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Flexible algebraic technique for multi-view reconstruction:1

incremental learning in reflective tomography2
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3
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Abstract. Reflective tomography reconstructs a scene from calibrated reflective images, using algorithms from X-ray5

tomography. Many works in the subject are based on analytical formulas such as the filtered backprojection. However6

these formulas require constraints on the acquisition geometry, such as a circular rotation. We want to avoid such7

constraints: they may be seriously violated in some practical cases. To tackle this problem, we tune the Algebraic8

Reconstruction Technique from X-ray tomography. More precisely we look for a model of the scene such that the X-9

ray projections of the model approximate recorded calibrated reflective images. The model is computed by an iterative10

algebraic method: a Kaczmarz algorithm. In this way we perform incremental supervised learning in optics, where11

the hypothesis space emulates reflective tomography. We get a flexible method for multiple-view reconstruction based12

on linear algebra. It accepts a general calibrated acquisition such as: several cameras arbitrarily located/oriented, with13

visible-near infrared wavelengths. It could reconstruct a scene using several devices simultaneously, such as air-ground14

cameras combined with ground-ground cameras. The relevance of the approach is numerically shown, from calibrated15

CCD images of the Middlebury datasets. In particular we get reconstructions from 16 views.16

Keywords: three-dimensional imaging, optical computational imaging, machine learning in optics, reflective tomog-17

raphy, algebraic reconstruction technique.18
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1 Introduction20

1.1 Reflective tomography21

Reflective tomography emerged at the end of the 80’s.1, 2 The initial method computes a to-22

mographic reconstruction from reflective projections obtained with laser radars, such as range-23

resolved data. The reconstruction solver operates an X-ray inversion, despite the wavelengths are24

much larger than the X-ray wavelengths. This heuristic approach takes benefit from geometric25

similarities between X-ray projections and reflective projections: it is linked with geometric to-26

mography.3 The method is successful for several kinds of reflective data and has been introduced in27

various frameworks. The same principle has been proposed in object modeling from photographs.428

The method has been tested for imaging satellites.5, 6 More recently, it has been shown7–9 that re-29

flective tomography achieves three-dimensional optical imaging from bi-dimensional images of30
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backscattered intensities in the visible or near-infrared band. In particular, the method overcomes31

occlusion issues and enables visualization of concealed objects.10
32

1.2 Need for flexibility33

Most of the works in reflective tomography invert the Radon transform, or the X-ray transform, by34

the means of analytical formulas such as the filtered backprojection in 2D, or the Feldkamp-Davis-35

Kress (FDK) algorithm for the cone-beam scan in 3D. Nevertheless, we can imagine practical cases36

where these analytical formulas cannot be directly applied.37

For example, the ideal acquisition for the FDK algorithm would require: a camera with fixed38

intrinsic parameters, that moves on a circular trajectory with a constant angular step, and that39

points towards the center of the trajectory. These constraints may be violated in practice. Hence40

correcting algorithms have been designed to relax the constraints:7 they re-calibrate the images.41

These methods need less stringent constraints, such as a trajectory contained in a plane.42

But more generally the recorded images may come from several acquisition devices, located43

at arbitrarily positions and oriented along arbitrarily directions. We would like a flexible imag-44

ing method based on reflective tomography that directly tolerates such a general scenario. This45

would overcome some geometric limitations11 of usual reflective tomography and would extend its46

possibilities.47

1.3 Proposed strategy48

Two classes of methods can be distinguished in X-ray tomography: the analytical methods (as49

above), and the algebraic methods. The algebraic methods consider the problem of X-ray tomog-50

raphy as a linear system, or as an optimization problem. Then this problem is solved by an iterative51
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method. The most widely spread one is the Kaczmarz algorithm (and its variants), known in the52

field of tomography as the Algebraic Reconstruction Technique (ART).12, 13 This method is very53

flexible, since it is based on linear algebra considerations, and not on special formulas. In reflective54

tomography, some algebraic methods have already been tested in 2D: the gradient method and the55

conjugate gradient method.14
56

In this paper we introduce ART in 3D reflective tomography, in order to get a flexible algebraic57

technique for 3D multiple-view reconstruction. We derive a frame-driven Kaczmarz method. Ba-58

sically the method tries to model the recorded images (the frames) as X-ray projections of a 3D59

model of the scene. The iterative method is a loop over the frames. Each iteration updates the 3D60

model, using the constraint that the X-ray transform of the model should reproduce the selected61

frame. Using the machine learning terminology,15 the method realizes online learning16 in optics.62

Concerning the validation of the approach, we test numerically the method on calibrated images63

captured with a CCD camera, extracted from the famous datasets of Middlebury.17, 18 We show64

several scenarios, including cases where the images are sampled on a hemisphere, and cases where65

the number of available images is very limited. We estimate the quality of the computed models66

by cross-validation.67

1.4 Organization68

The paper is organized as follows. First, we describe X-ray projections in the pinhole geometry of69

an ideal visible-near infrared camera. Then, we propose a Kaczmarz algorithm for the multi-view70

reconstruction in the framework of reflective tomography; we discuss the set of parameters of the71

method and we estimate the computational costs. Finally, we show numerically the relevance of72

the method on various examples from the Middlebury datasets.73
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Fig 1 Perspective projection through an ideal camera.

2 Perspective projection74

2.1 Geometric model of image formation75

In the visible-near infrared domain (VIS-NIR), an ideal camera is a pinhole,19, 20 modeled as Fig-76

ure 1. In a world reference frame, the camera is located at the optical center x0 ∈ R3, while the77

orientation of the camera is represented by an orthogonal matrix Q = (Q1, Q2, Q3) ∈ R3×3 such78

that: the unit vectorQ1 is the horizontal direction in the image plane, the unit vectorQ2 is orthogo-79

nal to Q1 and is the vertical direction in the image plane, while the vector Q3 = Q1×Q2 is aligned80

with the optical axis, and points towards the scene. From a geometric point of view, the pinhole81

realizes an ideal perspective projection through the optical center x0: a point x ∈ R3 is projected82

onto a point x̂ that belongs to the image plane and such that x, x̂, and x0 are aligned.83

We assume that in the image plane, a pixel is a parallelogram with a horizontal side (parallel84

to Q1) and we introduce an image frame based on the horizontal pixel coordinate of the image85

(1 ≤ i1 ≤ m1) and the vertical pixel coordinate (1 ≤ i2 ≤ m2); see Figure 2. Then it is known19
86
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Q̃1
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Fig 2 Image plane of Figure 1. The sides (Q̃1, Q̃2) of a pixel, combined with an origin such as the top left corner
define pixel coordinates. In pixel coordinates, the optical axis is projected onto (o1, o2); and x̂ has coordinates (i1, i2).
The parameters of the calibration matrix K are such that Q1 = s1Q̃1 and Q2 = s12Q̃1 + s2Q̃2.

that the coordinates (i1, i2) of x̂ satisfy a relationship of the form:87

λ


i1

i2

1

 = K[Q∗,−Q∗x0]



x1

x2

x3

1


, with λ ≥ 0. (1)

Here, ·∗ denotes the transpose. The triplet (x1, x2, x3) denotes the coordinates of x in the world88

frame. The parameter λ = Q∗3(x − x0) represents the depth of x in the camera frame (x0, Q).89

