Maribel Fernández

Bruno Pinaud

János Varga
email: janos.varga@kcl.ac.uk

A Port Graph Rewriting Approach to Relational Database Modelling

Keywords: relational databases, database design, port graph, graph transformation, functional dependency, minimal cover

We present new algorithms to compute the Syntactic Closure and the Minimal Cover of a set of functional dependencies, using strategic port graph rewriting. We specify a Visual Domain Specific Language to model relational database schemata as port graphs, and provide an extension to port graph rewriting rules. Using these rules we implement strategies to compute a syntactic closure, analyse it and find minimal covers, essential for schema normalisation. The graph program provides a visual description of the computation steps coupled with analysis features not available in other approaches. We prove soundness and completeness of the computed closure. This methodology is implemented in PORGY.

Introduction

Relational database design includes conceptual and logical modelling, as well as physical modelling. The theory behind these steps is well-understood (it is part of the syllabus of many databases courses [START_REF] Garcia-Molina | Database systems -the complete book[END_REF]), and highlights the advantages of developing normalised database designs. Yet, database professionals often consider normalisation too cumbersome and do not apply normalisation theory, due to the lack of adequate tools to support logical modelling [START_REF] Badia | A Call to Arms: Revisiting Database Design[END_REF].

Formal, graph-based approaches to database design have used labelled graphs or hypergraphs [START_REF] Abrial | Data semantics[END_REF][START_REF] Ausiello | Graph algorithms for functional dependency manipulation[END_REF][START_REF] Batini | Rewriting systems as a tool for relational data base design[END_REF]. We advocate a new approach to database modelling using attributed port graphs, which are graphs where edges are connected to nodes at specific points, called ports. Attributes of nodes, edges and ports are used to represent properties of the system modelled. Port graphs were introduced in [START_REF] Andrei | Rewriting Calculus for Graphs: Applications to Biology and Autonomous Systems[END_REF] to model biochemical systems and have been used in various domains [START_REF] Fernández | Strategic Port Graph Rewriting: an Interactive Modelling Framework[END_REF]. Port graphs are a good data structure to store and to visualise relational schema: ports provide additional visual information about the design. We propose to represent relational attributes and functional dependencies as nodes, and use edges to link attributes and dependencies; ports indicate the role of the attribute in the dependency. This representation has advantages when computing properties of the schema, such as syntactic closure of the set of dependencies, a crucial step in producing a normalised schema. We specify an algorithm to compute closures using port graph rewriting rules controlled by strategies. Our system has been implemented in Porgy [START_REF] Andrei | Porgy: Strategy-driven interactive transformation of graphs[END_REF] -a visual, interactive modelling tool. Porgy provides a graphical interface to specify an initial model, port graph rewriting rules and strategies. It displays the set of rewrite derivations (a derivation tree) and includes features such as cycle detection, to facilitate debugging.

Summarising, our main contributions are:

1. a Visual Domain Specific Language (VDSL) specifically tailored to model relational database schemata (Section 3); 2. a new visual representation of Armstrong's axioms to infer functional dependencies, using the port graph VDSL mentioned above (Section 4.1); 3. a sound and complete strategic graph program to compute the syntactic closure of a set of functional dependencies, with examples (Sections 4.2,4.3); 4. an implementation3 in Porgy, together with a set of techniques to query the relational database design, using Porgy's derivation tree and graphical interface to analyse properties of the model: In particular, we show how to solve the membership problem (Section 4.4); 5. a strategy and a set of transformation rules to simplify sets of dependencies, as required to compute a minimal cover (Section 5).

Related Work. Hypergraphs are used for relational database design in [START_REF] Batini | Rewriting systems as a tool for relational data base design[END_REF][START_REF] Embley | Mapping Conceptual Models to Database Schemas[END_REF].

Using directed graphs candidate keys of a relation are computed in polynomial time [START_REF] Saiedian | An efficient algorithm to compute the candidate keys of a relational database schema[END_REF]. A special family of labelled graphs, FD-graphs, were introduced in [START_REF] Ausiello | Graph algorithms for functional dependency manipulation[END_REF] to obtain closures of functional dependencies. In terms of graph transformations for database modelling we highlight two works. Hypergraph rewriting was used for the representation of functional dependencies [START_REF] Batini | Rewriting systems as a tool for relational data base design[END_REF] and Triple Graph Grammars were used to optimise a database schema [START_REF] Jahnke | Applying Graph Transformations to Database reengineering[END_REF].

Our contribution and main difference with respect to these works is the design of a domain-specific visual language with emphasis on interactive modelling, including strategies to control the application of rules, and the use of the derivation tree as part of the visualisation framework, giving the modeller access to all the sequences of transformation steps, to facilitate the analysis of the system. Port graphs were used to compute transitive closures in [START_REF] Varga | Finding the Transitive Closure of Functional Dependencies using Strategic Port Graph Rewriting[END_REF]. Here we compute the full Armstrong closure (not just transitive closure), and show how to use the derivation tree to analyse closures and answer queries about the database model, such as whether a given functional dependency is in the closure of a set of dependencies (the membership problem), and compute minimal covers.

