
HAL Id: hal-02316392
https://hal.science/hal-02316392

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timely Fine-grained Interference-sensitive Run-time
Adaptation of Time-triggered Schedules

Stefanos Skalistis, Angeliki Kritikakou

To cite this version:
Stefanos Skalistis, Angeliki Kritikakou. Timely Fine-grained Interference-sensitive Run-time Adapta-
tion of Time-triggered Schedules. RTSS 2019 - 40th IEEE Real-Time Systems Symposium, Dec 2019,
Hong Kong, China. pp.1-13. �hal-02316392�

https://hal.science/hal-02316392
https://hal.archives-ouvertes.fr

Timely Fine-grained Interference-sensitive Run-time
Adaptation of Time-triggered Schedules

Stefanos Skalistis
Univ Rennes, Inria, CNRS, IRISA

F-35708 Rennes, France
stefanos.skalistis@inria.fr

Angeliki Kritikakou
Univ Rennes, Inria, CNRS, IRISA

F-35708 Rennes, France
angeliki.kritikakou@irisa.fr

Abstract—In time-critical systems, run-time adaptation is re-
quired to improve the performance of time-triggered execution,
derived based on Worst-Case Execution Time (WCET) of tasks.
By improving performance, the systems can provide higher
Quality-of-Service, in safety-critical systems, or execute other
best-effort applications, in mixed-critical systems. To achieve
this goal, we propose a parallel interference-sensitive run-time
adaptation mechanism that enables a fine-grained synchroni-
sation among cores. Since the run-time adaptation of offline
solutions can potentially violate the timing guarantees, we present
the Response-Time Analysis (RTA) of the proposed mechanism
showing that the system execution is free of timing-anomalies.
The RTA takes into account the timing behavior of the proposed
mechanism and its associated WCET. To support our contribu-
tion, we evaluate the behavior and the scalability of the proposed
approach for different application types and execution configura-
tions on the 8-core Texas Instruments TMS320C6678 platform.
The obtained results show significant performance improvement
compared to state-of-the-art centralized approaches.

Index Terms—Worst-Case Execution Time, Interference-
sensitive, Run-time Adaptation, Time-triggered, Response Time
Analysis, Multi-cores

I. INTRODUCTION

A. Context

The constant growth of processing demand, combined with
the heat dissipation issues of single-core platforms, has led to
platforms consisting of several cores that concurrently execute
a high number of applications. However, the use of such multi-
/many-core platforms in time-critical systems poses several
challenges, such as timing interference, timing composability
and the ”one-out-of-m-cores” problem [1], [2].

Time-critical systems, such as safety-critical and mixed-
criticality systems, have hard real-time applications for which
timing guarantees must be provided, i.e. their worst-case
response time must be less than their respective deadlines. In
multi-core platforms, several resources are shared among the
cores. The concurrent accesses to these resources must be ar-
bitrated, introducing non-deterministic variations to the access
times. This behavior is called timing interference. The amount
of interferences a task may suffer during execution depends
on which tasks are running in parallel and their number of
accesses to shared resources. The tasks running in parallel are
defined by the task scheduling and allocation. To claim timing

This work was partially funded by European Union’s Horizon 2020 research
and innovation program under grant agreement No 688131, project Argo.

v2v0

v3v1Core 1

Core 0

timed0

…

…

(a) Time-triggered execution

v2v0

v3v1Core 1

Core 0

timed0

…

…

(b) Unsafe re-scheduling

Fig. 1: Task execution considering isWCET

guarantees, the Worst-Case Execution Time (WCET) of tasks
must be used during system design. To estimate the WCET
of a task either: i) the worst-case interference is used, i.e. all
accesses of a task to a shared resource are assumed to conflict
with all other cores, and it is valid for any task scheduling and
allocation, or ii) the task scheduling and allocation is known
providing essential information that allows more accurate
estimation of interferences, but this WCET estimation is valid
only for the given task scheduling and allocation solution.
In the first case, the pessimism introduced in the WCET
estimation (by being unaware of the task scheduling and
allocation solution) can potentially negate the performance
benefit coming from the parallel execution of the tasks on
multi-cores [1] or even make the problem infeasible, if the
system becomes unschedulable. In the second case, the known
task scheduling and allocation solution is used to compute
interference-sensitive WCET (isWCET), which are lower than
the pessimistic WCET of the first case [3], [4], [5].

The majority of existing works on task scheduling and al-
location using isWCET (interference-sensitive task scheduling
and allocation), e.g. [6], [7], uses time-triggered execution so
as to guarantee that the task scheduling and allocation solu-
tion remains unchanged during execution. In time-triggered
executions, the tasks are executed exactly at their start times
provided by a solution given by an offline scheduling and
allocation algorithm. For instance, Figure 1a schematically
illustrates the time-triggered execution of the task scheduling
and allocation solution for four tasks v0, v1, v2, v3 that access
a shared resource. The delays, that each task suffers due to the
interference caused by the task running in parallel, are denoted
with the light stripped box.

On top of timing guarantees, the actual run-time perfor-
mance for the majority of time-critical systems is also of
high importance. A performance improvement creates slack
that allows to increase the Quality-of-Service in safety-critical

v2v0

v3v1Core	1

Core	0

time

R1

R0 U0 R2 U2

U1 R3 U3wait

…

…

(a) isRA-GLO

v2v0

v3v1Core	1

Core	0

time

R1

R0 U0 R2 U2

U1 R3 U3

…

…

(b) isRA-FG

Fig. 2: Run-time adaptation through: a) global synchronisation
(isRA-GLO) and b) fine-grained synchronisation (isRA-FG)

systems or to execute other best-effort applications in mixed-
critical systems (at specific time instances or at the end of
execution). For example, in cruise control systems the created
slack can be used to further improve quality of the result
produced by the control law, whereas in satellite systems less
essential functions, such as scientific instrument data collection
can be activated [8]. Therefore, the only means to improve the
system performance, while preserving the timing guarantees,
is through run-time adaptation.

B. Motivation

Run-time adaptation uses the actual execution time (AET)
of tasks to potentially allow earlier start times, thus improving
performance. When run-time adaptation is applied on task
scheduling and allocation solutions derived using the pes-
simistic WCET, no timing anomalies can occur since the pes-
simistic WCET remains valid under any adaptation. However,
this is not the case when run-time adaptation is applied on
interference-sensitive task scheduling and allocation solutions.
If a task is re-scheduled at run-time to an earlier start time,
this action changes the offline task scheduling and allocation
solution used to derive the isWCET. As a consequence, the
interference occurring to the tasks running in parallel may
increase, and thus violate the timing guarantees. For instance,
in Figure 1b, task v1 finishes earlier. Then, a run-time re-
scheduling of v3 can cause additional interferences to v0,
increasing the isWCET of v0, and, thus, violating its deadline.

The work in [9] allows run-time adaptation of interference-
sensitive time-triggered schedules that preserves the timing
guarantees. It inserts extra scheduling dependencies to the task
scheduling and allocation solution to prohibit any additional
task overlapping in case of run-time re-scheduling. In this
way, no increase in the interferences occurs at run-time,
and the isWCET are preserved. The run-time adaptation is
achieved through controllers that monitor the tasks on each
core. Before executing a task vi, the controller checks if the
scheduling dependencies are met, and thus the task is ready
to be executed. In Figure 2a, this corresponds to the ready
phase Ri of the controller of task vi. When the task finishes
execution, the controller updates a status array and notifies the
rest of the controllers that the task has finished its execution.
In Figure 2a, this corresponds to the update phase Ui of the
controller of task vi.