The extrinsic matrix of the camera is [Q∗,−Q∗x0]; it depends only on the position x0 and on the90

orientation Q of the camera. The upper triangular matrix91

K =


fs1 fs12 o1

0 fs2 o2

0 0 1

 =


s1 s12 o1

0 s2 o2

0 0 1




f 0 0

0 f 0

0 0 1

 ∈ R3×3 (2)
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is the intrinsic calibration matrix of the camera. The focal length f > 0 is the distance between the92

optical center x0 and the image plane x0+fQ3+span(Q1, Q2). The optical axis {x0+λQ3, λ ≥ 0}93

is projected onto the pixel whose coordinates are (o1, o2) (in pixel coordinates). The parameters94

s1, s2, s12 encode the shape of a pixel. For square pixels, s12 = 0, and s1 = s2 is the inverse of a95

side length. More generally the sides of a pixel are the vectors Q̃1 = 1
s1
Q1 and Q̃2 = 1

s2
Q2− s12

s1s2
Q1.96

So the size of unit length in horizontal, respectively vertical, pixels is s1, resp. s2, and s12 represents97

the skew of a pixel. The intrinsic matrix K depends on the focal length and on the shape of a pixel98

on the receiver array: it depends only the camera, and not on the position, nor on the orientation.99

In a word, an ideal camera is associated with a quadruplet C = (x0, Q,K,m), where x0 is100

the position, Q is the orientation, K is the calibration matrix, and m = (m1,m2) is the size101

of the image. From a geometric point of view, the projection is governed by the relation (1).102

The main assumption of this paper is that we consider only such cameras, and whose parameters103

(x0, Q,K,m) are known, or at least pre-computed. The method that we will derive does not aim104

at computing the parameters (x0, Q,K,m). In particular, the computation (or measurement) of the105

camera parameters is a preliminary step to our method; we refer to methods of vision19 for that106

step.107

2.2 X-ray transform108

The X-ray transform X integrates along lines.12 Let φ : R3 → R be a scalar function defined on109

the space R3. Let L(x0, u) = {x0 +λu, λ ≥ 0} be the ray of origin x0 ∈ R3 and whose direction is110

the unit vector u ∈ S2. The X-ray transform of φ, along the ray L(x0, u), is the integral (if defined)111

112

X [φ](x0, u) =

∫ ∞
0

φ(x0 + λu)dλ. (3)
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The unit of X [φ](x0, u) is the unit of φ multiplied by a length (λ is a length). In X-ray tomography,113

the Beer-Lambert law establishes that this transform models the attenuation of X-rays along lines:114

if an X-ray emanates from x0 in the direction u, with intensity I0, then at infinity, on the ray115

L(x0, u), the intensity I is modeled by ln I0
I

= X [φ](x0, u). In that case, φ is an inverse length116

that represents a linear attenuation coefficient of the crossed materials, while the global attenuation117

X [φ](x0, u) is dimensionless.118

We recall a sufficient theoretical geometric condition12 under which the X-ray transform (3)119

can be inverted. Assuming that x0 scans a curve γ, if the Tuy’s condition is satisfied: the curve γ120

intersects each plane hitting supp φ transversely, then the function φ can be reconstructed from the121

X [φ](x0, u), x0 ∈ γ, u ∈ S2.122

In practice the function φ belongs to a finite dimensional vector space for computational pur-123

poses:13 φ =
∑

1≤k≤N ϕkψk, where {ψk}1≤k≤N is a basis of the functional space and ϕ =124

(ϕk)1≤k≤N ∈ RN . The coefficients ϕk of the linear combination have the same unit than φ and125

the basis functions ψk are dimensionless. In this paper, we consider functions φ that are defined126

on a finite grid of voxels. Roughly speaking, the function φ is constant on small cubes (vox-127

els). The number of voxels is N , ϕk is the value of φ inside the voxel numbered k, while the128

function ψk represents the geometry of this voxel. More precisely, we discretize a parallelepiped129

[a1, b1]× [a2, b2]× [a3, b3] on a uniform grid of N = n1 × n2 × n3 voxels of side h:130

{(x1, x2, x3) : (k1−1)h ≤ x1−a1 ≤ k1h, (k2−1)h ≤ x2−a2 ≤ k2h, (k3−1)h ≤ x3−a3 ≤ k3h};

(4)

1 ≤ k1 ≤ n1, 1 ≤ k2 ≤ n2 and 1 ≤ k3 ≤ n3 are the voxel coordinates. The basis function ψk is131

the characteristic function of the voxel k ≡ (k1, k2, k3): it takes the value 1 inside the cube (4) and132
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on the three “upper” faces xi = ai + kih; its value is 0 otherwise.133

Using the basis functions, the X-ray evaluation (3) becomes:134

X [φ](x0, u) =
N∑
k=1

ϕkX [ψk](x0, u); (5)

here X [ψk](x0, u) is the intersection length of the ray L(x0, u) with the voxel numbered k. Only135

a few voxels really contribute: most of the intersections are void. The projection X [φ](x0, u) is136

computed by an efficient scheme.21, 22 The contributing voxels are identified by ray tracing: the137

volume is crossed along the ray, from voxel to voxel. For each voxel encountered along the ray, its138

contribution ϕkX [ψk](x0, u) is computed and added to the sum. At the end, we get (5) in O(‖n‖)139

operations, where the number of diagonal voxels ‖n‖ =
√
n2
1 + n2

2 + n2
3 is an upper bound over140

the number of crossed voxels.141

We define now an X-ray image of φ for the same cone-beam geometry than the pinhole ge-142

ometry. We set the perspective rays by the means of a quadruplet C = (x0, Q,K,m) as before.143

Each pixel (i1, i2) of the X-ray image has the intensity X [φ](x0, u), where the ray L(x0, u) passes144

through (i1, i2) and x0:145

L(x0, u) = {(x1, x2, x3) : (1), λ ≥ 0}, with u =
ũ

‖ũ‖
, ũ = QK−1


i1

i2

1

 . (6)

We write the X-ray image of φ, for the geometry C = (x0, Q,K,m), as a matrix product. We146

number the pixel coordinates and the corresponding directions u by 1 ≤ i ≤ M = m1 ·m2. Then147
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the X-ray image of φ, associated with C, is given by the vector:148

XCϕ, with XC = [X [ψk](x0, ui)]1≤i≤M
1≤k≤N

, ϕ = [ϕk]1≤k≤N . (7)

The vector ϕ ∈ RN contains the coordinates of φ in the basis {ψk}. The matrix XC ∈ RM×N
149

(unit: length) contains the X-ray transforms of the basis functions ψk, along the rays defined by150

C = (x0, Q,K,m); as soon as the set of basis functions {ψk}1≤k≤N is fixed, this matrix XC151

depends only on C. The vector XCϕ ∈ RM of (7) represents in a convenient way the X-ray image152

of φ for the configuration C. The matrix XC is sparse but huge; so in practice XC is not directly153

computed: XCϕ is rather computed by ray tracing, in O(‖n‖M) operations.154

We can now define the backprojection associated with the projection XC : it is the transpose155

X∗C . The backprojection of an image [gi]1≤i≤M is also computed by ray-tracing in O(‖n‖M)156

operations, due to the expression:157

X∗C [gi]1≤i≤M =

[
M∑
i=1

giX [ψk](x0, ui)

]
1≤k≤N

. (8)

