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 for b m -symplectic surfaces to the equivariant setting. When the compact group is the group of deck-transformations of an orientable covering, this yields the classification of these objects for nonorientable surfaces. The paper also includes recipes to construct b m -symplectic structures on surfaces. The feasibility of such constructions depends on orientability and on the colorability of an associated graph. The desingularization technique in [10] is revisited for surfaces and the compatibility with this classification scheme is analyzed in detail.

INTRODUCTION

The topological classification of closed surfaces is determined by orientability and genus. The geometrical classification of symplectic surfaces was established by Moser [START_REF] Moser | On the Volume Elements on a Manifold[END_REF]. Moser proved that any two closed symplectic surfaces with symplectic forms lying in the same de Rham cohomology class are equivalent in the sense that there exists a diffeomorphism taking one symplectic structure to the other.

Poisson structures show up naturally in this scenario as a generalization of symplectic structures where the nondegeneracy condition is relaxed. The first examples of Poisson structures are symplectic manifolds and manifolds with the zero Poisson structure. In between these two extreme examples there is a wide variety of Poisson manifolds. Poisson structures with dense symplectic leaves and controlled singularities have been the object of study of several recent articles (see, for instance, [START_REF] Gualtieri | Symplectic Groupoids of Log Symplectic Manifolds[END_REF][START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF][START_REF] Guillemin | Symplectic and Poisson Geometry on b-Manifolds[END_REF][START_REF] Guillemin | Toric Actions on b-Symplectic Manifolds[END_REF][START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF][START_REF] Mȃrcut | Deformations of Log-Symplectic Structures[END_REF]). The classification of these objects in dimension 2 is given by a suitable cohomological condition. In the extreme case of symplectic manifolds this cohomology coincides with de Rham cohomology and, as explained above, this classification was already known to Moser [START_REF] Moser | On the Volume Elements on a Manifold[END_REF]. For orientable b-symplectic manifolds, the classification can be formulated in terms of b-cohomology (see [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF]) which reinterprets former classification invariants by Radko [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF].

It is possible to consider other classes of Poisson manifolds with simple singularities like b msymplectic manifolds [START_REF] Scott | The Geometry of b k Manifolds[END_REF] or more general singularities [START_REF] Miranda | The Geometry of E-Manifolds[END_REF] by relaxing the transversality condition for b-symplectic manifolds. These structures have relevance in mechanics: most of the examples are found naturally in the study of celestial mechanics (see [START_REF] Delshams | Examples of Integrable and Non-Integrable Systems on Singular Symplectic Manifolds[END_REF][START_REF] Kiesenhofer | Cotangent Models for Integrable Systems[END_REF][START_REF] Kiesenhofer | Action-Angle Variables and a KAM Theorem for b-Poisson Manifolds[END_REF]). In the same way, b m -symplectic structures are classified in terms of b m -cohomology [START_REF] Scott | The Geometry of b k Manifolds[END_REF]. The recent papers [START_REF] Mȃrcut | Deformations of Log-Symplectic Structures[END_REF] and [START_REF] Frejlich | A Note on the Symplectic Topology of b-Manifolds[END_REF] have renewed interest in the nonorientable counterparts of these structures.

In this article we focus our attention on b m -symplectic surfaces and we prove an equivariant Radko-type [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] classification theorem (Theorem 8). Some new applications of similar ideas to the context of Nambu structures can be found in [START_REF] Miranda | Classification of b m -Nambu Structures of Top Degree[END_REF]. When the group considered is the group of decktransformations of an orientable covering, this yields the classification of nonorientable compact surfaces in the b m -case (Corollary 1). Such a classification was missing in the literature. We also examine the compatibility of this classification scheme and a desingularization procedure described in [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF], proving that, for surfaces, equivalent b 2k -symplectic structures get mapped to equivalent symplectic structures under the desingularization procedure (Theorem 13), though nonequivalent b 2k -symplectic structures might get mapped to equivalent symplectic structures via this procedure (Remark 11 and Example 3).

Organization of the paper: In Section 2 we include the necessary preliminaries of b mstructures. In Section 3 we present some examples of b m -symplectic surfaces on orientable and nonorientable manifolds. In Section 4 we present an equivariant b m -Moser theorem and use it to classify nonorientable b m -symplectic surfaces. In Section 5 we give explicit constructions of b m -symplectic structures with prescribed critical set depending on orientability and colorability of an associated graph. In Section 6 we analyze the behavior of this classification under the desingularization procedure described in [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF].

PRELIMINARIES

Let M be a smooth manifold and let a Poisson structure on M be a bilinear map {•, •} :

C ∞ (M ) × C ∞ (M ) → C ∞ (M )
which is skew-symmetric and satisfies both the Jacobi identity and the Leibniz rule. It is possible to express {f, g} in terms of a bivector field via the following equality {f, g} = Π(df ∧ dg) with Π a section of Λ 2 (T M). Π is the associated Poisson bivector. We will use indistinctively the terminology of Poisson structure when referring to the bracket or the Poisson bivector.

A b-Poisson bivector field on a manifold M 2n is a Poisson bivector such that the map

F : M → 2n T M : p → Π(p) n (2.1)
is transverse to the zero section. Then a pair (M, Π) is called a b-Poisson manifold and the vanishing set Z of F is called the critical hypersurface. Observe that Z is an embedded hypersurface. This class of Poisson structures was studied by Radko [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] in dimension two and considered in numerous papers in the last years: [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF][START_REF] Guillemin | Symplectic and Poisson Geometry on b-Manifolds[END_REF][START_REF] Guillemin | Toric Actions on b-Symplectic Manifolds[END_REF][START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF][START_REF] Mȃrcut | Deformations of Log-Symplectic Structures[END_REF] and [START_REF] Gualtieri | The Tropical Momentum Map: A Classification of Toric Log Symplectic Manifolds[END_REF] among others.

b-Poisson Manifolds

Next, we recall Radko's classification theorem and the cohomological re-statement presented in [START_REF] Guillemin | Symplectic and Poisson Geometry on b-Manifolds[END_REF].

