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1Universitat Politècnica de Catalunya and Barcelona Graduate School of Mathematics, BGSMath
Laboratory of Geometry and Dynamical Systems, Department of Mathematics, EPSEB, Edifici P, UPC,
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Abstract—Inspired by Arnold’s classification of local Poisson structures [1] in the plane using
the hierarchy of singularities of smooth functions, we consider the problem of global classification
of Poisson structures on surfaces. Among the wide class of Poisson structures, we consider
the class of bm-Poisson structures which can be also visualized using differential forms with
singularities as bm-symplectic structures. In this paper we extend the classification scheme
in [24] for bm-symplectic surfaces to the equivariant setting. When the compact group is the
group of deck-transformations of an orientable covering, this yields the classification of these
objects for nonorientable surfaces. The paper also includes recipes to construct bm-symplectic
structures on surfaces. The feasibility of such constructions depends on orientability and on
the colorability of an associated graph. The desingularization technique in [10] is revisited for
surfaces and the compatibility with this classification scheme is analyzed in detail.
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1. INTRODUCTION

The topological classification of closed surfaces is determined by orientability and genus. The
geometrical classification of symplectic surfaces was established by Moser [17]. Moser proved that
any two closed symplectic surfaces with symplectic forms lying in the same de Rham cohomology
class are equivalent in the sense that there exists a diffeomorphism taking one symplectic structure
to the other.

Poisson structures show up naturally in this scenario as a generalization of symplectic structures
where the nondegeneracy condition is relaxed. The first examples of Poisson structures are
symplectic manifolds and manifolds with the zero Poisson structure. In between these two extreme
examples there is a wide variety of Poisson manifolds. Poisson structures with dense symplectic
leaves and controlled singularities have been the object of study of several recent articles (see,
for instance, [5, 7–10, 15]). The classification of these objects in dimension 2 is given by a suitable
cohomological condition. In the extreme case of symplectic manifolds this cohomology coincides with
de Rham cohomology and, as explained above, this classification was already known to Moser [17].
For orientable b-symplectic manifolds, the classification can be formulated in terms of b-cohomology
(see [7]) which reinterprets former classification invariants by Radko [23].

It is possible to consider other classes of Poisson manifolds with simple singularities like bm-
symplectic manifolds [24] or more general singularities [19] by relaxing the transversality condition
for b-symplectic manifolds. These structures have relevance in mechanics: most of the examples are
found naturally in the study of celestial mechanics (see [3, 13, 14]). In the same way, bm-symplectic
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356 MIRANDA, PLANAS

structures are classified in terms of bm-cohomology [24]. The recent papers [15] and [4] have renewed
interest in the nonorientable counterparts of these structures.

In this article we focus our attention on bm-symplectic surfaces and we prove an equivariant
Radko-type [23] classification theorem (Theorem 8). Some new applications of similar ideas to the
context of Nambu structures can be found in [20]. When the group considered is the group of deck-
transformations of an orientable covering, this yields the classification of nonorientable compact
surfaces in the bm-case (Corollary 1). Such a classification was missing in the literature. We also
examine the compatibility of this classification scheme and a desingularization procedure described
in [10], proving that, for surfaces, equivalent b2k-symplectic structures get mapped to equivalent
symplectic structures under the desingularization procedure (Theorem 13), though nonequivalent
b2k-symplectic structures might get mapped to equivalent symplectic structures via this procedure
(Remark 11 and Example 3).

Organization of the paper: In Section 2 we include the necessary preliminaries of bm-
structures. In Section 3 we present some examples of bm-symplectic surfaces on orientable and
nonorientable manifolds. In Section 4 we present an equivariant bm-Moser theorem and use it
to classify nonorientable bm-symplectic surfaces. In Section 5 we give explicit constructions of
bm-symplectic structures with prescribed critical set depending on orientability and colorability
of an associated graph. In Section 6 we analyze the behavior of this classification under the
desingularization procedure described in [10].

2. PRELIMINARIES

Let M be a smooth manifold and let a Poisson structure on M be a bilinear map {·, ·} :
C∞(M) × C∞(M) → C∞(M) which is skew-symmetric and satisfies both the Jacobi identity and
the Leibniz rule. It is possible to express {f, g} in terms of a bivector field via the following equality
{f, g} = Π(df ∧ dg) with Π a section of Λ2(TM). Π is the associated Poisson bivector. We will
use indistinctively the terminology of Poisson structure when referring to the bracket or the Poisson
bivector.

A b-Poisson bivector field on a manifold M2n is a Poisson bivector such that the map

F : M →
2n∧

TM : p �→
(
Π(p)

)n (2.1)

is transverse to the zero section. Then a pair (M,Π) is called a b-Poisson manifold and the
vanishing set Z of F is called the critical hypersurface. Observe that Z is an embedded
hypersurface.

This class of Poisson structures was studied by Radko [23] in dimension two and considered in
numerous papers in the last years: [7–10, 15] and [6] among others.

2.1. b-Poisson Manifolds

Next, we recall Radko’s classification theorem and the cohomological re-statement presented
in [8].

In what follows, (M,Π) will be a closed smooth surface with a b-Poisson structure on it, and Z
its critical hypersurface.

Let h be the distance function to Z as in [15]1).

Definition 1. The Liouville volume of (M,Π) is the following limit: V (Π) := limε→0

∫
|h|>ε ωn2).

The previous limit exists and it is independent of the choice of the defining function h of Z
(see [23] for the proof).

1)Notice the difference with [23] where h is assumed to be a global defining function.
2)For surfaces n = 1.
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EQUIVARIANT CLASSIFICATION OF BM -SYMPLECTIC SURFACES 357

Definition 2. For any (M,Π) oriented Poisson manifold, let Ω be a volume form on it, and let uf

denote the Hamiltonian vector field of a smooth function f : M → R. The modular vector field
XΩ is the derivation defined as follows:

f �→
Luf

Ω
Ω

.

Definition 3. Given γ a connected component of the critical set Z(Π) of a closed b-Poisson
manifold (M,Π), the modular period of Π around γ is defined as:

Tγ(Π) := period of XΩ|γ .