2.3 Maximum Intensity Projection158

We consider a function defined on voxels as before: φ =
∑

k ϕkψk. We have presented so far159

the projection of this function according to the X-ray transform. We recall now the principle of160

the Maximum Intensity Projection (MIP): it is a volume rendering method that we will use along161

perspective rays.162

The geometry of a MIP camera is defined by C = (x0, Q,K,m) as before. In the image163

plane, each pixel (i1, i2) records the maximum of the function φ, along the ray defined by (6).164
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Furthermore the rendering can be adjusted by thresholding; in this paper, we will use 0 as a lower165

threshold. Using the same notations 1 ≤ i ≤M and ui as in (7), the MIP image of φ =
∑

k ϕkψk,166

associated with C is:167

ΠCϕ =

[
max

(
0, max

L(x0,ui)
φ

)]
1≤i≤M

. (9)

The coefficients of ΠCϕ define pixel values; these values have the same unit than φ. They can be168

efficiently computed using ray tracing as for the X-ray transform. The main difference is that the169

sum is replaced by the maximum. The cost is again O(M‖n‖) operations.170

3 Flexible reflective tomography171

3.1 Multiple view geometry172

We capture several images of a fixed scene, using VIS-NIR cameras. Several scenarios are possi-173

ble: the same camera is used for several locations, several orientations, several focal lengths, with174

a motion which is continuous or not. And/or several cameras are employed. For multi-channel175

images, one can consider for example that each channel provides one image.176

The collection of the recorded images is denoted by (gs)1≤s≤S , where S is the number of177

images, and gs is the image number s. We assume that for all 1 ≤ s ≤ S, the image gs is178

modeled by an ideal camera associated with a quadruplet Cs = (x0s, Qs, Ks,ms) as described179

in the previous section: x0s is the location of the optical center, Qs is the orientation, Ks is the180

calibration matrix, and ms = (ms,1,ms,2) represents the size. As for the X-ray images, we assume181

that gs is a column vector in RMs , based on a numbering of the pixels 1 ≤ i ≤ Ms = ms,1 ·ms,2.182

We denote by M =
∑S

s=1Ms the total number of records (i.e. the number of rays of projection).183

We assume that the parameters Cs are known or pre-computed by another method. Also this model184
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assumes that the eventual distortions have already been corrected.185

A classical problem in three-dimensional vision: how can we reconstruct the geometry of the186

original scene from the recorded calibrated views (gs, Cs)1≤s≤S?187

3.2 Reflective tomography188

Reflective tomography gives a heuristic answer to this question. If the images gs are collected in189

the X-ray spectrum, then we look for an attenuation φ =
∑

1≤k≤N ϕkψk such that190

XCsϕ = gs, 1 ≤ s ≤ S. (10)

Reflective tomography proposes to solve the same system of linear equations (10), despite the191

images gs are measured using VIS-NIR cameras. Concerning the units, the matrices XCs contain192

lengths. In the case of X-ray tomography, the vectors gs contains logarithms of intensities ratios193

and are dimensionless, and the attenuation coefficients of ϕ are inverse lengths. For reflective194

tomography, the situation is different. The unit of g is indeed the unit of the recorded images gs:195

assuming that the records are irradiances, g contains powers per unit area (W.m−2). So the sought196

function φ =
∑

1≤k≤N ϕkψk and its coefficients ϕk represent powers per unit volume (irradiance197

divided by length).198

For special occurrences of the parameters Cs, the system (10) is often solved using analytical199

formula based on X-ray inversion, such as the filtered backprojection or the Feldkamp-Davis-200

Kress algorithm. In this paper we focus rather on algebraic methods because they enable general201

configurations for the Cs. We compute a voxel model φ =
∑

k ϕkψk of the scene by ART. Then202

we synthesize4, 23 new images of the scene based on the MIP (9): this volume rendering method203
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is efficient in reflective tomography, because the reconstruction φ is essentially supported by the204

surfaces of the scene (up to artifacts).205

3.3 Algebraic reconstruction technique206

The equations (10) define blocks of equations for the linear system:207

Xϕ = g, with X = [XCs ]1≤s≤S , g = [gs]1≤s≤S . (11)

The matrix X ∈ RM×N contains the X-ray projections of the basis functions along every ray208

of projection. The right hand-side g ∈ RM is a column vector containing all the records. The209

matrix X may be rank deficient and the right-hand side g may be outside the range of X . So we210

should consider instead a least squares solution such as the Moore-Penrose generalized inverse:211

the element ϕ ∈ RN with the smallest norm in the set of minimizers of ‖Xϕ− g‖. It is the unique212

solution to the normal equationX∗Xϕ = X∗g in the range ofX∗. But we do not solve directly this213

huge problem ofN unknowns andM equations. We propose instead an iterative algebraic method:214

a Kaczmarz algorithm, inspired by the Algebraic Reconstruction Technique (ART) of tomography.215

We propose a frame-driven version of ART. The principle: looping over the frames in order216

to incorporate into the reconstruction ϕ the linear constraints (10), frame by frame. We start with217

ϕ(0) = 0 (or another initial guess if available). Let us assume that the k-th iterate ϕ(k) has been218

computed. We select the frame gsk , were the number sk satisfies 1 ≤ sk ≤ S. The next iterate219

ϕ(k+1) is defined as follows:220

ϕ(k+1) = ϕ(k) + ωX∗Csk

(
XCsk

X∗Csk
+ σI

)−1
(gsk −XCsk

ϕ(k)), (12)
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with 0 < ω < 2 (dimensionless), and σ > 0 (unit: area). We comment this definition below.221

Concerning the numbers sk, we propose to consider each frame once per cycle of S iterations:222

{sk}j≤k≤j+S−1 = {1, . . . , S}. Then after κ cycles, i.e. κS iterations, the constraint of each frame223

has been used κ times. Other strategies could be possible to weight the contribution of the images.224

For the recurrence relation (12), let us consider the case ω = 1. If the matrix XCsk
X∗Csk

∈225

RMs×Ms was invertible and σ = 0, then12 the relation (12) would define ϕ(k+1) as the minimizer226

of
∥∥ϕ− ϕ(k)

∥∥ with the constraint XCsk
ϕ = gsk ; in other words this would model the selected227

image gsk as an X-ray image, where the power per unit volume ϕ would be chosen as close228

as possible to the current estimate ϕ(k). But XCsk
X∗Csk

may be rank deficient, so a Tikhonov229

regularization24 is performed with parameter σ > 0: (12) defines ϕ(k+1) as the minimizer of230

‖XCkϕ− gsk‖
2 + σ

∥∥ϕ− ϕ(k)
∥∥2, without constraint. Roughly speaking, this minimization tries231

to find ϕ such that XCkϕ ≈ gsk and ϕ ≈ ϕ(k); the parameter σ controls the relative importance of232

these two conditions. More generally, with a relaxation parameter 0 < ω < 2, the relation (12)233

combines the Tikhonov solution with the estimate ϕ(k), with weights ω and 1− ω.234

The vector
(
XCsk

X∗Csk
+ σI

)−1
(gsk −XCsk

ϕ(k)) is computed by solving a linear system:235

(
XCsk

X∗Csk
+ σI

)
v = gsk −XCsk

ϕ(k). (13)

