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Advanced Computing Laboratory of Saint-Denis (LIASD)
Paris 8 University

93526 Saint-Denis, France
Email: {yz, n, aa}@ai.univ-paris8.fr

Abstract—In this paper, we consider the issue of transporting
a certain number of goods by a team of mobile robots. The
target is to minimize the total transportation time and keep a low
energy consumption of the intelligent agents on assuring security
and quality during the transportation process. The pivotal issue
needs to be solved is how to assign tasks to individual robots
in a more reasonable and efficient way. We present a novel
solution by using an empirical-based heuristic planning strategy
for the goods transportation by multiple robots. In contrast
to previous approaches, this strategy is designed to plan the
transportation task for each individual robot by estimating the
production rate of goods based on multi-robot coordination. Our
approach has been implemented and evaluated in simulation.
The experimental results demonstrate that the completion time
of the whole transportation mission can be significantly reduced
and the energy consumption of robots can be kept at a low level
of our heuristic planning strategy compared with the previous
approach.

I. INTRODUCTION

The goods transportation system is an important application
for autonomous mobile robot research, which can be used in
various environments, such as warehouses, factories, container
ports, or hospitals. Generally, how to complete the transporta-
tion mission with high efficiency and low cost is the first
priority. On the one hand, in contrast to single robot, using
a collaborative team of robots has the potential to accomplish
the transportation mission more efficiently [1], [2]. But on
the other hand, we also hope to reduce the overall energy
consumption of the fleet of mobile robots. Therefore, during
the whole transportation process, the following two issues
should be considered:
• For the purpose of multi-robot coordination, how to

plan the motion for each individual robot of the team,
which handles path planning, obstacle avoidance, colli-
sion avoidance, grip action and drop action.

• For the purpose of high efficiency and low cost, how
to assign the transportation task to each individual robot
reasonably. The transportation task could be the delivery
of goods from one location to another location.

In this paper, we consider a multi-robot goods transportation
system in which goods must be transported from their place
of production to the location of the consumers. The scenario
details like this: the source location and the sink location are
known and fixed, the production rate of goods is unknown,
given the source location cannot store more than one unit at a
time, all robots must be placed in a depot at the beginning of

Fig. 1. Four robots implement a transportation mission cooperatively. The
dark blue piece signifies the goods to be transported. The gray zone represents
the depot for the robots, the green zone represents the source location where
the goods are produced, and the zone in orange color represents the location
where the goods should be delivered by the mobile robot.

the mission, and they can return to the depot in their free time
during the whole transportation mission. Here, suppose that the
robot will not consume any energy when it stays in the depot
waiting for the task. On the contrary, also suppose the energy
consumption for motion, computation and sensing increases
at a constant rate during the task implementation process. For
example, 10 seconds of task will consume 10 units of energy.
The objective of robots is to complete the whole transportation
mission in coordination but the implementation time should be
minimized and the energy consumption should be limited to a
low level. Figure 1 shows a screenshot of our implementation
on the simulator Stage [3], in which the red robot stays in
the depot on standby, the green robot is moving to load a
goods, the orange robot is transporting a goods to the sink
location, and the blue robot is on its way back after completing
a transportation task.

In contrast to previous research, we do not just simply focus
on high efficiency (reduce the total mission runtime) or low
cost (reduce robots’ energy consumption), but combine both



to find an optimized solution. The core idea of this solution
is to estimate the production rate of goods by a heuristic
function based on an empirical model, and then assign the
goods transportation task to the individual robot reasonably
by a centralized decision making system. In our research, the
high efficiency evaluation metric is the total time required to
complete a transportation mission, and the low cost evaluation
metric is the sum of energy consumption of the robots.
Through simulation experiments with a group of robots and
compared with the centralized replanner method, the results
show that the total transportation time is significantly reduced
and the energy consumption is kept at a low level of our
approach.

This paper is organized as follows. In Section II, we give
an overview of some related work. Subsequently, we briefly
discuss the requirements of a multi-robot goods transportation
system in Section III. Then we present our heuristic planning
strategy in Section IV. Finally, we describe the experimental
results obtained with our approach in Section V, and conclude
with Section VI.