Remark 1. The modular vector field XΩ of the b-Poisson manifold (M,Z) does not depend on
the choice of Ω because for different choices for volume form the difference of modular vector fields
is a Hamiltonian vector field. Observe that this Hamiltonian vector field vanishes on the critical set
as Π vanishes there too.

Definition 4. Let Mn(M) = Cn(M)/ ∼ where Cn(M) is the space of disjoint oriented curves and
∼ identifies two sets of curves if there is an orientation-preserving diffeomophism mapping the first
one to the second one and preserving the orientations of the curves.

The following theorem classifies b-symplectic structures on surfaces using these invariants:

Theorem 1 (Radko [23]). Consider two b-Poisson structures Π, Π′ on a closed orientable
surface M . Denote its critical hypersurfaces by Z and Z ′. These two b-Poisson structures are
globally equivalent (there exists a global orientation-preserving diffeomorphism sending Π to Π′) if
and only if the following coincide:

1) the equivalence classes of [Z] and [Z ′] ∈ Mn(M),

2) their modular periods around the connected components of Z and Z ′,

3) their Liouville volume.

An appropriate formalism to deal with these structures was introduced in [7].

Definition 5. A b-manifold3) is a pair (M,Z) of a manifold and an embedded hypersurface.

In this way the concept of b-manifold previously introduced by Melrose is generalized.

Definition 6. A b-vector field on a b-manifold (M,Z) is a vector field tangent to the hypersurface
Z at every point p ∈ Z.

Definition 7. A b-map from (M,Z) to (M ′, Z ′) is a smooth map φ : M → M ′ such that φ−1(Z ′) =
Z and φ is transverse to Z ′.

Observe that if x is a local defining function for Z and (x, x1, . . . , xn−1) are local coordinates in
a neighborhood of p ∈ Z, then the C∞(M)-module of b-vector fields has the following local basis:

{
x

∂

∂x
,

∂

∂x1
, . . . ,

∂

∂xn−1

}
. (2.2)

In contrast with [7], in this paper we do not require the existence of a global defining function
for Z and orientability of M , but we require the existence of a defining function in a neighborhood
of each point of Z. By relaxing this condition the normal bundle of Z need not be trivial.

Given (M,Z) a b-manifold, [7] shows that there exists a vector bundle, denoted by bTM whose
smooth sections are b-vector fields. This bundle is called the b-tangent bundle of (M,Z).

3)The “b” of b-manifolds stands for “boundary”, as initially considered by Melrose (Chapter 2 of [18]) for the study
of pseudo-differential operators on manifolds with boundary.
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358 MIRANDA, PLANAS

The b-cotangent bundle bT ∗M is defined using duality. A b-form is a section of the b-cotangent
bundle. Around a point p ∈ Z the C∞(M)-module of these sections has the following local basis:

{
1
x

dx, dx1, . . . , dxn−1

}
. (2.3)

In the same way we define a b-form of degree k to be a section of the bundle
∧k(bT ∗M), the set of

these forms is denoted bΩk(M). Denoting by f the distance function4) to the critical hypersurface Z,
we may write the following decomposition as in [7] for any ω ∈ bΩk(M):

ω = α ∧ df

f
+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M). (2.4)

This decomposition allows us to extend the differential of the de Rham complex d to bΩ(M) by

setting dω = dα ∧ df

f
+ dβ. The associated cohomology is called b-cohomology and it is denoted

by bH∗(M).

Definition 8. A b-symplectic form on a b-manifold (M2n, Z) is defined as a nondegenerate closed
b-form of degree 2 (i. e., ωp is of maximal rank as an element of Λ2( bT ∗

p M) for all p ∈ M).

The notion of b-symplectic forms is dual to the notion of b-Poisson structures. The advantage
of using forms is that symplectic tools can be “easily” exported.

Radko’s classification theorem [23] can be translated into this language. This translation was
already formulated in [7]:

Theorem 2 (Radko’s theorem in b-cohomological language, [8]). Let S be a closed ori-
entable surface and let ω0 and ω1 be two b-symplectic forms on (S,Z) defining the same b-
cohomology class (i. e.,[ω0] = [ω1]). Then there exists a diffeomorphism φ : S → S such that
φ∗ω1 = ω0.

2.2. bm-symplectic Manifolds

By relaxing the transversality condition allowing higher-order singularities ([1] and [2]) we may
consider other symplectic structures with singularities as done by Scott [24] with bm-symplectic
structures. Let m be a positive integer, and let the bm-manifold be a b-manifold (M,Z)
together with a bm-tangent bundle attached to it. The bm-tangent bundle is (by the Serre – Swan
theorem [25]) a vector bundle bm

TM whose sections are given by

Γ(b
m

TM) = {v ∈ Γ(TM) : v(x) vanishes to order m at Z},

where x is a defining function for the critical set Z in a neighborhood of each connected component
of Z and can be defined as x : M \ Z → (0,∞), x ∈ C∞(M) such that:

1) x(p) = d(p) a distance function from p to Z for p : d(p) � 1/2,

2) x(p) = 1 on M \ {p ∈ M such that d(p) < 1}5).

4)Originally in [7] f stands for a global function, but for nonorientable manifolds we may use the distance function
instead.

5)Then a bm-manifold will be a triple (M, Z, x), but for the sake of simplicity we refer to it as a pair (M, Z) and
we tacitly assume that the function x is fixed.
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EQUIVARIANT CLASSIFICATION OF BM -SYMPLECTIC SURFACES 359

(This definition of x allows us to extend the construction in [24] to the nonorientable case as in [15].)
We may define the notion of a bm-map as a map in this category (see [24]). The sections of this
bundle referred to as bm-vector fields and their flows define bm-maps. In local coordinates the
sections of the bm-tangent bundle are generated by

{
xm ∂

∂x
,

∂

∂x1
, . . . ,

∂

∂xn−1

}
. (2.5)

Proceeding mutatis mutandis as in the b-case, one defines the bm-cotangent bundle (b
m

T ∗M),
the bm-de Rham complex and the bm-symplectic structures.