In what follows, (M, Π) will be a closed smooth surface with a b-Poisson structure on it, and Z its critical hypersurface.

Let h be the distance function to Z as in [15] 1) . Definition 1. The Liouville volume of (M, Π) is the following limit: V (Π) := lim →0 |h|> ω n2) .

The previous limit exists and it is independent of the choice of the defining function h of Z (see [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] for the proof). Definition 2. For any (M, Π) oriented Poisson manifold, let Ω be a volume form on it, and let u f denote the Hamiltonian vector field of a smooth function f : M → R. The modular vector field X Ω is the derivation defined as follows:

f → L u f Ω Ω . Definition 3. Given γ a connected component of the critical set Z(Π) of a closed b-Poisson manifold (M, Π)
, the modular period of Π around γ is defined as:

T γ (Π) := period of X Ω | γ .
Remark 1. The modular vector field X Ω of the b-Poisson manifold (M, Z) does not depend on the choice of Ω because for different choices for volume form the difference of modular vector fields is a Hamiltonian vector field. Observe that this Hamiltonian vector field vanishes on the critical set as Π vanishes there too.

Definition 4. Let M n (M ) = C n (M )/ ∼ where C n (M )
is the space of disjoint oriented curves and ∼ identifies two sets of curves if there is an orientation-preserving diffeomophism mapping the first one to the second one and preserving the orientations of the curves.

The following theorem classifies b-symplectic structures on surfaces using these invariants: 

1) the equivalence classes of [Z] and [Z ] ∈ M n (M ),
2) their modular periods around the connected components of Z and Z ,

3) their Liouville volume.

An appropriate formalism to deal with these structures was introduced in [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF].

Definition 5. A b-manifold 3) is a pair (M, Z) of a manifold and an embedded hypersurface.

In this way the concept of b-manifold previously introduced by Melrose is generalized. Definition 6. A b-vector field on a b-manifold (M, Z) is a vector field tangent to the hypersurface Z at every point p ∈ Z.

Definition 7. A b-map from (M, Z) to (M , Z ) is a smooth map φ : M → M such that φ -1 (Z ) = Z and φ is transverse to Z .
Observe that if x is a local defining function for Z and (x, x 1 , . . . , x n-1 ) are local coordinates in a neighborhood of p ∈ Z, then the C ∞ (M )-module of b-vector fields has the following local basis:

x ∂ ∂x , ∂ ∂x 1 , . . . , ∂ ∂x n-1 . (2.2)
In contrast with [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF], in this paper we do not require the existence of a global defining function for Z and orientability of M , but we require the existence of a defining function in a neighborhood of each point of Z. By relaxing this condition the normal bundle of Z need not be trivial.

Given (M, Z) a b-manifold, [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF] shows that there exists a vector bundle, denoted by b T M whose smooth sections are b-vector fields. This bundle is called the b-tangent bundle of (M, Z).

The b-cotangent bundle b T * M is defined using duality. A b-form is a section of the b-cotangent bundle. Around a point p ∈ Z the C ∞ (M )-module of these sections has the following local basis:

1 x dx, dx 1 , . . . , dx n-1 . (2.3)
In the same way we define a b-form of degree k to be a section of the bundle k ( b T * M ), the set of these forms is denoted b Ω k (M ). Denoting by f the distance function 4) to the critical hypersurface Z, we may write the following decomposition as in [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF] for any ω ∈ b Ω k (M ): The notion of b-symplectic forms is dual to the notion of b-Poisson structures. The advantage of using forms is that symplectic tools can be "easily" exported.

ω = α ∧ df f + β, with α ∈ Ω k-1 (M ) and β ∈ Ω k (M ). ( 2 
Radko's classification theorem [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] can be translated into this language. This translation was already formulated in [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF]:

Theorem 2 (Radko's theorem in b-cohomological language, [START_REF] Guillemin | Symplectic and Poisson Geometry on b-Manifolds[END_REF]). Let S be a closed orientable surface and let ω 0 and ω 1 be two b-symplectic forms on (S, Z) defining the same bcohomology class (i. e.,[ω 0 ] = [ω 1 ]). Then there exists a diffeomorphism φ : S → S such that φ * ω 1 = ω 0 .

b m -symplectic Manifolds

By relaxing the transversality condition allowing higher-order singularities ( [START_REF] Arnol'd | Remarks on Poisson Structures on a Plane and on Other Powers of Volume Elements[END_REF] and [START_REF] Arnold | Critical Point of Smooth Functions[END_REF]) we may consider other symplectic structures with singularities as done by Scott [START_REF] Scott | The Geometry of b k Manifolds[END_REF] with b m -symplectic structures. Let m be a positive integer, and let the b m -manifold be a b-manifold (M, Z) together with a b m -tangent bundle attached to it. The b m -tangent bundle is (by the Serre -Swan theorem [START_REF] Swan | Vector Bundles and Projective Modules[END_REF]) a vector bundle b m T M whose sections are given by

Γ( b m T M) = {v ∈ Γ(T M) : v(x) vanishes to order m at Z},
where x is a defining function for the critical set Z in a neighborhood of each connected component of Z and can be defined as 4) Originally in [START_REF] Guillemin | Codimension One Symplectic Foliations and Regular Poisson Structures[END_REF] f stands for a global function, but for nonorientable manifolds we may use the distance function instead. 5) Then a b m -manifold will be a triple (M, Z, x), but for the sake of simplicity we refer to it as a pair (M, Z) and we tacitly assume that the function x is fixed.

x : M \ Z → (0, ∞), x ∈ C ∞ (M ) such that: 1) x(p) = d(p) a distance function from p to Z for p : d(p) 1/2, 2) x(p) = 1 on M \ {p ∈ M such that d(p) < 1} 5) .
(This definition of x allows us to extend the construction in [START_REF] Scott | The Geometry of b k Manifolds[END_REF] to the nonorientable case as in [START_REF] Mȃrcut | Deformations of Log-Symplectic Structures[END_REF].)

