∗ = 0 gives:

xP∗ = f1(xdG − Cx
i(n)
G − TCSẋi(n)G)

+f2(ẋdG −
S

TC
x
i(n)
G − Cẋi(n)G) (17)

with f1 = −α(C−1)
D , f1 = − βS

TCD
, and

D = α(C − 1)2 + β(S/TC)2.
In our application we use the model of the NAO humanoid

[9] (height about 0.57[m], weight around 4.5[kg], and 22
degrees of freedom). Parameters α and β were respectively
fixed to 80 and 0.8. These values were determined exper-
imentally to minimize the differences between P (n) and
P ∗(n).

Final desired position of the COM (xdG, y
d
G) is calculated

from the previous desired position of the ZMP using the
current values of the longitudinal and lateral steps. The
longitudinal step length `x and lateral step length `y are
calculated as follows:

`x = dfwd/nb steps (18)
`y = 2 dsdw/nb steps (19)

where dfwd and dsdw are the forward distance and the
sideways distance to travel respectively. nb steps is the
number of steps. A step is defined by the number of
times legs are lift off. There is no double support phase.
Each time a leg touches ground the other leg takes off.
To walk sideways the robot needs to make two steps to
advance length `y: the first foot moves `y , and the second
foot moves also `y to be parallel with the first foot, but
the COM only travels `y . Hence the factor 2 in the above
formula for `y . The number of steps is calculated as follows:

1: procedure calculate nb steps(dfwd, dsdw, `maxx , `maxy)
2: ε← 0.001
3: nb stepsx ← b|dfwd|/`maxx c
4: remaining dfwd ← |dfwd| − nb stepsx`maxx

5: if remaining dfwd > ε then
6: nb stepsx ← nb stepsx + 1
7: end if
8: if |dsdw| > ε then
9: if nb stepsxmod 2 = 1 then

10: nb stepsx ← nb stepsx + 1
11: end if
12: end if
13: nb stepsy ← b|dsdw|/`maxy c
14: remaining dsdw ← |dsdw| − nb stepsy`maxy

15: nb stepsy ← 2nb stepsy
16: if remaining dsdw > ε then
17: nb stepsy ← nb stepsy + 2
18: end if
19: if nb stepsx > nb stepsy then
20: nb steps← nb stepsx
21: else
22: nb steps← nb stepsy
23: end if

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

-0.1

-0.05

0

0.05

0.1

0.15

x [m]

y [m]

COM

real ZMP, P*(n)

succession of real ZMPs

1st desired ZMP, P(0)

desired ZMP, P(n)

last desired ZMP
ankles

x
G
i ,y

G
i

x
G
f ,y

G
f

x
G
d ,y

G
d

l
x

l
x

Fig. 3. Forward walk of 0.4[m] from left to right. `x is the step length. Footprints are in dotted lines. The COM trajectory is depicted. Successive real
ZMPs are joined for better understanding.

24: return nb steps
25: end procedure
The instruction in line 9 is necessary to have even number
of steps for sideways moves.

The COM final desired velocities are calculated using step
lengths, namely `x and `y , and step time, namely Tst.

C. Connection between walking primitives

To enable connection between walking primitives the
COM final position in the current primitive becomes the
initial position of the COM in the next primitive. This ensures
continuity of position and velocity of the COM. When the
robot has to halt, the end of the walk is managed in a similar
way, that is a next-to-last walking primitive for the COM to
reach the final x-position and a last primitive along the y-axis
to set the velocity to zero. Then a sideways move is needed
to bring the COM to the middle of the feet. This motion is
done by interpolation with zero initial and final velocities.

Figure 3 shows the successive steps executed during a
forward walk of 0.4[m]. It also depicts the COM trajectory
and the successive desired and real ZMPs.

IV. TURN-IN-PLACE WALK

Rotation about a point situated on the longitudinal axis
was managed differently. Real ZMP points are calculated
given additional constraints of symmetry of the motion. The
two additional constraints are the following:

1) The velocity of the COM at the beginning of the
walking primitive n must be parallel with the segment
joining desired ZMP points P (n−1) and P (n) where
P (n) is the current ZMP point. So the velocity at the
end of the walking primitive n must be parallel with the
segment joining desired ZMP points P (n) and P (n+1).

2) The final position of the COM must be on the bisector
of segment [P (n)P (n+1)] passing through the center of
rotation C.

Figure 4 shows the COM trajectory for an anticlockwise turn
about C of 40[deg].