The matrix of the regularized system (13) is symmetric positive definite due do σ > 0; this enables236

a safe inversion. We solve this system using another iterative method: the conjugate gradient237

algorithm.25 One iteration of this method costs about one evaluation of the matrix against a vector;238
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so during the procedure, we take advantage of the relation239

(XCsk
X∗Csk

+ σI)v = XCsk
(X∗Csk

v) + σv. (14)

It enables efficient computations by ray-tracing; the matrices themselves are never computed.240

To finish with, after κ cycles of iterations, i.e. κ scans of the full dataset, a root mean square241

error RMSE (power per unit area, as the record g) can be computed if desired:242

η(κ) =

√√√√ 1

M

S∑
s=1

‖XCsϕ
(κS) − gs‖2. (15)

The RMSE provides some indicator about the convergence of the process; we can monitor the243

decay rate τ (κ+1) = η(κ)−η(κ+1)

η(κ)
and decide that convergence has been reached as soon as the decay244

rate is below a fixed threshold 0 < τ < 1. Furthermore we can normalize the RMSE, by compar-245

ison with the standard deviation σ̂g of the dataset g: we get in this way the root relative squared246

error RRSE (dimensionless)247

ρ(κ) =
η(κ)

σ̂g
. (16)

248

3.4 Online learning249

We construe the ART (12) as machine learning15 in optics. The dataset (Cs, gs), 1 ≤ s ≤ S,250

contains labeled training data. The camera parameters Cs are considered as the observations, while251

the VIS-NIR images gs are considered as their labels. Ideally we would like to infer a function F252

such that for all configuration C, F (C) is a VIS-NIR image of the original scene, taken with253
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a camera associated with the parameters of C. We design a supervised learning algorithm that254

analyses the training dataset: we try to find F such that F (Cs) ≈ gs, 1 ≤ s ≤ S. Of course this255

problem is very ill-posed.256

Reflective tomography takes benefit from the geometrical similarities between the perspective257

projections of VIS-NIR cameras and of X-ray images, and adds a strong hypothesis about the258

unknown F : it assumes that we can find a reasonable F under the form F (C) = XCϕ, where259

ϕ ∈ RN defines a reasonable voxel model of the scene φ =
∑N

k=1 ϕkψk. We design a hypothesis260

space based on this principle: we look for F ∈ {Fϕ : C 7→ XCϕ, ϕ ∈ RN}.261

Then we define a cost function J that measures the modeling error for the occurrence (C, g),262

when ϕ defines the model (and thus F = Fϕ):263

J(ϕ,C, g) =
1

2

∥∥∥(XCX
∗
C + σI)−

1
2 (XCϕ− g)

∥∥∥2 , with σ > 0. (17)

J represents the sum of squared residuals for the linear system XCϕ = g, with preconditioner264

(XCX
∗
C + σI)

1
2 . Its gradient with respect to ϕ is: ∂J

∂ϕ
(ϕ,C, g) = X∗C (XCX

∗
C + σI)−1 (XCϕ− g).265

We define now an online learning based on this cost. At the beginning, we set ϕ(0) = 0 (for266

example). Let us assume that the k-th model ϕ(k) has been computed. We select a new frame gsk267

with 1 ≤ sk ≤ S. The modeling error for this frame is J(ϕ(k), Csk , gsk). We would like to find a268

new model ϕ(k+1) such that this modeling error decreases. So we compute ϕ(k+1) as the first iterate269

of the gradient method for the preconditioned least squares problem infϕ∈RN J(ϕ,Csk , gsk), with270

ϕ(k) as the starting point and ω > 0 as the step. We get:271

ϕ(k+1) = ϕ(k) − ω∂J
∂ϕ

(ϕ(k), Csk , gsk). (18)
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We recognize exactly the relation (12). The parameter ω plays now the role of a learning rate. And272

κS iterations mean κ scans of the whole training set.273

So, the proposed method (12) is an incremental gradient method26 for a least squares problem274

with block-preconditioning, associated with the blocks (10) of the equation (11):275

inf
ϕ∈RN

S∑
s=1

J(ϕ,Cs, gs). (19)

To finish with, the visualization of the reconstruction ϕ is based on the MIP: if C = Cs is an276

observation of the training set, then the projection ΠCsϕ is a kind of re-projection that must have277

similarities with the label gs; otherwise ΠCϕ is a kind of prediction of what the scene looks like278

for a camera with parameter C.279

3.5 Parameters of the method280

3.5.1 Grid of voxels281

At the beginning, we set a box by the means of the opposite corners a = (a1, a2, a3) and b =282

(b1, b2, b3). The box must contain the part of the scene that we want to reconstruct. Then we283

define a grid of voxels (4) for this box, by the means of the side h of a voxel. We take h on284

the order of the object resolution on the images gs when enough data are available. Eventually h285

can be taken larger for reduction of the computational time and for safety reasons, especially for286

very limited data or inaccurate calibrations. The number N of voxels is then the product of the287

ni = 1 + d bi−ai
h
e, 1 ≤ i ≤ 3.288

16



3.5.2 Kaczmarz iterations289

Then we must set the rules for the Kaczmarz iterations. Let us recall three known facts12, 27 about290

ART in standard X-ray tomography. Firstly, the relaxation parameter takes often a small value291

such as ω = 0.05. This enables to reconstruct in priority the low-frequency components of the292

sought attenuation during the iterations. The high-frequency components, including noise, appear293

earlier if ω is close to 1. The second point is about the ordering of the rays: scanning the rays in a294

random order (with significant rotations between two successive projections) during the iterations295

can improve the speed of convergence, and it is a way to reconstruct rapidly all the spatial frequen-296

cies. And the last point is the so-called semi-convergence behavior: the first iterates capture rapidly297

desired information with many details; then the method slows down, while the iterates deteriorate298

and capture undesired noise. We keep these three points in mind to guess satisfactory values for299

ART in reflective tomography. For the relaxation, we are looking for surfaces; this is linked with300

high-frequency spatial information. So we suggest ω = 0.5 for instance; we will choose this value301

in the numerical experiments of the paper. Concerning the “random” ordering, we can choose302

s0 = 1, and sk+1− 1 = sk + p− 1(mod S), where the step p and the number of images S are rela-303

tively prime numbers. To finish with, for the stop criterion, we can set in advance a small number304

of cycles κ such as κ = 2; in that case the computation of the RMSEs is optional. Alternately we305

stop the iterations as soon as the decay rate τ (k+1) of the RMSE between two successive cycles is306

below a threshold 0 < τ < 1: η(k) − η(k+1) ≤ τη(k); in that case we also introduce a safety bound307

κmax over the number of cycles κ. In this paper, we will set τ = 5% and κmax = 8.308
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3.5.3 Inner regularization309

By the way each iteration of the Kaczmarz algorithm solves the linear system (13). We suggest310

to choose the regularization parameter σ on the order of Lh where L is a characteristic length311

of the box, such as the diagonal L = ‖b− a‖. This is motivated by the following empirical312

reason: the matrix XCsk
X∗Csk

of (13) is expected to be O(Lh); and so the regularizing term may be313

negligible if σ = o(Lh), while it may dominate ifLh = o(σ). Indeed, the diagonal entries look like314