A Laurent Series of a closed bm-form ω is a decomposition of ω in a tubular neighborhood U
of Z of the form

ω =
dx

xm
∧

(
m−1∑

i=0

π∗(αi)xi

)
+ β (2.6)

with π : U → Z the projection of the tubular neighborhood onto Z, αi a closed smooth de Rham
form on Z and β a de Rham form on M .

In [24] it is proved that in a neighborhood of Z, every closed bm-form ω can be written in a
Laurent form of type (2.6) having fixed a (semi)local defining function.

bm-Cohomology is related to de Rham cohomology via the following theorem:

Theorem 3 (bm-Mazzeo – Melrose, [24]). Let (M,Z) be a bm-manifold, then:
bm

Hp(M) ∼= Hp(M) ⊕ (Hp−1(Z))m. (2.7)

The isomorphism constructed in the proof of the theorem above is noncanonical (see [24]).
The Moser path method can be generalized to bm-symplectic structures:

Theorem 4 (Moser path method, [24]). Let ω0, ω1 be two bm-symplectic forms defining the
same bm-cohomology class [ω0] = [ω1] on (M2n, Z) with M2n closed and orientable, then there exist
a bm-symplectomorphism ϕ : (M2n, Z) −→ (M2n, Z) such that ϕ∗(ω1) = ω0.

An outstanding consequence of the Moser path method is a global classification of closed
orientable bm-symplectic surfaces à la Radko in terms of bm-cohomology classes.

Theorem 5 (Classification of closed orientable bm-surfaces, [24]). Let ω0 and ω1 be two
bm-symplectic forms on a closed orientable connected bm-surface (S,Z). Then the following
conditions are equivalent:

1) their bm-cohomology classes coincide [ω0] = [ω1],

2) the surfaces are globally bm-symplectomorphic,

3) the Liouville volumes of ω0 and ω1 and the numbers
∫

γ
αi

for all connected components γ ⊆ Z and all 1 � i � m coincide (where αi are the one-forms
appearing in the Laurent decomposition of the two bm-forms of degree 2, ω0 and ω1).

A relative version of the Moser path method is proved in [10]. As a corollary we obtain the
following local description of a bm-symplectic manifold:

Theorem 6 (bm-Darboux theorem, [10]). Let ω be a bm-symplectic form on (M,Z) and
p ∈ Z. Then we can find a coordinate chart (U, x1, y1, . . . , xn, yn) centered at p such that on U
the hypersurface Z is locally defined by x1 = 0 and

ω =
dx1

xm
1

∧ dy1 +
n∑

i=2

dxi ∧ dyi.

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018



360 MIRANDA, PLANAS

Remark 2. For the sake of simplicity sometimes we will omit describing Z and we will talk directly
about bm-symplectic structures on manifolds M , implicitly assuming that Z is the vanishing locus
of Πn where Π is the Poisson vector field dual to the bm-symplectic form.

2.3. Desingularizing bm-Poisson Manifolds

In [10] Guillemin, Miranda and Weitsman presented a desingularization procedure for bm-
symplectic manifolds proving that we may associate a family of folded symplectic or symplectic
forms to a given bm-symplectic structure depending on the parity of m. Namely,

Theorem 7 (Guillemin – Miranda – Weitsman, [10]). Let ω be a bm-symplectic structure on
a closed orientable manifold M and let Z be its critical hypersurface.

• If m = 2k, there exists a family of symplectic forms ωε which coincide with the bm-symplectic
form ω outside an ε-neighborhood of Z and for which the family of bivector fields (ωε)−1

converges in the C2k−1-topology to the Poisson structure ω−1 as ε → 0 .

• If m = 2k + 1, there exists a family of folded symplectic forms ωε which coincide with the
bm-symplectic form ω outside an ε-neighborhood of Z.

As a consequence of Theorem 7, any closed orientable manifold that supports a b2k-symplectic
structure necessarily supports a symplectic structure.

In [10] explicit formulae are given for even and odd cases. Let us refer here to the even-
dimensional case as these formulae will be used later on.

Let us briefly recall how the desingularization is defined and the main result in [10]. Recall that
we can express the b2k-form as

ω =
dx

x2k
∧

(
2k−1∑

i=0

xiαi

)
+ β. (2.8)

This expression holds on a ε-tubular neighborhood of a given connected component of Z. This
expression comes directly from Eq. (2.6). For a proof of this result we refer the reader to [24].

Definition 9. Let (S,Z, x), be a b2k-manifold, where S is a closed orientable manifold and let ω

be a b2k-symplectic form. Consider the decomposition given by the expression (2.8) on an ε-tubular
neighborhood Uε of a connected component of Z.

Let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for all x ∈ [−1, 1] and, moreover,
satisfying

f(x) =

{ −1
(2k−1)x2k−1 − 2 for x < −1,

−1
(2k−1)x2k−1 + 2 for x > 1.

(2.9)

Let fε(x) be defined as ε−(2k−1)f(x/ε).
The fε-desingularization ωε is a form that is defined on Uε by the following expression:

ωε = dfε ∧
(

2k−1∑

i=0

xiαi

)
+ β.

This desingularization procedure is also known as deblogging in the literature.
Remark 3. Although there are infinitely many choices for f , we will assume that we choose one,
and assume it fixed throughout the rest of the discussion. It would be interesting to discuss the
existence of an isotopy of forms under a change of function f .

Remark 4. Because ωε can be trivially extended to the whole S in such a way that it agrees
with ω (see [10]) outside a neighborhood of Z, we can talk about the fε-desingularization of ω as
a form on S.
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EQUIVARIANT CLASSIFICATION OF BM -SYMPLECTIC SURFACES 361

Fig. 1. Smooth and odd extension of f inside the interval [−1, 1] such that f ′ > 0.

3. TOY EXAMPLES OF bm-SYMPLECTIC SURFACES
In this section we describe some examples of orientable and nonorientable bm-symplectic surfaces.

1. A bm-symplectic structure on the sphere: Consider the sphere S2 ⊂ R
3 with the

equator Z = {(x1, x2, x3) ∈ S2|x3 = 0} as a critical set. Let h = x3 the height function. Then

(S2, Z, h) is a bm-manifold for any m. Consider ω =
1

hm
dh∧ dθ, where θ stands for the angular

coordinate. This form is a bm-symplectic form.

