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Abstract— We consider the problem of foraging with multiple 

agents, in which agents must collect disseminate resources in 

an unknown and complex environment. So far, reactive multi-

agent systems have been proposed, where agents can perform 

simultaneously exploration and path planning. In this work, 

we aim to decrease exploration and foraging time by increasing 

the level of cooperation between agents; to this end, we present 

in this paper a novel pheromone modeling in which 

pheromone’s propagation and evaporation are managed by 

agents. As in c-marking agents, our agents are provided with 

very limited perceptions, and they can mark their 

environment. Simulation results demonstrate that the 

proposed model outperforms the c-marking agent-based 

systems in a foraging mission.  

Keywords- reactive agents; foraging task; digital pheromone; 

APF construction  

I.  INTRODUCTION  

Foraging is a task that lends to multi-robots systems that 
can beat single robot systems in such a task. On the other 
side, the possible profit of multi-robots systems is 
conditioned by the level of cooperation [2]. Swarm 
intelligence is the study of collective complex and intelligent 
behaviors observed in natural systems where global swarm 
behaviors emerge as a result of local interactions between 
agents and global interactions between agents and 
environment [3]. Foraging is, therefore, a benchmark 
problem within swarm robotics [4]. A particularly interesting 
situation problem is when foraging robots have no a priori 
information about the locations of objects in unknown and 
complex environment. As wider searching spaces need more 
scalable and reliable solutions, distributed cooperative multi-
robots systems are much adopted to achieve foraging 
missions. 

Synthetic pheromones are one of the most popular swarm 
techniques that provide interesting solutions to problems 
such foraging [5]; most of these solutions create local 
minima that can lead the multi-robots system to fail. In [1], a 
pheromone is modeled as a static piece dropped and picked 
up by agents. The cooperation between agents is managed 
with the c-marking agents’ algorithm. The pheromone has no 
propagation properties, that is minimizing the level of 
cooperation between agents. This hypothesis is very 
promising to achieve rapidly tasks such as foraging [6].      

This paper presents a novel pheromone modeling that 
aims at increasing the level of cooperation between agents to 
achieve rapidly the foraging task. To this end, we present in 
this paper, a new behavioral model and an extension version 
of the c-marking agents’ algorithm. This new behavioral 
model handles specific situations such as the presence of two 
resources in neighboring cells. Through simulation tests, the 
system is compared with the original one [1] in terms of the 
number of iterations required for achieving the foraging task. 

The rest of paper is organized as follows. In Section 2, 
we discuss related works. A new pheromone modeling, 
behavioral model and extended algorithm (cooperative c-
marking agent algorithm) are given in Section 3. Section 4 
describes the simulation environment and an experimental 
comparison between the original c-marking and c-marking 
enhanced algorithm. Section 5 concludes our research. 

II. RELATED WORK (PHEROMONE BASED TECHNIQUES 

FOR FORAGING) 

Foraging is a benchmark problem for robotics, especially 
for multi robot systems [2]. It is the act of searching for any 
objects and collecting them at a storage point which is called 
base. Ostergaard et al. define it as “a two-step repetitive 
process in which (1) robots search a designated region of 
space for certain objects, and (2) once found these objects 
are brought to a goal region using some form of navigation” 
[7]. 

A wide range of approaches has been adopted to suggest 
solutions to the foraging problem in unknown environments. 
Most of them focus on examples of multi-robot foraging 
from within the field of swarm robotics. Three strategies for 
cooperation very known in this field are: information sharing 
[8], physical cooperation, which can be a cooperative 
grabbing [9][10], or a cooperative transport [11][12][13]. In 
multi-robot foraging it is well know that overall performance 
does not increase with increasing team size [14][15][16], 
division of labor in ant colonies has been well studied and 
there was a proposition of threshold model [17][18], some 
other works concentrate on individual adaptation and 
division of labor in ants that allow a swarm of robots to self-
organize [19][20][21]. Pheromone based techniques inspired 
from ants are used for foraging with robots [22][23][24], 
where agents drop a quantity of pheromones in their 
environment in order to build gradients from sources to the 



base. This approach has some drawbacks, such as the 
computation of propagation and evaporation dynamics, and 
each agent needs specific mechanisms or materials that allow 
him to get back home. Panait and Luke [5] and Resnick [24] 
propose the use of a second pheromone diffusion from the 
base in order to avoid this last problem. In the same time, 
this solution can create new local minima.   