σ +
∑N

k=1X [ψk](x0, ui)
2, 1 ≤ i ≤ M . Roughly speaking the sum contains O(L/h) contributing315

terms, each of them being O(h2); so the diagonal entries are expected to be σ + O(Lh). By the316

way each non-diagonal entry (i, j) looks like
∑N

k=1X [ψk](x0, ui)X [ψk](x0, uj); this is bounded by317

(
∑

k X [ψk](x0, ui)
2)1/2(

∑
k X [ψk](x0, uj)

2)1/2, and thus it is expected to be O(Lh) for the same318

reasons.319

3.5.4 Intermediate solver320

Once σ is fixed, the system (13) is solved by the conjugate gradient algorithm. This resolution is321

only an intermediate step in the global iterative procedure (Kaczmarz algorithm). So we do not322

need to solve the problem very precisely, and we perform only a few iterations of the conjugate323

gradient for efficiency reasons: for the stopping rule, we use a tolerance of 1% for the relative324

residual (with respect to the right hand side), combined with a bound of 10 iterations. We will see325

that this is enough to get satisfactory results.326

3.5.5 Visualization327

Concerning the visualization with our own cameras, we set a MIP camera with square pixels: for328

the calibration matrix (2), s12 = 0 and s1 = s2 = s. We want to get well-resolved images of voxels329
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of side h. So we require: h ≥ r, where r = WD
fs

is the object space resolution (unit: length), WD330

being the working distance.331

3.6 Costs332

We estimate the global costs of the proposed approach. To simplify the expressions, we assume333

here: the recorded images are square of m2 pixels (m = m1 = m2), the computed volume is a334

cube of N = n3 voxels (n = n1 = n2 = n3), and the MIP images are square of m2 pixels.335

3.6.1 Computational costs336

We show that one cycle of iterations of the algorithm roughly costs about O(nM) operations,337

where M = Sm2 is the total number of recorded pixels, and n estimates the number of diagonal338

voxels of the reconstruction.339

Let us consider indeed one iteration (12). The computational cost for the residual gsk−XCsk
ϕ(k)

340

is dominated by the cost of an X-ray projection by ray-tracing: O(m2n) operations. For the linear341

system (13) of the form
(
XCsk

X∗Csk
+ σI

)−1
•, a single iteration of the conjugate gradient method342

costs about one evaluation of (14), estimated by the cost of a projection followed by a backprojec-343

tion: O(2m2n) operations. So the gradient conjugate iterations, with an upper bound of 10 itera-344

tions, costs O(20m2n) operations. The final operation ϕ(k) + ωX∗Cs• costs again about O(m2n)345

operations, as a backprojection. And so, one iteration (12) costs about O(22m2n), where the O346

implicitly contains the constant induced by the projection of a single voxel during ray-tracing. At347

the end, one cycle of iterations, i.e. S iterations, needs O(22Sm2n) = O(Mn) operations. If we348

evaluate the RMSE (15) (optional), we add a cost dominated by the computational cost of the S349

residual images: it is again O(Mn).350
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To finish with, the visualization costs about O(m2n) operations per computed view (MIP).351

3.6.2 Memory cost352

The main memory cost comes typically from the unknown ϕ ∈ RN : 8N bytes for double precision.353

For moderate sizes, ϕ is stored directly in the RAM. Concerning the records gs, each iteration loads354

a single recorded image in the RAM, due to the frame-driven approach. At the end, taking into355

account the various intermediate steps (including the computations of the X∗Cskv during the calls356

of the conjugate gradient), the RAM contains about 16N bytes.357

3.7 Cross-validation358

In practice, we know a set of images; we use the data to create a model, and then we generate359

new images based on the model. There is a question about the validity of the new images, or the360

“error of generalization” induced by the model. We can take benefit from the usual strategies of361

machine learning such as the cross-validation15 to answer this question. In brief, one way consists362

in separating the dataset in two parts: a training set that is used to train the model, and a test set363

that is used to compare predictions of the model with known data. Furthermore this procedure is364

repeated for several partitions in order to compute statistics of performance.365

For our study, the principle of the “k-fold cross-validation” is the following. We divide ran-366

domly the data set of S images into k subsets of (about) S/k images, where k is a fixed integer.367

For all 1 ≤ i ≤ k, we select the i-th subset of S/k images as a test set. The other S(1 − 1/k)368

images provide the i-th training set. We compute a reconstruction ϕ[i] of the scene based on the369

i-th training set, using ART (12). Then we evaluate the i-th X-ray model Fϕ[i](C) = XCϕ[i] on370
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the i-th test set by the means of the following RMSE, or the RRSE:371

η[i] =

√
1∑

s∈S[i]Ms

∑
s∈S[i]

‖XCsϕ[i]− gs‖2, ρ[i] =
η[i]

σ̂[i]
, 1 ≤ i ≤ k, (20)

where S[i] is the set containing the S/k indexes of the i-th test set,
∑

s∈S[i]Ms is the total number of372

pixels over which the RMSE is computed, and σ̂[i] is the standard deviation of the corresponding373

pixel values gs, s ∈ S[i]. It is worth mentioning that ‖XCsϕ[i] − gs‖2 aims at comparing the374

recorded image gs with the X-ray image XCsϕ[i] generated by the voxel model ϕ[i]. However375

in practice, we visualize MIP images ΠCϕ rather than X-ray images XCϕ. So it would be more376

appropriate to compare ΠCsϕ[i] and gs; but it is difficult to define a suitable criterion. That is the377

reason why we focus rather on the RMSE/RRSE (20).378

At the end, we get the RMSEs η[i], 1 ≤ i ≤ k, each one being computed from about S/k test379

images and about S(1−1/k) training images; each initial image has been used exactly k−1 times380

as a training one, and once as a test image. Then we estimate some error of generalization of the381

model by the average of the RMSEs:382

η̂ =
1

k

k∑
i=1

η[i]. (21)

Furthermore, the standard deviation σ̂η of the RMSEs gives an idea on how much the quality of383

the predictions depends on the training set. And of course the same statistics can be computed for384

the RRSEs: average ρ̂, and standard deviation σ̂ρ.385

Lastly cross-validations can be eventually used to choose between several models correspond-386

ing to several sets of values of the model parameters (such as h, σ, τ , and even the camera param-387

21



eters if needed): one cross-validation is realized for each of the models. At the end, we decide388

that the best set of parameters is the one for which the error of generalization is the smallest. This389

approach is attractive from a theoretical point of view, but we must emphasize that it multiplies390

the number of reconstructions to be computed. That is why in the numerical experiments of this391

paper, we will set the parameters from the considerations of subsection 3.5 rather than multiple392

cross-validations.393

4 Experiments394

4.1 Implementation395

The full algorithm has been sequentially implemented in Fortran 2003. It includes the frame-driven396

Kaczmarz algorithm combined with the conjugate gradient for the intermediate solver. It also in-397

cludes ray-tracing on a grid of voxels, for the computation of X-ray images, for the backprojection,398

and for the MIP. The code is executed on a workstation HP Z820 with processors Intel Xeon E5-399

2609, 2.40GHz. We will measure the time dedicated to the computation of the reconstructions:400

initialization, iterative updates of the model, iterative loading of the images, evaluation of RMSEs.401

4.2 Middlebury datasets402

The website18 contains famous datasets for the evaluation of multi-view stereo reconstruction403

algorithms in computer vision.17 The datasets contain various calibrated images of size m =404

(640, 480), with three channels: RGB (Red, Green, Blue). The images have been corrected to re-405

move radial distortion, and they have been calibrated with accuracy on the order of a pixel; a pixel406

spans about 1/4 mm on the object.407
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Fig 3 Camera positions for the Dino dataset. The reconstruction is computed inside the box.

