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Abstract— In this paper, we discuss the problem of multi-
robot coordination and propose an approach for coordi-
nated multi-robot motion planning by using a probabilistic
roadmap (PRM) based on adaptive cross sampling (ACS).
The proposed approach, called ACS-PRM, is a sampling-
based method and consists of three steps including C-
space sampling, roadmap building and motion planning. In
contrast to previous approaches, our approach is designed
to plan separate kinematic paths for multiple robots to
minimize the problem of congestion and collision in an
effective way so as to improve the system efficiency. Our
approach has been implemented and evaluated in simulation.
The experimental results demonstrate the total planning
time can be obviously reduced by our ACS-PRM approach
compared with previous approaches.

Keywords: Multi-robot system; motion planning; multi-robot
coordination; sampling-based approach;

1. Introduction
Motion planning is a fundamental problem in robotics.

It could be explained as producing a continuous motion
for a robot, that connects a start configuration and a goal
configuration, and avoid collision with any static obstacles
or other robots in an environment. The robot and obstacle
geometry are generally described in a 2D or 3D workspace,
and the motion could be represented as a path in configura-
tion space. Motion planning algorithms are widely applied
in many fields, such as bioinformatics, robotic surgery,
industrial automation, planetary exploration, and intelligent
transportation system.

The multi-robot system (MRS) is proposed to deal with
some problems that are difficult or impossible to be solved
by a single robot, or to improve the system implementation
efficiency in some missions completed by multi-robot rather
than a single robot [1], [2]. The biggest challenge for the
MRS is coordination. Without coordination, it will not only
lower the system efficiency, but also lead to the failure of the
entire system in extreme cases. Figure 1 shows an example
of multi-robot coordination, four robots implement a trans-
portation mission cooperatively, the red robot is delivering a
goods, the green robot is on its way back after completing
a transportation task, the yellow robot is moving to load a

Fig. 1: Four robots implement a transportation mission
cooperatively. The dark blue piece signifies the goods to be
transported. The green area represents the original position
of goods, and the yellow area represents the destination,
which corresponds to every room, where the goods should
be delivered to by the mobile robot.

goods, and the orange robot is transporting a goods to the
destination location. The coordination of these four robots
is obtained by assigning them to different room.

In this paper, we consider the issue of coordinated motion
planning for a homogeneous team of autonomous mobile
robots in structured environments such as office building,
warehouse, and container terminal. The larger context of the
research is to establish a multi-robot goods transportation
system with security, reliability and efficiency. Most of the
proposed approaches for multi-robot motion planning usu-
ally have the problem of resource conflict such as congestion
and collision [3], [4]. For the transportation issue, a desirable
result is that robots replan their individual local path to
avoid collision and congestion events, however this fashion
often needs additional time and thus limit the transportation
efficiency. An undesirable result is that robots are blocked,
or the goods are lost or damaged, and thus fail the trans-
portation mission. Therefore, we arranged these cases to



the waiting situation problem [5]. To handle this practical
problem, this paper presents a novel approach to multi-robot
motion planning by using a probabilistic roadmap (PRM)
planner which is based on manner of adaptive cross sampling
(ACS). This approach called ACS-PRM is decomposed into
3 main steps:

• Firstly, a sufficient number of points should be gener-
ated in C-space on an occupancy grid map by using an
adaptive cross sampling method.

• Secondly, a roadmap should be built while the potential
targets and milestones are extracted by post-processing
the result of sampling.

• Finally, the motion of robots should be planned by
querying the constructed roadmap.

The rest of the paper is organized as follows: Section
2 describes an overview of some related works; Section 3
discusses the problem of waiting situation; subsequently,
Section 4 describes our ACS-PRM approach; Section 5
presents the experimental results obtained with our approach;
and the paper is concluded in Section 6 at last.

2. Related Work
Multi-robot motion planning has been extensively studied

for more than a decade during which a wide variety of
planning frameworks and solutions have been proposed.

Švestka and Overmars [6] presented an approach for mul-
tiple nonholonomic car-like robots motion planning in the
same static workspace by using probabilistic roadmaps, in
which the roadmaps for the composite robot are derived from
roadmaps for the underlying simple robots, and the latter is
computed by a probabilistic single-robot learning method.
The authors introduced the notion of super-graphs for multi-
robot path planning, and their implementation covered the
construction of the simple roadmap and the super-graphs.
This approach is probabilistically complete because a given
problem could be solved within a finite amount of time.

