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Introduction

In a previous paper [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF] we provided a probabilistic proof of the Conjecture; later, after we saw the interesting paper [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF]; both the papers tried to prove the Hailstone Conjecture using Markov processes. In another paper [START_REF] Galetto | Syracuse_Collatz Conjecture: Comparison of two Markov approaches towards the proof[END_REF], we compared the two probabilistic methods using the Reliability Integral Theory [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] and the SPQR Principle [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF]. Any probabilistic method makes "probable" the proof, but it is not really a mathematical proof. To overcome such a drawback later we showed a non-probabilistic proof using Flow Graphs and the SPQR Principle [START_REF] Galetto | Proof of Syracuse_Collatz Conjecture by Flow Graphs[END_REF].

The Collatz problem (also called the 3x+1 mapping, hailstone problem, Syracuse problem, ...), posed by L. Collatz in 1937, states that the system of the two difference equations, involving natural numbers, [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF] given the initial condition y 0 (any integer positive number) arrives after some (n is a number not known in advance) "continued" iterations to the value y n =1. It is considered a very difficult problem to be solved. As done in previous papers, we name "state of the system" the integer positive number generated by (1); so we see that the problem is transformed into the following:

given any initial state y 0 the system makes a certain number n of transitions (n is a number not known in advance) and finally it ends into the state y n =1. Any state of the system is a vertex in a graph. The rules [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF] give the next state of the system i.e. the next vertex in the graph: the edge traversed at time k+1 which we name e k+1 is (y k , y k+1 ).

Numerical experiments confirmed the validity of the conjecture for extraordinarily large values of the starting integer y 0 : it always reached 1 for all numbers up to 5.48 10 18 . (Oliveira e Silva 2008) The system (1) can be reduced to a non-linear difference equation, as the following one [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF] The numbers y k+1 of the sequence [the state of the system] provided by the previous (Collatz) equations are sometimes named hailstone numbers. We can associate to any state of the system y k of the edge e k+1 =(y k , y k+1 ) traversed at time k+1 the index of the row of a matrix P and to state y k+1 the index of the column of the same matrix P; then we can describe the graph by the matrix P with entries 1 related to the arrow of the transition y k y k+1 for any edge e k+1 =(y k , y k+1 ). Then for any state of the system y k there is an infinite dimensional row vector u(k), with all entries u i (k)=0, but one entry u y (k)=1, related to the edge e k+1 =(y k , y k+1 ): it is a unit vector of vector space. The vector u(k) refers to the k-th iteration of a mapping T: the result of the mapping T to the vector u(k) is denoted u(k+1)=u(k)T. The vector u(k+1) is unit vector with all entries u j (k+1)=0, but one entry u y* (k+1)=1, where we have the subindexes y*y. The subindexes are according to (1): if u y (k)=1, then y=y k and the index y* of entry u y* (k+1)=1 of the vector u(k+1) has index y*=y k /2 IF y k is even, and y*=3y k +1 IF y k is odd. The mapping T [related to the graph] is provided by an infinite-dimensional matrix P=[a ij ], named transition matrix (with infinite rows and columns); rows and columns are indexed by the natural numbers (states of the system) 1, 2, 3, 4, ..., n, n+1, ...; every a ij entry is 0, except ........ [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] where the indexes i and j are given by ( 1), for the arrows e k+1 =(y k , y k+1 ). Accordingly we have u(k+1)=u(k)P (4) In the figure 1 we show the transition matrix; the 3 by 3 matrix with rows and columns indexed by the numbers 1, 2, 4, is highlighted due to its importance:  when the system is in the state 1, the next transition is to state 4: 1  4  when the system is in the state 2, the next transition is to state 1: 2  1  when the system is in the state 4, the next transition is to state 2: 4  2 All this means that when the system enters one of those 3 states [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] it never leaves out of them, the system (or the process) circulates in the set [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] forever. It is a "periodic process".

We can arrange the (infinite) matrix P with a SuperState SS 0 made of the 3 states [1, 2, 4], a SuperState SS 1 made of the infinite EVEN states [START_REF] Galetto | Syracuse_Collatz Conjecture: Comparison of two Markov approaches towards the proof[END_REF]8,10, …], a SuperState SS 2 made of the infinite ODD states [3, 5, 7, …] The matrix P can be partitioned into 6 submatrices, written simply as where P 00 , P 11 and P 22 are square matrices.

Notice that the submatrix P 00 is orthogonal: its inverse is its transpose

= .
It is important to notice that P 3 , the 3 rd power of the matrix P, is such that the submatrix [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF] is the identity matrix; when the system reaches the set 1, 2, 4 of the states it remains there forever. It follows that = = . The matrices P 00 , P 11 and P 22 are square matrices, while the others are rectangular; all are, given more explicitly by SS 0 1 0 0 1 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 2 1 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 4 0 1 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. SS 1 6 0 0 0 0 0 0 0 0 0 0 0 0 …. 1 0 0 0 0 0 0 0 0 0 …. 8 0 0 1 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 10 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 1 0 0 0 0 0 0 0 0 …. 12 0 0 0 1 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 14 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 1 0 0 0 0 0 0 0 …. 16 0 0 0 0 1 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 18 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 1 0 0 0 0 0 0 …. 20 0 0 0 0 0 1 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 22 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 1 0 0 0 0 0 …. 3 0 0 0 0 0 1 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 5 0 0 0 0 0 0 0 0 1 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 7 0 0 0 0 0 0 0 0 0 0 0 1 …. 0 0 0 0 0 0 0 0 0 0 …. 9 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 11 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 13 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 15 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 17 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 19 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 21 0 0 0 0 0 0 0 0 0 0 0 0 …. 0 0 0 0 0 0 0 0 0 0 …. 

= ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ = 0 0 1 1 0 0 0 1 0 = 0 0 0 0 0 0 0 0 0 … … … = 0 0 0 0 0 0 0 0 0 … … … = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … … … … … … … … … … … ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 … … … … … … … … … … … ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 … … … … … … … … … … … ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … … … … … … … … … … … ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … … … … … … … … … … … ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … … … … … … … … … … … ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ ⎦ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎤ SS 0 SS

The transition graph of the merged Markov Process

Please see the infinite transition stochastic matrix P of figure 1, partitioned into 6 submatrices, = 0 0 where P 00 , P 11 and P 22 are square matrices (noticing that P 00 refers to the set 1, 2, 4 of the states), given more explicitly by matrix P in the introduction. The process is a "periodic" with period 3: when the system enters one of the 3 states [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] it never leaves the set 1, 2, 4, the system (or the process) circulates in the set 1, 2, 4 forever. P 3 , the 3 rd power of the matrix P, is such that the submatrix [see formula [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF]] is the identity matrix; when the system reaches the set 1, 2, 4 of the states it remains there forever because the rectangular submatrices and in the upper right corner have only 0 entries. The process is bound to enter the SuperState SS 0 =1, 2, 4 because the rectangular submatrix in the middle left corner has only one 1 entry [the other entries are all 0] and the rectangular submatrix in lower left corner has only 0 entries. The "periodic process" circulating in the set 1, 2, 4 is ruled by the submatrix P 00 .

The graph of the transitions is given in figure 2. In the figure 3 we show the flow graph of the 3 SuperStates SS 0 , SS 1 and SS 2 (of the merged process) and the transitions between them; notice that there are three arrows from SS 1 , one back to SS 2 , one forward to SS 0 and one re-entering into SS 1 (which accounts for the internal transitions within SS 1 ).

Figure 3. The graph of the transitions (of the merged process) between the SuperStates SS 0 , SS 1 and SS 2

The merged process is ruled by a matrix P merged as the following where the transition probabilities are shown (we shall see later how to find the probabilities p 10 and p 11 ). IF p 10 >0, the matrix P merged provides the "steady state probability vector" =[1, 0, 0] solution of the relationship =P merged , which states that the process stays forever in the SuperState SS 0 after entering it.

After entering SS 0 the probability of being in the states [making the SuperState SS 0 ] 1, 2, 4 (Collatz cycle) is given by the "steady state probability vector" *=[1/3, 1/3, 1/3] solution of the relationship *=*P 00 . IF p 10 >0, another way of finding the "steady state probability vector" is by using the theory given in the books [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] related to Reliability Integral Theory [RIT]; one can find two vectors z 1 and z 2 defined, as follows,  z 1 is the vector of the (steady state) probabilities of entering into the SuperState SS 0 , when there is a transition SS 1 =even states  SS 0 =1, 2, 4.  z 2 is the vector of the (steady state) probabilities of entering into the SuperState SS 1 =even states coming from SS 0 . z 1 , in the case of the merged process, is by definition a one-dimensional row vector [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF] (which is by the way the 1 st entry of the vector =[1, 0, 0]) related to the SuperState SS 0 ; it is found with no calculations, only by inspection of the figure 3. z 2 , in the case of the merged process, is by definition a two-dimensional row vector [0, 0] (which is by the way the last two entries of the vector =[1, 0, 0]) related to the SuperState SS 1 and SS 2 ; it is found with no calculations, only by inspection of the figure 3. Now we need only to find the value of the probabilities p 10 and p 11 . Let's start with p 11 and look at the matrix of figure 1, in particular to the infinite square submatrix P 11 . Let's assume, for a while, that the dimension are a finite couple (2m, 2m); the number of 1 entries are (m-1); then the ratio, the probability p 11 , is (m-1)/2m=0.5-1/2m> 0.5 -1/[2(81m)]. The matrix P 12 , for a while, can have the same dimension (2m, 2m). IF the initial condition y 0 (any integer positive number) is an odd number, then the 1 st iteration provides an even number 3y 0 +1=m; we decide to give to the matrices P 11 , P 12 , P 21 , P 22 , the dimension (2m, 2m); in order to take into account the possibility that, at some iteration k, there could be a transition y k-1 y k , with y k >2m, we choose for the above 4 matrices a dimension m'=2(3 4 m)=2(81m); finally we set p 11 =0.5 -1/[2(81m)]. It follows that p 10 =1/[2(81m)]. This argument can be repeated for any finite initial condition y 0 . We always compute a probability

SS0 SS1 SS2

p 10 >0 and we are certain that the "steady state probability vector" =[1, 0, 0] solution of the relationship =P merged exists.

The merged process stays forever in the SuperState SS 0 after entering it. For any k the iterated value y k cannot go to infinity, as proved in [1 by Carletti et al.]

Conclusion

Having applied the SPQR («Semper Paratus ad Qualitatem et Rationem») Principle, the author thinks that his new probabilistic method is able to provide the proof of the Syracuse_Collatz Conjecture [he did already probabilistically in a previous paper].
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Figure 1 .

 1 Figure 1. The (infinite) transition matrix P [only a part is shown], with the 3 SuperStates

Figure 2 .

 2 Figure 2. The graph of the transitions within and between the SuperStates SS 0 , SS 1 and SS 2 (only few of the total transitions are shown)
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