-0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

x [m]

y [m]

 COM

real ZMP, P*(n)

1st desired ZMP, P(0)

desired ZMP, P(n)

last desired ZMP
ankles

x
G
i ,y

G
i

x
G
f ,y

G
f

Rotation center, CC

P(2)
P*(2) P*(0)=P(0)

P(1)
P*(1)

Fig. 4. Anticlockwise turn-in-place of 40[deg] in one step. Rotation
takes place about C. Feet are initially parallel with the longitudinal axis.
Desired ZMPs are joined to show that the COM follows the same successive
directions.

A. Initiating the rotation

Like in the translation mode described previously the
motion starts with an outward sideways move – phase 1 –,
followed by an inward sideways move – phase 2 –. Phase 3
is the first walking primitive that contributes to the rotation
of the COM. The problem here consists of calculating the
coordinates of real ZMP P ∗(1) for the first walking primitive,
taking into account both constraints enumerated above.

The first constraint can be expressed as:

ẋ
f(1)
G

ẏ
f(1)
G

0

×

xP21

yP21

0

 .z = 0

⇔ ẋ
f(1)
G yP21 − ẏf(1)G xP21 = 0 (20)

where xP21 = x
(2)
P − x

(1)
P and yP21 = y

(2)
P − y

(1)
P .

The second constraint can be expressed as:[
x
f(1)
G − xC
y
f(1)
G − yC

]
.

[
xP21

yP21

]
= 0

⇔ (x
f(1)
G − xC)xP21 + (y

f(1)
G − yC)yP21 = 0 (21)

Replacing ẋfG and ẏfG using eq. 5 in eqs 20 and 21 yields:{
a x

(1)
P + b y

(1)
P + d ẏ

i(1)
G + d = 0

e x
(1)
P + f y

(1)
P + g ẏ

i(1)
G + h = 0

(22)

which can be written as:[
a b

e f

][
x
(1)
P∗

y
(1)
P∗

]
= −

[
c

g

]
ẏ
i(1)
G −

[
d

h

]
(23)

with a = yP21, b = xP21S/TC , c = −xP21C,
d = yP21Sx

i(0)
G /TC , e = (1 − C)xP21, f = (1 − C)yP21,

g = TCSyp12, and h = Cx
i(0)
G xP21 − xCxP21 − yCyP21,

knowing that xi(1)G = x
i(0)
G , ẋi(1)G = 0, and yi(1)G = 0.

The solution for the equation system 23 is:{
x
(1)
P∗ = u ẏ

i(1)
G + v

y
(1)
P∗ = r ẏ

i(1)
G + s

(24)

with u = (−c f + b g)/∆, v = (−d f + b h)/∆,
r = (−a/g + e c)/∆, s = (−a h+ d e)/∆,
and ∆ = a f − b e = −S(1− C)(P (1)P (2))2/TC .

Here ẏi(1)G can be chosen so that P ∗(1) is closest to P (1).
This comes to minimize the quantity:

J = (x
(1)
P∗ − x(1)P)2 + (y

(1)
P∗ − y(1)P)2 (25)

Solving for ∂J/∂ẏi(1)G = 0 gives:

ẏ
i(1)
G = −

u(v − x(1)P) + r(s− y(1)P)

u2 + r2
(26)

Coordinates of P ∗(1) can then be calculated thanks to eq.
24.

B. Cruise mode

P ∗(2) is calculated as the symmetric point of P ∗(1) with
respect to the bisector of segment joining P (1) and P (2).
P ∗(3) is calculated as the rotated point of P ∗(2) after rotation
over a step.

Therefore the successive real ZMP can be calculated as
follows:

• P ∗(2k) is the symmetric point of P ∗(2k−1), for k ∈
{1 . . . n}, with respect to bisector [P (2k)P (2k−1)].

• P ∗(2k+1) is the rotated point of P ∗(2k), for k ∈
{1 . . . n}, after step rotation.

Figure 5 shows the successive steps with desired and real
ZMPs for an anticlockwise rotation of 90[deg].

V. REENTRANCE

A walking request in linear translation needs desired dis-
placements in longitudinal and lateral directions, and desired
step time as inputs. This enables left/right forward/backward
moves. A walking request in rotation needs desired angular
displacement, the coordinate of the rotation center on the
longitudinal axis, and desired step time as inputs. This en-
ables clockwise and counterclockwise rotations about points
located on the longitudinal axis.

Depending on the nature of the current walk – translation
or rotation –, two kinds of reentrance are considered. The first
kind occurs when the new walk request is of the same nature,
i.e. current translation to another translation or rotation to
another rotation on the spot. The second kind of request
occurs when the new walk request is of different nature
than the current walk. This appears with a change from a
translation to a rotation and vice-versa.