An original approach has been proposed in [1] that 
allows agents to build optimal paths for foraging using only 
reactive agents, which have limited information about their 
environment. To keep track of the sources found and to build 
trails between sources and the base, agents drop a quantity of 
pheromones in their environment. 

In this paper, we present a novel extension of the c-
marking agents’ algorithm, in order to increase the level of 
cooperation between agents. 

III. COOPERATIVE C-MARKING AGENTS 

The proposed multi agents system has the same 
properties of agents defined in [1]; the system is defined as a 
set of objects, which are static obstacles, sources and other 
agents, sources have fixed positions and agents are moving 
in the environment to achieve their own task: 

A. The pheromone model 

Two kinds of the pheromone’s model are used in most of 
the works cited above. The first one integrates the 
management of the two modules propagation and 
evaporation in the pheromone, which is a complex task that 
causes in some cases building of local minima, the second 
one use the pheromone as a piece that does not propagate in 
the environment, and that can be picked up by agents when 
all is finished.  

The proposed pheromones’ model combines between the 
two properties cited before, thus the pheromone is 
considered as a piece that can be dropped and picked up by 
the agent, it has propagation and evaporation properties that 
are managed by the agent. The agent will creates a maximal 
trail (deposits a diffusible pheromone), if the quantity of 
resources is important for more attraction and recruitment of 
agents to the trails. If the quantity of resources is (or 
becomes) less than a fixed minimum quantity; the agent 
creates a minimal trail (deposits a non-diffusible pheromone) 
to avoid the attraction of other agents. This new modeling is 
shown by figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 

The fact that the pheromone is managed by the agents 
(dropped, picked, propagated and evaporated); there will be 
no doubt that a non-operational trails steel existing between 
the base and an exhausted source.    

B. The environment model 

The environment is modeled as a squared grid with 
variable size that have resources in multiple locations, these 
locations are scattered randomly, and they are unknown by 
the agents; each location has a given quantity of resources. 
Cells in the environment can: 

 Be an obstacle (grey color); 

 Contain a resource (green color) with a limited 
quantity Q max 

 Be the base (red color), positioned in all simulations 
in the environment’s center, and form the start point 
of all the agents; 

 Contain an agent 

C. The agent model 

Agents have limited information about their 
environment; they occupy a cell, and each agent can: 

 Move from a cell to another, which is not an 
obstacle in the four direction; 

 Read and write values in the current cell; 

 Perceive and read the values of the four neighboring 
cells, so he can detect resources, and he can load a 
quantity of resources according to Qtemax.  
 

Increasing the level of cooperation between agents, and 
dealing with specific situations such as the two resource 
neighboring cells, can decrease dramatically the time of 
foraging. To achieve those goals, we address the new agent’s 
behavior given by Figure 2 (Cooperative c-marking agents) 
and the enhanced algorithm corresponding to cooperative c-
marking agents is given by the algorithm (extension of the c-
marking agents) bellow:  

Algorithm 1: Cooperative c-marking agents 

SEARCH & CLIMB (Simonin & al, 2010) 

If a resource is detected in a neighboring cell THEN  

        move into that cell and execute LOADING 

ELSE IF neighboring cells are colored and different from the 

previous position THEN  move to highest-valued such cell,  

ELSE execute EXPLORATION & APF CONSTRUCTION  

 

LOADING 

Pick up a quantity Qtemax of resource ; 

IF the cell is not exhausted of resources THEN  

  IF Qcell > = Qmax  THEN   

    IF the cell is colored THEN execute RETURN TO BASE 

    ELSE execute RETURN & COLOR MAX TRAIL 

   ELSE IF Qcell  = Qmin  THEN 

         IF the cell is colored THEN execute RETURN &  

                                            ERASE MAX TRAIL 

         ELSE execute RETURN & MIN TRAIL 

    ELSE IF Qcell  <  Qmin  THEN 

        IF the cell is colored  THEN execute RETURN TO  

Diffusible pheromone Non diffusible pheromone 

Desperation of pheromone 

Dropped by robot/    [Qcell > Qmax] 

Picked up by robot/    [Qcell = 0] 

Excited by robot/    [Qcell < Qmin] 

> 
<   Excited by robot/    [Qcell > Qmax]       

Evaporation 

Propagation 

Total evaporation 

Figure 1.  Pheromone modeling 

(1) 
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                                                              BASE  

        ELSE execute RETURN & COLOR MIN TRAIL  

 

ELSE IF the cell is exhausted THEN  

       IF (resource found in neighboring cells) and (exist trail)  