Nevertheless, two assumptions of this technique highly
undermine performance, a limitation that we address with
the proposed approach. Firstly, no protection mechanism is
presented for the status array that is shared among the cores.

The parallel execution of updates and checks of the monitors
of different cores can lead to concurrency issues, i.e. race
conditions creating data inconsistencies. The only mean for
the technique to be safe is to assume a global centralized
synchronisation mechanism, which will be referred as isRA-
GLO henceforth. However, such centralized mechanism exe-
cutes the updates and the checks of the monitors of different
cores sequentially having a negative impact on performance.
Figure 2a illustrates this negative impact for v0 and v2, since
the monitor of Core 1 has to wait (rectangle wait) for the
monitor phases of Core 0 to finish. Secondly, in order to bound
the number occurring updates and checks of the monitors,
a non-polling notification mechanism – such as interrupts –
is assumed, which, however, degrades performance [10]. The
result of these two assumptions is that the Response-Time
Analysis (RTA) of the technique is significantly simplified,
as the number of monitor invocations is upper-bounded and
execution of the monitors is serialized due to the global
centralised synchronisation.

C. Contributions

In this work we propose an interference-sensitive adaptation
approach capable of fine-grained synchronisation (isRA-FG),
that alleviates the above limitations. In particular, this work
extends the state-of-the-art as follows:

• Parallel execution of the control phases on each core,
whenever possible, via fine-grained protection of the shared
variables. The impact is illustrated in Figure 2b, where
the unnecessary blocking (rectangle wait) is eliminated and
the control phases are overlapping. The proposed isRA-FG
improves over isRA-GLO [9] both in terms of i) the WCET
of the controller and ii) run-time performance.

• RTA-based formal proof that execution of time-triggered
schedules with isRA-FG does not introduce additional in-
terference and is free of timing anomalies. The RTA of the
isRA-FG approach, is far more challenging than the one
required for isRA-GLO, since the number of the invocations
of control phases cannot be trivially bounded. With the pro-
posed RTA, we prove that the execution of both interference-
sensitive and contention-free time-triggered schedules pre-
serves offline timing guarantees, under any AET.

• Extensive evaluation of the proposed isRA-FG approach on
a real platform (8-core Texas Instruments TMS320C6678)
with respect to scalability and application parallelism con-
sidering three application types and six application execu-
tion configurations.

From the obtained results, we observed a significant perfor-
mance gain compared with the global synchronisation mech-
anism [9] as the number of cores increases. When a single
application is parallelized and executed on several cores, the
observed gain is on average 1.64%, using only two cores, up to
37.32%, when eight cores are used. When several application
instances are executed on several cores, the observed gain is
on average 1.81%, using only two cores up to 30.46%, when
eight cores are used.

TABLE I: Notation Summary

Tasks & Graph
V , v Task v belonging to task-set V
K, k Core k from set of cores K
EisRA Scheduling dependencies

deg−(v), deg+(v) The indegree and outdegree of task v
pred(v), succ(v) Predecessors/succesors of task v

Time-triggered solution
µ(v) Core allocation µ(v) of task v

β(v), ε(v) Start time β(v) and end time ε(v) of task v
prev(v) Set of tasks notified by the predecessor of v

Response Time & WCET
Rv , Xv , Uv The ready Rv , execute Xv , update Uv phases
R(v), R(Rv), Absolute response time of task v and its phases
R(Xv), R(Uv)

C[S] The WCET of code snippet S
CRv , CUv Controller WCET for the corresponding phase

CTAR , CTAU Timing alignment constants

tvR, tvU , Time instance when the corresponding phase can
execute successfully (all branches are not taken)

The rest of the paper is organized as follows: Section II
presents the system model and necessary notation; Section III
presents the proposed fine-grained run-time adaptation mech-
anism and Section IV provides its response timing analysis.
Section V presents the evaluation of the proposed approach,
whereas Section VI discusses the related work and Section VII
concludes this study.

II. SYSTEM MODEL

Let V denote the set of tasks of an application to be executed
on the set of cores K of the target platform. The input to the
proposed mechanism is a time-triggered schedule that provides
the start/end times of the tasks and their allocation to cores.
Formally, we model a time-triggered schedule for the task-
set V as the tuple (µ, β, ε), where µ(v) denotes the core
allocation, i.e. the core k at which task v is executed, and
β(v), ε(v) are the start and end times of the task, respec-
tively. Such time-triggered schedule can be constructed by a
scheduling algorithm that provides timing guarantees, applied
offline using the isWCET of the task-set V . For reasons of
clarity, we will assume that tasks isWCET does not consider
restrictions on the length of task overlapping or timing of the
interference (see Section VI for further discussion).

The tasks of V can be dependent, or independent, and are
periodically executed in a non-preemptive manner. Since the
proposed approach acts upon the time-triggered schedule, any
limitation stems from the task model and scheduling algorithm
used offline to derive the time-triggered schedule. A time-
triggered schedule is considered safe, iff it satisfies the system-
defined timing constraints, i.e. each task deadline and/or a
global deadline must be met.

Given a safe time-triggered schedule, a set of scheduling
dependencies EisRA exists, s.t. a task v depends on the tasks
{v′} that finished immediately before it on all cores K,

v2v0

v3v1Core	1

Core	0

timeβ(v1)

…

…

Cv1

(a) Time-triggered schedule

v1

v2v0

v3Core	1

Core	0

time

…

…

(b) Scheduling dependencies EisRA

Fig. 3: Construction of EisRA scheduling dependencies, ac-
cording to a given time-triggered schedule

according to β(v), i.e.:

(v, v′) ∈ EisRA ⇐⇒ 6 ∃ v′′ s.t. µ(v) = µ(v′′) ∧
β(v) + Cv < β(v′′) + Cv′′ ≤ β(v′) (1)

where Cv is the isWCET of task v.
Figure 3 illustrates the construction of EisRA given a time-

triggered schedule. Notice that, for any task v in the depen-
dency relation EisRA, the number of incoming edges (denoted
as deg−(v)) and the number of outgoing edges (denoted as
deg+(v)) is upper bounded by the number of cores |K|, i.e.
deg−(v) ≤ |K| and deg+(v) ≤ |K|.

III. FINE-GRAINED isRA (isRA-FG)

To obtain a fine-grained synchronization approach that
removes the performance degradation of global synchroni-
sation approaches, the parallel execution of control phases
of different cores must be allowed, whenever it is possible,
without creating any concurrency issues. To achieve that, we
propose a control mechanism (Algorithm 1) that is executed
independently on each core and for each task. The task
execution is extended with two control phases, namely ready
and update. During the ready phase, the controller waits for
the task to become ready, i.e. all previous tasks have finished
and, thus, its dependencies are met. Then, the task is executed.
When the task finishes, the controller enters in the update
phase, where it notifies all relevant cores that the task has
finished execution. A core k’ is called relevant for any task v
executed on core k, when there exists an outgoing edge from
task v towards a task v’ on core k’. To achieve fine-grained
synchronisation, each core must have its own status vector
(of size |K|). Each bit of the status vector corresponds to a
core. The status vector of each core represents the notifications
received from other cores at any point in time and it must be
updated during execution by all cores.