Porgy's strategy language is strongly inspired by PROGRES [START_REF] Schürr | The PROGRES Approach: Language and Environment[END_REF], GP [START_REF] Plump | The design of GP 2[END_REF] and by strategy languages developed for term rewriting [START_REF] Borovanský | An overview of ELAN[END_REF]19]. None of the available graph rewriting tools permits users to visualise the derivation tree, as in Porgy, where users can interactively visualise alternative derivations, follow the development of specific redexes, etc. When computing the closure of a set of dependencies, the derivation tree permits to see how each dependency is generated, offering a direct visualisation of the inference steps according to Armstrong's axioms.

Background

Relational Databases

We assume that the reader is familiar with the theory of logical design of relational databases [START_REF] Maier | The Theory of Relational Databases[END_REF], in particular, the definitions of: relation schema, attribute, candidate key and functional dependency (FD). We refer to a single attribute with letters from the beginning of the alphabet A, B, . . . and to attribute sets with letters from the end of the alphabet W, X, Y, Z. Let R(A) = {R 1 , . . . , R k } be a set of relation schemata over a set A of attributes. Let FD = {Σ 1 , . . . , Σ k } be the respective sets of functional dependencies and CK = {C 1 , . . . , C k } be the respective sets of candidate keys. A relational database schema is a tuple DB = (R(A), FD, CK).

We assume familiarity with the inference rules known as Armstrong's Axioms: Reflexivity (or Trivial Dependency), Augmentation, Transitivity, Union, Decomposition, Pseudotransitivity. These rules are sound and complete [START_REF] Armstrong | Dependency structures of data base relationships[END_REF][START_REF] Beeri | A complete axiomatization for functional and multivalued dependencies in database relations[END_REF]. From now on, by syntactic closure we will mean Amstrong's syntactic closure, that is, the set Σ + of all FDs that can be inferred from Σ using Armstrong's Axioms, or equivalently, using the sound and complete subset consisting of Reflexivity, Transitivity and Augmentation, stated below following Beeri et al. [START_REF] Beeri | A complete axiomatization for functional and multivalued dependencies in database relations[END_REF].

(A1) Reflexivity: if Y ⊆ X then X → Y . (A2) Augmentation: if Z ⊆ W and X → Y then XW → Y Z. (A3) Transitivity: if X → Y and Y → Z then X → Z.
Syntactic closures are used to compute minimal covers of sets of FDs. The minimal cover Σ min of Σ is a set of dependencies that fully represent Σ and satisfy the following three conditions [START_REF] Maier | Minimum Covers in Relational Database Model[END_REF]:

1. all the FDs in Σ min have singleton right sides; 2. Σ min is left-reduced: if one attribute is removed from any left side then Σ can no longer be inferred from Σ min ; 3. Σ min is nonredundant: if any FD is removed from Σ min then Σ can no longer be inferred from it.

Our goal is to provide visual algorithms to compute syntactic closures and minimal covers. This work assumes that a) FDs have singleton right sides and b) there are no cyclical dependencies. Assumption (a) is standard in the relational database literature, without loss of generality, under Armstrong's Decomposition rule. The problem of cyclical dependencies reduces to kernel search in a directed graph which is NP-complete.

Port Graph Rewriting and Porgy

We recall the notion of attributed port graph rewriting (see [START_REF] Fernández | Strategic Port Graph Rewriting: an Interactive Modelling Framework[END_REF] for more details).

Definition 1 (Attributed port graph). An attributed port graph G = (V, P, E, D) F is a tuple (V, P, E, D) of pairwise disjoint sets where:

-V is a finite set of nodes; n, n 1 , . . . range over nodes; -P is a finite set of ports; p, p 1 , . . . range over ports; -E is a finite set of edges between ports; e, e 1 , . . . range over edges; two ports may be connected by more than one edge; -D is a set of records, which are sets of pairs attribute-value; and a set F of functions Connect, Attach and Label such that:

for each edge e ∈ E, Connect(e) is the pair (p 1 , p 2) of ports connected by e; for each port p ∈ P , Attach(p) is the node n to which the port belongs; -Label : V ∪ P ∪ E → D is a labelling function that returns a record for each element in V ∪ P ∪ E.

For each node n ∈ V , Label(n) contains an attribute Interface whose value is the list of names of its ports.

A port graph rewrite rule is itself a port graph L ⇒ C R consisting of two subgraphs L and R, called left-hand side and right-hand side, respectively, together with an arrow node that links them. Each rule is characterised by its arrow node, which has a unique name (the rule's label), an optional attribute Where defining a Boolean condition C that restricts the rule's matching, and ports to control the rewiring operations when rewriting steps are computed. Each port in the arrow node has an attribute T ype that can have one of three different values: bridge, wire and blackhole. A port of type bridge must have edges connecting it to L and to R (one edge to L and one or more to R): it thus connects a port from L to ports in R. A port of type blackhole must have edges connecting it only to L (one edge or more). A port of type wire must have exactly two edges connecting to L and no edge connecting to R.

The ports and edges associated with the arrow node specify a mapping between ports in the left and right-hand sides of the rule, following the Single-PushOut approach [START_REF] Löwe | Algebraic approach to single-pushout graph transformation[END_REF]. This mapping is used during rewriting, to redirect the edges that connect the redex to the rest of the graph once the redex is rewritten (as explained below).