So the Middlebury datasets enter in the framework of this paper. We propose to test the408

ART (12) on images extracted from these datasets. We compute various reconstructions, on tight409

boxes suggested by the website.410

4.3 Dino411

We consider here the Dino data set, containing S = 363 views sampled on a hemisphere; see412

Figure 3 for the camera positions. For the image number 1 ≤ s ≤ S, we set gs as a grayscale413

image by adding the three channels RGB (0/765 represents black/white). See Figure 4 for samples414

of the sequence. We check here that the method is relevant for this relatively full dataset. (The unit415

length will be the meter, unless stipulated otherwise.)416

4.3.1 Reconstruction417

We compute the reconstruction with voxels of side h = 0.00025, in the box delimited by a =418

(−0.041897, 0.001126,−0.037845) and b = (0.030897, 0.088227, 0.03549); the diagonal length419

is L = 0.13514. We set: σ = Lh for the regularization, ω = 0.5 for the relaxation, p = 13420

for the step. We iterate during 8 cycles, in 140400 s. In Table 1, we report some indicators of421

convergence. On Figure 5, we represent the evolution of re-projections based on rendering with a422
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(a) (b) (c) (d)

Fig 4 Samples of the Dino dataset: (a) g298 (b) g29 (c) g359 (d) g227.

κ 0 1 2 3 4 5 6 7 8
η(κ) 240.9 104.5 103.5 102.9 102.5 102.1 101.8 101.6 101.4
ρ(κ) 1.207 0.5233 0.5185 0.5154 0.5131 0.5113 0.5099 0.5087 0.5076
τ (κ) 0.57 0.0092 0.006 0.0044 0.0035 0.0029 0.0024 0.0021

Table 1 Reconstruction from the Dino dataset: evolution of the RMSE η(κ), the RRSE ρ(κ) and the decay rate τ (κ)

of the RMSE; κ is the number of cycles of iterations.

MIP camera (9). The Figure 6 contains the evolution of a predicted view, using a new MIP camera:423

its parameters are not in the original dataset.424

We observe a semi-convergence behavior: the RMSE rapidly decays at the beginning and the425

useful information is rapidly recovered; noise appears at a later stage, while the RMSE slowly426

decreases. It is worth mentioning that with a threshold τ = 0.05 for the decay rate of the RMSE,427

the method would have stopped after κ = 2 cycles, with a RMSE that is almost the same than428

the RMSE after a single cycle. Furthermore, even if the renderings show the relevance of the429

reconstruction, the values of the RRSEs are relatively high (about 51%); we somehow recover that430

the dataset (VIS-NIR images) does not belong to the range of the X-ray transform.431
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Fig 5 Re-projections of iterates from the Dino dataset: ΠCsϕ
(κS). From left to right: s = 298, 29, 359, 227; from top

to bottom: κ = 1, 2, 4, 8 cycles of iterations. See Figure 4 for ground truth.
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(a) (b) (c) (d)

Fig 6 Prediction from the Dino dataset after κ cycles: (a) κ = 1, (b) κ = 2, (c) κ = 4, (d) κ = 8. The MIP camera,
with object resolution r = 0.00015737, is at working distance WD = 2.

4.3.2 Cross-validation432

We test now the property of generalization: we realize a 4-fold cross-validation. The data set is433

divided into 4 subsets. We realize 4 experiments: we compute 4 reconstructions based on the 4434

training sets. The subsets are such that the j-th image of Figure 4 is a test image for the j-th435

experiment, and a training image for the other experiments. We keep the same parameters than436

before, except the step: p = 11. For the stopping criterion, we iterate until the decay rate τ (k) of437

the RMSE is below the threshold τ = 0.05. We summarize in Table 2 some indicators measured438

after convergence, including the number of iterations κ to reach convergence, and the RMSE η[i]439

computed over the training set. On Figure 7, the image (i, j) is the MIP of the i-th reconstruction,440

with the camera parameters of the j-th image of Figure 4. In particular the diagonal of Figure 7441

contains predicted views, while the views outside the diagonal are re-projections.442

The RMSEs/RRSEs over the test sets are larger but comparable with the RMSEs/RRSEs over443

the training sets, while the re-projections and the predictions look visually similar. Furthermore444

the quality of prediction does not severely depend on the training set.445
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Fig 7 4-fold cross-validation for the Dino reconstruction. The line i contains MIP views from the i-th training set.
The views are predictions on the diagonal; otherwise they are re-projections. See Figure 4 for ground truth.
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Experiment i 1 2 3 4
Number of training images 272 272 272 273
Number of test images 91 91 91 90
Number of cycles κ 2 2 2 2
Time (s) 27730 28050 28710 28240
RMSE η(κ) over the training set 101.1 101.4 100.3 103.1
RRSE ρ(κ) over the training set 0.5067 0.5061 0.5051 0.5154
RMSE η[i] over the test set 104.8 106.4 109.1 104.3 η̂ = 106, σ̂η = 1.87
RRSE ρ[i] over the test set 0.5236 0.5394 0.5377 0.5260 ρ̂ = 0.532, σ̂ρ = 0.00696

Table 2 4-fold cross-validation for the Dino reconstruction. The last lines evaluate the trained models over the test
sets.

4.4 Dino Sparse Ring446

We consider here the DinoSparseRing dataset. It is similar with the Dino dataset, but it contains447

only S = 16 lateral views sampled on a ring around the object; see Figure 8. We construct the448

images gs by adding the three channels RGB. We check that the method is still relevant even if449

the number of views is relatively small. Furthermore we investigate the choice of the side h of the450

voxels; it conditions the number of unknowns in the equation (11): doubling h divides by eight the451

number of unknowns.452

4.4.1 Reconstruction453

The tight box for the computation is given by a = (−0.061897,−0.018874,−0.057845) and b =454

(0.010897, 0.068227, 0.015495). We set: σ = 2 · Lh for the regularization, ω = 0.5 for the455

relaxation, p = 3 for the step, and τ = 0.05 for the stopping criterion. We apply the method for456

several voxel resolutions h: see Table 3 for efficiency/accuracy indicators. See Figure 9 for lateral457

re-projections, and see Figure 10 for top views predicted by a new MIP camera.458

The reconstruction is sharper for the smallest values of h. But we also observe a pixelized459

noise for the resolution of the input images: h = 0.00025 . Here the number of available data is460

M ≈ 4.9 · 106, while the number of unknowns is N ≈ 30 · 106 for h = 0.00025, and N ≈ 3.8 · 106
461

28



Fig 8 Camera positions for the DinoSparseRing dataset. The reconstruction is computed inside the box.

Resolution h (mm) 2 1 0.5 0.25
Number of cycles κ 2 3 3 4
Time (s) 423.4 770.7 1001 3091
RMSE η(κ) 92.00 87.55 86.40 87.00
RRSE ρ(κ) 0.4692 0.4465 0.4406 0.4436

Table 3 Indicators for the DinoSparseRing reconstruction, for several voxel resolutions h.