A. Ready phase

To implement the ready phase, a ready vector (of size |K|) is
required for each task v. Each bit in the ready vector represents
the core k on which the incoming edge of the scheduling
dependencies originates from, i.e.:

readyV ectorv[k] = 1 ⇔ (v′, v) ∈ EisRA ∧µ(v′) = k (2)

where readyV ectorv is the ready vector of task v. The ready
vectors are created offline for each task v, based on the
dependency relation EisRA, and they are not modified during
execution. For instance, in Figure 4a, the ready vector of task

v2v0

v3v1Core 1

Core 0

time

{00} {10}

{11}{00}

(11)

(01) (00)

(00)

status1: 00

status0: 00

(a) Initial state of the system

v2v0

v3v1Core	1

Core	0

time

{00} {10}

{11}{00}

(11)

(01) (00)

(00)

status1:	00

status0:	01

(b) After v0 finishes, the status
of core0 is updated

v2v0

v3v1Core	1

Core	0

time

{00} {10}

{11}{00}

(11)

(00)

(00)

status1:	10

status0:	11

(01)

(c) After v1 finished, core1 noti-
fies core0 which re-schedules v2

v2v0

v3v1Core	1

Core	0

time

{00} {10}

{11}{00} (00)

(00)

status1:	00

status0:	00

(11)

(01)

(d) core1 re-schedules v3

Fig. 4: Example of control phases for four tasks on two
cores. For each task the ready vector is in curly brackets. The
notification vector is in parentheses and is also illustrated with
arrows.

v2 is {11}, since it is has to wait for i) task v1 running on
core 1 and ii) task v0 running on core 0, to finish before
being executed. These dependencies ensure that the number
of interferences will not increase due to an earlier execution
of v2. On the other hand, the ready vector of task v1 is {00},
since no dependency exists from another task.

The functionality of the ready phase of the controller on
core k is described by the lines 2-9 of Algorithm 1. The
controller reads the ready vector of the task v to be executed
next (L. 2), which depicts the dependencies that have to be
met before the execution of the task v. Then, it has to gain
access to the critical section of the status vector through the
protection mechanism related to the core k (L. 4). Once it has
been granted access to its status vector, it checks if all task
dependencies are already met (L. 5). If this is true, the task
v can be executed. For instance, tasks v2 and v3 in Figure 4c
are considered ready, since the corresponding bits of the status
vectors of Core 0 and Core 1 are set and the status vectors
are equal with the ready vectors. Before advancing to the
execution phase, the controller has to reset the bits indicated by
the ready vector of task v in its status (L. 6). This is illustrated
in Figure 4d, where the corresponding bits in the status vectors
are reset and tasks v2 and v3 are executed. In this way, any
already-met dependencies from other cores to subsequent tasks
on core k are preserved. Then, the protection mechanism is
released and the phase finishes. Otherwise, the while loop is
re-executed.

B. Update phase

To implement the update phase, a notification vector (of size
|K|) is required for each task v that describes which cores have
to be informed that the task has finished execution. Each bit
in the notification vector represents the core k to which the
outgoing edge of scheduling dependencies ends, i.e.:

notifyV ectorv[k] = 1 ⇔ (v, v′) ∈ EisRA ∧ µ(v′) = k (3)

Algorithm 1: Fine-grained isRA-FG mechanism on
core k.
Input: Task v, status array of all cores; (status[i][j]:

the j-th status bit of the i-th core)
1 Function isRA-FG (v, status[][]):

/* Ready Phase */
2 readyV ector ← readyV ectorv
3 while true do
4 enterSection(k)
5 if (status[k] & readyV ector) = readyV ector

then
6 status[k]← status[k]⊕ readyV ector
7 exitSection(k)
8 break

9 exitSection(k)

/* Execution Phase */
10 v.execute()

/* Notification Phase */
11 notifyV ector ← notifyV ectorv
12 while notifyV ector 6= 0 do
13 for i← 1 to |K| do
14 if notifyV ector[i] = 1 then
15 enterSection(i)
16 if status[i][k] = 0 then
17 status[i][k]← 1
18 notifyV ector[i]← 0

19 exitSection(i)

where notifyV ectorv is the notify vector of task v. The
notification vectors are created offline for each task v, based
on the dependency relation EisRA, and they are not modified
during execution. For instance, in Figure 4a, the notification
vector of task v1 is (11); when it finishes execution, it has to
notify task v2 running on core 0 (bit 0) and task v3 running
on core 1 (bit 1). Through the notification, the k-th bit in the
status vector of core i is set by core k, when the finished
task of core k has an outgoing edge to a task on core i. For
example, in Figure 4b, the status vector of core 0 is 01, since
task v0 finished execution and notified only core 0.

The lines 11-19 of Algorithm 1 describe the functionality
of the update phase of the controller on core k. After the
task v on core k completes its execution, the controller has to
update the status of all the relevant cores. To do so, it initially
reads the notification vector of v (L. 11). For each core i, it
checks if that core should be notified (by updating its status)
(L. 14). For each such core, the controller tries to gain access
to the critical section through the core’s protection mechanism
(L. 15). If access is granted, the controller verifies if the
previously occurred update of the core k has been already
consumed (L. 16) by core i. If this is true, the k-th bit in the
status of core i is set, indicating that the dependency from core
k has been met. The corresponding bit in the notification vector

is cleared to show that the controller has already updated the
core. For instance, Figure 4b and Figure 4c illustrate this case.
In Figure 4b the controller of Core 0 updates its own bit after
task v0 finishes. In Figure 4c, the controller of Core 1 updates
the corresponding bit in the status of Core 0 after task v1
finishes. The while loop is executed until all cores have been
notified.

C. Concurrency

The proposed isRA-FG allows parallel execution of the
control phases and avoids any potential concurrency issues
that may lead to race conditions and inconsistent data during
execution. Two concurrency issues could potentially exist
during the run-time adaptation:

• During the ready phase the controller of core k tests if
the dependencies of the task v have been met and clears
the corresponding status bits, before starting execution; if
another core updates the status of core k, while core k read
its status, clears the corresponding status bits and writes
back its status, then the write back would have invalid value,
thus resulting in a data inconsistency in the status vector.

• During the execution of some task on core k, if k has already
received a status update from core k′, and core k′ performs
another status update to core k; this can end up in losing
that status update and, eventually, resulting into a deadlock.

Through the proposed fine-grained protection of the shared
variables, the aforementioned concurrency issues cannot oc-
cur.

IV. RESPONSE TIME ANALYSIS

The introduction of the controllers into time critical systems
alters the timing behavior, and thus can potentially violate
the timing guarantees, if the controller cost is not properly
accounted for. To overcome this issue, either additional tasks
are incorporated into the model used to derive the safe time-
triggered schedule, or the WCET of the controller is incorpo-
rated into the WCET of each task (modulo some timing align-
ment). In addition to the WCET of the controller, attention
must be paid to the controller’s accesses to shared variables
among cores (status vectors). If these variables are placed
alongside with the data of the tasks, additional interferences
must be accounted because of the parallel execution of the
controller. To reduce this additional negative effect, the status
vectors should be placed in: i) a separate memory accessed
by a separate bus, when the platform provides such a feature,
or ii) the local memory of each core and accessed through
remote writes [11].

In Algorithm 1, we have divided the controller into three
consecutive phases, namely ready, execute and update, which
are denoted with Rv, Xv and Uv for any task v. Notice that,
while the execution phase Xv has a fixed isWCET (according
to the task being executed), the ready and update phases have
varying isWCET depending on several factors, as shown in
the next paragraphs.

Let, R(Rv), R(Uv) be the absolute1 response time of the
ready/update phases and Cv be the isWCET of task v. Since
the phases are executed sequentially, we consider the absolute
response time of a task v to be when it finishes execution and
the control phase has performed all the status updates, i.e. the
absolute response time of a task v is the same as response
time of its update phase:

R(v) = R(Uv) (4)

For any task v, the absolute response time of the ready phase
depends on: (i) when it will gain access to its critical section,
and (ii) when the task is going to be ready, i.e. all previous
tasks have finished and all updates have been performed. The
WCET of the update phase depends on: (i) when it will gain
access to its critical section, (ii) the number of cores to notify,
and (iii) when previous tasks, which depended on this core,
finish their ready phase (s.t. status[i][k] = 0).

