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Abstract

In this paper we present a novel approach for multi-robot motion planning by using a probabilistic

roadmap (PRM) based on adaptive cross sampling (ACS). The proposed approach, we call ACS-

PRM, consists of three steps, which are C-space sampling, roadmap building and motion planning.

Firstly, an adequate number of points should be generated in C-space on an occupancy grid map by

using an adaptive cross sampling method. Secondly, a roadmap should be built while the potential

targets and the milestones are extracted by second learning the result of sampling. Finally, the

motion of robots should be planned by querying the constructed roadmap. In contrast to previous

approaches, our ACS-PRM approach is designed to plan separate kinematic paths for multiple

robots to minimize the problem of congestion and collision in an effective way so as to improve

the planning efficiency. Our approach has been implemented and evaluated in simulation. The

experimental results demonstrate the total planning time can be significantly reduced by our ACS-

PRM approach compared with previous approaches.

keywords: multi-agent system, motion planning, multi-robot coordination, sampling-based approach

1 INTRODUCTION

Motion planning is a fundamental problem in robotics. It could be explained as producing a continuous

motion for an agent, that connects a start configuration and a goal configuration, and avoid collision with

any static obstacles or other agents in an environment. The agent and obstacle geometry are generally

described in a 2D or 3D workspace, and the motion could be represented as a path in configuration

space. Motion planning algorithms are widely applied in many fields, such as bioinformatics, robotic

surgery, industrial automation, planetary exploration and intelligent transportation system.

The multi-agent system (MAS) is proposed to deal with some problems that are difficult or impossible

to be solved by a single agent, or to improve the system implementation efficiency in some missions
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Figure 1: Four robots implement a transportation mission cooperatively. The dark blue piece signifies

the goods to be transported. The green area represents the original position of goods, and the yellow

area represents the destination, which corresponds to every room, where the goods should be delivered

to by the mobile robot.

completed by multi-agent rather than a single agent [1], [2]. The biggest challenge for the MAS is

coordination. Without coordination, it will not only lower the system’s efficiency, but also lead to the

failure of the entire system in extreme cases. Figure 1 shows an example of multi-agent coordination,

four robots implement a transportation mission cooperatively, the red robot is delivering a goods, the

green robot is on its way back after completing a transportation task, the yellow robot is moving to load

a goods, and the orange robot is transporting a goods to the destination location. The coordination of

these four robots is obtained by assigning them to different room.

In this paper, we consider the issue of coordinated motion planning for a homogeneous team of

autonomous mobile robots in structured environments such as office building, warehouse and container

terminal. The larger context of the research is to establish a multi-robot goods transportation system

with security, reliability and efficiency. Most of the proposed approaches for multi-robot motion planning

usually have the problem of congestion and collision [9], [11]. Because of the transportation issue, a

desirable result is that robots need more time to replan their individual local path, thus limit the

transportation efficiency, an undesirable result is that the robots are blocked or the goods are lost or

damaged and thus fail the transportation mission. We arrange these cases to the waiting situation

problem [31]. To handle this practical problem, this paper present a novel approach for multi-robot

motion planning by using a probabilistic roadmap planner (PRM) which is based on a manner of

adaptive cross sampling (ACS). This approach called ACS-PRM is decomposed into 3 main steps:

• Firstly, we sample an adequate number of points in C-space on an occupancy grid map by using

the adaptive cross sampling method.

• Secondly, we build the roadmap by connecting the potential targets and the milestones extracted

by second learning the result of sampling.
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• Thirdly, we plan the motion of mobile robots by querying the constructed roadmap based on

multi-robot coordination.

The rest of the paper is organized as follows: Section 2 describes an overview of some related works;

Section 3 discusses the problem of waiting situation; subsequently, Section 4 describes our ACS-PRM

approach; Section 5 presents the experimental results obtained with our approach; and the paper is

concluded in Section 6 at last.

2 RELATED WORK

Švestka and Overmars [3] presented an approach for multiple nonholonomic car-like robots motion

planning in the same static workspace by using probabilistic roadmaps, in which the roadmaps for the

composite robot are derived from roadmaps for the underlying simple robots, and the latter is computed

by a probabilistic single-robot learning method. The authors introduced the notion of super-graphs for

multi-robot path planning, and their implementation covered the construction of the simple roadmap

and the super-graphs. This approach is probabilistically complete because a given problem could be

solved within a finite amount of time.