2. A bm-symplectic structure on the torus: Consider T
2 as quotient of the plane (T2 =

{(x, y) ∈ (R/Z)2}). Let ω = 1
(sin 2πx)m dx ∧ dy be a bm-symplectic structure on R

2. The action
of Z

2 leaves this form invariant and therefore this bm-form descends to the quotient. Observe
that this bm-form defines Z =

{
x ∈

{
0, 1

2

}}
.

Fig. 2. Example: bm-symplectic structure in the torus.

3. A b2k+1-symplectic structure on the projective space: Consider Example (1) and
consider the quotient of S2 by the antipodal action. Because this action leaves the critical set
invariant, the bm-manifold structure (S2, Z) descends to (RP

2, Ẑ) and gives a nonorientable
bm manifold. Ẑ is the equator modulo the antipodal identification (thus diffeomorphic to
RP

1 ∼= S1). Moreover, a neighborhood of Z is diffeomorphic to the Moebius band. Observe
that ω is invariant under the action for m = 2k + 1, yielding a b2k+1-symplectic form in RP

2

with critical set Ẑ.

4. A b2k+1-symplectic structure on a Klein bottle: Consider the torus with the structure
given in Example (2).

Consider Z/2Z acting on (x, y) ∈ T
2 by -Id · (x, y) = (1−x, y + 1/2 (mod 1)). The orbit space

by this action is the Klein bottle K. Then the bm-manifold (R2, Z) descends to (K, Ẑ) where
Ẑ is the quotient of Z by the action. It is easy to see that Ẑ ∼= S1 � S1. Moreover, the tubular
neighborhood of each S1 is isomorphic to the Moebius band.

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018
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Fig. 3. The b2k+1-symplectic structure on the sphere S2 that vanishes at the equator induces a b2k+1-
symplectic structure on the projective space RP

2.

Thus, the bm-symplectic form ω =
1

(sin 2πx)m
dx∧ dy induces a bm-symplectic structure in T

if ω is invariant under the action of the group. It is easy to check that ω is invariant if and
only if m is odd, in this case one obtains a bm-symplectic structure in the Klein bottle.

Remark 5. The previous examples only exhibit b2k+1-symplectic structures on nonorientable
surfaces. As we will see in Section 5, only orientable surfaces can admit b2k-symplectic structures.

4. EQUIVARIANT CLASSIFICATION OF bm-SURFACES.
NONORIENTABLE bm-SURFACES

In this section we give an equivariant Moser theorem for bm-symplectic manifolds. This yields
the classification of nonorientable surfaces, thus extending the classification theorems of Radko and
Scott for orientable surfaces (see Theorem 9).

We now extend the classification result (Theorem 4) for manifolds admitting a compact Lie group
action leaving the bm-symplectic structure invariant. The following theorem is a simple consequence
of applying the equivariant tools to the Moser path method. We include the detail of the proof for
the sake of completeness. Other applications of the equivariant tools in b-geometry can be found
in [9] and [11].

Theorem 8 (Equivariant bm-Moser theorem for surfaces). Suppose that S is a closed sur-
face, let Z be a union of nonintersecting embedded curves. Consider the bm-manifold given by (S,Z).
Fix m ∈ N and let ω0 and ω1 be two bm-symplectic structures on (S,Z) which are invariant under
the action of a compact Lie group ρ : G × (S,Z) −→ (S,Z) and defining the same bm-cohomology
class, [ω0] = [ω1]. Then there exists an equivariant bm-diffeomorphism ξ1 : (S,Z) → (S,Z), such
that ξ∗1ω1 = ω0.

Proof. Denote by ρg the induced diffeomorphism for a fixed g ∈ G. i. e., ρg(x) := ρ(g, x). Consider
the linear family of bm-forms ωs = sω1 + (1 − s)ω0. Since the manifold is a surface, the fact that
ω0 and ω1 are nondegenerate bm-forms and of the same sign on S \Z6) (thus nonvanishing sections
of Λ2(bT ∗(S))) implies that the linear path is nondegenerate too. We will prove that there exists a
family ξs : S → S, with 0 � s � 1 such that

ξ∗sωs = ω0. (4.1)
We want to construct ξ1 as the time-1 flow of a time-dependent Hamiltonian vector field Xs (as

in the standard Moser trick).
Since the cohomology classes of both forms coincide, ω1 − ω0 = dα for α a bm-form of degree 1.
Therefore, Moser’s equation reads

ιXsωs = −α. (4.2)

This equation has a unique solution Xs because ωs is bm-symplectic and therefore it is
nondegenerate. Xs depends smoothly on s because ωs depends smoothly on s and ωs defines a

6)This is a consequence of the Mazzeo –Melrose theorem and the determination of the Liouville volume from it.
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nondegenerate pairing between bm-vector fields and bm-forms. Furthermore, the solution is a bm-
vector field, but this solution may not be compatible with the group action. From this solution
we will construct an equivariant solution such that its s-dependent flow gives an equivariant
diffeomorphism.

Since the forms ω0 and ω1 are G-invariant, we can find a G-invariant primitive α̃ by averaging
with respect to a Haar measure the initial form α: α̃ =

∫
G ρ∗g(α)dμ and therefore the invariant

vector field, XG
s =

∫
G ρg∗(Xs)dμ is a solution of the equation,

ιXG
s

ωs = −α̃. (4.3)

We can get an equivariant ξG
s by integrating XG

s . This family satisfies ξG∗
t ωt = ω0 and it is

equivariant. Also observe that since XG
t is a bm-vector field ξG

t is a bm-diffeomorphism of (S,Z). �

A nonorientable manifold can be seen as a pair (M̃ , ρ) with M̃ the orientable covering and ρ

the action given by deck-transformations of Z/2Z on M̃ . This perspective is very convenient
for classification issues because equivariant mappings on the orientable covering yield actual
diffeomorphisms on the nonorientable manifolds. We adopt this point of view to provide a
classification theorem for nonorientable bm-surfaces in cohomological terms.
Remark 6. Observe that the bm-Mazzeo –Melrose allows us to determine whether a given bm-
cohomology of degree 2 is nonzero by reducing this question to de Rham cohomology.