In order to make our response time analysis accurate, we
derive parametric response times R based on the number
of outgoing edges of a task v, according to the scheduling
dependencies EisRA. We denote with C[S] the WCET of the
part of the controller that corresponds to the snippet S, i.e. the
sequence of lines S of Algorithm 1. For example C[12−14,13],
denotes the WCET of executing the iteration of the update
phase, when the branch (in line 14) is not taken. Such WCETs
can be acquired by static analysis or measurements.

A. Ready Phase

Let tvR be the time instance that task v running on core
k becomes ready, i.e. all of its predecessors and their corre-
sponding update phases have finished execution:

tvR = max
v′∈pred(v)

R(v′) (5)

If the controller is invoked precisely at time tvR, then the
response time of the controller for the ready phase is the cost
of executing one iteration of the control-loop plus the waiting
time to gain access to the critical section for core k. The worst-
case cost of executing one iteration is constant and bounded
by C[2−8], whereas the waiting time for gaining access to its
critical section depends on several factors; other cores could
be in the update phase of their tasks, upon which task v did
not depend. For example, consider the deg−(v) predecessors
of task v and let all other |K| − deg−(v) currently running
tasks on other cores to have a dependency to the successor of
task v. It is possible that the |K| − deg−(v) tasks reach the
update phase right at the start of the ready phase of core k.
Hence, the waiting time to gain access to its critical section is
(|K| − deg−(v)) ∗C[15−19]. In addition, when the subsequent
tasks (on the same core) of the deg−(v) tasks are significantly
smaller than the response time of the ready phase R(Rv), it is
possible that they reach the update phase and gain access to the
critical section k, resulting to an additional cost of deg−(v) ∗

1Since time-triggered schedules refer to absolute time, we use the term
absolute response time to refer to the time elapsed from the start of the
execution

C[15−19]. Combining these waiting times, the response time
of R(Rv) is:

R(Rv) ≤ tvR + CRv
+ CTAR (6)

with CRv
= C[2−8] + |K| ∗ C[15−19] (7)

where CTAR is a timing alignment constant analysed in
Section IV-D. Notice that the response time R(Rv) is defined
recursively, as it depends on the maximum response time of
preceding tasks (tvR). This will assist us in proving that under
any AET, the execution will respect the timing guarantees.

B. Execute Phase

Since there are no preemptions during the execution of a
task, the response time for the execution phase of the controller
is given by:

R(Xv) ≤ R(Rv) + Cv (8)

C. Update Phase

Let tvU be the time instance that task v, executed on core k,
has already finished its execution and it can perform the status
updates, i.e. status[k′][k] = 0 for all cores k′ that v has an
outgoing dependency to:

tvU = max

(
max

v′∈prev(v)
(R(Rv′)), R(Xv)

)
(9)

where prev(v) is the set of tasks that previously received a
status update from core k. More formally these are:

prev(v) = succ(v′) s.t. v′ ∈ pred(v) ∧ µ(v′) = µ(v) (10)

Following similar reasoning to the ready phase, the response
time of the controller for the update phase is the cost of
executing one iteration of the control-loop plus the waiting
times to gain access to the required critical sections. The cost
of one loop-iteration is C[11−12]+|K|∗C[13−15,19]+deg

+(v)∗
C[16−18]. The worst-case waiting time to gain access to the
required critical sections is when all cores execute a ready
phase or update phase (whichever is greater) that tries to gain
access to the same critical sections. The number of critical
sections, for task v, is equal to its outdegree deg+(v), whereas
the worst-case waiting time to acquire each critical section is
(|K| − 1) ∗max

(
C[4−7], C[15−19]

)
.

Thus, the response time of the update phase is:

R(Uv) ≤ tvU + CUv + CTAU with (11)
CUv = C[11−12]

+ |K| ∗ C[13−15,19] + deg+(v) ∗ C[16−18]

+ (|K| − 1) ∗ deg+(v) ∗max
(
C[4−7], C[15−19]

) (12)

where CTAU is a timing alignment constant analysed in
Section IV-D.

D. Timing alignment

In the analysis of the update/ready phases, we assumed
that the controller starts precisely at the time when: i) it can
perform its status updates (for the update phase), and ii) the
required status updates have been performed (for the ready
phase). Nevertheless, since the tasks can execute in less time
than their WCET, there is a possibility that the controller
is already inside the control-loop, when some task finishes
execution. Therefore, the timing alignment constants CTAR

and CTAU account for timing delays due to this potential
misalignment for the ready and the update phase, respectively.

For the ready phase, the worst case for CTAR is when the
controller has just released the critical section. This is because
the controller cannot receive a new status update, while it is
already inside the critical section. Therefore, the cost is C[4].
Recall that the waiting time to access the critical section has
been already accounted for in the response time of the ready
phase.

For the update phase, the worst case for CTAU is equal to
the execution of one iteration of the for-loop without taking
the branch at line 16, i.e. |K| ∗C[13−16,19]. This time delay is
sufficient because: i) the waiting times to gain access to the
required critical sections have already been accounted for in
the response time of the update phase, and ii) the branch is
considered to be taken once, which has also been accounted
for in the response time of the update phase. Thus, the timing
alignment constants are:

CTAR = C[4] (13)
CTAU = |K| ∗ C[13−16,19] (14)

E. Safety

Having established the WCET and the response time of
the phases of the controller, we have to prove that, if these
costs are added upfront to the isWCET of tasks, the timing
guarantees of any time-triggered schedule are not violated
under any reduction of execution times, i.e. R(v) ≤ ε(v) for
all tasks v.

Let CRv
, CUv denote the WCET of the ready/update phases

and CTAR , CTAU the timing alignment constants, as they were
analysed in the previous sections. Assume a safe solution
(µ, β, ε), derived by a safe scheduling algorithm, such that
it includes the controller WCETs in the isWCET of each task:

ε(v)− β(v) ≥ CRv
+ CTAR + Cv + CUv + CTAU (15)

Before we prove the safety of the approach, we first need
to establish a property regarding the tasks that previously
received a status update from core k and the start time of
the current task of core k.

Property 1. For any given task v running on core k, the
tasks {v′} that received a status update from core k (i.e.
v′ ∈ prev(v)) have finished their ready phase before the worst-
case start time of the update phase of task v, if all preceding

vvpred
v'

Core	1
Core	0

.	.	.	

.	.	.	
.	.	.	
.	.	.	

(a) Trivial case vpred = v′pred.

v’pred
vvpred

v'
Core	1
Core	0

.	.	.	

.	.	.	
.	.	.	
.	.	.	

(b) Normal case ε(v′pred) −
ε(vpred) ≤ Cv

v’pred
vvpred

v'
Core	1
Core	0

.	.	.	

.	.	.	
.	.	.	
.	.	.	