Moors et al. [4] presented a graph-based algorithm for coordinate multi-robot motion planning in

2D indoor environments. The scenario of this research is multi-robot indoor surveillance. The proposed

approach takes the limitations and uncertainties of sensors into account, and generates the coordinated

motion plan for multiple robots by using A* search algorithm. The authors also introduced a framework

based on realistic probabilistic sensor models and worst case assumptions on the intruder’s motions

in order to compare different approaches and evaluate the coordination performance of the proposed

approach.

Clark [5] presented a multi-robot motion planning strategy based on the probabilistic roadmap within

a dynamic robot network (DRN) coordination platform. The DRN platform is an ad hoc network, in

which a single-query PRM is queried as a centralized planner to plan trajectories for all robots. The

PRM planner is optimized to speed queries for multi-robot motion planning by using new sampling

strategies. At first, a method of sampling PRM milestones is identified to enable fast coverage of

the configuration space. Then, a method of generating PRM milestones is introduced to decrease the

planning time. Finally, a endgame region is defined to improve the likelihood of finding solutions when

goal configurations are highly constrained.

Saha and Isto [6] presented a strategy for decoupled multi-robot motion planning. The proposed

strategy, which aims at improving the reliability of the basic decoupled planning approach, partially

merge the two phases of the basic approach. The first phase is to computing a collision-free path

to avoid the obstacles in the environment and the other robots, the second phase is coordinating the

individual robot motions so that only one robot at a time may enter the area of potential inter-robot

interference. The proposed approach searches for motions for a robot and coordination of motions of
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robots along paths already planned while ignoring the robots whose motions have not been planned

simultaneously. This approach is inherently incomplete.

Besides, there are some other approaches developed with various policies [7], [8], [9], [10], [11].

In our previous work [31], we considered the issue of using separate topological graphs to coordinated

multi-robot motion planning for exploration mission. This work aims at solving the waiting situations

in the process of the robot motion planning. In particular, if all the robots take the same topological

graph derived from grid map, then they might follow the same exploration path partly or wholly,

and this contributes to the problem of waiting situation. We proposed an approach based on sampling

environment map iteratively to support the coordinated multi-robot exploration. This research is related

to the approach proposed in this paper, even if the methodology is substantially different. Compared

to our previous approach, we obtain a significantly reduced mapping time by this approach.

Our recent research focuses on the issue of multi-robot goods transportation. The objective is to

complete the transportation mission with high efficiency and low cost. We proposed a heuristic method

based on empirical model, which aim at planning the transportation task for each individual robot

by estimating the production rate of goods based on multi-robot coordination, so as to improve the

system performance. In the module of robot motion planning, we used the wavefront propagation

algorithm [27] to global path planning and the nearness diagram algorithm [29] to goal seeking and

local obstacle avoidance. Nevertheless, in the experiment, one important reason which influences the

system performance is still the waiting situation. Furthermore, if the speed of robot is too fast, then

the goods would be damaged or lost in transit because of the collisions with obstacles or others robots.

We limited the speed of robot to handle this problem, whereas this strategy limited the efficiency of the

whole transportation system as well. Therefore, in this paper we discuss the substance of the problem

and propose a novel approach to address such problems in this paper.

3 WAITING SITUATION PROBLEM

Multi-agent environments can be cooperative or competitive [12]. To every agent in a team, the other

agents can be considered as teammates (cooperative) or movable obstacles (competitive). One of the

most important reasons which limit the efficiency of the multi-robot motion planning is the waiting

situation such as the congestion and collision between robots. The core of the problem can be considered

as the waypoint mutex. Figure 2 depicts a typical waypoint mutex. Two robots move to the same

waypoint simultaneously: the red robot move from the top left towards the right and the blue robot

move from the right towards the bottom left. Because the waypoint can be assigned only to one robot

at a time, then the mutex of the waypoint happens.

Generally, there are two ways to deal with the waypoint mutex as shown in Figure 3. One (Figure

3(a)) is to let robots pass the waypoint one by one [3]. The weakness of this strategy is that one robot

must wait for another robot to pass. Another way (Figure 3(b)) is to replan the local path in real time

for each robot by using some goal seeking obstacle avoidance algorithms such as Vector Field Histogram
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Figure 2: A typical waypoint mutex. The black dot represents the waypoint, the gray segment represents

the path, and the red and blue arrow represent the direction of the motion of the corresponding color

robots respectively.

(a) (b)

Figure 3: Two ways to deal with the waypoint mutex. The colored lines represent the motion plan for

the corresponding color robots respectively. (a) The two robots pass the waypoint in order, the blue

robot pass first and the red robot pass later. (b) The two robots take each other as an obstacle and

replan its trajectories in real time.