We may define the notion of a b m -map as a map in this category (see [START_REF] Scott | The Geometry of b k Manifolds[END_REF]). The sections of this bundle referred to as b m -vector fields and their flows define b m -maps. In local coordinates the sections of the b m -tangent bundle are generated by

x m ∂ ∂x , ∂ ∂x 1 , . . . , ∂ ∂x n-1 . (2.5)
Proceeding mutatis mutandis as in the b-case, one defines the b m -cotangent bundle ( b m T * M ), the b m -de Rham complex and the b m -symplectic structures.

A Laurent Series of a closed b m -form ω is a decomposition of ω in a tubular neighborhood U of Z of the form

ω = dx x m ∧ m-1 i=0 π * (α i )x i + β (2.6)
with π : U → Z the projection of the tubular neighborhood onto Z, α i a closed smooth de Rham form on Z and β a de Rham form on M .

In [START_REF] Scott | The Geometry of b k Manifolds[END_REF] it is proved that in a neighborhood of Z, every closed b m -form ω can be written in a Laurent form of type (2.6) having fixed a (semi)local defining function.

b m -Cohomology is related to de Rham cohomology via the following theorem:

Theorem 3 (b m -Mazzeo -Melrose, [24]). Let (M, Z) be a b m -manifold, then: b m H p (M ) ∼ = H p (M ) ⊕ (H p-1 (Z)) m . (2.7)
The isomorphism constructed in the proof of the theorem above is noncanonical (see [START_REF] Scott | The Geometry of b k Manifolds[END_REF]). The Moser path method can be generalized to b m -symplectic structures: A relative version of the Moser path method is proved in [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF]. As a corollary we obtain the following local description of a b m -symplectic manifold: Theorem 6 (b m -Darboux theorem, [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF]). Let ω be a b m -symplectic form on (M, Z) and p ∈ Z. Then we can find a coordinate chart (U, x 1 , y 1 , . . . , x n , y n ) centered at p such that on U the hypersurface Z is locally defined by x 1 = 0 and

ω = dx 1 x m 1 ∧ dy 1 + n i=2 dx i ∧ dy i .
Remark 2. For the sake of simplicity sometimes we will omit describing Z and we will talk directly about b m -symplectic structures on manifolds M , implicitly assuming that Z is the vanishing locus of Π n where Π is the Poisson vector field dual to the b m -symplectic form.

Desingularizing b m -Poisson Manifolds

In [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF] Guillemin, Miranda and Weitsman presented a desingularization procedure for b msymplectic manifolds proving that we may associate a family of folded symplectic or symplectic forms to a given b m -symplectic structure depending on the parity of m. Namely, Theorem 7 (Guillemin -Miranda -Weitsman, [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF]). Let ω be a b m -symplectic structure on a closed orientable manifold M and let Z be its critical hypersurface.

• If m = 2k, there exists a family of symplectic forms ω which coincide with the b m -symplectic form ω outside an -neighborhood of Z and for which the family of bivector fields (ω ) -1 converges in the C 2k-1 -topology to the Poisson structure ω -1 as → 0 .

• If m = 2k + 1, there exists a family of folded symplectic forms ω which coincide with the b m -symplectic form ω outside an -neighborhood of Z.

As a consequence of Theorem 7, any closed orientable manifold that supports a b 2k -symplectic structure necessarily supports a symplectic structure.

In [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF] explicit formulae are given for even and odd cases. Let us refer here to the evendimensional case as these formulae will be used later on.

Let us briefly recall how the desingularization is defined and the main result in [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF]. Recall that we can express the b 2k -form as

ω = dx x 2k ∧ 2k-1 i=0 x i α i + β. ( 2.8) 
This expression holds on a -tubular neighborhood of a given connected component of Z. This expression comes directly from Eq. (2.6). For a proof of this result we refer the reader to [START_REF] Scott | The Geometry of b k Manifolds[END_REF]. Definition 9. Let (S, Z, x), be a b 2k -manifold, where S is a closed orientable manifold and let ω be a b 2k -symplectic form. Consider the decomposition given by the expression (2.8) on an -tubular neighborhood U of a connected component of Z.

Let f ∈ C ∞ (R) be an odd smooth function satisfying f (x) > 0 for all x ∈ [-1, 1] and, moreover, satisfying

f (x) = -1 (2k-1)x 2k-1 -2 for x < -1, -1 (2k-1)x 2k-1 + 2 for x > 1.
(2.9)

Let f (x) be defined as -(2k-1) f (x/ ).
The f -desingularization ω is a form that is defined on U by the following expression:

ω = df ∧ 2k-1 i=0 x i α i + β.
This desingularization procedure is also known as deblogging in the literature. Remark 3. Although there are infinitely many choices for f , we will assume that we choose one, and assume it fixed throughout the rest of the discussion. It would be interesting to discuss the existence of an isotopy of forms under a change of function f . Remark 4. Because ω can be trivially extended to the whole S in such a way that it agrees with ω (see [START_REF] Guillemin | Desingularizing b m -Symplectic Structures[END_REF]) outside a neighborhood of Z, we can talk about the f -desingularization of ω as a form on S. Consider Z/2Z acting on (x, y) ∈ T 2 by -Id • (x, y) = (1x, y + 1/2 (mod 1)). The orbit space by this action is the Klein bottle K. Then the b m -manifold (R 2 , Z) descends to (K, Ẑ) where Ẑ is the quotient of Z by the action. It is easy to see that Ẑ ∼ = S 1 S 1 . Moreover, the tubular neighborhood of each S 1 is isomorphic to the Moebius band. In this section we give an equivariant Moser theorem for b m -symplectic manifolds. This yields the classification of nonorientable surfaces, thus extending the classification theorems of Radko and Scott for orientable surfaces (see Theorem 9).