(c) Contradicting case ε(v′pred)−
ε(vpred) > Cv

Fig. 5: Possible arrangements of task v and v′ ∈ prev(v).

tasks v′′pred(v′) have finished at most at their worst-case end
time ε(v”), i.e. R(v′′) ≤ ε(v′′). That is:

R(Rv′) ≤ ε(v)− (CUv + CTAU) ∀v′ ∈ prev(v) (16)

Proof. Since the WCET cost of the ready phase is constant, it
is sufficient to show that this holds for task vp with the latest
start time, i.e. vp = arg max

v′∈prev(v)
β(v′)

R(Rvp) ≤ ε(v)− (CUv + CTAU)
(15)
==⇒ (17)

R(Rvp) ≤ β(v) + CRv
+ CTAR + Cv

(6),(5)
====⇒ (18)

max
v′∈pred(vp)

R(v′) + CRvp
+ CTAR ≤

β(v) + CRv + CTAR + Cv
(19)

CRvp
=CRv

=======⇒ max
v′∈pred(vp)

R(v′) ≤ β(v) + Cv (20)

Let vpred be the predecessor of v that finishes the latest among
its predecessors, thus β(v) = ε(vpred). Also, let v′pred be the
predecessor of vp that finishes the latest among its predecessor,
i.e. max

v′∈pred(vp)
R(v′) ≤ ε(v′pred). Therefore is suffices to show:

ε(v′pred) ≤ ε(vpred) + Cv (21)

This trivially holds, when vpred = v′pred (Figure 5a). Assume
that it does not hold for vpred 6= v′pred, i.e. ε(v′pred) −
ε(vpred) > Cv . In that case, according to the definition of
EisRA (Equation 1) there would exist a dependency between
v and v′ (Figure 5c), which is a contradiction, since v′ ∈
prev(v).

Theorem IV.1. For any safe scheduling solution, derived by
adding the controller costs (CRv , CUv , CTAR , CTAU) to the
isWCET (Cv) of the tasks V , the isRA-FG execution is safe
under any AET.

Proof. Since the isWCET is not increased due to enforcement
of the EisRA, it is sufficient to show that the response time of
all the tasks is not greater than their end time:

R(v) ≤ ε(v) (22)

We prove it by induction on the dependency relation EisRA.
Base Case: For tasks v with no predecessors (pred(v) =
prev(v) = ∅, β(v) = 0) from Eq. 4 and 11 we establish:

R(v) ≤ tvU + CUv + CTAU

(9)
=⇒ (23)

R(v) ≤ max

(
max

v′∈prev(v)
R(Rv′), R(Xv)

)
+ CUv + CTAU

(24)

Since prev(v) = ∅, the first term of the max predicate is zero;
according to Eq. 8 we have:

R(v) ≤ max (0, R(Rv) + Cv) + CUv + CTAU =⇒ (25)

R(v) ≤ R(Rv) + Cv + CUv + CTAU

(5),(6)
====⇒ (26)

R(v) ≤ max
v′∈pred(v)

R(v′) + CRv
+CTAR+

Cv + CUv + CTAU

(27)

With pred(v) = ∅ we conclude that:

R(v) ≤ 0 + CRv
+ CTAR + Cv + CUv + CTAU

(15)
==⇒ (28)

R(v) ≤ ε(v)− β(v) β(v)=0
====⇒ R(v) ≤ ε(v) (29)

Induction step: Suppose that (22) holds for all predecessors
of task v. Starting from equation (24), it is sufficient to show
that for both terms of the max predicate the inequality holds.
For the second term, the proof follows the same steps as in
the base case, reaching the induction hypothesis. Thus, for the
first term:

R(v) ≤ max
v′∈prev(v)

(R(Rv′)) + CUv + CTAU ≤ ε(v) (30)

which holds due to Property 1, therefore, concluding the proof.

Lemma IV.2. Execution of time-triggered schedules with
isRA-FG is free from timing-anomalies and it does not in-
crease task interference.

Proof. Trivially from Theorem IV.1.

We have therefore established that isRA-FG is timely safe,
and safe-guards against additional task interference. In ad-
dition to these properties, the execution is work-conserving,
w.r.t. EisRA, which improves run-time performance, as shown
in section V.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

Platform: We implemented the proposed approach and
performed evaluation experiments on a real multi-core COTS
platform, i.e. the TMS320C6678 chip (TMS in short) of
Texas Instrument [12]. The characteristics of the platform
are depicted in Table II. In our experimental framework, the
proposed isRA-FG mechanism is implemented as a bare-metal
library with the low-level functions for the various controller
phases using the hardware semaphores of the TMS platform.
The isRA-FG implemented through semaphores is applicable
to any platform, since semaphores are a fundamental building
block in systems, while in the rare case there is no hardware
support, they can be implemented in software. However, the

TABLE II: TMS platform characteristics.

DSP Instr/cycle Freq. L1P L1D L2
char/stics 8 1 GHz 32 KB 32 KB 512 KB
No. DSPs 8 NoC TeraNet (Delay: 11 cycles)
Shared L3 4 MB SRAM DDR3 512 MB Sem. 32 cycles

DCT MERGE FFT
C0

CM

…

…

…

… …

…

…

…

Fig. 6: Shape of parallelism of each benchmark (cores C0
through CM)

proposed isRA-FG approach can be implemented by other
protection mechanisms.

Benchmarks and execution configurations: To experi-
mentally evaluate our isRA-FG approach, we have conducted
experiments using three different types of applications with
respect to the number of tasks and shape of parallelism
and which are taken from the StreamIT benchmarks [13]: i)
Discrete Cosine Transformation (DCT) with few data depen-
dencies allowing high parallelism, ii) Mergesort (MERGE)
with a larger number of data dependencies reducing the
available parallelism, and iii) Fast Fourier Transformation
(FFT) with a significant number of data dependencies further
reducing the amount of exploitable parallelism. To enable the
parallelisation of the benchmarks, each benchmark has been
divided into a number of tasks with their corresponding data
dependencies (Table III). Figure 6 schematically depicts the
shape of parallelism, where each box corresponds to a task of
the benchmark and the arrows correspond to the dependencies
EisRA among cores.

To explore in details the behavior of the proposed approach,
we have generated a number different execution configurations
by varying the number of cores used and the number of parallel
instances of each application:

• 1x2, 1x4, 1x8 configurations: we explore the parallel execu-
tion of a single application instance using 2, 4 and 8 cores,
respectively.

• 2x2, 4x4, 8x8 configurations: we explore the execution of
two application instances executed on two cores, four appli-
cation instances executed on four cores and eight application
instances executed on eight cores.

In addition, we explore whether the parallel execution of
one application instance several times or the execution of
several application instances on different cores provides better
performance.
WCET acquisition: Since no existing static WCET analysis
tool supports our platform, we applied a measurement-based
approach to acquire the WCET of each task of the applications
in isolation, i.e. when the task is executed alone on one core
of the TMS platform. To perform our measurements on the
real platform we compiled each application with -O0, i.e.

no optimizations, disabled the data-caches and used the local
timer of the core that executes the task, as per standard prac-
tice. To increase the reliability of the measurements, we have
repeated our experiments more than 50 times and maintained
the maximum observed value for the WCET. The Worst-
Case Resource Accesses (WCRA) of each task was manually
extracted from the produced binary of each application. These
values were used to produce the near-optimal solutions offline.
A summary of these values can be found in Table III. In
addition, Table IV depicts the corresponding WCET values
for the controller.
Compilation and data-placement: During execution, the
compiler optimization flag is also set to -O0 and data-caches
are disabled, in order to avoid claiming their performance
benefits as benefits of isRA-FG. The controller and timing data
are placed on the on-chip Multicore Shared SRAM Memory
(MSM), while application data are placed in the off-chip main
memory (DDR3), thus ensuring that the isRA-FG does not
interfere with the task’s execution.
Evaluation criteria: The evaluation goals in this study are
multiple: (i) scalability of the method, as the number of cores
increases, (ii) performance impact with respect to the shape
of parallelism of the application, and (iii) performance impact
of sequential and parallel execution of the same application.
For all execution configurations the method for isWCET
scheduling [14] was used to generate the offline solution.
This offline isWCET solution is used as an input to our
evaluation. The makespan of the isRA-FG is compared with
the makespan given by (i) the global synchronisation approach
(isRA-GLO), (ii) the time-triggered execution (isTT), where
the isWCET computed offline is extended with the cost of the
time-triggered mechanism for each task. The time-triggered
mechanism cost is computed 270 cycles, since 70 cycles is
required to write a control register and at least 200 cycles for
serving an interrupt handling routine [15]. Each experiment
has been executed ten consecutive iterations. The depicted
makespan of a core is the average makespan observed for
that core during these ten iterations. During the execution of
all experiments, we observed no timing violations using the
isRA-FG according to the offline solution.