II. RELATED WORK

The problems of goods transportation can be divided into
two categories according to the existing literature:
• Multiple robots transport a single object cooperatively. A

typical problem in this category is the multi-robot box-
pushing problem, in which robots should share manipu-
lation tasks.

• Multiple robots transport multiple objects cooperatively.
This is one of the sub-problems of foraging. The foraging
problems are usually studied by combining the energy
autonomy.

The core issues concerning both the two categories are the
decomposition and allocation of transportation tasks, as well
as the motion coordination for multiple robots.

This paper focuses on the second category. Alami et al.
[4] presented a general concept for the control of a large
fleet of autonomous mobile robots which has been developed,
implemented and validated in the framework of MARTHA
(Multiple Autonomous Robots for Transport and Handling
Applications). They proposed an approach called plan-merging
paradigm for multi-robot cooperation, which has been tested
in both simulation and real world. Vaughan et al. [5] described
a method (LOST) that enables a team of robots to navigate
between places of interest in an initially unknown environment
using a trail of landmarks. They applied this method to an
example “resource transportation” task, in which multiple
autonomous robots find and repeatedly traverse a path in an
unknown environment between a known “home” and a supply
of resource at an initially unknown position.

Tang and Parker [6] described an approach for automati-
cally synthesizing task solutions for heterogeneous multi-robot
teams which is called ASyMTRe. This approach is built upon
schema and information invariants theories, it enables the robot
team to dynamically connect schemas within and across robots
to accomplish a task. They also validated this approach in two

different scenarios: multi-robot transportation and multi-robot
box pushing. Dahl et al. [7] presented an algorithm for task
allocation in groups of homogeneous robots based on vacancy
chains. Through the experiments in simulation, they showed
that the vacancy chain algorithm performs better than random
and static task allocation algorithms when individual robots
are prone to distractions or breakdowns, or when task priorities
change. They also defined the prioritized transportation prob-
lem (PTP) as an extension of the basic transportation problem
where the sources and sinks, the targets of the transportation,
are divided into sets of different priority also called circuits.

Shiroma and Campos [8] proposed a framework called
CoMutaR, which is designed to both tackle task allocation and
coordination problems in multi-robot system. This framework
enables the single robot to perform multiple tasks concurrently
by periodically checking and updating task-related information
during implementation. It has been tested and evaluated in
simulation in object transportation, area surveillance, and
multi-robot box pushing problem. Wawerla and Vaughan [9]
introduced two task allocation strategies for a multi-robot
transportation system. One is based on a centralized planner
that uses domain knowledge to solve the assignment prob-
lem in linear time. The other enables individual robots to
make individual task allocation decisions using only locally
obtainable information and single value communication. They
used the energy expended by robots as performance evaluation
standard. The computational complexity of these two strategies
is small, but the performance is good.

In contrast with previous research, firstly, the basic object of
our investigation is not just a task decomposition or allocation
problem, but a goods transportation problem. Secondly, our
simulation experiment is based on low level concepts. We
try to represent the goods transportation in the real world
with closer physical model, including grip action, drop action,
and security of goods in transport. Finally, we introduce
the energy consumption unit of the robot as one of the
performance metrics, combined with the mission completion
time, to evaluate the overall system.

III. MULTI-ROBOT GOODS TRANSPORTATION SYSTEM

In multi-robot systems, there is a basic issue known as
coordination. The target of coordination is to fulfill the prede-
fined mission better. In the goods transportation scenario, in
order to establish such a system, two practical issues should
be considered: robot navigation and task allocation.

Mobile robot navigation contains three fundamental prob-
lems: map learning, localization and path planning. In a given
environment, a robot should be able to determine a collision
free path from its current location to a desired goal location,
this is known as path planning. To compute the path, a map of
the environment should be known, which is built from a set of
sensor data acquired by the mobile robot, this problem of map
learning is commonly referred as simultaneous localization
and mapping (SLAM). During the path following process, the
mobile robot needs to know its exact position and orientation
in the environment at all times, this is known as localization.