Corollary 1. Let (S,Z) be a nonorientable bm-manifold where Z is its critical set and let ω1 and
ω2 be two bm-symplectic forms such that [ω1] = [ω2] in bm-cohomology, then (S, ω1) is equivalent to
(S, ω2), i. e., there exists a bm-diffeomorphism ϕ : (S,Z) → (S,Z) such that ϕ∗ω2 = ω1.

Proof. Consider m fixed and assume [ω1] = [ω2] in bm-symplectic cohomology. Let p : S̃ → S be
a covering map, and S̃ the orientation double cover.

(
Ŝ, p−1(Z)

)
is a bm-manifold and p∗(ω1),

p∗(ω2) are bm-symplectic structures on (Ŝ, p−1(Z)). By construction the previous two forms are
invariant under the action by deck transformations of Z/2Z. The defining function of the critical
set in the double cover is the pullback by p of the defining function in (S,Z). Since [ω1] = [ω2], it
follows that [p∗(ω1)] = [p∗(ω2)]. By Theorem 8, there exists a Z/2Z-equivariant bm-diffeomorhism
ϕ̃ :

(
Ŝ, p−1(Z)

)
→ (Ŝ, p−1(Z)) such that ϕ̃∗p∗ω2 = p∗ω1. Since ϕ̃ is Z/2Z-equivariant, it descends

to a map ϕ : S → S. Moreover, because ϕ̃
(
p−1(Z)

)
= p−1(Z), it follows that ϕ(Z) = Z. Since ϕ̃

is smooth and p is a submersion, φ is smooth (the same argument shows that ϕ−1 is smooth). It
follows that ϕ is a diffeomorphism, and because ϕ(Z) = Z, it is also a bm-diffeomorphism. Moreover,
by construction, the condition ϕ̃∗p∗ω2 = p∗ω1 implies that ϕ∗ω2 = ω1. �

An equivariant bm-Moser theorem similar to Theorem 8 holds for higher dimensions. In that case
we need to require that there exists a path ωt of bm-symplectic structures connecting ω0 and ω1,
which is not true in general [16]. The proof follows the same lines as Theorem 8. Such a result was
already proved for b-symplectic manifolds (see Theorem 8 in [9]).

Theorem 9 (Equivariant bm-Moser theorem). Let (M,Z) be a closed bm-manifold with m a
fixed natural number and let ωt for 0 � t � 1 be a smooth family of bm-symplectic forms on (M,Z)
such that the bm-cohomology class [ωt] does not depend on t.

Assume that the family of bm-symplectic structures is invariant under the action of a compact Lie
group G on M , then there exists a family of equivariant bm-diffeomorphisms φt : (M,Z) → (M,Z),
with 0 � t � 1 such that φ∗

t ωt = ω0.

5. CONSTRUCTIONS AND CLASSIFICATION OF bm-SYMPLECTIC STRUCTURES
In this section we describe constructions of bm-symplectic structures on closed surfaces. We

obtain topological constraints on b2k-symplectic surfaces as we will prove that the underlying closed
surface needs to be orientable, see Theorem 10. Then we characterize the existence of bm-symplectic
forms depending on the parity of m and the colorability of an associated graph. We also obtain a
result about nonorientable surfaces: if m = 2k + 1, we find necessary and sufficient conditions for
a nonorientable bm-surface to admit a bm-symplectic structure (see Theorem 12).

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018



364 MIRANDA, PLANAS

5.1. b2k-symplectic Orientable Surfaces

We start by proving that only orientable surfaces admit b2k-symplectic structures:

Theorem 10. If a closed surface admits a b2k-symplectic structure, then it is orientable.

Proof. The proof consists in building a collar of b2k-Darboux neighborhoods with compatible
orientations (the local orientations on the complement of the critical hypersurface induced by the
b2k-Darboux charts agree) in a neighborhood of each connected component of Z. Indeed, the proof
does more, it constructs a symplectic structure in a neighborhood of Z which can be extended to S.
This in particular will give an orientation on S.

Let (S,Z) be a closed b2k-surface and let ω denote a b2k-symplectic structure on (S,Z). Pick
(S̃, Z̃) an orientable double cover of the b2k-surface (S,Z), with ρ : Z/2Z× S̃ → S̃ the action by deck
transformations. For each point q ∈ Z̃, using Theorem 6, we can find a b2k-Darboux neighborhood
Uq (by shrinking the neighborhood if necessary) which does not contain other points identified by
ρ (ρ(Uq) ∼= Uq). Let us define Vq := p(Uq), where p is the projection from S̃ to S. With the previous

construction we have ω|Uq =
1

x2k
dx ∧ dy.

Now we can use the desingularization formulae in Theorem 7 and Definition 9 in each Uq (because
every Uq is orientable) to obtain a symplectic form ωεq on each Uq. All these symplectic structures
and hence the orientations on each Uq glue in a compatible manner because the function x is
globally defined.

Since Z̃ is compact we can take a finite subcovering for Uq to define a collar U of symplectic
and compatible orientations. Furthermore, we can assume this covering to be symmetric as we can
shrink further the neighborhoods and add the preimages of all of them — for each Uq the image
ρ(Uq) is included in the covering.

Since ρ preserves ω, and the defining function is invariant under ρ, it also preserves the deblogged
symplectic forms ωεq and the compatible orientations and indeed the deblogged symplectic form
descends to S, thus defining a symplectic form and an orientation on V = p(U). Using the standard
techniques of Radko [23], the symplectic structures on V \ Z can be glued to define a compatible
symplectic structure on the whole S. When Z has more than one connected component, we may
proceed in the same way by isolating collar neighborhoods of each component, thus proving that S
admits a symplectic structure and in particular it is oriented. �

Fig. 4. A collar of compatible neighborhoods.

5.2. Associated Graph of a b-manifold

Let us introduce some definitions that will be needed in the next subsection.

Definition 10. Let (M,Z) be a closed b-manifold. The associated graph Γ(M,Z) to this b-manifold
is defined as follows:

1. The set of vertices is in one-to-one correspondence with the connected components
(U1, . . . , Un) of M \ Z.
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2. Let (Z1, . . . , Zn) be the connected components of Z. Two vertices (vi, vj) (represented by
(Ui, Uj)) are connected by an edge if and only if for any tubular neighborhood of some Zk, it
intersects both Ui and Uj.