B. Parallel execution of single application

Figures 7, 8 and 9 compare the makespan of each core
in millions of cycles given by the proposed approach isRA-
FG, the global run-time approach isRA-GLO and the time-
triggered approach is-TT for the three applications, when a
single instance is executed in parallel on a varying number of
cores (configurations 1x2, 1x4 and 1x8). The first and foremost
observation from the experiments is that the isRA-FG brings
significant performance gains compared to the global run-time
approach.

For the fully parallelizable DCT application, the makespan
given by isRA-FG is similar for all cores for the same
configuration. Since DCT is fully parallelisable and the tasks
are symmetrical (in code and WCET), the makespan propor-
tionally decreases with the number of cores used. When four

TABLE III: Benchmarks characteristics

Number tasks Sequential Total
Exec. 2x2, 4x4, 8x8 1x2 1x4 1x8 WCET WCRA
Core C0-7 C0 C1 C0 C1 C2-3 C0 C1 C2 C3 C4-5 C6-7 (cycles)
DCT 32 16 16 8 8 8 4 4 4 4 4 4 981,120 69,808

MERGE 47 23 24 13 12 11 8 7 6 6 5 5 669,026 55,415
FFT 47 26 21 15 12 10 11 9 7 6 4 3 275,891 41,981

TABLE IV: Control phases WCET

isRA-FG WCET isRA-GLO WCET
Fixed Cost Cost/Edge Fixed Cost

CRv 355 + 251*|K| - 251*|K|2
CUv 169 +131*|K| 89+213*(|K|-1) 344*|K|2
CTAR 81 - -
CTAU 178*|K| - -

cores are used instead of two, the application makespan (which
is given by the makespan of Core 0 –denoted C0– since the last
task of the application is executed on that core) decreases by
23.18%. When eight cores are used, the application makespan
decreases by 69.04% (compared to 2 cores) and by 59.70%
(compared to 4 cores). The application makespan of isRA-
GLO is higher and the makespan reduction, as the number
of cores increases, is less, i.e. 13.98% when 4 cores are used
instead of 2, 50.17% when 8 cores are used instead of 2 cores
and 42.07% when 8 cores are used instead of 4 cores. Similar
is the behavior of the DCT application for the rest of the cores
since the tasks of the benchmark are symmetrical.

Fig. 7: Per core makespan for DCT: 1x2, 1x4 and 1x8
configurations.

For the partially parallelisable MERGE application, when
four cores are used instead of two, the application makespan
given by isRA-FG decreases by 30.22%. When eight cores
are used, the application makespan decreases by 40.71%
(compared to 2 cores) and by 20.76% (compared to 4 cores).
Similar as before, the makespan reduction of isRA-GLO as the
number of cores increases is less, i.e. 25.63% when 4 cores
are used instead of 2, 20.62% when 8 cores are used instead of
2 cores and 4.02% when 8 cores are used instead of 4 cores.
Due to the triangular shape of the application’s parallelism
(Figure 6) the reduction on the remaining cores is higher. For
core 1, we observe 42.04% (from 2-to-4 cores), 61.22% (from

2-to-8 cores) and 33.09% (from 4-to-8 cores) for the isRA-FG
approach. These values are compared to 35.23% (from 2-to-4
cores), 41.69% (from 2-to-8 cores) and 9.97% (from 4-to-8
cores) achieved by isRA-GLO approach. For core 2 and 3, we
observe 48.89% (from 4-to-8 cores) for the isRA-FG approach
compared to 13.92% achieved by isRA-GLO approach.

Fig. 8: Per core makespan for MERGE: 1x2, 1x4 and 1x8
configurations.

For the low parallelisable FFT application, when four cores
are used the makespan of the application achieved by the isRA-
FG approach is increased by 6.32% comparing to the 1x2
configuration. When eight cores are used, the makespan is
decreased by 11.21% comparing to the 1x2 configuration and
by 16.49% comparing to the 1x4 configuration. The isRA-
GLO approach increases always the makespan by: 13.00%
(from 2-to-4 cores), 13.54% (from 2-to-8 cores) and 0.49%
(from 4-to-8 cores). Due to the triangular symmetric shape
of the application’s parallelism (Figure 6) the impact of the
isRA-FG approach on the makespan of the remaining cores
is higher. For core 1, we observe 13.66% increase (from 2-
to-4 cores), 3.66% decrease (from 2-to-8 cores) and 15.24%
decrease (from 4-to-8 cores) for the isRA-FG. The isRA-GLO
approach increases by 30.04% (from 2-to-4 cores), whereas
there is almost no affect when we transition from 2-to-8 cores
and from 4-to-8 cores. For core 2 and 3, we observe 22.15%
decrease in the makespan when we transition from 4 cores to 8
cores for the isRA-FG approach compared to 1.48% makespan
reduction achieved by isRA-GLO approach.

To compare the gains of the proposed isRA-FG ap-
proach with respect to the isRA-GLO approach, i.e.
(isRA−GLO)−(isRA−FG)

(isRA−GLO) , we depict in Figure 10 the minimum,
average and maximum gains observed, for all the cores of
each configuration. From the obtained results, we observe
that for all the single-instance parallel configurations of the
benchmarks, the isRA-FG approach achieves performance

Fig. 9: Per core makespan for FFT: 1x2, 1x4 and 1x8 config-
urations.

improvements compared to the isRA-GLO approach. The
gains of the isRA-FG approach are increased with increasing
number of cores, as it is observed for all the applications. The
minimum gain is observed when the application is parallelized
using only 2 cores. This is expected as the negative impact,
due to the sequential execution of the control phases in isRA-
GLO, is small, since only two cores are involved. We also
observe that as the number of cores increases, the range of the
minimum gain and the maximum gain is also increased. This
occurs due to the lower number of interferences accounted
during the offline task scheduling for the 1x2 configuration
than for the 1x8 configuration. In addition, the highest range
of the makespan gain is observed for the MERGE application
due to the triangular shape of the application parallelism.

Fig. 10: Performance gain of 1x2, 1x4 and 1x8 configurations
compared with the isRA-GLO approach

To summarize, significant performance gains are observed
compared to the global run-time approach even for asymmetric
and low parallelizable applications.

C. Sequential execution of applications

In these experiments, we execute several instances of the
same application on different cores. Each core runs sequen-
tially one instance of the application. Since the makespan of
the cores is similar, Figure 11 depicts the average makespan

among all iterations and all cores of the TMS for each config-
uration. We observe that for all benchmarks, as the number of
application instances increases, the makespan of the applica-
tion is also increased. This occurs due to the increasing number
of interferences occurring during the parallel execution. For
the time-triggered execution and the global run-time approach
the increase in the makespan is significant compared to the
proposed isRA-FG. For the DCT application, the increase
in the makespan of isRA-FG from 2x2 configuration to 8x8
configuration is very low (7.34%) compared to the global
approach (38.53%) leading to 80.94% less makespan increase.
For the MERGE application, the increase in the makespan
of isRA-FG from 2x2 configuration to 8x8 configuration is
69.20% compared to the 137.79% of the global approach
leading to 49.78% less makespan increase. For the FFT
application, the increase in the makespan of isRA-FG from
2x2 configuration to 8x8 configuration is 84.30% compared
to the 187.63% of the global approach leading to 55.07% less
makespan increase.