For examples of rewrite rules, we refer the reader to Section 4. It is possible to specify a rule condition requiring that a particular edge does NOT exist in the graph to be rewritten. In Porgy such conditions are graphically represented as a double line grey edge with an X, which is called an anti-edge [START_REF] Fernández | Labelled graph strategic rewriting for social networks[END_REF].

A match g(L) of the left-hand side is found in G if there is a total port graph morphism g from L to G such that if the arrow node has an attribute Where with value andsaturated(g(p i)) holds if there are no edges between g(p i) and ports outside g(L) in G -this ensures that no edges will be left dangling in rewriting steps. B is a Boolean expression such that all its variables occur in L.

C, then g(C) is true in G. C is of the form saturated(p 1) ∧ ... ∧ saturated(p n) ∧ B,
Let G be a port graph. A rewrite step G ⇒ H via the port graph rewrite rule L ⇒ C R is obtained by replacing in G a subgraph g(L) by g(R), where g is a morphism from L to G satisfying C, and connecting g(R) to the rest of the graph as indicated by the arrow-node edges in the rule: Any edges arriving to a port in g(L) connected by a bridge arrow port to R are transferred to the corresponding ports in g(R); edges connecting to ports in g(L) that are connected to a blackhole port in the arrow node are deleted. Wire ports in the arrow node trigger a rewiring: the ports in G that connect to the ports in g(L) associated to a wire port in the arrow node are linked by an edge in the rewritten graph.

A sequence of rewriting steps is called a derivation. A derivation tree is a collection of rewriting derivations with a common root.

Porgy [START_REF] Fernández | Strategic Port Graph Rewriting: an Interactive Modelling Framework[END_REF] includes functionality to create port graphs and port graph rewrite rules, and to apply rules to graphs according to user-defined strategies. The functions Connect and Attach (see Definition 1) are represented as attributes in records (i.e., records contain data attributes, visualisation attributes such as colour or shape, and structural attributes such as Connect and Attach). Rules are displayed as graphs, and edges that run between ports of L, R and the arrow node are coloured red to distinguish them from normal edges. Porgy also provides a visual representation of the rewriting derivations, which can be used to analyse the rewriting system. Porgy's strategy language allows us to control the way derivations are generated. We can specify not only the rule to be used in a rewriting step, but also the position where the rule should (or should not) be applied. Formally, the rewriting engine works with graph programs.

Definition 2 (Graph Program).

A graph program consists of a located port graph, a set of port graph rewriting rules, and a strategy expression. A located port graph is a port graph with two distinguished subgraphs: a position subgraph and a banned subgraph, denoted G P Q . Rewrite rules can only be applied to G if they match a subgraph which superposes P and does not superpose Q.

We briefly describe below the strategy constructs that we use in our programs (see [START_REF] Fernández | Strategic Port Graph Rewriting: an Interactive Modelling Framework[END_REF] for more details). The keywords crtGraph, crtPos, crtBan denote, respectively, the current graph being rewritten and its Position and Banned subgraphs. For example, the strategy expression setPos(crtGraph) sets the position graph as the full current graph. If T is a rule, then the strategy one(T) randomly selects one possible redex for rule T in the current graph G, which should superpose the position subgraph P and not overlap the banned subgraph Q. This strategy fails if the rule cannot be applied. Constants id and fail denote success and failure, respectively. while(S)[(n)]do(S) executes strategy S (not exceeding n iterations if the optional parameter n is specified) while S succeeds. repeat(S)[max n] repeatedly executes a strategy S, not exceeding n times. It can never fail (when S fails, it returns id).

Port Graphs for Database Modelling

First, we define a visual domain specific language (VDSL) for logical design of relational databases. It includes a class of attributed port graphs to represent objects of a relational database, and a language to specify rewrite rules and strategies for those graphs. We also define Database Port Graphs, to represent a relational database schema DB = (R(A), FD, CK) (see section 2.1).

A Visual Domain Specific Language for Database Modelling

The visual building blocks of the language correspond to those of relational databases. Port graph nodes will have an attribute DbType whose value indicates the role of the node. To avoid confusion, we will use Proper Case for relational database concepts (e.g., Attribute) and lower case for port graph concepts (e.g., attributed port graph).

We note here that an Attribute can occur in multiple relations. To this end, we can define a conceptual attribute node. Then we can define an attribute occurrence node to distinguish between appearances in different Relations. In this work, from now on, we only use occurrences and we call them Attribute.

Definition 3 (Relational Database Port Graph VDSL, RDPG-VDSL).

A Relational Database Port Graph VDSL is an attributed port graph G RDB = (V, P, E, D) F , such that V includes the following disjoint sets of nodes (as well as application specific nodes):

-V R : relation nodes (DbType = REL); -V A : attribute nodes (DbType = ATTR); -V F D : functional dependency nodes (DbType = FD); -V CK : candidate key nodes (DbType = CK).

