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Measurements Clustering for Robustness
Improvement of Indoor WLAN Propagation Models

R. Tahri, V. Guillet and P. Pajusco
France Telecom, 6 Avenue des usines, Technopdle, 90000 Belfort

Abstract - For indoor Wireless Local Area Networks
(WLAN:S5) planning, an accurate propagation modelling is
required. Semi-empirical models represent an efficient
approach to the indoor coverage prediction. Their
parameters are estimated from measurement results. In
the case named ill-conditioned, the Least Square (LS)
regression leads to a bad estimation of the model
parameters and thus to a numerical instability. In this
paper, we present an approach based on the K-means
clustering method which allows us to increase the
estimation stability. Clustering is used to select the
measurement points locations in a strategic way for
having a robust estimation.

Index Terms — K-means, Radio Channel Modelling,
Indoor Propagation, WLAN.

I. INTRODUCTION

Over the last few years, the market for wireless service has
grown at an unprecedented rate. The commercial success
achieved by the introduction of cellular mobile radio phones
has generated strong interest in the development of other
wireless communications systems.

This development is being driven primarily by the
transformation of what has been largely a medium for
supporting voice telephony into a medium for supporting
other services, such as the transmission of video, images, text,
and data. Thus, the demand for new wireless capacity is
growing. WLANSs based on IEEE 802.11 popularly known as
WiFi provide mobility and flexibility to users and data
transmission theoretically up to 54 Mbps.

WLANS operate mainly in indoor environments. One of the
most important characteristics of the radio waves propagation
is their path loss. An accurate estimation of the propagation
losses provides a good basis for a proper selection of the
access points (APs) locations and a proper assignment of the
radio frequencies. By knowing propagation losses, one can
efficiently determine the field signal strength, signal-to-noise
ratio (SNR), carrier-to-interference (C/I) ratio, etc.

However it is very difficult to predict how a radio wave
travels in indoor. Generally we do not have any accurate
information about the building materials and the furniture,
their electromagnic properties are not a priori known. So there

is a need for developing a propagation model to predict
indoor radio coverage more accurately.

An accurate prediction of the field strength level is a very
complex and difficult task. Up to now, various field strength
prediction methods have been proposed in the literature [5].
Due to their simplicity, their computational efficiency, and
their reliability, semi-empirical models are applied for
WLAN indoor coverage predictions. They proved good
performances with optimised estimated parameters. Taking
into account the indoor environments diversity, such
estimation requires the undertaking of extensive
measurements campains for each studied environment.
However, this is not always possible because of the high cost
of the required experiments..

The multiple regression method is usually used in the least
square (LS) sense to estimate the model parameters. One of
the sever limitations of this approach is that it can suffer
from the problem of collinearity [1,2]. Collinear
measurement points lead to numerical instability in the
model parameters estimation.

It is therefore necessary to define a process to estimate the
model parameters using a limited number of measurement
points overcoming the LS regression instability.

We explain in this paper how the use of the K-means
clustering method allows selecting only a few measurement
points' locations for having a robust estimation.

The paper is organised as follows. Section II provides the
context of the study; it provides the formulation and the
definition of all the coefficients which will be used in our
statistical study. Section III shows the principle of the K-
means clustering method and its implementation for selecting
the tuning points. In section IV we show the experimental
setup, the software and hardware used for measurements, and
the propagation environment in which measurements were
done. In section V we describe the statistical analysis used to
proof the advantages of the K-means approach.

II. CONTEXT OF THE STUDY

A. Motley-Keenan model

Thanks to its performances (short computation time and
relatively good accuracy), the Multi-Wall model [3-6] is
applied for WLAN indoor coverage predictions. It proved
good performances with optimised parameters. This is a
semi-empirical approach based on fixing empirical
parameters for the attenuation produced by the obstacles



present in the building. This path loss model is given by the
following analytical formula:
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Where:
- Ly is the predicted average path loss [dB]
- d is the distance between the transmitter and the
receiver [m].
-k is the number of crossed walls of type i
- Att; is the loss of wall of type i [dB]
- Pisaconstant loss [dB]
- o 1is the coefficient associated to the distance effect

Usually, the multiple regression method [4,5] (based on LS
estimation) is used to predict o, B and the different attenuation
parameters, from measurement data collected on the site
under study.