Moors et al. [7] presented a graph-based algorithm for
coordinate multi-robot motion planning in 2D indoor envi-
ronments. The scenario of this research is multi-robot indoor
surveillance. The proposed approach takes the limitations
and uncertainties of sensors into account, and generates the
coordinated motion plan for multiple robots by using A*
search algorithm. The authors also introduced a framework
based on realistic probabilistic sensor models and worst
case assumptions on the intruder’s motions in order to
compare different approaches and evaluate the coordination
performance of the proposed approach.

Clark [8] presented a multi-robot motion planning strategy
based on the probabilistic roadmap within a dynamic robot
network (DRN) coordination platform. The DRN platform
is an ad hoc network, in which single-query PRM is queried
as a centralized planner to plan trajectories for all robots.
The PRM planner is optimized to speed queries for multi-
robot motion planning by using new sampling strategies. At

Fig. 2: A typical waypoint mutex. The black dot represents
the waypoint, the gray segment represents the path, and the
red and blue arrow represent the direction of the motion of
the corresponding color robots respectively.

first, a method of sampling PRM milestones is identified
to enable fast coverage of the configuration space. Then,
a method of generating PRM milestones is introduced to
decrease the planning time. Finally, an endgame region is
defined to improve the likelihood of finding solutions when
goal configurations are highly constrained.

Saha and Isto [9] presented a strategy for decoupled
multi-robot motion planning. The proposed strategy, which
aims at improving the reliability of the basic decoupled
planning approach, partially merges the two phases of the
basic approach. The first phase is to compute a collision-free
path to avoid the obstacles in the environment and the other
robots, the second phase is coordinating the individual robot
motions so that only one robot at a time may enter the area
of potential inter-robot interference. The proposed approach
searches for motions for a robot and coordination of motions
of robots along paths already planned while ignoring the
robots whose motions have not been planned simultaneously.
This approach is inherently incomplete.

Besides, there are some other approaches developed with
various strategies [10], [3], [11], [4].

3. Waiting Situation Problem
Multi-agent environments can be cooperative or competi-

tive [12]. Of every agent in a team, the other agents can be
considered as teammates (cooperative) or movable obstacles
(competitive). One of the most important reasons which
limit the efficiency of the multi-robot motion planning is
the waiting situation such as the congestion and collision
between robots. The core of the problem can be considered
as the waypoint mutex in multi-robot motion planning.
Figure 2 depicts a typical waypoint mutex. Two robots
move to the same waypoint simultaneously: the red robot
moves from the top left towards the right and the blue robot
moves from the right towards the bottom left. Because of
the waypoint can be assigned only to one robot at a time,
then the mutex of the waypoint happens.

Generally, there are two ways to deal with the waypoint
mutex as shown in Figure 3. One (Figure 3(a)) is to let
robots pass the waypoint one by one [6]. The weakness
of this strategy is that one robot must wait for another
robot to pass. Another way (Figure 3(b)) is to replan the



(a) (b)

Fig. 3: Two ways to deal with the waypoint mutex. The
colored lines represent the motion plan for the correspond-
ing color robots respectively. (a) The two robots pass the
waypoint in order, the blue robot pass first and the red robot
pass later. (b) The two robots take each other as an obstacle
and replan its trajectories in real time.

local path in real time for each robot by using some
goal seeking obstacle avoidance algorithms such as Vector
Field Histogram (VFH+) [13] or Nearness Diagram (ND)
Navigation [14]. The weakness of this strategy is that robots
need some time to replan their new trajectory. Consequently,
the two ways both extend the time of the motion planning
and limit the system efficiency.

If we can plan separate kinematic paths for multiple
robots, then the waiting situation caused by waypoint mutex
will be obviously reduced. In addition, the problem of
multi-robot task allocation (MRTA) [15] should also be
considered. Our focus in this paper is on the multi-robot
motion planning in structured environments. For instance, an
office building could be simply divided into three clusters:
corridor, doorway and room. The doorway usually connects
the corridor with the room, it is a suitable object for task
allocation. Therefore, on the one hand, the problem of
waiting situation (especially at the corridors) caused by one
path for all robots should be solved. On the other hand, a
simple and effective way to coordinate multi-robot motion is
to assign different robots to different rooms reachable from
the corridors. Besides, more complex environments may
require more sophisticated methods such as hand labeled
training data [16], [17] or more complex reasoning [18],
[19].