We now extend the classification result (Theorem 4) for manifolds admitting a compact Lie group action leaving the b m -symplectic structure invariant. The following theorem is a simple consequence of applying the equivariant tools to the Moser path method. We include the detail of the proof for the sake of completeness. Other applications of the equivariant tools in b-geometry can be found in [START_REF] Guillemin | Toric Actions on b-Symplectic Manifolds[END_REF] and [START_REF] Guillemin | On Geometric Quantization of b-Symplectic Manifolds[END_REF]. Proof. Denote by ρ g the induced diffeomorphism for a fixed g ∈ G. i. e., ρ g (x) := ρ(g, x). Consider the linear family of b m -forms ω s = sω 1 + (1s)ω 0 . Since the manifold is a surface, the fact that ω 0 and ω 1 are nondegenerate b m -forms and of the same sign on S \ Z 6) (thus nonvanishing sections of Λ 2 ( b T * (S))) implies that the linear path is nondegenerate too. We will prove that there exists a family ξ s : S → S, with 0 s 1 such that

ξ * s ω s = ω 0 . (4.1)
We want to construct ξ 1 as the time-1 flow of a time-dependent Hamiltonian vector field X s (as in the standard Moser trick).

Since the cohomology classes of both forms coincide, ω 1ω 0 = dα for α a b m -form of degree 1. Therefore, Moser's equation reads

ι Xs ω s = -α. (4.2)
This equation has a unique solution X s because ω s is b m -symplectic and therefore it is nondegenerate. X s depends smoothly on s because ω s depends smoothly on s and ω s defines a nondegenerate pairing between b m -vector fields and b m -forms. Furthermore, the solution is a b mvector field, but this solution may not be compatible with the group action. From this solution we will construct an equivariant solution such that its s-dependent flow gives an equivariant diffeomorphism.

Since the forms ω 0 and ω 1 are G-invariant, we can find a G-invariant primitive α by averaging with respect to a Haar measure the initial form α: α = G ρ * g (α)dμ and therefore the invariant vector field,

X G s = G ρ g * (X s )dμ is a solution of the equation, ι X G s ω s = -α. ( 4.3) 
We can get an equivariant ξ G s by integrating X G s . This family satisfies ξ G * t ω t = ω 0 and it is equivariant. Also observe that since

X G t is a b m -vector field ξ G t is a b m -diffeomorphism of (S, Z).
A nonorientable manifold can be seen as a pair ( M , ρ) with M the orientable covering and ρ the action given by deck-transformations of Z/2Z on M . This perspective is very convenient for classification issues because equivariant mappings on the orientable covering yield actual diffeomorphisms on the nonorientable manifolds. We adopt this point of view to provide a classification theorem for nonorientable b m -surfaces in cohomological terms. Remark 6. Observe that the b m -Mazzeo -Melrose allows us to determine whether a given b mcohomology of degree 2 is nonzero by reducing this question to de Rham cohomology. . By Theorem 8, there exists a Z/2Z-equivariant b m -diffeomorhism φ : Ŝ, p -1 (Z) → ( Ŝ, p -1 (Z)) such that φ * p * ω 2 = p * ω 1 . Since φ is Z/2Z-equivariant, it descends to a map ϕ : S → S. Moreover, because φ p -1 (Z) = p -1 (Z), it follows that ϕ(Z) = Z. Since φ is smooth and p is a submersion, φ is smooth (the same argument shows that ϕ -1 is smooth). It follows that ϕ is a diffeomorphism, and because ϕ(Z) = Z, it is also a b m -diffeomorphism. Moreover, by construction, the condition φ * p * ω 2 = p * ω 1 implies that ϕ * ω 2 = ω 1 .

An equivariant b m -Moser theorem similar to Theorem 8 holds for higher dimensions. In that case we need to require that there exists a path ω t of b m -symplectic structures connecting ω 0 and ω 1 , which is not true in general [START_REF] Mcduff | Examples of Symplectic Structures[END_REF]. The proof follows the same lines as Theorem 8. Such a result was already proved for b-symplectic manifolds (see Theorem 8 in [START_REF] Guillemin | Toric Actions on b-Symplectic Manifolds[END_REF]). Assume that the family of b m -symplectic structures is invariant under the action of a compact Lie group G on M , then there exists a family of equivariant b m -diffeomorphisms φ t : (M, Z) → (M, Z), with 0 t 1 such that φ * t ω t = ω 0 .

CONSTRUCTIONS AND CLASSIFICATION OF b m -SYMPLECTIC STRUCTURES

In this section we describe constructions of b m -symplectic structures on closed surfaces. We obtain topological constraints on b 2k -symplectic surfaces as we will prove that the underlying closed surface needs to be orientable, see Theorem 10. Then we characterize the existence of b m -symplectic forms depending on the parity of m and the colorability of an associated graph. We also obtain a result about nonorientable surfaces: if m = 2k + 1, we find necessary and sufficient conditions for a nonorientable b m -surface to admit a b m -symplectic structure (see Theorem 12).

b 2k -symplectic Orientable Surfaces

We start by proving that only orientable surfaces admit b 2k -symplectic structures: Theorem 10. If a closed surface admits a b 2k -symplectic structure, then it is orientable.

Proof. The proof consists in building a collar of b 2k -Darboux neighborhoods with compatible orientations (the local orientations on the complement of the critical hypersurface induced by the b 2k -Darboux charts agree) in a neighborhood of each connected component of Z. Indeed, the proof does more, it constructs a symplectic structure in a neighborhood of Z which can be extended to S. This in particular will give an orientation on S.

Let (S, Z) be a closed b 2k -surface and let ω denote a b 2k -symplectic structure on (S, Z). Pick ( S, Z) an orientable double cover of the b 2k -surface (S, Z), with ρ : Z/2Z × S → S the action by deck transformations. For each point q ∈ Z, using Theorem 6, we can find a b 2k -Darboux neighborhood U q (by shrinking the neighborhood if necessary) which does not contain other points identified by ρ (ρ(U q ) ∼ = U q ). Let us define V q := p(U q ), where p is the projection from S to S. With the previous construction we have ω| Uq = 1 x 2k dx ∧ dy. Now we can use the desingularization formulae in Theorem 7 and Definition 9 in each U q (because every U q is orientable) to obtain a symplectic form ω q on each U q . All these symplectic structures and hence the orientations on each U q glue in a compatible manner because the function x is globally defined.