Remark 7. As observed in [24] (Section 3.2), associated to any bm-manifold there is a canonical b-
manifold, obtained by forgetting the distance function. The latter is henceforth said to be underlying
the former. Using Definition 10, the graph associated to a bm-manifold is the graph associated to
its underlying b-manifold.

Remark 8. Given an oriented closed bm-manifold (M,Z), a bm-symplectic structure induces a
standard orientation on each connected component of M \ Z. Comparing this orientation with the
fixed one determines a sign that can be attached to each vertex of Γ(M,Z). A natural question to
ask is whether adjacent vertices possess equal or opposite signs, thus yielding the following notions.

(a) Example of a non-colorable associated graph. (b) Example of a colorable associated graph.

Fig. 5. Examples of associated graphs.

Definition 11. A 2-coloring of a graph is a labeling (with only two labels) of the vertices of the
graph such that no two adjacent vertices share the same label.

Definition 12. Since not every graph admits a 2-coloring, a graph is called 2-colorable if it admits
a 2-coloring.

5.3. b2k+1-symplectic Orientable Surfaces

Theorem 11. Given a bm-manifold (S,Z) (fixed m) with S closed and orientable, there exists a
bm-symplectic structure whenever:

1) m = 2k,
2) m = 2k + 1 if and only if the associated graph Γ(S,Z) is 2-colorable.

Proof (of Theorem 11). Let C1, . . . , Cr be the connected components of S \ Z, let Z1, . . . , Zs the
connected components of Z and let U(Z1), . . . ,U(Zs) be tubular neighborhoods of the connected
components. Moreover, we denote the union of U(Z1), . . . ,U(Zs) by U(Z).

We assume there is an orientation defined by some symplectic form in S, which allows us to
define a sign criterion.

The proof consists in 3-steps:

1. Using Weinstein’s normal form theorem. Fix i ∈ {1, . . . , s}, where s is the number
of connected components. By virtue of Weinstein’s normal form theorem for Lagrangian
submanifolds (Corollary 6.2 in [27]) each tubular neighborhood U(Zi) can be identified with
the zero section of the cotangent bundle of Zi. Now replace the cotangent bundle of Zi by
the bm-cotangent bundle of Zi

7). In this way the neighborhood of the zero section of the
bm-cotangent bundle has a bm-symplectic structure, which we will denote by ωU(Zi).

7)This can be done after fixing a point in Z to define a bm-structure on Z.

REGULAR AND CHAOTIC DYNAMICS Vol. 23 No. 4 2018



366 MIRANDA, PLANAS

2. Constructing compatible orientation using the graph. For any i = 1, . . . , s, U(Zi) \Zi

has two connected components (as S is orientable); to each such component we assign the
sign of the restriction of the bm-symplectic form ωU(Zi). Note that the sign does not change
for m even, but it changes for k odd. Observe that we can apply Moser’s trick to glue two
rings that share some Cj (as done in Radko [23] to extend a symplectic form between the
two rings) if and only if the signs of the two rings match on this component.

Now let us consider separately the odd and even cases:

(a) For b2k the color of adjacent vertices must coincide. And hence we have no additional
constraint on the topology of the graph.

(b) In the b2k+1 case the sign of two adjacent vertices must be different. Then we have to
impose the associated graph to be 2-colorable.

These two conditions are necessary for the existence of the b2k- and b2k+1-forms, respectively.

3. Gluing. Now we may glue back this neighborhood to S \ U(Z) in such a way that the
symplectic structures fit on the boundary (again using the standard techniques used in
Radko [23] to extend with a symplectic form between the two rings), using the Moser’s
path method.

�

Given a b2k+1-symplectic structure ω on a b2k+1-surface (S,Z) (where S is closed oriented), one
can obtain a 2-coloring of the associated graph (by the local expression given by the bm-Darboux
theorem — see Theorem 6, the sign has to change every time we cross a component Zi) by assigning
to each connected component Ci of S \ Z the “color” sign(

∫
Ci

ω).

Remark 9. Observe that any given 2-coloring has to be equivalent to the 2-coloring induced by a
b2k+1-symplectic form. This is due to the fact that there exist only 2 possible 2-colorings of a graph
(when it is 2-colorable). The difference between the two 2-colorings is only relabeling of the signs.
Then, if the 2-coloring induced by the b2k+1-symplectic form does not correspond to the prescribed
2-coloring, it can be matched by changing the orientation of the underlying manifold.

Another way to construct b2k-structures on a surface is to use the decomposition theorem as a
connected sum of b2k-spheres (1) and the b2k-torus (2). The drawback of this construction is that
it is harder to adapt having fixed a prescribed Z.

5.4. b2k+1-symplectic Nonorientable Surfaces

Definition 13. Let (S,Z) be a closed orientable b2k+1-surface and Γ(S,Z) its associated graph.

Fix the 2-coloring on Γ(S,Z) given by by sign
( ∫

Ci
ω
)
. We say that a b2k+1-map ϕ inverts colors

of the associated graph if sign
( ∫

Ci
ω
)

= −sign
( ∫

ϕ(Ci)
ω
)
.

Theorem 12. Let (S,Z) be a closed nonorientable b2k+1-surface. Then (S,Z) admits a b2k+1-
symplectic structure if and only if the following two conditions hold:

1) the graph of the covering (S̃, Z̃), G(S̃, Z̃) is 2-colorable and

2) the nontrivial deck transformation inverts colors of the graph obtained in the covering8).

8)Observe that if a transformation inverts colors for a given coloring, then it inverts colors for all of them (there are
only 2 possible 2-colorings when a graph is 2-colorable, and they correspond to the possible choices of orientation).
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Proof. Let us assume the two conditions on the statement of the theorem hold. Apply Theorem 11
to endow the covering (S̃, Z̃) with a b2k+1-symplectic structure, if the form obtained is invariant
under the deck transformations, then it descends to the quotient, thus obtaining a b2k+1-symplectic
structure on (S̃, Z̃). The proof is complete.