Because of the complexity of multi-robot systems [10],
[20], the target of this paper is not to completely avoid
the problem of waiting situation (i.e., waypoint mutex), but
to minimize the probability of appearance of the waiting
situation by using our ACS-PRM approach. Therefore, the
coincidence of the waypoint in the plan of two or more
robots should be reduced so as to improve the multi-robot
motion planning efficiency.

4. ACS-PRM: Adaptive Cross Sampling
Based Probabilistic Roadmap

There are usually two ways to handle the issue of robot
motion planning based on the grid representation of the

environment in low dimensional space. One is to use the
incremental heuristic search algorithm such as A* [21] or D*
[22]. Another is to use the topological map [23] generated
on top of the grid-based map such as Voronoi diagram and
straight skeleton. Nevertheless, the number of grids increases
rapidly when the size of the environment expands, which
make these methods inappropriate for complex and extensive
environments. Moreover, these methods are hard to deal with
the multi-robot motion planning and always increase the
computational load.

Sampling-based approaches have been proposed to im-
prove the computational efficiency for robot motion plan-
ning. The main idea is to avoid the explicit construction
of the obstacle region in the C-space (Cobs). Unlike the
incremental heuristic search and the topological map meth-
ods, the sampling-based approaches work well for complex
environments and high-dimensional configuration spaces,
and they are generally easier to implement. The probabilistic
roadmap (PRM) planner1 is one of the typical sampling-
based approaches. The original PRM technique is introduced
by Kavraki et al. [24], which has been shown to perform
well in a variety of situations. On the basis of this method,
different extensions have been proposed [25], [26], [27].
The approach described in this paper is also an extension
of PRM, which is aimed at performing multi-robot motion
planning efficiently.

To deal with the problem of waiting situation in multi-
robot motion planning as mentioned in the last section by
using the PRM approach, there are substantially two options:

• In the manner of single-query: when two or more
robots need to pass the same waypoint simultaneously,
each robot resamples the adjacent region and takes the
motion of the others into account, then generate a novel
local roadmap for local replanning.

• In the manner of multi-query: construct a rich roadmap
at the beginning to allow robots to plan a different
trajectory from others later.

4.1 C-space Sampling
The ACS-PRM approach presented in this paper is a

multi-query approach. The first step is C-space sampling,
in which a sufficient number of points should be generated
to represent the free space of the environment. The main
idea of this step is to let a random point p retracts to a
position P (q) with the distance d to the obstacle Cobs along
horizontal and vertical directions (i.e., cross direction).

For autonomous nonholonomic mobile robots, in two
dimensions, there are three representational degrees of free-
dom (DOFs) which are one rotational DOF and two trans-
lational DOFs (along or across), but only two controllable
DOFs which only move by a forward motion and a steering

1A reference implementation of this method in C++ is available online
at: http://www.ai.univ-paris8.fr/ yz



angle, the configuration space C is the special Euclidean
group SE(2) = R2 × SO(2) where SO(2) is the special
orthogonal group of 2D rotations. To avoid the collision
caused by the point retracts too close to the obstacle, we
set the distance d as the sum of the positive number w and
the radius r of the minimum circle to cover the robot with
centering at the rotation center of the robot:

d = r + w, (w > 0) (1)

The set of w is to deal with the negative influence of sensor
error and it should be adjusted in practical applications.

Cobs represents the set of the obstacle, ∀q ∈ Cobs define
a direction rq , then determine a symmetry point S(q) which
is an intersection of the open-ray with end q direction rq
and another Cobs:

S(q) = {q + t−→rq |t > 0} ∩ Cobs (2)

where, if {q+ t−→rq |t > 0}∩Cobs = {q}, then define S(q) =
∞. Let dist(x, y) represent the distance between point x
and point y, then the retraction function can be described
as:

P (q) =

{
q + d−→rq if dist(q, S(q)) ≥ 2d
q+S(q)

2 otherwise
(3)

where P (q) is the position for the point p to retract. In this
way, the random points are adapted around to the obstacle
(see Figure 4(b)), then:

ACS-PRM = {P (q)}|q ∈ Cobs} (4)

The implementation of this step is summarized in Algo-
rithm 1, where the time complexity is O(n) and the space
complexity is O(1). This step corresponds the learning phase
of classic implementation of PRM.