In case of reentrance of linear translation, the new request
is taken into account at the next step, i.e at the next walking
primitive. The final position and velocity of the COM in
the current walking primitive serve as initial inputs to the
new walking primitive. The new ZMP is calculated taking
into account the desired position and velocity of the COM at
the end of the new walking primitive. These desired values
are calculated thanks to the new desired step length and the
new step time derived from the walk request arguments. The
distance that remains to be traveled is adjusted according to
the distance covered between the time of the request and the
time at the end of the current walking primitive. The step
length is calculated according to the distance to be traveled,
taking into account a maximal step length. When it comes
to change direction, from pure forward to pure backward
and conversely, the leg that is standing back, respectively
standing forth, at the end of the current primitive must
execute a step on the spot so that the other leg can execute
a first step in the opposite direction. In case of pure left to
right motions and conversely, one step on the spot is only
needed when the leg opposite to the new direction of motion
has to move first at the end of the current walking primitive.

Regarding reentrance of pure rotation, the new walking
primitive associated with the new request of rotation is only
triggered when the feet are parallel again, e.g. when the right
leg – resp. left leg – turns left – resp. right – in the air, this is
to avoid to halt rotation motion with no parallel legs. Motion
halt with parallel legs enables to start new patterns either
rotation or translation from the beginning. One consequence
of this choice is that the new rotation pattern may be delayed
by the additional time of one walking primitive necessary to
place the follower leg parallel to the leader leg. Equation 24
is used to calculate the new real ZMP points that are useful to
define the COM trajectory of the new walking primitive. To
change direction it is necessary for the follower leg relative
to the new rotation direction to make a step on the spot
to enable the leader leg to start to move in the opposite
direction.

The connection between a translation and a rotation mo-

-0.1 -0.05 0 0.05 0.1 0.15 0.2

-0.1

-0.05

0

0.05

0.1

0.15

x [m]

y [m]

 COM

real ZMP, P*(n)

1st desired ZMP, P(0)

desired ZMP, P(n)

last desired ZMP
ankles

x
G
i ,y

G
i

x
G
f ,y

G
f

Rotation center, C

-0.06 -0.04 -0.02 0 0.02 0.04 0.06
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

y [m]

x [m]

Fig. 5. Anticlockwise turn-in-place of 90[deg] in two steps. Feet are initially parallel with the longitudinal axis. The right-hand side view is a zoom of
the left-hand side view. On the right-hand side successive real ZMPs are joined.

tion is made easy insofar as the new walking pattern is
triggered when feet become parallel. If the current walk is a
translation motion it is stopped to have feet parallel before
starting the rotation, and conversely. Halting the motion
consists of executing a specific terminal walking primitive
that is different from the cruise walking primitive, then to
execute an outward sideways move followed by an inward
sideways move to bring the COM between the feet to reach
the standing position.

VI. INVERSE KINEMATICS

The origin of the coordinate reference frame where COM
and ZMP points are calculated is the point on the ground
between both ankle centers at the beginning of the walking
pattern.

The COM is considered to be fixed with respect to the
torso. This is not actually true but this approximation is
enough for our application. The longitudinal offset between
COM and torso point is set to 0.11[m], this is to have more
margin for the real ZMP point between the ankle and the
heel of the foot.

Inverse kinematics to get joint angles from COM trajectory
is implemented thanks to the inverse geometric model (IGM).
The convention used is the Khalil and Kleinfinger con-
vention [10] that is useful to get successive transformation
matrices from one joint coordinate frame to the other [11]
given a specific set of parameters. The coordinates of the
knee center are calculated first to get knee angle, then ankle
joint angles and finally hip joint angles. Knee angle is
obtained by calculating the square distance of the segment
joining the hip center to the ankle center. Ankle joint angles
are obtained by solving for the 3d transformation matrix at
the ankle. Hip joint angles are obtained by solving for the
3d transformation matrix at the hip.

VII. SIMULATIONS

The robot used for simulations is the NAO robot from
Aldebaran-Robotics [9]. The parameters of the NAO robot
are [12]:

• HipOffsetY = 0.05[m]
• HipOffsetZ = 0.085[m]
• FootHeight = 0.045[m]
• length of femur Lf = 0.1[m]
• length of tibia Lt = 0.103[m]

The walking parameters are:

• `maxx = 0.07[m]
• `maxy = 0.07[m]
• θmax = 40[deg]
• Ts = 0.02[sec]
• Tst = 0.24[sec] for translation, and Tst = 0.18[sec] for

rotation
• zG = 0.3[m]

These patterns were used with success in the 3D simula-
tion league of the RoboCup Dutch Open that took place in
Eindhoven, Netherlands at the end of April 2012 (Fig. 6).
The patterns were used to move the robots on the field
to the ball and to push it to the opponent goal. The walk
was fairly stable but motion speed was lower than that of
the best three teams. The maximal average forward velocity
was 0.22[m.s−1]. The maximal average angular velocity was
1.0[rad.s−1]. Velocities can be increased be decreasing the
time step and setting sampling time for commands update
to 10[ms]. Additional velocity gain can be obtained by the
use of learning procedures, e.g. genetic algorithms, to tune
walking pattern parameters through the minimizing of a cost
function.