Now let us assume that the b2k+1-form ω obtained via Theorem 11 is not invariant under deck
transformations. We will note the deck transformation induced by −Id as ρ. Observe that

sign
(∫

Ci

ρ∗ω

)
= −sign

(∫

ρ(Ci)
ω

)
= +sign

(∫

Ci

ω

)
. (5.1)

The first equality is due to ρ changing orientations and the second one is due to ρ inverting colors.
Then the pullback of ω has the same sign as ω, and hence ω + ρ∗(ω) is a nondegenerate b2k+1-form
that is invariant under the action of ρ, and it descends to the quotient. Hence a b2k+1-symplectic
structure is obtained on (S,Z).

The other implication is easier. If we have a b2k+1-symplectic form on (S,Z), we can pull it back
to the double cover by means of the projection. Then we obtain a b2k+1-form on the double cover,
which induces a 2-coloring defined by the orientations. And since the b2k+1-form on the double
cover has to be invariant under the deck transformation, the deck transformation has to invert
colors. �

Example 1. Let us illustrate what is happening in the previous proof with an example. Take the

sphere having the equator as a critical set and endowed with the b-symplectic form ω =
1
h

dh ∧ dθ.

Let us call the north hemisphere C1 and the south hemisphere C2, and let ρ be the antipodal map.
Look at the coloring of the graph (a path graph of length two):

sign(C1) = sign
(∫

C1

ω

)
= sign

(
lim
ε→0

∫ π

−π

∫ 1

ε

1
h

dh ∧ dθ

)
= sign(lim

ε→0
−2π log |ε|), (5.2)

which is positive. And

sign(C2) = sign
(∫

C2

ω

)
= sign

(
lim
ε→0

∫ π

−π

∫ −ε

−1

1
h

dh ∧ dθ

)
= sign(lim

ε→0
2π log |ε|), (5.3)

which is negative. Then
∫

C1

ρ∗ω = lim
ε→0

∫ π

−π

∫ 1

ε
ρ∗

(
1
h

dh ∧ dθ

)
= lim

ε→0

∫ π

−π

∫ 1

ε

1
−h

d(−h) ∧ dθ =
∫

C1

ω. (5.4)

In this case ω was already invariant, but one can observe that if ρ inverts colors, then the signs
of the form and the pullback are the same.

Example 2. One may ask why the condition of inverting colors is necessary. Next we provide an
example where b2k+1-structures can be exhibited on the double cover, but cannot be projected to
induce a b2k+1-structure on the nonorientable surface.

Consider Example 3 in Section 3. If one translates the critical set in the h direction in the
projective space, the double cover is still the sphere, but instead of Z being the equator, Z consists
of different meridians {h = h0} and {h = −h0}.

Observe that the associated graph of this double cover is a path graph of length 3 that can
be easily 2-colored. Take a generic b2k+1-form ω = f(h, θ)dh ∧ dθ and look at the poles N,S.
sign(f(N)) = sign(f(S)) because of the 2-coloring of the graph. But ρ∗(ω)|N = f(ρ(N))d(−h) ∧
dθ = −f(S)dh ∧ dθ. Then sign(ω) �= sign

(
ρ∗(ω)

)
, and hence ω cannot be invariant for ρ.
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6. DESINGULARIZATION OF CLOSED b2k-SYMPLECTIC SURFACES

In this section we only refer to the desingularization of b2k-symplectic structures because, as we
explained in Section 2.3, the desingularization procedure associates folded symplectic structures to
b2k+1-symplectic structures instead of symplectic structures. The goal of this section is to compare
the classification schemes in the bm-symplectic and symplectic realms.

The aim of this section is to use the desingularization formulas described in Section 2.3 in the
case of closed orientable surfaces. The main result of this section (Theorem 13) is that, if [ω1] = [ω2]
(where ω1 and ω2 are two b2k-symplectic forms on a b2k-surface (S,Z)) in b2k-cohomology, then the
desingularization of the two forms also is in the same class [ω1ε] = [ω2ε]. But the converse is not true:
it is possible to find different classes of b2k-forms that are of the same class when desingularized.

Next we apply our classification scheme and see how it behaves under the desingularization
procedure.

Theorem 13. Let (S,Z, x) be a b2k-manifold, where S is a closed orientable surface, and let ω1

and ω2 be two b2k-symplectic forms. Also, let ω1ε and ω2ε be the fε-desingularizations of ω1 and
ω2, respectively. If [ω1] = [ω2] in b2k-cohomology, then [ω1ε] = [ω2ε] in de Rham cohomology for any
fixed ε.

Before we proceed to prove the theorem, we will state some definitions in [24] that are necessary
for the proof.

Definition 14. Let (M,Z, x) be an n-dimensional bm-manifold. Given ω a bm-form of top degree
with compact support, ε > 0 small, and let Uε an ε-tubular neighborhood9) , then volε(ω) is defined
as

volε(ω) =
∫

M\Uε

ω.

Theorem 14 (Theorem 4.3 in [24]). For a fixed [ω] the bm-cohomology class of a bm-form ω,
on a bm-manifold (M,Z, x) with Z compact, there is a polynomial P[ω](t) for which

lim
ε→0

(
P[ω](1/ε) − volε(ω)

)
= 0

for any ω representing [ω].

Definition 15. The polynomial P[ω] described in Theorem 14 is the volume polynomial of [ω].
Its constant term P[ω](0) is the Liouville volume of [ω].

Remark 10. Let U = [−1, 1] × Z be a tubular neighborhood of Z containing Uε. From the
definition of the Liouville volume we may write:

P[ω](0) =

(∫

M\U
ω +

∫

U
β +

k∑

i=1

(
−2

2i − 1

)∫

Z
α2i

)
. (6.1)

Observe that in the proof of Theorem 5.3 in [24] the term
∫
M\U ω does not appear. This is because

in [24] M is assumed to be U for the sake of simplicity. Adding this term is the way to extend this
expression when U � M .

Proof (of Theorem 13). Our strategy for the proof is to show that the cohomology class of
a desingularization of a b2k-symplectic structure on a closed orientable surface (which is the
cohomology class of a symplectic structure and hence can be encoded by its signed area, i. e.,
the integral of itself over S) only depends on the b2k-cohomology of the b2k-symplectic structure
(which, in its turn, can be encoded by the integral of the forms appearing in its Laurent series and
its Liouville volume — Theorem 5).