B. Least Square method

The usual estimation procedure for the model parameters is
the Least Square (LS) one. That is an unbiased estimation
with minimum variance [2].

Indeed for n measurement points of path losses (L;) and for p
variables thought to affect all the measured values Li, the
multiple regression model (1) that relates an individual value
L; of the path loss L to the p variables can be expressed by:

p
Li=l30+z B X i+ g,
j=1
Xijare the elements of the data matrix X (made up in our case
by the logarithm of distances between the transmitter and the
receiver and the number of crossed walls of type j). The
parameters f;, are the regression coefficients corresponding to
the p variables; g; is the error or residual, and B, is a constant
which can account for all other unconsidered variables.

(2)

The predicted value of the dependent variable L; can be
expressed by:

p
Li=Bo+ ), B Xy (3)
i=1

The LS procedure consists in minimising the model mean
square error. This error is estimated as the difference between
the measurement path loss values and those estimated by
multiple regression using (3). An unbiased estimation of the
root mean square error is given by [1,2]:
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Let us write the equation (2) under a matrix form as a
standard model for a multiple linear regression model.

Y =X +¢e

(X0 =1Vi) (3)

Where Y is the measurement points vector.

We suppose that the noise vector € is a multi-normal
distributed random variable with standard deviation o:
e~N(0, 6°I). Under this hypothesis the estimator B is given
by:

B=X"X)"XxTY (6)
And, the covariance matrix of ,B is given by:
coviB) =0’ (X" X)" (7)

Where the elements on the main diagonal determine the

variance of the estimator: §° D).

The LS method provides the optimal estimates of the model
parameters (unbiased one). Indeed we cannot find estimators
with smaller variances (theorem of Gauss-Markov [1]).

The LS estimation requires the explicit calculation of the

matrix (X' X)™.
only if X "X isnot nearly singular. When the matrix X used

This estimation procedure is a good one

for tuning contains collinear data, the matrix X "X becomes

ill-conditioned for inversion. The resulting estimator /3 has

typically inflated variance and is unstable [1,2]. The model
parameters estimates are thus highly sensitive to the tuning
data, and may give poor predictions.

An important issue in regression analysis is assessing its
overall quality. A statistical analysis of the root mean square
errors (0) is a useful way for evaluating the regression
quality. The goodness of the regression analysis can also be
assessed using the adjusted coefficient of determination R,
[1,2] which expression is given by:

. T N2
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(8)

Where L is the mean value of L, and n the number of
measurement points used for tuning Ra2 € [O ,1]

measures the proportion of variation in L explained by a
regression model. If Razzl, all the variations have been
explained by the model but if it is equal to zero, the
regression model is useless.

Furthermore, for evaluating the robustness of the regression
model, it is also necessary to check the significance of the

partial regression coefficients ,8 Iz This is done by analysing



the variance s° (ﬂ) , but also by means of the t-test [1,2]. The
appropriate statistic of this test for the j" variables, is:

A

- L )
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()

For having a good robustness, the computed t; should be
greater than the tabulated t,.,, for a o level of significance.
More details about these statistical coefficients are given in
[1,2,5]. In [6] we have made use of these statistical
coefficients to study the influence of the tuning points' choice
on the stability and accuracy of a regression model.

The model robustness highly depends on the measurement
points chosen for tuning especially when we have the
constraint to work with a small number of points (typically
less than 50 points). As it is not obvious to define on a
building map the measurement points' locations leading to an
accurate modelling, we have searched to do that in a strategic
way rather than using randomly chosen locations. In order to
make a good tuning points' choice and to deal with the
problem of collinearity, we present in the following the K-
means clustering method principle. We explain how this
method will be used in our context to choose non-collinear
tuning measurements points allowing a robust estimate.