                THEN 

                 Color current cell with trail color 

                IF  Qcell > = Qmax  THEN  color the 4 neighboring 

                    cells with light gray color and execute  

                      RETURN TO BASE 

               ELSE IF Qcell  <=  Qmin  THEN execute RETURN 

                                                                             TO BASE 

    ELSE IF (resource found in neighboring cells) and (not  

         exist trail) THEN execute (1) 

      ELSE IF the cell is colored THEN execute RETURN &  

                                   ERASE MIN TRAIL                                                                                  

      ELSE execute RETURN TO BASE ;     

      

RETURN & COLOR MAX TRAIL    

IF the base is reached THEN  

              unload resource and execute SEARCH & CLIMB 

ELSE move to a new neighboring cell with the least value      

   Color the current cell in a trail color -dark gray color- (it  

   will be propagates to the 4 neighboring cells with another 

   color trail –light gray color-); 

 

RETURN & COLOR MIN TRAIL (Simonin & al, 2010)    

IF the base is reached THEN  

               unload resource and execute SEACH & CLIMB 

ELSE  move to a new neighboring cell with the least value 

 Color the that cell in a trail color; 

 

RETURN & ERASE MAX TRAIL 

IF the agent is located at base THEN UNLOAD resource & 

execute SEARCH & CLIMB 

ELSE Move to a neighboring colored cell with the least value  

Erase the color of the 4 neighboring cells to the default color; 

 

RETURN & ERASE MIN TRAIL 

IF the base is reached THEN UNLOAD resource & execute 

SEARCH & CLIMB 

ELSE IF the number of colored neighboring cells >=2 THEN 

execute RETURN TO BASE  

Else IF there is a colored cell with least value THEN  

     move to it & erase the color to the default one.  

 

RETURN TO BASE 

If the base is reached THEN UNLOAD resource and execute 

SEARCH & CLIMB 

ELSE IF there is a neighboring colored cell with min value THEN 

move to it and UPDATE VALUE 

ELSE move to a cell with min value & UPDATE VALUE                                                                                                        

 

In the foraging system shown in Figure 2, each robot 
search resource in a pseudo random walk, and then it brings 
the discovered resources to the base. In its way, the robot 
creates paths to keep track of resources found, and to attract 
more robots to the discovered resource cell. Paths are of two 
kinds; max trails, which are formed by a diffusible digital 
pheromones (i.e. these are larger paths, and they are 
diffusible to the four neighboring cells), and min trails, 
which are formed by a non-diffusible pheromones. The robot 
follows the following rules according to the quantity of 
resources: 

 If the quantity of resources is greater than a quantity 
max and there is no trail the robot drops diffusible 
pheromones (creation of max trails), else he climbs 
the existing trail; 

 If the quantity is equal to a quantity min and there is 
a trail then the agent will climb it and erase the max 
trail to avoid the attraction of other robots, else if 
there is no trail, the robot will return and color min 
trail; 

 If the quantity is less than a quantity min, and there 
is a trail then the robot climbs it else it creates a min 
trail.  

 If the base is reached, the robot unloads resources 
and chooses between climb an existing trail and 
searching for a resource. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. SIMULATION RESULTS AND COMPARAISON 

According to the simulation results, we compared the 
proposed system with the original foraging system for 
verifying its effectiveness. The c-marking agent system 
offers a small level of cooperation between agents, whereas 
the ameliorated system offers a great level of cooperation, 
which decreases the foraging time. 

We tested with square environments (grid with variable 
size); obstacles and resource locations are disseminated 

Figure 2.  Cooperative c-marking agent behavior 
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randomly in the environment, and all the agents start from 
the center (base).  Several setups were used to test the model: 

Setup 1 is defined as follows: 

 An environment with 40 X 40 cells, 30% obstacles 
and 20 cells are resource locations; each resource 
contains 1000 units of resources.      

 Each agent can load a maximum of 100 units.  
 

As in [1], we define time as the number of iteration 

required to discover and exhaust all the resources in the 

environment. We evaluate the performance of the two 

models in different configurations (number of agents, size of 

the environment). 

A. Influence of the number of agents on performance 

Using the setup 1, and varying the number of agents from 

5 to 160 agents, we obtained the results illustrated by Figure 

3 and Table 1. Experiments show that increasing the number 

of agents decreases the time of foraging. This is due to the 

great level of cooperation. 
 