A multi-robot navigation system should also deal with the
possible interference between robots. For instance, a robot
should take into account the motion of other robots to avoid
congestion or collision [10].

Task allocation is an essential requirement for multi-robot
systems. It’s designed to find: which robot should implement
which work? The object of work could be the location for
environment exploration or a crate for goods transportation.
The core ideology of multi-robot task allocation (MRTA)
systems is to iterate the assignment, in order to deal with
changes in the tasks, the robots, and the environment [11].

Moreover, a goods transportation system using a coordi-
nated team of autonomous mobile robots should also meet the
following requirements:
• The map of the environment is known, in which there

exist unknown and possibly moving obstacles like goods
and robots. Robots must traverse this given environment
for transporting goods from the source to the sink.

• A transportation mission is composed of a series of tasks.
The objective is to allocate the subset of these tasks
to each robot reasonably in order to minimize the time
needed to accomplish the mission. This problem is known
as NP-hard [11].

• The quality and security of transportation should be
assured. In this paper, a good transport quality refers to
that the total mission runtime for each trial should be
close to the average, and the transport security means that
the robot should avoid damage or loss of goods caused
by collisions with obstacles or other robots.

IV. HEURISTIC PLANNING STRATEGY

A major reason for the low efficiency of transportation in
a known space is the unknown production rate. A regular
estimate of this rate is the key to solve the problem. Using
heuristic approach is a natural thinking [12], [13], [14].

The production rate, denoted by Tn, refers to the elapsed
time between the disappearance of the n-th goods (be carried
away) and the appearance of the (n + 1)-th goods. Tn can
be regarded as a sequence of independent and identically
distributed random variables. The law of variables is unknown,
which can be determined by the method of hypothesis testing.
The heuristic value h(n) can be obtained by the distribution
function:

h(n) = E(T
′

n+1|T1, . . . , Tn) (1)

Equation (1) means the elapsed time since the removal of
the n-th goods until the appearance of the (n + 1)-th goods
by our prediction. Given Tn as an uniform distribution, then:

h(n) =
1

n

n∑
i=1

Ti (2)

In effect, the whole issue is a limited decision mak-
ing. For each robot Ri(i=0,...,m), the decision space for
each step (also denoted Ri) is finite. For example, Ri =

Fig. 2. Comparison of two plans for task allocation

{gotoSource, gotoSink, gotoDepot}. Therefore, the decision
space for each step of the centralized planner is:

R =

m∏
i=0

Ri (3)

Suppose there are N goods, then the centralized planner’s
decision space is RN , every decision r ∈ RN is defined by
r(n) ∈ R(n = 1, . . . , N).

We set the total time X(n) for when the n-th goods has
been carried away by a robot, then:

X(n+ 1) = X(n) + min
t∈R

f(t, h(n), rn) (4)

Here, f is a function to calculate the interval time between
the n-th and the (n + 1)-th goods were carried away. t
represents the current decision making. Moreover, t can be
taken as r(n) when it makes f the minimum. rn signifies
the current location information of each robot. For instance, t
refers to that let a robot in depot move to the source location
of goods, then f(t, h(n), rn) = max(h(n), TDepotToSource).

We notice that a greedy algorithm is used in (4). It can
guarantee to get the minimum of the total time to complete the
mission, but it cannot guarantee the low level of the energy
consumption. For instance, consider the situation shown in
Figure 2. Robot0 and robot1 are two free robots. The red
segment and blue segment represent two kinds of task plans
(denoted red plan and blue plan) respectively. The red plan
represents that robot0 moves to the depot and robot1 moves
to the source. The blue plan represents robot0 moves to the
source and robot1 moves to the depot. The red plan uses the
greedy algorithm, i.e., let the robot the nearest from the source
(in the case of the figure, robot1) to load the goods. However,
the red plan requires more energy than the blue plan: 13.0
units for the red plan and 10.4 units for the blue plan.