Fig. 6. 1st column: forward walk in the simulator. 2nd column: rotation
on the spot.

VIII. CONCLUSION ON POSSIBLE EXTENSIONS

This paper has presented walking pattern details used in
simulation for making humanoids move in all directions,
and adapt their path to identified targets. The patterns were
used with success in the 3D simulation league by triggering
walking requests in real time to go to the ball, push it, and
score goals. Motion speed was not the highest among teams.
Nevertheless it is possible to improve the current locomotion
with the following extensions:

• In the current walk, step length is constant, but it can
be useful to decrease it at the beginning and the end
of walk, this is to avoid too high acceleration and
deceleration at the beginning and at the end. More
generally it is possible to vary step length during the
walk, this can be useful to adapt velocity to the desired

behavior.
• Currently translation patterns do not accept any rotation

component. But it is possible to add one. However this
rotation component must be limited to avoid the ZMP
to go outside the foot support polygon. In addition,
the rotation component cannot be introduced into every
walking primitive, this is to prevent the robot from
stepping on its feet. As a matter of fact, the introduction
of a left rotation while going forward must only start to
be active when the left foot is lift off, and vice-versa.

• The actual connection between walking primitives of
different nature, e.g. rotation and translation, is made
by passing though the halt position where both feet
are rigorously parallel next to each other. However it is
possible to save time by connecting walking primitives
directly without double sideways move required by
the halt posture. This demands a specific design of
connections, which must monitor the robot’s stability
margin before actually triggering the transition between
both walking patterns.

• The walking patterns developed so far are open-loop.
The addition of sensor feedback will be useful to
monitor balance, and to improve it to prevent falls. The
first step will be to detect loss of balance accurately, if
possible thanks to the estimation of ZMP offset in both
horizontal directions. Reactions to loss of balance can
be implemented with reflex walking primitives or with
reflex moves if walking primitives are not enough.

REFERENCES

[1] S. Behnke, Online trajectory generation for omnidirectional biped
walking, in: Int. Conf. on Robotics and Automation, 2006, pp. 1597–
1603.

[2] C. Graf, T. Röefer, A closed-loop 3d-lipm gait for the robocup standard
platform league humanoid, in: Fourth Workshop on Humanoid Soccer
Robots in conjunction with the IEEE-RAS International Conference
on Humanoid Robots, 2010.

[3] C. Graf, T. Röefer, A center of mass observing 3D-LIPM gait for
the robocup standard platform league humanoid, in: RoboCup 2011:
Robot Soccer World Cup XV, Lecture Notes in Artificial Intelligence,
Vol. 7416, Springer, Heidelberg, 2012, pp. 101–112.

[4] P. MacAlpine, D. Urieli, S. Barrett, S. Kalyanakrishnan, F. Barrera,
A. Lopez-Mobilia, N. Stiurca, V. Vu, P. Stone, UT Austin Villa 2011,
3D Simulation Team Report.

[5] S. Kajita, Humanoid Robot, Ohmsha Ltd, 3-1 Kanda Nishikicho,
Chiyodaku, Tokyo, Japan, 2005.

[6] F. Xue, X. Chen, J. Liu, D. Nardi, Real time biped walking gait pattern
generator for a real robot, in: RoboCup Int. Symposium, 2011.

[7] A. Schmitz, M. Missura, S. Behnke, Real-time trajectory generation
by online footstep planning for a humanoid soccer robot, in: RoboCup
Int. Symposium, 2011.

[8] M. Vukobratovic, B. Borovac, Zero-moment point - thirty five years of
its life., in: Int. J. of Humanoid Robotics, Vol. 1(1), 2004, pp. 157–173.

[9] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, B. Maisonnier, Mechatronic design of NAO
humanoid, in: Int. Conf. on Robotics and Automation, 2009, pp. 769–
774.

[10] W. Khalil, J.-F. Kleinfinger, A new geometric notation for open and
closed-loop robots, in: Int. Conf. on Robotics and Automation, 1986,
pp. 1174–1180.

[11] V. Hugel, R. Hackert, A. Abourachid, Kinematic modeling of bird lo-
comotion from experimental data, in: IEEE Transactions on Robotics,
Vol. 27(2), 2011, pp. 185–200.

[12] Http://simspark.sourceforge.net/wiki/index.php/Models.