P includes the following disjoint sets of ports:

-P AT T : contained attribute ports pATT; -P REL : parent relation ports pREL; -P DA : dependency attribute ports pFD; -P F D : functional dependency ports pFDLHS and pFDRHS; -P CK : relation candidate key ports pCK; -P KEY : (candidate) key attribute ports pKEY. and the functions Attach and Connect are such that:

-if p ∈ P AT T , Attach(p) ∈ {V R ∪ V CK }; -if p ∈ P REL , Attach(p) ∈ {V A ∪ V CK }; -if p ∈ P DA , Attach(p) ∈ V A ; -if p ∈ P F D , Attach(p) ∈ V F D ; each node in V F D has two ports, pFDLHS and pFDRHS; -if p ∈ P CK , Attach(p) ∈ V R ; -if p ∈ P KEY , Attach(p) ∈ V A .
Connect includes the following pairs of ports (and associated edges):

-Functional Dependency: (pFD, pFDLHS) and (pFDRHS, pFD), where pFD ∈ P DA and pFDLHS, pFDRHS ∈ P F D . Given a dependency ϕ : X → A the pFD port of every attribute node corresponding to X will be connected to the pFDLHS port of the dependency node corresponding to ϕ and the pFDRHS port of the FD node representing ϕ will be connected to the pFD port of the attribute node representing A.

-Attribute in relation: (pATT, pREL), where pATT ∈ P A and pREL ∈ P REL . Given a relation R i and its attribute A, the pATT port of the node representing R i will be connected to the pREL port of the node representing A. -Attribute in candidate key: (pATT, pKEY), where pATT ∈ P A and pKEY ∈ P CK . Given a candidate key CK i and every attribute A j ∈ CK i , the pKEY port of the node corresponding to A j will be connected to the pATT port of the node corresponding to CK i . -Candidate Key of Relation: (pREL, pCK), where pREL ∈ P REL and pCK ∈ P CK . Given a relation R i and its candidate key CK j , the pCK port of the node representing R i will be connected to the pREL port of the node representing CK j .

As a particular case of the above defined class, we now define the Database Port Graph (DBPG) that represents DB = (R(A), FD, CK). Most importantly, we constrain that one Relation is represented by only one relation node and similarly, one FD is represented by only one FD node. Also, each Attribute occurrence is represented by one attribute node. This design decision is based on the separation of concerns principle. The Functional Dependency Port Graph (FDPGs) [START_REF] Varga | Finding the Transitive Closure of Functional Dependencies using Strategic Port Graph Rewriting[END_REF] is a particular case of the above defined Database Port Graph, with Attribute and FD nodes only. An example FDPG is given in Figure 10 in Appendix E.

Variadic Rewriting Rules

To deal with functional dependencies of various arities, previous works used multiple rules [START_REF] Varga | Finding the Transitive Closure of Functional Dependencies using Strategic Port Graph Rewriting[END_REF] or internal data structures (e.g. compound node in [START_REF] Ausiello | Graph algorithms for functional dependency manipulation[END_REF]). Here, we present an extension to the port graph rewriting rule language, called variadic rewriting rules (VRRs), inspired by Variadic Interaction Nets [START_REF] Jiresch | Extending the interaction nets calculus by generic rules[END_REF]. A variadic rule represents a family of rules that differ only in the number of times a subgraph is repeated. First, we propose a container structure that clearly identifies in a port graph the subgraph that will be repeated.

Definition 5 (Pattern Container).

A pattern container is a subgraph within a port graph such that if an edge links two ports that belong to the container, the edge also belongs to the container.

A pattern container has two attributes: a name, and a multiplicity that specifies the maximum number of times the encapsulated pattern will be repeated.

Edges that connect a port in a pattern container and a port in the outside graph are called variadic edges. Variadic edges also have an attribute multiplicity to control the number of repetitions.

Definition 6 (Variadic Port Graph Rewrite Rule, VRR). A variadic port graph rewrite rule, denoted L ⇒ V R, is a port graph rewrite rule with at least one pattern container on the LHS. Multiple pattern containers must not overlap. Pattern container names must be unique on the LHS.

Given a VRR, we obtain its family of rules by running the Expansion algorithm defined below.

Definition 7 (Variadic Pattern Expansion).

For each pattern container, we generate i copies, where i is the value of the multiplicity attribute, as follows:

1. Synchronized Expansion:

If a pattern container is present on both sides of a VRR (i.e. their names are identical), then the pattern is expanded in an iterative way on both sides of the rule until i number of copies of the encapsulated subgraph are generated. If variables are used in attributes then a different variable should be used in each copy. The expansion iterator works pairwise; that is, not all combinations of expansions are generated on LHS and RHS, but only the same number of repetitions on the two sides.

LHS-only Expansion:

If the pattern container is defined on LHS only, the expansion happens on LHS only, in the same iterative way.

If multiple patterns are defined, they are expanded independently, i.e. all combinations are generated, by nested iteration. Generally, the order in which the combinations are generated, does not matter. A variadic edge is expanded based on the value j of its multiplicity attribute. If it equals the multiplicity i of the container it belongs to, then it is fully expanded, i.e. it is created in all i instances of the container. A partially expanded variadic edge (j < i) is only created in the first 1 . . . j instances. In other words, in the nth iteration of the expansion of the pattern container the variadic edge belongs to, if n < j then n copies are created; otherwise j copies are created.