III CLUSTERING APPROACH

A. Principle of the K-means algorithm

The K-means clustering method [7-9] divides a set of points
into groups, or clusters, such that points within each cluster
are similar to one another (for a metric, usually the Euclidean
distance), and points in different clusters are far from one
another.

The iterative K-means algorithm begins with a set of k
reference points whose initial values can be chosen by the
user. The better choice is to place them as much as possible
far away from each other.

All the data points are partitioned into k clusters by assigning
each point to the cluster with the nearest reference point.
Adjustments are made by calculating the centroid for each
cluster and then using these new centroids as reference points
for the next partitioning of all the data points.

For data point x in cluster i, if the centroid z; is the nearest
reference point, no adjustments are made and the algorithm
proceeds to the next data point. However, if the centroid z; of
the cluster j is the reference point closest to data point x, then
x is reassigned to cluster j, the centroids of the “losing”
cluster i (minus point x) and the “gaining” cluster j (plus point
x) are recomputed, and the reference points z and z; are
moved to their new centroids. After each step, every one of
the k reference points is a centroid, or mean, hence the name
“K-means.” The k reference points change thus their location
step by step until no more changes are done. In the next
section we will see how the K-means approach will be used to

select the tuning points for which the model parameters
estimation is accurate and robust.

B. K-means implementation for measurement points choice

In our context, the selection of the measurement points'
locations is made from simulation data. In fact the number of
crossed walls and the logarithmic of distance between the
transmitter and the potential receivers are deduced by tracing
rays between transmitters and receivers points. The idea is to
build a matrix X for a very large number of points distributed
regularly in the simulated environment. This is done by using
a ray tracing model [10]. Then the data matrix is
standardized (in order to mitigate the problem of differences
between the values of different data matrix elements). The
next step is to cluster the X matrix points into a limited
number k of clusters. k is defined by the user to take into
account the tuning points' number sufficient for a good
estimation.

Finally we select from each cluster the nearest point from its

centroid. Indeed the K-means algorithm builds the clusters,
such that centroids of each cluster are as far as possible from
one another. We build thus a sample of points which have a
maximum distance (and thus a minimum collinearity)
between them. This solves the problem of the ill conditioning
of the data matrix X.
The resulting points' locations given by the -clustering
approach are then used as the locations where measurements
will be carried out, in order to tune the model in a given
environment and to have an estimation of the model
parameters with a good robustness. The advantage of this
approach will be presented in the section (V).

v MEASUREMENT SCENARIO DESCRIPTION

Field strength measurements were carried out in an office
building in Belfort city. Measurements have been realized in
the 2.4GHz frequency band using 802-11b/g equipments and
a software tool developed by France Telecom for data
acquisition.

The transmitters were placed at four locations within the
building. In Fig 1 the four green points show the locations of
the transmitters while the crosses represent the locations of
some measurement points.
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Figure 1: Location of the transmitters' antennas in the
measurement environment
~(100mx18.5m).



Both transmitters and receivers use an omnidrectionnal
antenna. The transmitters are placed at a height of 2.5m near
the ceiling (the ceiling height was about of 2.88 m). The
locations of the reception points were at a height of 1.2m
above the floor level. The measurements were processed in
line of sight (LOS) and non line of sight (NLOS).

Internal walls were made of 7 cm thick plasterboard with 3
cm thick wooden doors. The outer walls are made of 44 cm
thick concrete with double-glazing. Floor is made of concrete.
Most of the furniture is made of agglomerated wood and
metallic cupboards. The building has a rectangular shape,
with a S-shaped corridor separating the different rooms.

In order to remove the fast fading effects, 35 field strength
measurements, around each considered reception point, were
performed and averaged. @ The whole measured points
represent a set of 350 values.