Fig. 11: Average makespan: 2x2, 4x4 and 8x8 configurations.

Similar to the previous section, Figure 12 compares the
gains of the proposed isRA-FG approach with respect to the
isRA-GLO approach. For all the configurations the isRA-FG
approach achieves performance improvements compared to
the isRA-GLO approach. The gains of the isRA-FG approach
are increased with increasing the number of cores for all the
applications. The minimum gain is observed when only 2 cores
are used. However, compared to the parallel execution of a
single application instance, the range of the minimum gain
and the maximum gain is smaller and less affected by the
number of used cores. This behavior is explained by the high
probability of running the same tasks in parallel due to the
parallel execution of several sequential instances of the same
application.

D. Parallel Vs. Sequential execution

Figure 13 compares the makespan of core 0 (C0) of the
proposed isRA-FG approach when i) we execute eight it-
erations of the parallelized application on 8 cores (8*(1x8)

Fig. 12: Performance gain of 2x2, 4x4 and 8x8 configurations
compared with the isRA-GLO approach

configuration) and 2) we execute eight sequential instances
of the same application on the cores (8x8 configuration).
We generally observe that executing sequentially multiple in-
stances of the same applications isRA-FG has lower makespan
compared to their equivalent parallelised version. For the
FFT and MERGE applications, we observe that the offline
time-triggered makespan is different in the parallel execution
(8*(1x8) configuration) and in the sequential execution (8x8
configuration). For the FFT application, the time-triggered
sequential execution is smaller than the parallel execution
by 54.54%. For the MERGE application, the time-triggered
makespan of the sequential execution is smaller than the
parallel one by 31.46%. This is due to the fact that in the
parallel execution the tasks concurrently executed on the cores
are of different type and have different number of interferences
leading to an increased isWCET. On the other hand, in the
sequential execution, tasks of the same type are running on
the cores, and thus the interferences used for the computation
of the isWCET are only the ones defined by the running
tasks. However, this is not the case for the DCT application
since the tasks are symmetrical and have similar number of
interferences. For a similar reason, but now due to the number
of interferences occurring during execution, we observe that
the isRA-FG applied on the sequential execution achieves
lower makespan than the makespan of the isRA-FG applied on
the parallel execution. More precisely, for the FFT we observe
56.42%, for MERGE we observe 32.27% and for DCT we
observe 14.41% lower makespan for the sequential execution
compared to the parallel execution.

VI. RELATED WORK

The run-time mechanisms used for time critical systems on
multi-cores can be categorized based on whether: i) only time-
critical tasks are considered or best-effort tasks are also con-
sidered , and ii) the WCET used is pessimistic or interference-
sensitive. A detailed survey on real-time systems is available
in [16].

The run-time mechanisms considering only time-critical
tasks must guarantee the timely execution of the complete

Fig. 13: Makespan comparison of sequential execution (8x8)
and eight executions of the parallel execution (8*(1x8))

task set. The mechanisms that consider the pessimistic WCET
can start the execution of a new task as soon as a task
finishes earlier than its pessimistic WCET. Typical examples of
such approaches come from scheduling theory, e.g. [17], [18].
However, the use of pessimistic WCET over-approximates the
interferences having a negative impact in performance and in
schedulability. To tackle with over-approximated WCETs due
to interferences, several approaches incorporate interference
analysis and provide interference-sensitive WCETs, e.g. [19],
[20], [4], [5], [6]. In general, these approaches result in
improved timing guarantees, compared to over-approximated
WCETs, as they provide a context-dependent upper-bound of
the interferences for a particular schedule. To improve the
provided upper-bounds, some approaches take into account the
length of task overlapping, e.g. [5], or the precise timing of the
requests, e.g. [21], or even provide contention-free schedules,
e.g. [7]; a detailed survey of such approaches can be found
in [22]. Regarding approaches that consider the length of task
overlapping, isRA-FG can be directly applied by inserting
checkpoints where the overlap occurs. Hence, each task is
split into sub-tasks, where the isRA-FG is applied. However,
the additional overhead compared to the added benefit has
to be further explored. For approaches that provide isWCETs
based on the precise timing of the requests, isRA-FG could be
applied if the induced delays by the underlying hardware are
no larger that the time offset of each request. Contention-free
schedules, which do rely on precise timing of the requests,
can be safely executed with isRA-FG. To further reduce the
impact of the inherent pessimism in any kind of WCET
estimations, several run-time mechanisms have been proposed,
e.g. [15], [9]. In [9], the authors provide a run-time approach
suitable for interference-sensitive WCET estimation. However,
a single global synchronization mechanism is considered that
serializes the run-time mechanism having a negative impact
in performance. In contrast, the proposed isRA-FG approach
provides a fine-grained synchronisation mechanism allowing
the parallel execution of the core control phases.

The run-time mechanisms considering both time-critical
and best-effort tasks assume that time-critical tasks can be
timely executed, when they run alone (in isolation). Then,
they take run-time decisions for the execution of the best-
effort tasks, so as to still guarantee the timely execution
of the time-critical tasks. Several of those approaches allow
the concurrent execution of both time-critical tasks and best-
effort tasks. The majority usually uses different confidence
levels in the computation of the WCET, called criticality
levels. The higher the criticality level, the larger and safer
the WCETs [23]. At run-time, it is observed if the tasks have
signaled termination at the pre-defined position given by the
value of the low criticality WCET. If no signal termination has
been received, the system switches to the higher criticality
mode. Other approaches compute at run-time the remaining
WCET, when the time-critical tasks run in isolation [24],
[25]. The concurrent execution of time-critical and best-effort
tasks is allowed, as long as the time-critical tasks can still
finish their execution, if the best-effort tasks are paused. Other
mechanisms allow to run the best-effort tasks only after the
termination of the time-critical tasks. For instance, in [26]
time critical and best effort tasks are scheduled. When a
core finishes its execution before the estimated WCET of a
time critical tasks, this slack is reallocated to a best effort
task. Other approaches compute interference-sensitive WCETs
based on a preliminary analysis of the resource usage of tasks.
The shared resources are off-line partitioned among tasks. A
monitor observes at run-time the task resource usages and
suspends the task that overtakes the allocated capacity [27].
A similar work is presented in [28] where dynamic changes
in the resource partitioning are allowed, when resources are
underutilized. In [29], memory accesses are prioritized for
time-critical tasks and a controller regulates the accesses
to the shared memory whenever possible for the best-effort
tasks. The proposed isRA-FG approach is orthogonal to the
aforementioned works, since it focuses on providing timing
guarantees for the time-critical tasks.

Another category of approaches that are related to our work
are non-blocking synchronisation protocols, which provide
synchronisation among tasks without the need of protection
mechanism; we review them in terms of their impact in the
WCET of the controller. In general, these are subdivided into
obstruction-free [30], lock-free and wait-free [31]. Obstruction-
free and lock-free approaches, do not impose any fairness, thus
may suffer from starvation, resulting in unbounded WCET
of the controller. Although wait-free algorithms must finish
within finite number of steps, the upper-bound (if exists)
is over-approximated, thus inflating the controller’s WCET.
However, incorporating a controller requires that its WCET
is known and as tight as possible. Such tight bounds are
achieved in protection mechanisms through ordering, e.g.
FIFO semaphores, which isRA-FG uses.