Since Z is compact we can take a finite subcovering for U q to define a collar U of symplectic and compatible orientations. Furthermore, we can assume this covering to be symmetric as we can shrink further the neighborhoods and add the preimages of all of them -for each U q the image ρ(U q ) is included in the covering.

Since ρ preserves ω, and the defining function is invariant under ρ, it also preserves the deblogged symplectic forms ω q and the compatible orientations and indeed the deblogged symplectic form descends to S, thus defining a symplectic form and an orientation on V = p(U ). Using the standard techniques of Radko [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF], the symplectic structures on V \ Z can be glued to define a compatible symplectic structure on the whole S. When Z has more than one connected component, we may proceed in the same way by isolating collar neighborhoods of each component, thus proving that S admits a symplectic structure and in particular it is oriented. 

Associated Graph of a b-manifold

Let us introduce some definitions that will be needed in the next subsection. Definition 10. Let (M, Z) be a closed b-manifold. The associated graph Γ(M, Z) to this b-manifold is defined as follows:

1. The set of vertices is in one-to-one correspondence with the connected components

(U 1 , . . . , U n ) of M \ Z.
2. Let (Z 1 , . . . , Z n ) be the connected components of Z. Two vertices (v i , v j ) (represented by (U i , U j )) are connected by an edge if and only if for any tubular neighborhood of some Z k , it intersects both U i and U j .

Remark 7.

As observed in [START_REF] Scott | The Geometry of b k Manifolds[END_REF] (Section 3.2), associated to any b m -manifold there is a canonical bmanifold, obtained by forgetting the distance function. The latter is henceforth said to be underlying the former. Using Definition 10, the graph associated to a b m -manifold is the graph associated to its underlying b-manifold. Since not every graph admits a 2-coloring, a graph is called 2-colorable if it admits a 2-coloring.

b 2k+1

-symplectic Orientable Surfaces Theorem 11. Given a b m -manifold (S, Z) (fixed m) with S closed and orientable, there exists a b m -symplectic structure whenever:

1) m = 2k, 2) m = 2k + 1 if and only if the associated graph Γ(S, Z) is 2-colorable.
Proof (of Theorem 11). Let C 1 , . . . , C r be the connected components of S \ Z, let Z 1 , . . . , Z s the connected components of Z and let U(Z 1 ), . . . , U (Z s ) be tubular neighborhoods of the connected components. Moreover, we denote the union of U(Z 1 ), . . . , U (Z s ) by U (Z).

We assume there is an orientation defined by some symplectic form in S, which allows us to define a sign criterion.

The proof consists in 3-steps:

1. Using Weinstein's normal form theorem. Fix i ∈ {1, . . . , s}, where s is the number of connected components. By virtue of Weinstein's normal form theorem for Lagrangian submanifolds (Corollary 6.2 in [START_REF] Weinstein | Symplectic Manifolds and Their Lagrangian Submanifolds[END_REF]) each tubular neighborhood U (Z i ) can be identified with the zero section of the cotangent bundle of Z i . Now replace the cotangent bundle of Z i by the b m -cotangent bundle of Z i 7) . In this way the neighborhood of the zero section of the b m -cotangent bundle has a b m -symplectic structure, which we will denote by ω U (Z i ) . 7) This can be done after fixing a point in Z to define a b m -structure on Z.

2. Constructing compatible orientation using the graph. For any i = 1, . . . , s, U (Z i ) \ Z i has two connected components (as S is orientable); to each such component we assign the sign of the restriction of the b m -symplectic form ω U (Z i ) . Note that the sign does not change for m even, but it changes for k odd. Observe that we can apply Moser's trick to glue two rings that share some C j (as done in Radko [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] to extend a symplectic form between the two rings) if and only if the signs of the two rings match on this component. Now let us consider separately the odd and even cases:

(a) For b 2k the color of adjacent vertices must coincide. And hence we have no additional constraint on the topology of the graph.

(b) In the b 2k+1 case the sign of two adjacent vertices must be different. Then we have to impose the associated graph to be 2-colorable.

These two conditions are necessary for the existence of the b 2k -and b 2k+1 -forms, respectively.

3.

Gluing. Now we may glue back this neighborhood to S \ U(Z) in such a way that the symplectic structures fit on the boundary (again using the standard techniques used in Radko [START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] to extend with a symplectic form between the two rings), using the Moser's path method.

Given a b 2k+1 -symplectic structure ω on a b 2k+1 -surface (S, Z) (where S is closed oriented), one can obtain a 2-coloring of the associated graph (by the local expression given by the b m -Darboux theorem -see Theorem 6, the sign has to change every time we cross a component Z i ) by assigning to each connected component C i of S \ Z the "color" sign( C i ω).

Remark 9.

Observe that any given 2-coloring has to be equivalent to the 2-coloring induced by a b 2k+1 -symplectic form. This is due to the fact that there exist only 2 possible 2-colorings of a graph (when it is 2-colorable). The difference between the two 2-colorings is only relabeling of the signs. Then, if the 2-coloring induced by the b 2k+1 -symplectic form does not correspond to the prescribed 2-coloring, it can be matched by changing the orientation of the underlying manifold.

Another way to construct b 2k -structures on a surface is to use the decomposition theorem as a connected sum of b 2k -spheres (1) and the b 2k -torus [START_REF] Arnold | Critical Point of Smooth Functions[END_REF]. The drawback of this construction is that it is harder to adapt having fixed a prescribed Z. 8) Observe that if a transformation inverts colors for a given coloring, then it inverts colors for all of them (there are only 2 possible 2-colorings when a graph is 2-colorable, and they correspond to the possible choices of orientation).