Figure3. Performance of Cooperative c-marking agents in setup 1 
 

TABLE 1    INFLUENCE OF NUMBER OF AGENTS ON THE PERFORMANCE OF 

COOPERATIVE C-MARKING AGENTS 

Number of agents 5 10 20 40 80 

Iteration number 10476 6917 3403 1125 609 

B. Influence of the environment size on performance 

In this case, the number of agents is fixed and the 
environment size is variable. We used the setup 2 to see how 
the size of the environment affects the performance of the 
proposed model.   

Setup 2 is defined by: 

 Environments contain 5% obstacle density and 20 
cells are resource locations; each resource contains 
2000 units of resources.      

 The number of agents is 50. Each agent can 
transport a maximum of 100 units. 

Table 2 and Figure 4 show the performance of the 
algorithm for environments of varying sizes ranging from 
12x12 to 100x100.  

The results show that the foraging time decreases with 
increasing the size of the environment. The solution becomes 
ineffective due to the increase in exploration time. The 
problem of dead connected trails creates local minima that 
can lead to freeze a great number of agents in the local 
minima vicinity. 

 

Figure 4. Performance of Cooperative c-marking agents in setup2 
 

TABLE 2    INFLUENCE OF THE ENVIRONMENT SIZE ON THE PERFORMANCE 

OF COOPERATIVE C-MARKING AGENTS 

Environment size 12*12   25*25 50*50 100*100 

Iteration number 192 652 1395 10777 

C. Influence of the obstacles on performance 

Obstacles are disseminated in a random way in the 
environment. Such situation allows us to test the robustness 
of the algorithm to obstacles. 
Setup 3 is defined by: 

 Environment size is 41 X 41 cells, 20 cells are 
resource locations; each resource contains 1000 
units of resources;      

 Number of agents is 10 and each one can transport a 
maximum of 100 units; 

The obstacle percentage is varying from 15 to 30 % of 
the environment surface. Results are shown in Table 3 and in 
Figure 5, which demonstrate that the performances do not 
depend on the density of obstacles. The algorithm offers an 
interesting level of robustness to obstacles. 

 



 

Figure 5. Performance of Cooperative c-marking agents in setup3 

 

TABLE 3    INFLUENCE OF THE PERCENTAGE OF OBSTACLES ON THE 

PERFORMANCE OF COOPERATIVE C-MARKING AGENTS 

Percentage of obstacles 15   20 25 30 

Iteration number 976 831 796 985 

 

D. Comparaison with c-marking agents model 

Simulating the ant model requires more environment 
management mechanisms in which propagation of the 
pheromones represents a high computational cost. The main 
advantage of marking agents is their abilities of creating 
quick paths to the base during the exploration phase [1]. In 
the proposed model, the first problem is avoided by giving a 
new modeling for the digital pheromone, and the local 
minima problem is also avoided. Due to this last, agents are 
able to go back home easily. 

Figure 6 presents a comparison between the two models. 
It shows that the proposed model gives more efficiency in 
time than the c-marking agents in case of varying the number 
of agents. This is due specifically to the great level of 
cooperation which decreases the exploration time. Figure 7 
gives a comparison between the two models by varying the 
environment’s size. Results show that this model gives a less 
efficiency in time than the c-marking agents’ model. We 
think that this ineffectiveness of results is due to a problem 
that appears during the simulations, there is a possibility that 
two or more trail are connected (have common cells in some 
part of the trail); or crossed ones, when the agent in trail 1 
exhaust the resource, it will erase the trail and this will cause 
the erase of the common portion of trail; the agents in the 
other trail have no way to continue to the base, or to the 
resource, because they look for  colored cells , with this 
phenomena a great number of agents will be trapped and the 
simulation is continued with just those agents which are not 
trapped and this will increase the number of iteration .   
 

 

 

 

 

 

 
 

Figure 6. Effect of the number of agents 
Cooperative c-marking agents Vs c-marking agents 

 

 

Figure 7. Effect of the environment size 

Cooperative c-marking agents Vs c-marking agents 

 

V. CONCLUSION AND FUTURE WORK 

A multi agent model simulation and a new version of the 
c-marking agents’ algorithm to increase the cooperation 
between agents and to decrease the time of foraging have 
been presented. Some other problems such as neighboring 
resources is solved with our new model and results indicates 
that the use of the new pheromone modeling give more 
efficiency in time than the original one. In perspective, we 
think that robot’s behavior can be enhanced by introducing 
both new exploration approaches and solutions to problems 
such as trail erasing and APF fast convergence.  
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