(VFH+) [28] or Nearness Diagram (ND) Navigation [29]. The weakness of this strategy is that robots

need some time to replan their new trajectory. Consequently, the two ways both extend the time of the

motion planning and limit the system efficiency.

If we can plan separate kinematic paths for multiple robots, then the waiting situation caused by

waypoint mutex will be significantly reduced. In addition, the problem of multi-robot task allocation

(MRTA) [14] should also be considered. Our focus in this paper is on the multi-robot motion planning

in structured environments. For instance, an office building could be simply divided into three clusters:

corridor, doorway and room. The doorway usually connects the corridor with the room, it is a suitable

object for task allocation. Therefore, on the one hand, the problem of waiting situation (especially at

the corridors) caused by one path for all robots should be solved. On the other hand, a simple and

effective way to coordinate multi-robot motion is to assign different robots to different rooms reachable

from the corridors. Besides, more complex environments may require more sophisticated methods such

as hand labeled training data [15], [16] or more complex reasoning [17], [18].

Because of the complexity of multi-agent systems (MAS) [7], [13], the target of this paper is not to

completely avoid the problem of waiting situation (waypoint mutex), but to minimize the probability

of appearance of the waiting situation by using our ACS-PRM approach. Therefore, the coincidence

of the waypoint in the plan of two or more robots should be reduced so as to improve the multi-robot

motion planning efficiency.
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4 ACS-PRM: ADAPTIVE CROSS SAMPLING PROBABILIS-

TIC ROADMAP

There are usually two ways to handle the issue of robot motion planning based on the grid representation

of the environment in low dimensional space. One is to use the incremental heuristic search algorithm

such as A* [19] or D* [20]. Another is to use the topological map [21] generated on top of the grid-based

map such as Voronoi diagram and straight skeleton. Nevertheless, the number of grids increases rapidly

when the size of the environment expends, which make these methods inappropriate for complex and

extensive environments. Moreover, these methods are hard to deal with the multi-robot motion planning

and always increase the computational load as well.

Sampling-based approaches have been proposed to improve the computational efficiency for robot

motion planning. The main idea is to avoid the explicit construction of the obstacle region in the C-space

(Cobs). Unlike the incremental heuristic search and the topological map methods, the sampling-based

approaches work well for complex environments and high-dimensional configuration spaces, and they are

generally easier to implement. The probabilistic roadmap planner is one of the typical sampling-based

approaches. The original PRM technique is introduced by Kavraki et al. [22], which has been shown

to perform well in a variety of situations. On the basis of this method, different extensions have been

proposed [23], [24], [25], [30]. The approach described in this paper is also an extension of PRM, which

is aim at performing multi-robot motion planning efficiently.

To deal with the problem of waiting situation in multi-robot motion planning as mentioned in the

last section by using the PRM approach, there are substantially two options:

• In the manner of single-query: when two or more robots need to pass the same waypoint simulta-

neously, each robot resamples the adjacent region and take the motion of the others into account,

then generate a novel local roadmap for local replanning.

• In the manner of multi-query: construct a rich roadmap at the beginning to allow robots to plan

a different trajectory from others later.

4.1 C-space Sampling

The ACS-PRM approach presented in this paper is a multi-query approach. The first step is C-space

sampling, in which an adequate number of points should be generated to represent the free space of the

environment. The main idea of this step is to let a random point p retracts to a position P (q) with the

distance d to the obstacle Cobs along horizontal and vertical directions (cross direction).

For autonomous nonholonomic mobile robots, in two dimensions, there are three representational

degrees of freedom (DOFs) which are one rotational DOF and two translational DOFs (along or across),

but only two controllable DOFs which only move by a forward motion and a steering angle, the configu-

ration space C is the special Euclidean group SE(2) = R2×SO(2) where SO(2) is the special orthogonal

group of 2D rotations. To avoid the collision caused by the point retracts too close to the obstacle, we
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(a) (b) (c) (d)

Figure 4: Generation of the roadmap based on ACS-PRM. (a) The original gridmap, (b) adaptive cross

C-space sampling, (c) the potential targets (doorways) extracted, and (d) the milestones extracted.

set the distance d as the sum of the positive number w and the radius r of the minimum circle to cover

the robot with centering at the rotation center of robot:

d = r + w, (w > 0) (1)

The set of w is to deal with the negative influence of sensor error and it should be adjusted in practical

applications.