As a result, (4) cannot guarantee that the global optimal
solution would be found. Thus, in order to reduce the total
mission runtime and to keep a low energy consumption, we
use a heuristic method based on an empirical model to replace



the function mint∈R f(t, h(n), rn) to get the current strategy.
The details of our implementation are given in Algorithm 1.

Algorithm 1 Heuristic task allocation based on an empirical
model

1: if the n-th goods has been carried away by a robot then
2: Calculate h(n) by using (2).
3: for all robot i which is outside of the depot and not in

the task do
4: if h(n) < TtoSource(i) and h(n) > 1

2TtoSource(i)
then

5: Robot i accepts the task and go to the source.
6: break
7: end if
8: end for
9: if there is no robot which has accepted the task and

there is a robot in the depot then
10: Calculate the waiting time for the robot in depot by

using Twait = max(0, h(n)− TDepotToSource).
11: After Twait time, wake up the robot in depot and

assign the task to it.
12: end if
13: end if

TtoSource(i) indicates the time required for robot i to travel
from its current location to the source location. We found
that, in Algorithm 1, TtoSource(i) and TDepotToSource are two
estimated values and they are unknown at the beginning of the
mission. Nevertheless, after a robot has completed a task (i.e.,
it moves from the depot location to the source location, then
transports a unit of goods from the source location to the sink
location), we can get two reference values: T

′

DepotToSource

and T
′

SourceToSink, then TtoSource(i) and TDepotToSource can
be estimated via these two reference values.

In our system, we use reactive control technique for robotic
software architecture. Five behaviors are defined for each
robot. The relationships between them are illustrated in Figure
3. Here, STANDBY behavior represents that the robot is in
the depot waiting for a new task. MOVE behavior means
that the robot is in the mobile navigation process. SENSE
behavior signifies the robot is in the process of sensing the
depot location to position itself, the source location to grip
the goods, or the sink location to drop the goods. GRIP and
DROP behaviors denote that the robot is in the grip or the
drop action process.

Moreover, each robot has information about all other robots.
In this way, we can try to avoid the collision, the congestion
and all the other problems of waiting situation when we handle
the multi-robot motion planning.

V. EXPERIMENTS

Our approach has been implemented and evaluated in Stage
[3], which is a fast and scalable 2D multi-robot simulator.
The simulation experiments were conducted by using a group
of Pioneer 2-DX robots equipped with a laser range finder
providing 361 samples with 180 degrees field of view and a

Fig. 3. Relationships between five behaviors in robot control

Fig. 4. A typical Pioneer 2-DX robot with the gripper

maximum range of 8 meters. Each robot can localize itself
based on an abstract localization device which models the
implementation of GPS or SLAM. In order to transport goods,
the robots are equipped with a gripper to enable them to sense
the goods, pick it up, and put it down. The carrying capacity
of each robot is limited to one unit. Figure 4 shows a typical
Pioneer 2-DX robot with the gripper.

Our simulation experiments are conducted in an enclosed
space with 16 meters long and 16 meters wide, which also
contains several fixed obstacles. The ratio between real world
time and simulation time is about 1:5. We assumed that the
mobile robots share a common occupancy grid map with
information about the structure of the environment, which is
used for path planning and obstacle avoidance in real time. In
our implementation, we have used the wavefront propagation
algorithm [15] for global path planning and the nearness
diagram algorithm [16] for goal seeking and local obstacle
avoidance. We also assumed that there exists a central planning
component which is able to communicate with all robots and
assign the transportation tasks to each one.

In order to evaluate our approach, we designed four different
simulation experimental environments, which are shown in
Figure 5. The different environments are divided according to
the distance relationship between the depot (denoted by D),
the source (denoted by S) and the sink (denoted by K), i.e.,
KD > KS > SD, KD > SD > KS, KS > KD > SD
and KS > SD > KD. Actually, there are also another two
relationships: SD > KD > KS and SD > KS > KD.
However, these two are not interesting situations because the
longest distance is that between the depot and the source.