(a) (b) (c) (d)

Fig 9 Lateral re-projection of the DinoSparseRing reconstruction with voxel resolution (a) h = 2, (b) h = 1, (c)
h = 1/2 and (d) h = 1/4 (mm).

(a) (b) (c) (d)

Fig 10 Top view predicted by the DinoSparseRing reconstruction. In mm, the voxel resolution is: (a) h = 2, (b)
h = 1, (c) h = 1/2 and (d) h = 1/4; the MIP camera, object resolution r = 0.15737, is at working distance
WD = 2000.
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Experiment i 1 2 3 4
Number of training images 12 12 12 12
Number of test images 4 4 4 4
Number of cycles κ 3 3 3 3
Time (s) 725.6 731.7 746.0 775.9
RMSE η(κ) over the training set 90.88 81.16 91.47 87.22
RRSE ρ(κ) over the training set 0.4521 0.4295 0.4675 0.4399
RMSE η[i] over the test set 114.0 138.7 105.50 114.50 η̂ = 118, σ̂η = 12.3
RRSE ρ[i] over the test set 0.6319 0.6458 0.5349 0.6085 ρ̂ = 0.605, σ̂ρ = 0.0428

Table 4 4-fold cross-validation for the DinoSparseRing reconstruction.

for h = 0.0005. So we can understand that is safer to take h = 0.0005: bounding the value of462

h plays the role of a regularization procedure. Finally, the visual rendering and the RRSE both463

recommend the resolution h = 1/2 mm.464

4.4.2 Cross-validation465

We realize a 4-fold cross validation; the reconstructions are computed from 12 training images, and466

are tested against 4 test images. We set the following parameters: h = 0.0005, ω = 0.5, σ = 2Lh,467

τ = 0.05. We summarize some indicators in Table 4, and we represent MIP views on Figure 11.468

The test sets and the training sets are relatively small, so we could expect strong variations in469

the quality of the reconstruction, and in its evaluation on the test set. Table 4 shows significant470

variations, but not huge ones. Furthermore the re-projections and the predictions look relatively471

similar. At the end, even if the number of training views (12) is relatively small, the voxel model472

keeps some ability to generalize.473
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Fig 11 4-fold cross-validation for the DinoSparseRing reconstruction. The line i contains MIP views of the i-th
trained model. The views are predictions on the diagonal; otherwise they are re-projections.
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4.5 Temple Sparse Ring474

We consider the TempleSparseRing dataset. It contains S = 16 RGB lateral views sampled on a475

ring around the object; see Figure 12. We construct the images gs by extracting the Blue component476

(0/255 represents black/white). See Figure 13 for samples of the sequence. We illustrate the477

influence of the inner Tikhonov regularization.478

We set: a = (−0.073568, 0.021728,−0.012445) and b = (0.028855, 0.181892, 0.062736) for479

the box, L = 0.20443 for the diagonal, h = 0.0005 for the voxels, ω = 0.5 for the relaxation, p = 3480

for the step, τ = 0.05 for the stopping rule. We apply the method for σ
Lh

= 0.01, 0.1, 1, 10, 100;481

due to Lh ≈ 0.0001, these successive values correspond also to several powers of Lh: σ ≈482

(Lh)1.5, (Lh)1.25, Lh, (Lh)0.75, (Lh)0.5 (up to a multiplicative 1 with the right unit). We summarize483

several indicators in Table 5. On Figure 14 we represent re-projections. Furthermore, we predict484

air-ground images on Figure 15.485

For the smallest regularization, the conjugate gradient stops always due to the bound (10) on486

the number of iterations. The regularization is not really efficient in that case and we obtain dark487

images with strong peaks; they should be thresholded/rescaled to be useful. Otherwise the conju-488

gate gradient stops always once the admitted tolerance 10−2 is reached. The reconstructions for the489

strongest regularization are fastly obtained but are blurred: the regularization term predominates490

and the preconditioner of (17) is not efficient enough. The most acceptable results are the interme-491

diate regularizations, for which σ is roughly on the order of Lh; σ = Lh realizes indeed a good492

compromise between accuracy (small RMSE) and efficiency (small computational time). Is is also493

a compromise for MIP rendering, between dark images with peaks and blurred bright images.494
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Fig 12 The TempleSparseRing dataset contains 16 “ground-ground” views. The reconstruction is computed inside
the box, and is used to predict 4 “air-ground” views (cameras in bold).

(a) (b) (c) (d)

Fig 13 Samples of the TempleSparseRing dataset: (a) g1, (b) g5, (c) g9 and (d) g13.

Ratio σ
Lh

(dimensionless) 0.01 0.1 1 10 100
Number of cycles κ 4 4 5 5 1
Time (s) 2287 2049 1318 1036 162.3
RMSE η(κ) 15.64 15.36 16.15 23.39 43.33
RRSE ρ(κ) 0.4035 0.3961 0.4166 0.6032 1.118

Table 5 Indicators for the TempleSparseRing reconstruction, for several inner regularizations σ.
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Fig 14 Re-projections of the TempleSparseRing reconstruction, for several inner regularizations: from top to bottom,
σ
Lh = 0.01, 0.1, 1, 10, 100. See Figure 13 for ground truth.
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Fig 15 Air-ground views predicted by the TempleSparseRing reconstruction, for several inner regularizations: from
top to bottom, σ

Lh = 0.01, 0.1, 1, 10, 100. See Figure 12 for the camera positions.
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4.6 Temple495

We consider the Temple dataset. It contains 312 RGB views sampled on a hemisphere; see Fig-496

ure 16 for the camera positions. On Figure 17, we represent the three components (R,G,B) sepa-497

rately, and the sum R+G+B, for the views number 220, 245 and 302. It appears that the specular498

reflection is more pronounced on the Red; while the Blue is the most diffuse and the sharpest. We499

test several ways to deal with the multi-channel property.500

For the test (a), the dataset is obtained by extraction of the Red component. For the test (b), we501

extract the Blue component. For the test (c), we add the channels (R,G,B) of the original images.502

For the test (d), we consider one RGB image as three different images. For (a), (b), (c), the dataset503

contains S = 312 images, while for (d), it contains S = 936 images (312 R, then 312 G, then 312504

B). We set: a = (−0.054568, 0.001728,−0.042945) and b = (0.047855, 0.161892, 0.032236) for505

the box, h = 0.0005 for the voxel side, σ = Lh for the regularization, ω = 0.5 for the relaxation,506

p = 11 for the step, and τ = 0.05 for the stopping criterion. See Table 6 for indicators, see507

Figure 18 for re-projections, and see Figure 19 for predictions.508

We get similar reconstructions, despite some slight differences. It is worth mentioning that509

the RRSE is an indicator of quality without being an absolute criterion: the smallest RRSE is the510

Fig 16 The Temple dataset contains 312 views on a hemisphere. The reconstruction is computed inside the box.
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(a) (b) (c) (d)

Fig 17 Channels from the Temple dataset: (a) Red, (b) Green, (c) Blue and (d) Gray=Red+Green+Blue.