In Porgy, which does not have a mechanism to define variadic rules, Definition 7 can be implemented as a macro expansion. The pattern container is visually represented by an enclosing rectangle (a metanode): attributes name and i are displayed at the top of the rectangle; and, on the LHS, a + sign in its upper-right corner as shown in the example below (Figures 1 and2). Fully expanded variadic edges are also marked with a + sign over them and partially expanded variadic edges have the attribute value j displayed over them.

In this example, because the pattern appears in both sides, the expansion will generate a rule version with one node Y, another with 2 and another with 3, we show in the picture just the version corresponding to 3. If the node Y has an attribute a whose value is an expression containing variables, for example x, then each copy of the node Y will have attribute a with values x 1 , x 2 , x 3 .

Rewriting Rules

In the rules below, x, y, . . . represent name variables for attribute nodes, and f 1, f 2, . . . are name variables for FD nodes. Augmentation. The Augmentation rule (see Figure 3) finds every attribute node y that doesn't have an edge into the FDLHS port of f 1, regardless of what other attributes are connected there already. We find all non-connected attribute nodes by using the anti-edge feature [START_REF] Vallet | Where Social Networks, Graph Rewriting and Visualisation Meet: Application to Network Generation and Information Diffusion[END_REF] of Porgy. An anti-edge is represented by a grey double line in the rule editor. The matching algorithm deems the candidate sub-graph isomorphic if no edge is to be found between the two ports connected by the anti-edge. The rule creates a new FD node and assigns all pre-existing attributes and y to the left side of f 1. The original f 1 dependency node is also kept. We use bridge ports (red edges) to keep and copy the already existing edges into the FDLHS ports of f 1 and NEW. If f 1 was trivial then the new dependency will also be marked trivial. The rule also increases the FunctionalArity counter by 1 indicating that a new attribute is connected to the FDLHS port. Reflexivity. The Reflexivity rule (Figure 4) applies to a node representing the attribute x and generates a trivial dependency x → x.

Then the attribute node x is banned so the rule cannot apply again on the same attribute. The red edges in the arrow node indicate that when applying the rule, any edges connected to the pFD port of x in the left-hand side should be transferred to the corresponding pFD port of x in the right-hand side. Transitivity. A family of Transitivity rules was described in [START_REF] Varga | Finding the Transitive Closure of Functional Dependencies using Strategic Port Graph Rewriting[END_REF] to detect transitive functional dependency chains f 1 : X → Y and f 2 : Y → A. Instead, here we provide a compact representation of the transitivity axiom in the form of a variadic rule, shown in Figure 5. This rule subsumes the family of Transitivity rules used in previous work.

As mentioned in Section 3.2,

|Y | = k ≥ 1 means that f 1 turns into a set of dependencies f 1 1 . . . f k 1 .
The connections between the pFD ports of X attribute nodes and the pFDLHS ports of f 1 1 . . . f k 1 nodes have to be preserved as well as copied onto the pFDLHS port of the newly created FD node (called NEW in Figure 5). We achieve this without needing to include the attribute nodes representing X in the rule, thanks to the bridge ports of the arrow node and the connecting red edges, as explained in Definition 6. Then, to cover all cases, we define a VRR pattern over f 1 and Y , with i = 1 . . . k. By definition the bridge ports, red edges and the normal edges into y 1 .pFD, . . . , y k .pFD will be repeated during the expansion. We show an example expansion of the Transitivity VRR to Transitivity-3, i.e. with 3 repetitions, on Figure 11 in Appendix E. FD nodes are labelled by records containing an attribute UID that uniquely identifies the Functional Dependency, except for trivial dependencies that are all given UID = 1. Nodes representing non-trivial FDs are given a prime number as UID. This offers extra, domain-specific backtracking functionality for dependencies, as explained below.

Note that the Reflexivity, Augmentation and Transitivity rules never remove the matching subgraph. Therefore, these rules could run for ever. To prevent this, we use conditional rules and focusing constructs in Section 4.2 to define the Syntactic Closure strategy. To ensure that the iteration of the Transitivity rule terminates when no new transitive dependencies can be inferred, we use the UID attribute of FD nodes. When the Transitivity rule creates a transitive dependency node, it multiplies the UIDs of the contributing FDs and assigns the result as UID of the new FD node. We forbid the application of the rule if a node already exists with that UID (using NotNode() in the rule condition).

Syntactic Closure Strategy

The Strategy 1: Syntactic Closure applies first the Reflexivity rule as much as possible in the current graph. Each application bans an Attribute node, which ensures termination since matching is not allowed on banned nodes.

In lines 5-6, we set the Position subgraph to be the whole graph and the Banned subgraph to empty. Then, while there is at least one FD node the Augmentation rule hasn't visited and iterated, one(AugIterOn) sets AugIter and AugVisit flags to true on a randomly selected FD node. The Augmentation rule will be applied on this FD node and all attribute nodes that are not connected to the FDLHS port of said FD node. Every attribute node used by this rule is banned to prevent re-application. Once all possible applications are processed, AugIter flag is set to false and the Banned subgraph to empty. The iteration proceeds to the next, not yet visited, FD node. All new FD nodes, created by the Augmentation rule, are assigned a unique UID using the update() construct to call the function, GenerateNextPrime(), using Porgy's Python API. Since the rewrite rules may generate functional dependencies that already exist in the graph (despite the condition in the Transitivity rule), we add CleanUp rules to remove duplicates: see the Cleanup VRR in Figure 12 and an example expansion in Figure 13, both in Appendix E.