Proof. Let us assume the two conditions on the statement of the theorem hold. Apply Theorem 11 to endow the covering ( S, Z) with a b 2k+1 -symplectic structure, if the form obtained is invariant under the deck transformations, then it descends to the quotient, thus obtaining a b 2k+1 -symplectic structure on ( S, Z). The proof is complete. Now let us assume that the b 2k+1 -form ω obtained via Theorem 11 is not invariant under deck transformations. We will note the deck transformation induced by -Id as ρ. Observe that sign

C i ρ * ω = -sign ρ(C i ) ω = +sign C i ω .
(5.1)

The first equality is due to ρ changing orientations and the second one is due to ρ inverting colors.

Then the pullback of ω has the same sign as ω, and hence ω + ρ * (ω) is a nondegenerate b 2k+1 -form that is invariant under the action of ρ, and it descends to the quotient. Hence a b 2k+1 -symplectic structure is obtained on (S, Z).

The other implication is easier. If we have a b 2k+1 -symplectic form on (S, Z), we can pull it back to the double cover by means of the projection. Then we obtain a b 2k+1 -form on the double cover, which induces a 2-coloring defined by the orientations. And since the b 2k+1 -form on the double cover has to be invariant under the deck transformation, the deck transformation has to invert colors. which is negative. Then

C 1 ρ * ω = lim →0 π -π 1 ρ * 1 h dh ∧ dθ = lim →0 π -π 1 1 -h d(-h) ∧ dθ = C 1 ω. ( 5.4) 
In this case ω was already invariant, but one can observe that if ρ inverts colors, then the signs of the form and the pullback are the same.

Example 2. One may ask why the condition of inverting colors is necessary. Next we provide an example where b 2k+1 -structures can be exhibited on the double cover, but cannot be projected to induce a b 2k+1 -structure on the nonorientable surface.

Consider Example 3 in Section 3. If one translates the critical set in the h direction in the projective space, the double cover is still the sphere, but instead of Z being the equator, Z consists of different meridians {h = h 0 } and {h = -h 0 }.

Observe that the associated graph of this double cover is a path graph of length 3 that can be easily 2-colored. Take a generic b 2k+1 -form ω = f (h, θ)dh ∧ dθ and look at the poles N, S. sign(f (N )) = sign(f (S)) because of the 2-coloring of the graph. But ρ * (ω)| N = f (ρ(N ))d(-h) ∧ dθ = -f (S)dh ∧ dθ. Then sign(ω) = sign ρ * (ω) , and hence ω cannot be invariant for ρ.

DESINGULARIZATION OF CLOSED b 2k -SYMPLECTIC SURFACES

In this section we only refer to the desingularization of b 2k -symplectic structures because, as we explained in Section 2.3, the desingularization procedure associates folded symplectic structures to b 2k+1 -symplectic structures instead of symplectic structures. The goal of this section is to compare the classification schemes in the b m -symplectic and symplectic realms.

The aim of this section is to use the desingularization formulas described in Section 2.3 in the case of closed orientable surfaces. The main result of this section (Theorem 13) is that, if [ω 1 ] = [ω 2 ] (where ω 1 and ω 2 are two b 2k -symplectic forms on a b 2k -surface (S, Z)) in b 2k -cohomology, then the desingularization of the two forms also is in the same class [ω 1 ] = [ω 2 ]. But the converse is not true: it is possible to find different classes of b 2k -forms that are of the same class when desingularized.

Next we apply our classification scheme and see how it behaves under the desingularization procedure.

Theorem 13. Let (S, Z, x) be a b 2k -manifold, where S is a closed orientable surface, and let ω 1 and ω 2 be two b 2k -symplectic forms. Also, let ω 1 and ω 2 be the f -desingularizations of ω 1 and ω 2 , respectively.

If [ω 1 ] = [ω 2 ] in b 2k -cohomology, then [ω 1 ] = [ω 2 ]
in de Rham cohomology for any fixed .

Before we proceed to prove the theorem, we will state some definitions in [START_REF] Scott | The Geometry of b k Manifolds[END_REF] that are necessary for the proof. Definition 14. Let (M, Z, x) be an n-dimensional b m -manifold. Given ω a b m -form of top degree with compact support, > 0 small, and let U an -tubular neighborhood 9) , then vol (ω) is defined as 

vol (ω) = M \U
P [ω] (0) = M \U ω + U β + k i=1 -2 2i -1 Z α 2i . (6.1)
Observe that in the proof of Theorem 5.3 in [START_REF] Scott | The Geometry of b k Manifolds[END_REF] the term M \U ω does not appear. This is because in [START_REF] Scott | The Geometry of b k Manifolds[END_REF] M is assumed to be U for the sake of simplicity. Adding this term is the way to extend this expression when U M .

Proof (of Theorem 13). Our strategy for the proof is to show that the cohomology class of a desingularization of a b 2k -symplectic structure on a closed orientable surface (which is the cohomology class of a symplectic structure and hence can be encoded by its signed area, i. e., the integral of itself over S) only depends on the b 2k -cohomology of the b 2k -symplectic structure (which, in its turn, can be encoded by the integral of the forms appearing in its Laurent series and its Liouville volume -Theorem 5).

9) the -tubular neighborhood is defined using the x from the b m -manifold

In order to compute the class of the desingularization, we calculate the integral of the desingularized form over the whole manifold. We are going to proceed in two steps. Firstly, we are going to compute the integral of the desingularization inside the -neighborhood U of Z, and then we compute it outside.