Channel R B R+G+B R,G,B
Number of cycles κ 2 2 2 2
Time (s) 11520 11840 10680 35150
RMSE η(κ) 37.73 22.06 91.15 33.01
RRSE ρ(κ) 0.5548 0.5754 0.5594 0.5858

Table 6 Indicators for the reconstructions from several Temple channels.
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(a) (b) (c) (d)

Fig 18 Re-projections of the reconstruction, for several Temple channels: (a) R, (b) B, (c) R+G+B and (d) R,G,B. See
Figure 17 for ground truth.
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(a) (b) (c) (d)

Fig 19 Predictions from the Temple reconstruction, for several channels: (a) R, (b) B, (c) R+G+B and (d) R,G,B. The
MIP camera, object resolution r = 0.00028612, is at working distance WD = 5.

case (a) from the Red component while the case (b) from the Blue component looks the sharpest.511

Furthermore the ART manages successfully the redundancies and the inconsistencies between the512

three channels, case (d): it extracts itself the useful information.513

4.7 Extreme scenario514

To finish with we create a very restricted dataset from the Temple dataset: a training set containing515

S = 3 images. The first image g1 is the Red component of the image number 194 of the Temple516

dataset, the second image g2 is the Green component of the image 32, and the third image g3 is517

the Blue component of the image 41. The images g1, g2, g3 could represent images taken from518
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three different cameras; g1 is air-ground, g2 and g3 are ground-ground: see Figure 20 and the first519

line of Figure 21. Furthermore we create a test set containing the Red component of the 309 other520

images of the Temple dataset. Reconstructing the scene using only the proposed training set is521

challenging. In particular, even if the gs, 1 ≤ s ≤ 3 were X-ray images, the Tuy’s condition would522

be very seriously violated. Even if we cannot expect reflective tomography to recover perfectly the523

scene, the approach of this paper is applicable, at least. Furthermore we will test here the computed524

model against the test set, considered as ground truth.525

We set: a = (−0.054568, 0.001728,−0.042945) and b = (0.047855, 0.161892, 0.032236) for526

the box, h = 0.001 for the voxel side, σ = 3Lh for the regularization, ω = 0.5 for the relaxation,527

p = 1 for the step, and τ = 0.05 for the stopping criterion. See Table 7 for the indicators. For528

the rendering, we replace the lower threshold of the MIP (9) by 800 (instead of 0) in order to529

start denoising. We represent the three re-projections of the reconstruction on the second line of530

Figure 23. We represent test views against MIP predictions on Figure 22; the camera positions are531

in bold on Figure 20. And we represent predictions based on a rotation of our own MIP camera,532

on Figure 23.533

We see that even if the number of views is very restricted, the ART is still able to capture some534

features and details and has still some ability to generalize, especially for views that are not too far535

from the training ones.536

40



Fig 20 The restricted dataset contains: (a) one air-ground view (b-c) two ground-ground views. The reconstruction is
computed inside the box, and will be displayed on the cameras in bold.

(a) (b) (c)

Fig 21 Reconstruction from three training images. Top: dataset (a) g1, (b) g2 and (c) g3. Bottom: re-projections.
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Number of training images 3
Number of test images 309
Number of cycles κ 6
Time (s) 156.9
RMSE η(κ) over the training set 19.72
RRSE ρ(κ) over the training set 0.3585
RMSE η[1] over the test set 44.58
RRSE ρ[1] over the test set 0.6560

Table 7 Cross-validation for the very restricted dataset, using the Temple dataset as ground truth. The last lines
evaluate the trained model over the test set.

Fig 22 Reconstruction from three views. Top: test views. Bottom: MIP predictions. See Figure 20 for the camera
positions.
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Fig 23 Predictions from three views. The MIP camera, object resolution r = 0.00028612, working distance WD = 5,
rotates on a circle around the reconstruction.
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5 Conclusion537

This paper formulates reflective tomography under the form of a least squares problem with block-538

preconditioning, and solves it by an incremental learning algorithm. The method is a frame-driven539

Kaczmarz algorithm, inspired by the ART of X-ray tomography. It provides a voxels method for540

multiple-view reconstruction in VIS-NIR optics, when the recorded images are calibrated. For541

the computation of a cube of N voxels from M recorded pixels, one cycle of iterations of the542

algorithm costs about O(MN1/3) operations. For a practical use where the scene is unknown,543

the cross-validation is a way of estimating the quality of the computed model, if enough data are544

available. Numerical experiments on real datasets show the relevance of the algorithm, even if the545

number of available images is relatively small. Also this paper is one more empirical proof that546

the X-ray transform is able to capture features of images and to build a relevant model containing547

the geometry of the scene, despite the dataset is not in the range of the transform.548

The algorithm of this paper is purely based on linear algebra techniques and automatically549

catches geometric features. So it is robust and flexible, and various scenarios of acquisition are550

practicable. We can imagine a camera with a continuous motion, such as an onboard camera, with551

arbitrarily trajectory. The method accepts also the merge of several datasets. For example ground-552

ground images measured by a pedestrian could be combined with air-ground images measured by553

an aircraft or by a satellite. In fact, merging datasets is a way to augment the set of measured554

features and so it is a way to perfect the reconstruction.555

Finally the author hopes that the relevance of the algebraic methods will offer new opportunities556

in three-dimensional optical imaging, such as new practical uses of reflective tomography.557

44



References558

1 R. Marino, R. Capes, W. Keicher, et al., “Tomographic image reconstruction from laser radar559

reflective projections,” in Laser radar III, 999, 248–269, International Society for Optics and560

Photonics (1989).561

2 F. Knight, D. Klick, D. Ryan-Howard, et al., “Two-dimensional tomographs using range mea-562

surements,” in Laser radar III, 999, 269–281, International Society for Optics and Photonics563

(1989).564

3 A. G. Ramm and A. I. Katsevich, The Radon transform and local tomography, CRC press565

(1996).566

4 D. T. Gering and W. Wells, “Object modeling using tomography and photography,” in Multi-567

View Modeling and Analysis of Visual Scenes, 1999.(MVIEW’99) Proceedings. IEEE Work-568

shop on, 11–18, IEEE (1999).569

5 C. L. Matson, D. E. Holland, D. F. Pierrottet, et al., “Satellite feature reconstruction using570

reflective tomography: field results,” in Optics in Atmospheric Propagation and Adaptive571

Systems II, 3219, 65–73, International Society for Optics and Photonics (1998).572

6 J. B. Lasche, C. L. Matson, S. D. Ford, et al., “Reflective tomography for imaging satellites:573

experimental results,” in Digital Image Recovery and Synthesis IV, 3815, 178–189, Interna-574

tional Society for Optics and Photonics (1999).575

7 G. Berginc and M. Jouffroy, “Optronic system and method dedicated to identification for for-576

mulating three-dimensional images.” US patent 20110254924 A1, European patent 2333481577

A1, FR 09 05720 B1 (2009).578

45



8 G. Berginc and M. Jouffroy, “Simulation of 3D laser systems,” in Geoscience and Remote579

Sensing Symposium, 2009 IEEE International, IGARSS 2009, 2, 440–444, IEEE (2009).580

9 G. Berginc, “Scattering models for 1-D-2-D-3-D laser imagery,” Optical Engineering 56(3),581

031207 (2016).582

10 G. Berginc, J.-B. Bellet, I. Berechet, et al., “Optical 3D imaging and visualization of con-583

cealed objects,” in Proc. SPIE, 9961, 99610Q (2016).584

11 M. Henriksson, T. Olofsson, C. Grönwall, et al., “Optical reflectance tomography using TC-585

SPC laser radar,” in Proc. SPIE, 8542, 85420E (2012).586
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