Example of application

Our strategy computed the syntactic closure of Σ = {AB → C, ABC → D}; the resulting FDPG can be seen on Figure 6.

Visual Analysis of the Closure

We now turn our attention to usual questions about Σ + . For example, using the derivation tree in Porgy, it is possible to track how and when a particular dependency was generated: If we alter the colour of any FD node in a leaf node of the derivation tree, Porgy will back-propagate this change up the tree. This way, we can identify the exact step where the FD was created, and by zooming on the edges of the derivation tree we can see which of Armstrong's axioms generated the dependency. Another important question in database design is the Membership Problem [START_REF] Beeri | Computational problems related to the design of normal form relational schemas[END_REF]: given a set of FDs Σ, and an FD, ϕ, determine if ϕ ∈ Σ + . Two groups of algorithms were developed to solve the membership problem: 1. generate a syntactic closure and check if ϕ : X → A is in it, or 2. compute the closure of X, X + and check if A is in it. Following the first approach, we can solve the problem by running a strategy to find and highlight the FD node that represents ϕ in the syntactic closure, if it exists, and fail if ϕ ∈ Σ + . For example, Strategy 2 was used to find the dependency ABD → C, highlighted in Figure 6 (due to space constraints, we refer the reader to [START_REF] Fernández | Strategic Port Graph Rewriting: an Interactive Modelling Framework[END_REF] for explanations of the constructs used). Following the second approach, we can simply use Strategy 1 but focusing on the set X of attributes. We only need to replace the expression setPos(all(crtGraph)) with one that describes X, then the rewriting steps will apply on the attribute set in question. For example, if X = B, we write setPos(all(property(crtGraph, node, DbType =="ATTR" && viewLabel=="B"))).

Correctness

The strategic program Cl = [F, closure] consisting of an initial port graph F representing a set of functional dependencies Σ, and the syntactic closure strategy defined in Strategy 1, correctly computes the syntactic closure Σ + . Proofs of the propositions stated below are given in the Appendix.

Proposition 1 (Termination). For any initial FDPG F, the strategic program Cl = [F, closure] terminates.

To prove the correctness of our program, we first show that the three rules Reflexivity, Augmentation and Transitivity are sound and complete, that is, given Σ, we can compute Σ + by using these three rules.

Proposition 2 (Soundness and Completeness of the Rules). The Reflexivity, Augmentation and Transitivity rules stated below are sound and complete:

1. Reflexivity: for any attribute A, A → A. 2. Augmentation: If X → A then XY → A for any attribute A and sets X, Y of attributes.

Transitivity: If

X → A i (1 ≤ i ≤ n) and A 1 , . . . , A n → B then X → B.
Since the Reflexivity, Augmentation and Transitivity port graph rewriting rules implement the rules stated in Proposition 2, to prove that Cl is sound and complete it suffices to show that any sequence of applications of these three rules can be transformed into a sequence in the order defined by the closure strategy.

Definition 8 (Canonical Form). A sequence of applications of Reflexivity, Augmentation and Transitivity is in canonical form if it consists of applications of Reflexivity, followed by Augmentation, followed by Transitivity and Augmentation: (Ref lexivity) * (Augmentation) * (T ransitivity; Augmentation *) * Proposition 3 (Soundness and Completeness of the Strategy). Canonical sequences are sound and complete.

Finding a Minimal Cover

To generate a Minimal Cover (see Section 2 for the definition) we have to ensure that there are no extraneous attributes on FD left sides and there are no redundant FDs (we already have singleton right sides). Standard algorithms check this by running the Membership algorithm on an altered Σ: remove X → A and replace it with X \ B → A. If this still yields the same Σ + then B is extraneous in X. Instead, since we have Σ + at hand, it suffices to check if there exists Z ⊂ X → A, for all proper subsets Z. We use a variadic rewriting rule (Section 3.2) to specify a family of rules for every possible subset pair (n, k), where n = |X| and k = |Z|. Since Z ⊂ X, we make use of the partially expanded variadic edge feature by restricting one variadic edge to only k expansions. We show the variadic rule (parameterised already with n = 3, k = 2) in Figure 7 (and an expansion in Figure 14 in Appendix E).

Next, we have to remove redundant FDs. A functional dependency ϕ : X → A is redundant, if (Σ \ ϕ) + = Σ + [START_REF] Maier | Minimum Covers in Relational Database Model[END_REF]. Previously published algorithms detected this by running a Membership check on (Σ \ ϕ) to see if it yields ϕ. We note that in an FDPG representing (Σ \ ϕ) + there is an FDPG-Path from X to A. This path exists as an FD node created by the Syntactic Closure strategy, and if a dependency can be inferred in multiple ways, it is present multiple times.