Cobs represents the set of the obstacle, ∀q ∈ Cobs define a direction rq, then determine a symmetry

point S(q) which is an intersection of the open-ray with end q direction rq and another Cobs:

S(q) = {q + t−→rq |t > 0} ∩ Cobs (2)

where, if {q + t−→rq |t > 0} ∩ Cobs = {q}, then define S(q) = ∞. Let dist(x, y) represent the distance

between point x and point y, then the retraction function can be described as:

P (q) =

q + d−→rq if dist(q, S(q)) ≥ 2d

q+S(q)
2 otherwise

(3)

where P (q) is the position for the point p to retract. In this way, the random points are adapted around

to the obstacle (see 4(b)), then:

ACS-PRM = {P (q)}|q ∈ Cobs} (4)

The implementation of this step is summarized in Algorithm 1. Where the time complexity is O(n)

and the space complexity is O(1). This step corresponds the learning phase of classic implementation

of PRM.

4.2 Roadmap Building

The second step is roadmap building, in which the potential targets and the milestones should be

extracted and connected to the roadmap. In the previous step C-space sampling, if there are sufficient
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Algorithm 1 Adaptive cross sampling

Require: N , the adequate number of points to generate.

Ensure: N points in Cfree by adaptive cross sampling.

1: repeat

2: Generate a uniformly random point p in C-space.

3: if p is free then

4: for horizontal and vertical directions do

5: find q ∈ Cobs the nearest distance from p.

6: if dist(p, q) ≥ d then

7: p retracts to q + d−→rq .

8: else

9: find {S(q)} = −→qp ∩ Cobs.

10: p retracts to q+S(q)
2 .

11: end if

12: end for

13: end if

14: until N points have been generated.

points generated, then the points will gather into segments. The main idea of this step is second learning

the graph resulted from the previous step while identifying three types of point as follow:

• In the previous step, if dist(p, q) < d, then p will retract to q+S(q)
2 and be labeled as medial

axis. Therefore, we find those medial axis segments with length l a small fixed value (in our

implementation, we took the thickness of obstacle), and the midpoints of segment are marked as

potential target. Figure 4(c) shows the extracted potential targets which are precisely doorways of

the structured environment.

• For those segments without containing the potential target, we extract both of the endpoints and

mark them as milestone (see Figure 4(d)).

• The points of intersection between two segments are also extracted and marked as milestone (see

Figure 4(d)). These milestones have not been used in our experiments, but they will be required

for the exploration problem.

This step also corresponds the learning phase of classic implementation of PRM. Figure 4 illustrates

the process of generating a roadmap for an example occupancy grid map by using our approach with

200,000 random samples.
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Figure 5: A typical prototype of Pioneer 2-DX robot with gripper

4.3 Motion Planning

The third step is motion planning, in which each individual robot’s kinematic path should be planned

by querying the constructed roadmap. The main idea of this step includes the following three points:

• The potential targets {ti} are considered as the goal nodes for path planning and the objects for

task allocation as well. Then the individual {ri} robots are assigned to different potential target:

{ri} 7→ {ti}.

• To maximize the difference between the paths, we assign the potential target which is the closest

from the robot but further from the previous assigned target to the current individual robot:

t = further(closest({ti}, r), ti−1).

• Similar to the classic PRM, we use the fast local planning method (the straight line planner) for

the global path planning, except that we choose the path with the minimal number of milestones

for the robots invariably.

This step corresponds the query phase of classic implementation of PRM.

5 EXPERIMENTS

To evaluate our ACS-PRM approach, we conducted a series of simulation experiments with the well-

known 2D multi-robot simulator Stage [26]. The experiment is to transport a certain amount of goods

from one origination to divers destinations by a fleet of mobile robots. The simulated robot is the

Pioneer 2-DX robot equipped with a laser range finder providing 361 samples with 180 degrees field of

view and a maximum range of 8 meters. Each robot can localize itself based on an abstract localization

device which models the implementation of GPS or SLAM. To transport goods, the robots are equipped

with a gripper that enable them to sense, pick up and put down the goods, and the carrying capacity is

limited to one unit per robot. Figure 5 shows a typical prototype of Pioneer 2-DX robot with gripper.

We used a different number of robots to conduct several experiments in various environments. Two

maps (Figure 6) were used in our simulation which are both structured environment. For each map, the

green area signifies the original position of goods, and the yellow area signifies the destinations which

are always placed in the rooms. For instance, map A has 8 rooms thus 8 destinations, map B has 7

rooms thus 7 destinations. The transportation team size is varied from 2 to 8 robots. On each team size,
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(a) map A (b) map B

Figure 6: Two environment maps used in our simulation.

10 experimental runs are performed for a transportation mission of 50 goods. The mission objective is

to transport the goods to every room equally.