Using the expression of ω we compute:

U ω = U df ∧ 2k-1 i=0 x i α i + U β = -(2k-1) U df (x/ ) ∧ 2k-1 i=0 x i α i + U β = -2k U df (x/ ) dx dx ∧ 2k-1 i=0 x i α i + U β = -2k 2k-1 i=0 + - df (x/ ) dx x i dx Z α i + U β.
Then, because f is an odd function, df (x/ )/dx is even and hence the integral

+ - df (x/ ) dx x i dx
is going to different from 0 if i is even. Thus,

U ω = -2k k-1 i=1 + - df (x/ ) dx x 2i dx Z α 2i + U β.
Recall that outside the -neighborhood the desingularization ω coincides with the b 2k -symplectic form ω. Moreover, let us define U a tubular neighborhood of Z containing U (assume U = [-1, 1] × Z). Following the computations in [START_REF] Scott | The Geometry of b k Manifolds[END_REF], we obtain

M \U ω = M \U ω = M \U ω + U \U ω = M \U ω + U \U β + k i=1 -2 2i -1 Z α 2i + k i=1 2 2i -1 Z α 2i 2i-1 .
Now we may add the two terms in order to compute the integral over the whole surface M :

M ω = -2k k-1 i=1 + - df (x/ ) dx x 2i dx Z α 2i + U β + M \U ω + U \U β + k i=1 -2 2i -1 Z α 2i + k i=1 2 2i -1 Z α 2i 2i-1 = -2k k-1 i=1 + - df (x/ ) dx x 2i dx Z α 2i + M \U ω + U β + k i=1 -2 2i -1 Z α 2i
=P [ω] (0) by the expression (6.1)

+ k i=1 2 2i -1 Z α 2i 2i-1 .
In a more compact way: Remark 11. This previous theorem asserts that, for b 2k -surfaces (S, Z) with S closed and orientable and f and fixed, equivalent b 2k -symplectic structures get mapped to equivalent symplectic structures under the desingularization procedure. Nonequivalent b 2k -symplectic structures might get mapped to equivalent symplectic structures via deblogging. It is easy to see that there are different classes of b 2k -forms that desingularize to the same class by looking at expression (6.2). We only have terms [α i ] with i even. As a consequence, if two forms differ only in the odd terms, they have the same desingularized forms (assuming the auxiliary function f in the desingularization process is the same). We compute a particular example below.

Example 3. Consider S 2 with coordinates (h, θ). Consider the b 2 -manifold given by (S 2 , {h = 0}, h) with the following two b 2 -symplectic structures:

ω 1 = 1 h 2 dh ∧ dθ, ω 2 = 1 h + 1 h 2 dh ∧ dθ = 1 h 2 dh ∧ (hdθ + dθ). (6.3)
As before, assume f and fixed. Observe that for ω 1 the forms in the Laurent series are α 1 0 = dθ and α 1 1 = 0, while for ω 2 they are α 2 0 = dθ and α 2 1 = dθ. Then Z α 1 1 = 0 = Z α 2 1 = 2π, and hence [α 1 1 ] = [α Let us consider the action of S 1 over S 2 given by φ : S 1 × S 2 → S 2 : (t, (h, θ)) → (h, θ + t). Observe that both ω 1 and ω 2 are invariant under the previous action. Moreover, their desingularizations are also invariant.

. 4 )

 4 This decomposition allows us to extend the differential of the de Rham complex d to b Ω(M ) by setting dω = dα ∧ df f + dβ. The associated cohomology is called b-cohomology and it is denoted by b H * (M ). Definition 8. A b-symplectic form on a b-manifold (M 2n , Z) is defined as a nondegenerate closed b-form of degree 2 (i. e., ω p is of maximal rank as an element of Λ 2 ( b T * p M ) for all p ∈ M ).

Theorem 4 (Theorem 5 (

 45 Moser path method, [24]). Let ω 0 , ω 1 be two b m -symplectic forms defining the same b m -cohomology class [ω 0 ] = [ω 1 ] on (M 2n , Z) with M 2n closed and orientable, then there exist a b m -symplectomorphism ϕ : (M 2n , Z) -→ (M 2n , Z) such that ϕ * (ω 1 ) = ω 0 . An outstanding consequence of the Moser path method is a global classification of closed orientable b m -symplectic surfaces à la Radko in terms of b m -cohomology classes. Classification of closed orientable b m -surfaces, [24]). Let ω 0 and ω 1 be two b m -symplectic forms on a closed orientable connected b m -surface (S, Z). Then the following conditions are equivalent: 1) their b m -cohomology classes coincide [ω 0 ] = [ω 1 ], 2) the surfaces are globally b m -symplectomorphic, 3) the Liouville volumes of ω 0 and ω 1 and the numbers γ α i for all connected components γ ⊆ Z and all 1 i m coincide (where α i are the one-forms appearing in the Laurent decomposition of the two b m -forms of degree 2, ω 0 and ω 1 ).

Fig. 1 .

 1 Fig. 1. Smooth and odd extension of f inside the interval [-1, 1] such that f > 0.

3 . 1 ( 2 .Fig. 2 .

 3122 Fig. 2. Example: b m -symplectic structure in the torus.

3 .

 3 A b 2k+1 -symplectic structure on the projective space: Consider Example (1) and consider the quotient of S 2 by the antipodal action. Because this action leaves the critical set invariant, the b m -manifold structure (S 2 , Z) descends to (RP 2 , Ẑ) and gives a nonorientable b m manifold. Ẑ is the equator modulo the antipodal identification (thus diffeomorphic to RP 1 ∼ = S 1 ). Moreover, a neighborhood of Z is diffeomorphic to the Moebius band. Observe that ω is invariant under the action for m = 2k + 1, yielding a b 2k+1 -symplectic form in RP 2 with critical set Ẑ. 4. A b 2k+1 -symplectic structure on a Klein bottle: Consider the torus with the structure given in Example (2).

Fig. 3 .Remark 5 .

 35 Fig. 3. The b 2k+1 -symplectic structure on the sphere S 2 that vanishes at the equator induces a b 2k+1symplectic structure on the projective space RP 2 .

Theorem 8 (

 8 Equivariant b m -Moser theorem for surfaces). Suppose that S is a closed surface, let Z be a union of nonintersecting embedded curves. Consider the b m -manifold given by (S, Z). Fix m ∈ N and let ω 0 and ω 1 be two b m -symplectic structures on (S, Z) which are invariant under the action of a compact Lie group ρ : G × (S, Z) -→ (S, Z) and defining the same b m -cohomology class, [ω 0 ] = [ω 1 ]. Then there exists an equivariant b m -diffeomorphism ξ 1 : (S, Z) → (S, Z), such that ξ * 1 ω 1 = ω 0 .