V  NUMERICAL RESULTS: ADVANTAGES OF THE K-
MEANS METHOD

To investigate the K-means clustering method advantages we
use the two following strategies. For the first one, we use K-
means to cluster the 350 measurement points locations using
the previous process (chap IV) into 50 clusters. From each
cluster we select the nearest measurement point to the cluster
centroid. We built thus a set of 50 points (designated by "K-fit
sample") which have a minimum similarity between them.
After withdrawing the "K-fit sample"” measurement points
from the "whole sample" we select a set of 50 measurement
points randomly with uniform distribution among the 300
points remaining of the "whole sample". This set is designated
by "R-fit sample". The model parameters and their variances
estimates are then computed and compared using the "K-fit
sample" and "R-fit samples". For validation, the RMSE and
the adjusted coefficient of determination (R,) (cf. Table 1)
associated to these estimates are calculated for three "test
samples" (approximately 100 points selected randomly with a
uniform distribution among the 250 remaining points of the
"whole sample").

. Test Test | Test sample]
Kind of i GS'[IIIBtOI'S samplel | sample 2 3
variances
sample sum [dB] 6| Ra| o |Ra|] o | Ra
[dB]| [l | [dB] [ [7al| [dBI| [*]
K-means 18.6 51| 70| 54167]55] 61
Random 28.6 6 | 60| 63155 64| 50

Table 1: Overall and partial quality: Advantage of the K-
means clustering method

By comparing the variances of the different model
parameters, we can note a clear model stability improvement
by using the "K-fit sample" tuning.

Although the number of points is the same, the choice of the
points has a large influence on the accuracy and on the
robustness of the model. Indeed, the model parameters'
variances sum passes from 18.6 dB when we use the "K-fit
sample" tuning to 28.6 dB when we use the "R-fit sample"
one. On the other hand, the RMSE decreases (about 1 dB)
and the R, increases (about 10%) when we use the "K-fit
sample" instead of the "R-fit sample" tuning.

A second strategy for the K-means method validation is
described in the following. The model parameters are

computed using the "K-fit sample". The RMSE ( O'I.K)

between predicted path loss and measured path loss is now
calculated for nine different "test samples". The index "K"
corresponds to the "K-fit sample" when "i" corresponds to
the i™ "test sample", 1<i<9 ). Each one of the nine "test
samples" contains approximately 50 points selected
randomly from the "whole sample" after withdrawing the "K-
fit sample" measurement points.

Using each “test sample”, we have tuned the model
parameters (thus we have 9 corresponding models) and

calculated the models RMSE (O'l.R; 1£i1<9). Note that

O'I.R is by construction the smallest (theorem of Gauss

Markov [1]) RMSE of the model we can get for the i "test-
sample" with the LS approach. Figure 2 shows the
comparison between O'Z.K and O'Z.R. We can note that the

estimation carried out by tuning the model with a sample
selected with K-means allows a great robustness of the
model. Indeed, for each one of the nine "test samples" the
path loss model tuned with the "K-fit sample" allows
performances (O'I.K) as good as those (GI.R) obtained when
the model is tuned with "the sample test". The standard
deviation of the difference o, - 07 is equal to 0.1 dB when

its mean is equal to 0.14dB.

48 5 52 54 5B 58 5 B.2

Figure 2: Comparison of the RMSE of the model fitted with
the "K-sample" with the optimal model RMSE.



For further validation, figure 3 shows the comparison between
the measured and the predicted (using the "K-fit sample")
path losses for all the 300 remaining points of the "whole
sample".

The result to retain is that we obtain with a "K-fit sample" of
only 50 points an as good estimate as the one obtained by
using all the points (350 points). For the first case the RMSE
is equal to 5.39 dB while it is equal to 5.3dB for the second
case.
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Figure 3: Measured versus predicted power values
(Advantage of the K-means selection of tuning points).

VI CONCLUSION

The work presented in this paper allows optimizing an indoor
semi-empirical propagation model from a reduced number of
measurement points.

A clustering approach was studied to improve the model
accuracy and robustness. The proposed process consists in
using the K-means clustering method, starting from a large
number of potential measurement points' locations, We have
proved that it is then possible to select the measurements
points' locations (by using a ray tracing in) in order to avoid a
ill conditioned data matrix.

The established results showed that the tuning points' choice
according to this method gives good path loss predictions with
only a small number of points.

Further works would be useful to define more precisely the
minimum number of clusters needed to reach a given
significance level of the model parameters, rather than doing
it empirically.
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