VII. CONCLUSION

In this work, we propose the fine-grained interference-
sensitive run-time adaptation technique isRA-FG that allevi-

ates the limitations of the existing isRA, since it allows the
parallel execution of the core control phases, whenever this
is possible. We have presented the corresponding Response
Time Analysis for our technique and have formally argued
regarding its safety, under any possible execution. Our ex-
perimental evaluation indicates that the isRA-FG is scalable
with the number of cores and outperforms the global run-time
approach. For the parallel execution configurations, it provides
an average performance gain of 1.64% for two cores, 10.54%
for four cores and 37.32% for eight cores. For the sequential
execution configurations, it provides an average performance
gain of 1.81% when two cores are used, 7.15% when four
cores are used and 30.46% when eight cores are used. Finally,
we have shown that executing sequentially multiple instances
of a benchmark yields better makespan compared to their
equivalent parallelised version.

As future work, we will enhance the proposed fine-grained
mechanism with dynamic capabilities during execution so as
to further improve the performance. In addition, we will extend
and evaluate our approach by exploiting the placement of the
data in different levels of the memory hierarchy.

REFERENCES

[1] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J. H. Anderson, and F. D.
Smith, “Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning,” in Real-Time
and Embedded Technology and Applications Symposium (RTAS). IEEE,
2016, pp. 1–12.

[2] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al., “The
worst-case execution-time problem—overview of methods and survey
of tools,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 7, no. 3, p. 36, 2008.

[3] J. Nowotsch, “Interference-sensitive worst-case execution time analysis
for multi-core processors,” Ph.D. dissertation, 2014.

[4] S. Skalistis and A. Simalatsar, “Worst-case execution time analysis
for many-core architectures with NoC,” in International Conference on
Formal Modeling and Analysis of Timed Systems (FORMATS). Springer,
2016, pp. 211–227.

[5] H. Rihani, M. Moy, C. Maiza, R. I. Davis, and S. Altmeyer,
“Response time analysis of synchronous data flow programs on
a many-core processor,” in Proceedings of the 24th International
Conference on Real-Time Networks and Systems, ser. RTNS ’16.
New York, NY, USA: ACM, 2016, pp. 67–76. [Online]. Available:
http://doi.acm.org/10.1145/2997465.2997472

[6] B. Rouxel, S. Derrien, and I. Puaut, “Tightening contention delays
while scheduling parallel applications on multi-core architectures,” ACM
Trans. Embed. Comput. Syst. (TECS), vol. 16, no. 5s, pp. 164:1–164:20,
Sep. 2017.

[7] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding communication
delays in contention-free execution for spm-based multi-core architec-
tures,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[8] A. Esper, G. Nelissen, V. Nélis, and E. Tovar, “An industrial view on the
common academic understanding of mixed-criticality systems,” Real-
Time Systems, vol. 54, no. 3, pp. 745–795, 2018.

[9] S. Skalistis, F. Angiolini, A. Simalatsar, and G. De Micheli, “Safe and
efficient deployment of data-parallelizable applications on many-core
platforms: Theory and practice,” IEEE Design & Test, vol. 35, no. 4,
pp. 7–15, 2018.

[10] T. David, R. Guerraoui, and V. Trigonakis, “Everything you always
wanted to know about synchronization but were afraid to ask,” in ACM
SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,
Farmington, PA, USA, November 3-6, 2013, 2013, pp. 33–48.

[11] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
April 2018, pp. 240–250.

[12] Texas Instruments, “TMS320C6678 Multicore fixed and floating-point
digital signal processor,” TI, Tech. Rep. SPRS691D, 2013.

[13] W. Thies and S. Amarasinghe, “An empirical characterization of stream
programs and its implications for language and compiler design,” in
International Conference on Parallel Architectures and Compilation
Techniques (PACT). ACM, 2010, pp. 365–376.

[14] S. Skalistis and A. Simalatsar, “Near-optimal deployment of dataflow
applications on many-core platforms with real-time guarantees,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2017, pp. 752–757.

[15] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez, “Distributed run-time wcet controller for concurrent
critical tasks in mixed-critical systems,” in International Conference on
Real-Time Networks and Systems (RTNS). ACM, 2014, pp. 139:139–
139:148.

[16] A. Burns and R. I. Davis, “A survey of research into mixed criticality
systems,” ACM Comput. Surv. (CSUR), vol. 50, no. 6, pp. 82:1–82:37,
2018.

[17] M. Bertogna, “Real-time scheduling analysis for multiprocessor plat-
forms,” Ph.D. dissertation, 2008.

[18] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv. (CSUR), vol. 43, no. 4,
p. 35, 2011.

[19] S. Altmeyer, R. I. Davis, L. Indrusiak, C. Maiza, V. Nelis, and J. Reineke,
“A generic and compositional framework for multicore response time
analysis,” in Proceedings of the 23rd International Conference on Real
Time and Networks Systems. ACM, 2015, pp. 129–138.

[20] M. Jacobs, S. Hahn, and S. Hack, “Wcet analysis for multi-core
processors with shared buses and event-driven bus arbitration,” in
Proceedings of the 23rd International Conference on Real Time and
Networks Systems. ACM, 2015, pp. 193–202.

[21] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for TDMA
arbitration in resource sharing systems,” in 2010 16th IEEE Real-Time
and Embedded Technology and Applications Symposium. IEEE, 2010,
pp. 215–224.

[22] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A survey of timing verification techniques for multi-core real-
time systems,” ACM Computing Surveys (CSUR), vol. 52, no. 3, p. 56,
2019.

[23] A. Burns and S. K. Baruah, “Timing faults and mixed criticality
systems,” in Dependable and Historic Computing, ser. Lecture Notes
in Computer Science, C. Jones and J. Lloyd, Eds., vol. 6875. Springer
Berlin Heidelberg, 2011, pp. 147–166.

[24] A. Kritikakou, C. Rochange, M. Faugère, C. Pagetti, M. Roy, S. Girbal,
and D. G. Pérez, “Distributed run-time WCET controller for concurrent
critical tasks in mixed-critical systems,” in International Conference on
Real-Time Networks and Systems (RTNS). ACM, 2014, p. 139.

[25] A. Kritikakou, T. Marty, and M. Roy, “DYNASCORE: dynamic software
controller to increase resource utilization in mixed-critical systems,”
ACM Trans. Design Autom. Electr. Syst. (TODAES), vol. 23, no. 2, pp.
13:1–13:26, 2018.

[26] B. B. Brandenburg and J. H. Anderson, “Integrating hard/soft real-time
tasks and best-effort jobs on multiprocessors,” in Euromicro Conference
on Real-Time Systems (ECRTS). IEEE, 2007, pp. 61–70.

[27] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt, “Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement,” University of Augsburg, Ger-
many, Tech. Rep. 2013-10, 2013.

[28] J. Nowotsch and M. Paulitsch, “Quality of service capabilities for
hard real-time applications on multi-core processors,” in International
Conference on Real-Time Networks and Systems (RTNS). ACM, 2013,
pp. 151–160.

[29] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013, pp. 55–64.

[30] M. Herlihy, V. Luchangco, and M. Moir, “Obstruction-free synchro-
nization: Double-ended queues as an example,” in 23rd International
Conference on Distributed Computing Systems, 2003. Proceedings.
IEEE, 2003, pp. 522–529.

[31] M. Herlihy, “Wait-free synchronization,” ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), vol. 13, no. 1, pp. 124–
149, 1991.