Corollary 1 .

 1 Let (S, Z) be a nonorientable b m -manifold where Z is its critical set and let ω 1 and ω 2 be two b m -symplectic forms such that[ω 1 ] = [ω 2 ] in b m -cohomology, then (S, ω 1 ) is equivalent to (S, ω 2 ), i. e., there exists a b m -diffeomorphism ϕ : (S, Z) → (S, Z) such that ϕ * ω 2 = ω 1 .Proof. Consider m fixed and assume [ω 1 ] = [ω 2 ] in b m -symplectic cohomology. Let p : S → S be a covering map, and S the orientation double cover. Ŝ, p -1 (Z) is a b m -manifold and p * (ω 1 ), p * (ω 2 ) are b m -symplectic structures on ( Ŝ, p -1 (Z)). By construction the previous two forms are invariant under the action by deck transformations of Z/2Z. The defining function of the critical set in the double cover is the pullback by p of the defining function in (S, Z). Since [ω 1 ] = [ω 2 ], it follows that [p * (ω 1 )] = [p * (ω 2 )]

Theorem 9 (

 9 Equivariant b m -Moser theorem). Let (M, Z) be a closed b m -manifold with m a fixed natural number and let ω t for 0 t 1 be a smooth family of b m -symplectic forms on (M, Z) such that the b m -cohomology class [ω t ] does not depend on t.

Fig. 4 .

 4 Fig. 4. A collar of compatible neighborhoods.

Remark 8 .

 8 Given an oriented closed b m -manifold (M, Z), a b m -symplectic structure induces a standard orientation on each connected component of M \ Z. Comparing this orientation with the fixed one determines a sign that can be attached to each vertex of Γ(M, Z). A natural question to ask is whether adjacent vertices possess equal or opposite signs, thus yielding the following notions.

( a )

 a Example of a non-colorable associated graph. (b) Example of a colorable associated graph.

Fig. 5 .

 5 Fig. 5. Examples of associated graphs.

5. 4 .

 4 b 2k+1 -symplectic Nonorientable Surfaces Definition 13. Let (S, Z) be a closed orientable b 2k+1 -surface and Γ(S, Z) its associated graph. Fix the 2-coloring on Γ(S, Z) given by by sign C i ω . We say that a b 2k+1 -map ϕ inverts colors of the associated graph if sign C i ω = -sign ϕ(C i ) ω . Theorem 12. Let (S, Z) be a closed nonorientable b 2k+1 -surface. Then (S, Z) admits a b 2k+1symplectic structure if and only if the following two conditions hold: 1) the graph of the covering ( S, Z), G( S, Z) is 2-colorable and 2) the nontrivial deck transformation inverts colors of the graph obtained in the covering 8) .

Example 1 . 1 ω

 11 Let us illustrate what is happening in the previous proof with an example. Take the sphere having the equator as a critical set and endowed with the b-symplectic form ω = 1 h dh ∧ dθ. Let us call the north hemisphere C 1 and the south hemisphere C 2 , and let ρ be the antipodal map. Look at the coloring of the graph (a path graph of length two): sign(C 1 ) = sign C

Theorem 14 (Definition 15 .

 1415 Theorem 4.3 in [24]). For a fixed [ω] the b m -cohomology class of a b m -form ω, on a b m -manifold (M, Z, x) with Z compact, there is a polynomial P [ω] (t) for which lim →0 P [ω] (1/ )vol (ω) = 0 for any ω representing [ω]. The polynomial P [ω] described in Theorem 14 is the volume polynomial of [ω]. Its constant term P [ω] (0) is the Liouville volume of [ω]. Remark 10. Let U = [-1, 1] × Z be a tubular neighborhood of Z containing U ε . From the definition of the Liouville volume we may write:

2 )

 2 This integral only depends on the classes [α i ] and the Liouville volume P [ω] (0), which are determined by (and determine) the class of [ω]. So, two b 2k -forms on the same cohomology class determine the same cohomology class when desingularized.

  2 1 ] and [ω 1 ] = [ω 2 ]. The desingularized expressions of those forms are given by Let us compute the classes of ω 1 and ω 2 .

	ω 1 =	⎧ ⎨ ⎩	df (h) dh ω 1	dh ∧ dθ if |h| otherwise, ,	and ω 2 =	⎧ ⎨ ω 2 ⎩ df (h) dh	otherwise. dh ∧ (hdθ + dθ) if |h| ,	(6.4)
			S 2	ω 2 =	S 2 \U	ω 2 +	U	df (h) dh	(hdθ + dθ)
					=	S 2 \U	1 h 2 dh ∧ (hdθ + dθ) +	U	df (h) dh	(dθ) +	U	df (h) dh	(hdθ)
											=0
					=	S 2 \U	1 h 2 dh ∧ dθ +	S 2 \U	1 h	dh ∧ dθ	+	U	df (h) dh	(dθ)
											=0
					=	ω 1 .			
						S 2				

[START_REF] Arnol'd | Remarks on Poisson Structures on a Plane and on Other Powers of Volume Elements[END_REF] Notice the difference with[START_REF] Radko | A Classification of Topologically Stable Poisson Structures on a Compact Oriented Surface[END_REF] where h is assumed to be a global defining function.2) For surfaces n = 1.

[START_REF] Delshams | Examples of Integrable and Non-Integrable Systems on Singular Symplectic Manifolds[END_REF] The "b" of b-manifolds stands for "boundary", as initially considered by Melrose (Chapter 2 of[START_REF] Melrose | Atiyah-Patodi-Singer Index Theorem[END_REF]) for the study of pseudo-differential operators on manifolds with boundary.

[START_REF] Gualtieri | The Tropical Momentum Map: A Classification of Toric Log Symplectic Manifolds[END_REF] This is a consequence of the Mazzeo -Melrose theorem and the determination of the Liouville volume from it.
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