Since |X| ≥ 1, we use a VRR to detect and remove the redundant FD nodes. We present the rule and an expansion in Figures 8 and9.

Using the Extraneous and Nonredundancy rules, Strategy 3 computes a Minimal Cover. We reuse the Syntactic Closure strategy, but without the Clean Up rules. The Nonredundancy rule gets rid of duplicates. Lastly, we remove trivial dependencies (FD nodes where UID = 1), as they are not in the minimal cover.

Conclusion and Future Work

We introduced variadic rewriting rules and used these rules to define strategies that compute and analyse the syntactic closure of a set of Functional Dependencies. We have shown that these strategies are terminating, sound and complete. We have also defined additional rules and a strategy to compute Minimal Covers. A minimal cover is the input of algorithms to find candidate keys [START_REF] Saiedian | An efficient algorithm to compute the candidate keys of a relational database schema[END_REF] and of Bernstein's 3NF Synthesis Algorithm [START_REF] Bernstein | Synthesizing third normal form relations from functional dependencies[END_REF]. The strategies that find these will make use of the already defined CK and Relation nodes. Furthermore, 3NF Relations will require the introduction of the notion of Foreign Key.

Proof. Since the strategy applies three strategies sequentially (Reflexivity, Augmentation and Transitivity), it is sufficient to show that each of them terminates. For this, we show that for each of them there is a measure which is strictly decreasing with respect to a well-founded ordering.

Reflexivity Strategy: The measure in this case is the number of non-banned nodes in the graph. Each application of the reflexivity rule (Figure 4 strictly decreases the number of non-banned nodes. Since the rule can only apply to nonbanned nodes, the iteration defined in line 3 of the closure strategy terminates.

Augmentation Strategy: Two looping constructs are used in this strategy, a while-loop starting in line 7 and a repeat-loop in line 9. The while-loop is controlled by a condition match(AugIterOn), which requires a non-visited node to succeed. The rule AugIterOn applied in line 8 sets the AugIter and AugVisit flags to true on a randomly selected FD node that has AugVisit flag = False. Each application of the Augmentation rule in the loop in line 9 bans the attribute node used, so the the repeat loop terminates, and afterwards the AugIter flag is set to false but the AugVisit flag remains untouched. This means that each iteration of the while loop in line 7 decreases the number of non-visited nodes, thus the strategy terminates.

Transitivity Strategy: This strategy, without the calls to the Augmentation strategy in line 17 and line 23, was shown to be terminating in [START_REF] Varga | Finding the Transitive Closure of Functional Dependencies using Strategic Port Graph Rewriting[END_REF]. We use the same measures, since they are not affected by the call to the Augmentation strategy: For repeat(one(T ransitivity k); #Augmentation#), the measure is the number of possible matches of the LHS subgraph of f1. This is a good measure because a) the Rule Condition on UID in T ransitivity k prevents reapplication of the rule to the same nodes and b) even though the NEW node is added in the right-hand side, it is not part of the LHS subgraph of f1. Similarly, the nodes added by Augmentation are not connected to f1. By the time we call the Augmentation strategy from Transitivity, f1 will have been augmented and its AugVisit flag is permanently set to True. The only FD node Augmentation will be able to touch at this point is NEW.

For while(match(IterOn))do(...) the measure is

|V F D | G0 + |Σ + | -|V F D | Gi .
That is, the number of FD nodes in the initial graph plus the size of the closure less the number of FD nodes after the i-th application of the loop. With one successful application of the Transitivity rule, the number of FD nodes increases therefore the measure decreases.

Termination of the CleanUp rule iteration is straightforward, since these rules decrease the size of the graph.

Definition 4 (

 4 Database Port Graph, DBPG). A Database Port Graph is an RDPG such that the following constraints are satisfied: -V R : one node DbType = REL per Relation schema in R; -V A : one node DbType = ATTR per Attribute occurrence in any of the R i ; -V F D : one node DbType = FD per Functional Dependency in FD; -V CK : one node DbType = CK per Candidate Key in CK.

Fig. 1 :Fig. 2 : 3 4

 123 Fig. 1: VRR example

Fig. 3 :

 3 Fig. 3: Augmentation rule.

Fig. 4 :

 4 Fig. 4: Reflexivity rule.

Fig. 5 :

 5 Fig. 5: Variadic Transitivity rule.

Strategy 1 :

 1 Syntactic Closure 1 //----Reflexivity ----2 setPos(all(crtGraph)); 3 repeat(one(Ref lexivity)); 4 //----Augmentation ----5 setPos(all(crtGraph)); 6 setBan(all([emptySet])); 7 while(match(AugIterOn))do(8 one(AugIterOn); 9 repeat(one(Augmentation)); 10 one(AugIterOf f); 11 setBan(all([emptySet])) 12); 13 update("GenerateN extP rime"{result : U ID}); 14 //----Transitivity ----15 while(match(IterOn))do(16 one(IterOn);

17 repeat

 17 (one(T ransitivity); #Augmentation#); 18 update("GenerateN extP rime"{result : U ID}); 19 one(IterOf f) 20); 21 repeat(one(ResetV isitedF lags)); 22 //----Cleanup ----23 repeat(one(Cleanup)) Next, we compute transitive dependencies (lines 15-21), calling the Augmentation strategy (lines 5-12) after each application of the Transitivity variadic rewriting rule in line 17.