We used a small team of robots to conduct several experi-



Fig. 5. Four different simulation experimental environments. The gray area represents the depot (D), the green area represents the source (S), and the orange
area represents the sink (K). The environment A corresponds to case KD > KS > SD, the environment B corresponds to case KD > SD > KS, the
environment C corresponds to case KS > KD > SD, and the environment D corresponds to case KS > SD > KD.

ments, and compared our heuristic approach to the replanner
approach [9]. The production rate of goods is varied inde-
pendently from 4 seconds to 12 seconds. The experimental
results are shown in Figure 6. All experiments reported in this
paper were carried out on a system with an Intel Core 2 Duo
E8400 3.00GHz processor, an Intel Q43 Express chipset and
two DDR2 800MHz 1024MB dual channel memory.

Figure 6 shows the results of simulation experiments ob-
tained in a mission of four robots to transport fifty goods
cooperatively. The four histograms correspond to the results
of the four different simulation environments. Each histogram
contains two sets of experimental data corresponding to the
total transportation time and the sum of energy consumption
of robots by the heuristic approach and the replanner approach
respectively. Each set of data contains ten trial results. Figure
6 shows that the transportation time is significantly reduced
by our heuristic approach compared to the replanner approach,
and the energy consumption obtained by using our approach
is still maintained at a low level.

Furthermore, another important advantage of our heuristic
approach is making the energy consumption evenly distributed,
without concentrating on a few robots. Through a series of
experiments, we found that, there are mainly two factors which
affect the performance of a goods transportation system:

• The relationship between the location of the depot, the
source and the sink. If the source and the sink are fixed,
then setting the location of a depot reasonably has the
potential to improve the performance. For example, in
Figure 6, the histogram A (KD > KS > SD) shows a
result which has less transportation time and less energy
consumption than the histogram B (KD > SD > KS).

• The team size of robots. In the experiment, we found that,
the energy consumption of each robot is different at the
end of mission even sometimes the difference between
them is considerable. Actually, when the quantity of
robots is too small in a mission, it will extend the total
mission runtime. Contrarily, when the quantity of robots
is too large in a mission, it will cause a waste of the
resource. Therefore, reasonably controlling the number
of robots is also an important consideration.

Finally, Figure 6 shows that, the total transportation time
for each trial is close to the average in each histogram,
in other words, our algorithm provides a moderately good
transportation quality. Moreover, in our experiments, we found
that if the speed of the robot is too fast, in some instances,
a separation of goods and gripper will happen. Therefore, in
order to ensure the transport security, i.e., to avoid the damage
or the loss of goods caused by the collisions with the obstacles
or the other robots, the speed of each robot was limited to 1.0
meters/sec in our simulation.

VI. CONCLUSION

In this paper, we consider the following problem: a set of
autonomous mobile robots should work together to accomplish
a transport mission efficiently, the mission refers to delivery
of a certain amount of goods from sources to sinks, and the
objective is to complete the mission as soon as possible and
keep the energy consumption as low as possible, which is
equivalent to minimize the total mission completion time and
limit the sum of energy consumption of robots to a low level.
Because the production rate of goods is unknown at the source
location, we designed to assign the transportation task to each
robot by estimating the time appearance of goods reasonably.
Hence, we proposed a novel heuristic approach based on
the empirical model for multi-robot goods transportation. The
proposed approach has been implemented and evaluated in
simulation. The experimental results demonstrated that our
approach shows a good performance in the environment close
enough to the real world.

The current experiments are conducted on the basis of small
goods production rate variation. A large rate variation requires
more complex heuristic strategy. Our next work will vary the
rate of goods production in a wide time interval to improve
our approach. We will also test our approach on large scale
problems with more robots and more goods.
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Localization-space trails for robot teams,” IEEE Transactions on
Robotics and Automation, vol. 18, no. 5, pp. 796–812, October 2002.

[6] F. Tang and L. E. Parker, “ASyMTRe: Automated synthesis of multi-
robot task solutions through software reconfiguration,” in Proceedings
of the 2005 IEEE International Conference on Robotics and Automation
(ICRA’05), Barcelona, Spain, April 2005, pp. 1501–1508.
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