9)the ε-tubular neighborhood is defined using the x from the bm-manifold
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In order to compute the class of the desingularization, we calculate the integral of the
desingularized form over the whole manifold. We are going to proceed in two steps. Firstly, we
are going to compute the integral of the desingularization inside the ε-neighborhood Uε of Z, and
then we compute it outside.

Using the expression of ωε we compute:
∫

Uε

ωε =
∫

Uε

dfε ∧
(

2k−1∑

i=0

xiαi

)
+

∫

Uε

β

= ε−(2k−1)

∫

Uε

df(x/ε) ∧
(

2k−1∑

i=0

xiαi

)
+

∫

Uε

β

= ε−2k

∫

Uε

df(x/ε)
dx

dx ∧
(

2k−1∑

i=0

xiαi

)
+

∫

Uε

β

= ε−2k
2k−1∑

i=0

∫ +ε

−ε

df(x/ε)
dx

xidx

∫

Z
αi +

∫

Uε

β.

Then, because f is an odd function, df(x/ε)/dx is even and hence the integral
∫ +ε
−ε

df(x/ε)
dx

xidx

is going to be different from 0 if i is even. Thus,
∫

Uε

ωε = ε−2k
k−1∑

i=1

∫ +ε

−ε

df(x/ε)
dx

x2idx

∫

Z
α2i +

∫

Uε

β.

Recall that outside the ε-neighborhood the desingularization ωε coincides with the b2k-symplectic
form ω. Moreover, let us define U a tubular neighborhood of Z containing Uε (assume U =
[−1, 1] × Z). Following the computations in [24], we obtain

∫

M\Uε

ωε =
∫

M\Uε

ω

=
∫

M\U
ω +

∫

U\Uε

ω

=
∫

M\U
ω +

(∫

U\Uε

β +
k∑

i=1

−2
2i − 1

∫

Z
α2i

)
+

k∑

i=1

(
2

2i − 1

∫

Z
α2i

)
ε2i−1.

Now we may add the two terms in order to compute the integral over the whole surface M :
∫

M
ωε = ε−2k

k−1∑

i=1

∫ +ε

−ε

df(x/ε)
dx

x2idx

∫

Z
α2i +

∫

Uε

β

+
∫

M\U
ω +

(∫

U\Uε

β +
k∑

i=1

−2
2i − 1

∫

Z
α2i

)
+

k∑

i=1

(
2

2i − 1

∫

Z
α2i

)
ε2i−1

= ε−2k
k−1∑

i=1

∫ +ε

−ε

df(x/ε)
dx

x2idx

∫

Z
α2i

+
∫

M\U
ω +

(∫

U
β +

k∑

i=1

−2
2i − 1

∫

Z
α2i

)

︸ ︷︷ ︸
=P[ω](0) by the expression (6.1)

+
k∑

i=1

(
2

2i − 1

∫

Z
α2i

)
ε2i−1.
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In a more compact way:
∫

M
ωε =

k−1∑

i=1

ai(ε)
∫

Z
α2i + P[ω](0) +

k∑

i=1

bi(ε)
∫

Z
α2i. (6.2)

This integral only depends on the classes [αi] and the Liouville volume P[ω](0), which are
determined by (and determine) the class of [ω]. So, two b2k-forms on the same cohomology class
determine the same cohomology class when desingularized. �

Remark 11. This previous theorem asserts that, for b2k-surfaces (S,Z) with S closed and ori-
entable and f and ε fixed, equivalent b2k-symplectic structures get mapped to equivalent symplectic
structures under the desingularization procedure. Nonequivalent b2k-symplectic structures might get
mapped to equivalent symplectic structures via deblogging. It is easy to see that there are different
classes of b2k-forms that desingularize to the same class by looking at expression (6.2). We only
have terms [αi] with i even. As a consequence, if two forms differ only in the odd terms, they have
the same desingularized forms (assuming the auxiliary function f in the desingularization process
is the same). We compute a particular example below.

Example 3. Consider S2 with coordinates (h, θ). Consider the b2-manifold given by (S2, {h =
0}, h) with the following two b2-symplectic structures:

ω1 =
1
h2

dh ∧ dθ, ω2 =
(

1
h

+
1
h2

)
dh ∧ dθ =

1
h2

dh ∧ (hdθ + dθ). (6.3)

As before, assume f and ε fixed. Observe that for ω1 the forms in the Laurent series are α1
0 = dθ

and α1
1 = 0, while for ω2 they are α2

0 = dθ and α2
1 = dθ. Then

∫
Z α1

1 = 0 �=
∫
Z α2

1 = 2π, and hence
[α1

1] �= [α2
1] and [ω1] �= [ω2]. The desingularized expressions of those forms are given by

ω1ε =

⎧
⎨

⎩

dfε(h)
dh

dh ∧ dθ if |h| � ε,

ω1 otherwise,
and ω2ε =

⎧
⎨

⎩

dfε(h)
dh

dh ∧ (hdθ + dθ) if |h| � ε,

ω2 otherwise.
(6.4)

Let us compute the classes of ω1ε and ω2ε.
∫

S2

ω2ε =
∫

S2\Uε

ω2 +
∫

Uε

dfε(h)
dh

(hdθ + dθ)

=
∫

S2\Uε

1
h2

dh ∧ (hdθ + dθ) +
∫

Uε

dfε(h)
dh

(dθ) +
∫

Uε

dfε(h)
dh

(hdθ)
︸ ︷︷ ︸

=0

=
∫

S2\Uε

1
h2

dh ∧ dθ +
∫

S2\Uε

1
h

dh ∧ dθ

︸ ︷︷ ︸
=0

+
∫

Uε

dfε(h)
dh

(dθ)

=
∫

S2

ω1ε.

Let us consider the action of S1 over S2 given by φ : S1 × S2 → S2 : (t, (h, θ)) �→ (h, θ + t). Ob-
serve that both ω1 and ω2 are invariant under the previous action. Moreover, their desingularizations
are also invariant.
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