4.2 Roadmap Building
The second step is roadmap building, in which the po-

tential targets and the milestones should be extracted and
connected to the roadmap. In the previous step C-space
sampling, if there are sufficient points generated, then the
points will gather into segments. The main idea of this step
is post-processing the graph resulted from the previous step
while identifying three types of point as follows:

• In the previous step, if dist(p, q) < d, then p will retract
to q+S(q)

2 and be labeled as the medial axis. Therefore,
we find those medial axis segments with length l a
small fixed value (in our implementation, we took the
thickness of obstacle), and the midpoints of segments
are marked as potential target for task allocation. Figure
4(c) shows the extracted potential targets which are
precisely doorways of the structured environment.

Algorithm 1 Adaptive cross sampling

Require: N , the sufficient number of points to generate.
Ensure: N points in Cfree by adaptive cross sampling.

1: repeat
2: Generate a uniformly random point p in C-space.
3: if p is free then
4: for horizontal and vertical directions do
5: Find q ∈ Cobs the nearest distance from p.
6: if dist(p, q) ≥ d then
7: p retracts to q + d−→rq .
8: else
9: Find {S(q)} = −→qp ∩ Cobs.

10: p retracts to q+S(q)
2 .

11: end if
12: end for
13: end if
14: until N points have been generated.

• For those segments without containing the potential
target, we extract both of the endpoints and mark them
as milestone (see Figure 4(d)).

• The points of intersection between two segments are
also extracted and marked as milestone (see Figure
4(d)). These milestones have not been used in our ex-
periments, but they will be required for the exploration
problem.

This step also corresponds the learning phase of classic
implementation of PRM. Figure 4 illustrates the process of
generating a roadmap for an example occupancy grid map
by using our approach with 200,000 random samples.

4.3 Motion Planning
The third step is motion planning, in which each individ-

ual robot’s kinematic path should be planned by querying the
constructed roadmap. The main idea of this step includes the
following three points:

• The potential targets {ti} are considered as the goal
nodes for path planning and the objects for task al-
location as well. Then, the individual {ri} robots are
assigned to different potential target:

{ri} 7→ {ti} (5)

• To maximize the difference between the paths, we
assign the potential target which is the closest from the
robot but further from the previously assigned target to
the current individual robot:

t = further(closest({ti}, r), ti−1) (6)

• Similar to the classic PRM, we use the fast local
planning method (i.e., the straight line planner) for the
global path planning, except that we choose the path



(a) (b)

(c) (d)

(e) (f)

Fig. 4: Generation of the roadmap based on ACS-PRM. (a)
The original gridmap, (b) adaptive cross sampling in C-
space, (c) the extracted potential targets (doorways), (d) the
extracted milestones, (e) the roadmap coverage of environ-
ment, and (f) an instance of path.

with the minimum number of milestones for the robots
invariably.

This step corresponds the query phase of classic imple-
mentation of PRM.

5. Experiments
To evaluate our ACS-PRM approach, we conducted a

series of simulation experiments with the well-known 2D
multi-robot simulator Stage [28]. The experiment is to
transport a certain amount of goods from one origination to
divers destinations by a fleet of mobile robots. The simulated
robot is the Pioneer 2-DX robot equipped with a laser range
finder providing 361 samples with 180 degrees field of view
and a maximum range of 8 meters. Each robot can localize
itself based on an abstract localization device which models
the implementation of GPS or SLAM. To transport goods,
the robots are equipped with a gripper that enable them to
sense, pick up and put down the goods, and the carrying

Fig. 5: A typical prototype of Pioneer 2-DX robot with
gripper.

(a) map A (b) map B

Fig. 6: Two environment maps used in our simulation.

capacity is limited to one unit per robot. Figure 5 shows a
typical prototype of Pioneer 2-DX robot with gripper.

We used a different number of robots to conduct several
experiments in various environments. Two maps (Figure
6) were used in our simulation which are both structured
environments. For each map, the green area signifies the
original position of goods, and the yellow areas represent
the destinations which are always placed in the rooms. For
instance, map A has 8 rooms thus 8 destinations, map B
has 7 rooms thus 7 destinations. The transportation team
size is varied from 2 to 8 robots. On each team size, 10
experimental runs are performed for a transportation mission
of 50 goods. The mission objective is to transport the goods
to every room equally.

The ratio between real-world time and simulation time is
about 1:1. We also compared our approach to the commonly
used Voronoi-based approach [23] in which a topological
map is built on top of the grid map by using the Voronoi
diagram, and the critical points are extracted like milestones
for mobile robot motion planning. All experiments reported
in this paper were carried out on a system with an Intel
Core 2 Duo E8400 3.00GHz processor, an Intel Q43 Express
chipset and two DDR2 800MHz 1024MB dual channel
memory.