Fig. 6 :

 6 Fig. 6: Syntactic closure of Σ = {AB → C, ABC → D}.

Strategy 2 :

 2 Membership Problem1 setPos(all(2 property(crtGraph, port,DbType == "FDLHS" && FunctionalArity == 3) 3 ∩ ngb(property(crtGraph, node,DbType == "ATTR" 4 && viewLabel == "A"), edge,DbType == "L") 5 ∩ ngb(property(crtGraph, node,DbType == "ATTR" 6 && viewLabel == "B"), edge,DbType == "L") 7 ∩ ngb(property(crtGraph, node,DbType == "ATTR" 8 && viewLabel == "D"), edge,DbType == "L") 9 ∩ ngb(property(crtGraph, node,DbType == "ATTR" 10 && viewLabel == "C"), edge, DbType == "R"))); //end setPos 11 (isEmpty(crtPos))orelse(repeat(one(Highlight)))

Fig. 7 :

 7 Fig. 7: Extraneous variadic rule.

Fig. 8 :

 8 Fig. 8: Nonredundancy VRR. Fig. 9: Nonredundancy rule, i 1 = 3, i 2 = 2.

Strategy 3 :

 3 Minimal Cover 1 #Syntactic Closure without Cleanup# 2 setPos(all(crtGraph)); setBan(all([emptySet])); 3 repeat(one(Extraneous)); repeat(one(N onredundancy)); 4 repeat(one(RemoveT rivial));

github.com/janos-varga/Porgy

Appendix A Proof of Proposition 1

Proposition (Termination). For any initial FDPG F, the strategic program Cl = [F, closure] terminates.

Appendix B Proof of Proposition 2

Proposition (Soundness and Completeness of the Rules). The Reflexivity, Augmentation and Transitivity rules stated below are a sound and complete:

1. Reflexivity: for any attribute A, A → A. 2. Augmentation: If X → A then XY → A for any attribute A and sets X, Y of attributes.

Transitivity: If

Proof. First, we observe that the rules are sound: they are particular cases of the axioms A1-A3 given in Section 2, which are sound and complete. Hence, it is sufficient to prove that the rules permit us to derive the axioms A1-A3.

Remark. Our rules assume that right sides of functional dependencies consist of only one attribute. Since the Union and Decomposition Axioms can be derived from A1-A3 and by them one can infer X → Y Z from X → Y and X → Z, and reciprocally, from X → Y Z one can infer X → Y and X → Z, it is sufficient to consider single attributes in right-hand sides of dependencies.

Axiom A1 can be derived as follows: Let Y = {A 1 . . . A n } and assume Y ⊆ X. Using the Reflexivity rule, we can derive A i → A i and using Augmentation, we derive A i X → A i for each A i ∈ Y . This is sufficient as explained in the remark above.

Axiom A2 can be derived as follows: Let Y = {A 1 . . . A n }, Z = {A n , A n+1 , . . . A p } and W = {A n , A n+1 , . . . A p , A p+1 , . . . , A k } and assume X → Y , that is, X → A i for each A i ∈ Y as explained in the remark above. By repeated applications of the Augmentation rule, we derive XW → A i for each A i ∈ Y . Note that by Reflexivity, we can derive A j → A j for any A j ∈ Z and by repeated applications of Augmentation, we obtain XW → A j , since A j ∈ W . Therefore XW → A i for each A i ∈ Y Z, as required.

Axiom A3 is derived using the Transitivity rule: Assume X → Y , that is, X → A i for each A i ∈ Y , and Y → B i for each B i ∈ Z. Using the Transitivity rule, we derive X → B i , as required.

Appendix C Proof of Proposition 3

Proposition (Soundness and Completeness of the Strategy). Canonical sequences are sound and complete.

Proof. By Proposition 2, Reflexivity, Augmentation and Transitivity are sound and complete. Assume a set Σ of functional dependencies is inferred using a non-canonical sequence S of applications of Reflexivity, Augmentation and Transitivity rules. We show that the steps of application of the rules can be reorder to obtain a canonical sequence that derives the same set of dependencies. Since applications of Reflexivity are independent of other rules, we can reorder the steps, to move all applications of Reflexivity to the start of the sequence, obtaining a sequence S 1 = S Ref l S that derives Σ and such that S Ref l contains only applications of the Reflexivity rule, and S has no applications of Reflexivity.

Similarly, any application of Augmentation in S on a dependency that exists in Σ or has been obtained by Reflexivity or by a previous Augmentation step can be moved towards the start of S , obtaining a sequence S Aug S where S Aug consists only of Augmentation steps and all the applications of Augmentation in S use a dependency obtained by transitivity.

The sequence S Ref l SAugS is therefore canonical and derives the same set of functional dependencies as S. It follows that canonical sequences are sound and complete.

Appendix D DBPG and FDPG Examples

The functional dependency graph Σ = {AB → C, ABC → D}:

Appendix E Variadic Rewriting Rule Expansion Examples

Example expansion of Transitivity VRR to Transitivity-3, where i = 3.