The ratio between real-world time and simulation time is about 1:1. We also compared our approach

to the commonly used Voronoi-based approach [21] in which a topological map is built on top of the grid

map by using the Voronoi diagram and the critical points are extracted like milestones for mobile robot

motion planning. All experiments reported in this paper were carried out on a system with an Intel

Core 2 Duo E8400 3.00GHz processor, an Intel Q43 Express chipset and two DDR2 800MHz 1024MB

dual channel memory.

In the experiments, we assumed that there exists a central server which is able to communicate with

all mobile robots and assign the transportation tasks to each individual robot. The transportation task

is to transport the goods from the original position to the destination. We also assumed that all the

mobile robots share a common grid map and every one has full information about all others so as to

implement path planning and obstacle avoidance in real time coordinately. The ACS-PRM is designed

to (but not limited to) plan the kinematic path for nonholonomic mobile robots, and in order to get an

objective evaluation of the proposed approach, the drive mode of mobile robot is set to differential-steer,

furthermore, the strategy of one pass after the other is applied to deal with the possible waypoint mutex

problem.

The results of our experiments are given in Figure 7. We measured the transportation time gained

by our approach and compared to the Voronoi-based approach. In each plot, the abscissa denotes the

team size of the mobile robots, the ordinate denotes the percentage of the transportation time in the

total transportation time, and the error bar indicates the confidence interval of each corresponding gain

of robot team size with the 0.95 confidence level. Figure 7 shows that, a transportation time saving

of 6.7% to 12.2% in map A and 6.1% to 12.0% in map B is obtainable under our ACS-PRM approach

compared to the Voronoi-based approach. These results proved that our technique could significantly

improve the system planning efficiency.

Moreover, we mentioned earlier that our ACS-PRM approach is more effective than our previous

approach because the ACS-PRM spends much less time for the learning phase. The experiments shows

that, with the new approach, the mapping time are respectively 0.321 seconds and 0.329 seconds for
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Figure 7: Transportation time gained by using our ACS-PRM approach compared with the Voronoi-

based approach.

Table 1: Statistics of The Number of Occurrences of The Waypoint Mutex

(a) map A

#robots 2 3 4 5 6 7 8

ACS-PRM 1.6 3.1 6.4 7.5 10.0 11.1 16.2

Voronoi-based 15.3 18.7 26.0 26.8 19.9 23.7 27.2

(b) map B

#robots 2 3 4 5 6 7 8

ACS-PRM 3.8 4.3 7.1 14.9 12.8 10.3 16.7

Voronoi-based 17.1 19.2 19.0 26.5 27.4 27.0 29.9

map A and map B with 200,000 random samples, which are averages of the 10 runs.

We also counted the average number of the occurrences of waypoint mutex in each map as shown

in Table 1. This table shows that the problem of waiting situation is significantly reduced by using our

ACS-PRM approach, because our approach is able to plan separate paths for robots, especially in the

corridor, whereas we have only one path for all robots with the Voronoi-based approach.

In fact, the technique proposed in this paper also works well with irregular environments (see Figure

8), just need more complex algorithm to extract the milestones.

6 CONCLUSIONS

In this paper, we presented a novel approach for coordinated motion planning of multiple robots by

using the probabilistic roadmap planner based on a manner of adaptive cross sampling, which we called

ACS-PRM. The basic thought of the proposed approach is to build separate kinematic paths for multiple

robots to minimize the problem of waiting situation such as collision and congestion caused by waypoint

mutex in an effective way, thus to improve the efficiency of automated planning and scheduling.
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(a) (b)

Figure 8: Irregular environment experiment based on ACS-PRM. (a) The original gridmap, (b) adaptive

cross C-space sampling.

The ACS-PRM mainly consists of three steps: C-space sampling, roadmap building and motion

planning. In the first step, an adequate number of points are generated to represent the free space

of the environment. In the second step, the potential targets and the milestones are extracted and

connected to the roadmap by second learning the graph resulted from the previous step. In the third

step, the robot’s motion planning is done by querying the constructed roadmap. The first two steps

correspond the learning phase of classic implementation of PRM, and the last steps corresponds the

query phase of classic implementation of PRM.

In consideration of the context about the issue of multi-robot goods transportation, the experiments

were conducted to transport a certain amount of goods by a fleet of mobile robots in structured en-

vironments. The experimental results demonstrate that, by using our ACS-PRM approach, the total

time needed to complete the transportation mission has been significantly reduced compared to the

Voronoi-based approach.

In our future work, we will expand our approach to the irregular environments, not just the structured

environments. Furthermore, the proposed work in this paper can be also used in some other applications

such as exploration mission, automated surveillance, and search and rescue operations. They are our

future consideration as well.
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