In the experiments, we assumed that there exists a central
server which is able to communicate with all mobile robots
and assign the transportation tasks to each individual robot.
The transportation task is to transport the goods from the
original position to the destination. We also assumed that all
the mobile robots share a common grid map and everyone



Table 1: Statistics of The Number of Occurrences of The
Waypoint Mutex

(a) map A
#robots 2 3 4 5 6 7 8
ACS-PRM 1.6 3.1 6.4 7.5 10.0 11.1 16.2
Voronoi-based 15.3 18.7 26.0 26.8 19.9 23.7 27.2

(b) map B
#robots 2 3 4 5 6 7 8
ACS-PRM 3.8 4.3 7.1 14.9 12.8 10.3 16.7
Voronoi-based 17.1 19.2 19.0 26.5 27.4 27.0 29.9

has full information about all others so as to implement path
planning and obstacle avoidance in real time coordinately.
The ACS-PRM is designed to (but not limited to) plan the
kinematic path for nonholonomic mobile robots, and in order
to get an objective evaluation of the proposed approach,
the drive mode of mobile robot is set to differential-steer,
furthermore, the strategy of one pass after the other is applied
to deal with the possible waypoint mutex problem.

The results of our experiments are given in Figure 7. We
measured the transportation time gained by our approach
and compared to the Voronoi-based approach. In each plot,
the abscissa denotes the team size of the mobile robots, the
ordinate denotes the percentage of the transportation time in
the total transportation time, and the error bar indicates the
confidence interval of each corresponding gain of robot team
size with the 0.95 confidence level. Figure 7 shows that, a
transportation time saving of 6.7% to 12.2% in map A and
6.1% to 12.0% in map B is obtainable under our ACS-PRM
approach compared to the Voronoi-based approach. These
results proved that our technique could obviously improve
the system of planning efficiency.

Moreover, we mentioned earlier that our ACS-PRM ap-
proach is more effective than our previous approach because
the ACS-PRM spends much less time for the learning phase.
The experiments show that, with the new approach, the map-
ping times are respectively 0.321 seconds and 0.329 seconds
for map A and map B with 200,000 random samples, which
are averages of the 10 runs.

We also counted the average number of occurrences of
waypoint mutex in each map as shown in Table 1. This table
shows that the problem of waiting situation is obviously
reduced by using our ACS-PRM approach, because our
approach is able to plan separate paths for robots, especially
in the corridor. Unlike the Voronoi-based approach, there is
only one path for all robots.

In fact, the technique proposed in this paper also works
well with irregular environments. Figure 8 illustrates an
example with 20,000 random samples.

6. Conclusion
In this paper, we presented a novel approach for co-

ordinated motion planning of multiple robots by using
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Fig. 7: Transportation time gained by using our ACS-PRM
approach compared with the Voronoi-based approach.

(a) (b)

Fig. 8: Irregular environment experiment based on ACS-
PRM. (a)Adaptive cross sampling in C-space, (b) the ex-
tracted milestones.

the probabilistic roadmap planner based on a manner of
adaptive cross sampling, which we called ACS-PRM. The
basic thought of the proposed approach is to build separate
kinematic paths for multiple robots to minimize the problem
of waiting situation such as collision and congestion caused



by waypoint mutex in an effective way, thus to improve the
efficiency of automated planning and scheduling.

The ACS-PRM mainly consists of three steps: C-space
sampling, roadmap building and motion planning. In the first
step, a sufficient number of points are generated to represent
the free space of the environment. In the second step, the
potential targets and the milestones are extracted and con-
nected to the roadmap by post-processing the graph resulted
from the previous step. In the third step, the robot’s motion
planning is done by querying the constructed roadmap. The
first two steps correspond the learning phase of classic
implementation of PRM, and the last step corresponds the
query phase of classic implementation of PRM.

In consideration of the context of the issue of multi-
robot goods transportation, the experiments were conducted
to transport a certain amount of goods by a fleet of mobile
robots in structured environments. The experimental results
demonstrate that, by using our ACS-PRM approach, the total
time needed to complete the transportation mission has been
obviously reduced compared to the Voronoi-based approach.

In our future work, we will expand our experiments
to various irregular environments, not just the structured
environments. Furthermore, the proposed work in this pa-
per can be also used in some other applications such as
exploration mission, automated surveillance, and search and
rescue operations. They are our future consideration as well.
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