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Abstract

Background and Objective: The prostate cancer interventions, which need
an accurate prostate segmentation, are performed under ultrasound imaging
guidance. However, prostate ultrasound segmentation is facing two chal-
lenges. The first is the low signal-to-noise ratio and inhomogeneity of the
ultrasound image. The second is the non-standardized shape and size of the
prostate.

Methods: For prostate ultrasound image segmentation, this paper pro-
posed an accurate and efficient method of Active Shape Model (ASM) with
Rayleigh Mixture Model Clustering (ASM-RMMC). Firstly, Rayleigh Mix-
ture Model (RMM) is adopted for clustering the image regions which present
similar speckle distributions. These content-based clustered images are then
used to initialize and guide the deformation of an ASM model.

Results: The performance of the proposed method is assessed on 30
prostate ultrasound images using four metrics as Mean Average Distance
(MAD), Dice Similarity Coefficient (DSC), False Positive Error (FPE) and
False Negative Error (FNE). The proposed ASM-RMMC reaches high seg-
mentation accuracy with 95 ± 1% for DSC, 1.87 ± 0.51 pixels for MAD,
2.10%± 0.36% for FPE and 2.78%± 0.7% for FNE, respectively. Moreover,

1



the average segmentation time is less than 8 s when treating a single prostate
ultrasound image through ASM-RMMC.

Conclusions: This paper presents a method for prostate ultrasound im-
age segmentation, which achieves high accuracy with less computational
complexity and meets the clinical requirements.

Keywords

Ultrasound image; Prostate ultrasound image segmentation; Active shape
model; Rayleigh mixture model

Nomenclature

Variable Denote

xi Points set of each training image
x̄ Mean shape
S Covariance matrix
P Eigenvector
gj Gradient profile
Z Pixel intensities of the image
Ψ Parameters set of RMM
πj Weight of each component in RMM
σj Covariance of each component in RMM
γij Posterior probability of RMM
p(zi|Ψ) RMM model
p(zi|σj) Rayleigh distribution

1 Introduction

Prostate cancer is the second-leading cause of deaths from cancer for Amer-
ican men [1]. In 2018, the American Cancer Society estimated that among
these men diagnosed with prostate cancer, 82% would be alive and 18%
would die after treatment [1]. Thanks to the minimal invasive interven-
tions, treatment in the early stage often effective to save the patients’ lives.
There are several minimal invasive interventional procedures such as punc-
ture, brachytherapy, and High Intensity Focused Ultrasound (HIFU) [2, 3, 4].
Puncture is a diagnostic but also a therapeutic technique in which the punc-
ture needles are used to inject drugs into the body cavity [4]. Brachytherapy,
also known as internal radiation therapy, is a form of radiation therapy, in
which the sources of radiation are placed in or near the target [2]. HIFU
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is a technology that inserts an ultrasound probe into the target tumor re-
gion to burn tumor cells with the thermal effect of high intensity ultra-
sound [3]. As a non-invasive treatment, HIFU has several advantages such
as rapid recovery and low recurrence rate. The accurate delineation of the
prostate boundary is crucial for intraoperative navigation to help surgeons
accurately insert the probe to the target tumor region. However, several
defects of the ultrasound imaging (e.g. attenuation, speckle, signal drop-
out, low contrast, signal shadowing, etc.) challenge the precise prostate
boundary delineation [5].

Several classes of methods have been proposed for ultrasound images seg-
mentation [6] that focus on edge detector [7], texture operators [8], and mor-
phological operators [9]. However, these methods have limited validations
since they do not make use of any prior knowledge of ultrasound physics.
Recent works have shown that prior information in ultrasound images such
as intensity, shape or temporal models can be introduced for segmenta-
tion [10, 11]. Especially for prostate segmentation, shape models bring es-
sential information since the anatomical structure of a healthy prostate is
more likely an ellipse-shape. Gong et al. [10] propose a deformable super-
ellipse model that drives the shape evolution by an efficient and robust
Bayesian segmentation algorithm. Shen et al. [11] use a statistical shape
model that adopts normalized features to make prostate shape invariant to
the probe rotation. The experimental results of the aforementioned works
show that incorporating tissue shape information can improve segmentation
accuracy.

Active Shape Model (ASM), proposed by Cootes et al., is an effective tool
that utilizes a set of points to represent variant shapes. Considering its abil-
ity to describe shapes based on a mean position and variant modes, the ASM
is applied effectively for medical image segmentation [12, 13, 14, 15, 16]. The
statistical shape model shows its potential for ultrasound image segmenta-
tion [17, 18], but the segmentation results are not as good as expected due
to some specificity of the ultrasound images.

Speckle particularity plays a crucial role in the ultrasound images anal-
ysis [5, 6, 19]. One tissue in the ultrasound image appears as a region
with similar speckle distribution. The statistics on the speckle as texture
features can be used to handle ultrasound images segmentation [19, 20].
The most common model for speckle formation, known as fully developed
speckle, indicates that the pixels’ intensity in B-mode ultrasound images
follows a Rayleigh probability density function [20, 21]. An application ex-
ample is given in [22], where the morphological properties of the arterial
vessel on intravascular ultrasound images (IVUS) are modeled by means of
a Rayleigh distribution. Following this approach, some works have been
done to model the tissue echo-morphology by a combination of Rayleigh
distributions. Rayleigh Mixture Model (RMM) have been successfully em-
ployed in other fields [23, 24, 25]. Up to our knowledge, this is the first
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time to adopt RMM as descriptive speckle features for prostate ultrasound
images segmentation. The proposed model combines prostate shape infor-
mation represented by ASM and ultrasound image properties represented
by RMM to achieve better segmentation.

In this paper, for ultrasound image prostate segmentation we propose
a segmentation method using Active Shape Model with Rayleigh Mixture
Model Clustering (ASM-RMMC), by combining the prostate physical shape
priors and ultrasound image speckle properties. This method reduces ul-
trasound images inhomogeneity and improves the efficiency to estimate the
shape deformations. Through segmentation experiments on clinical ultra-
sound images, the proposed method demonstrated that it is fast and accurate
enough to meet the requirement of surgery.

2 Materials and Methods

2.1 Active Shape Model

2.1.1 Principle

The ASM is a flexible model that uses a set of points to represent the bound-
aries of objects in the image [13, 26]. In this model, a shape is described by
a set consisting of n points x = {(x1, y1), (x2, y2), · · · , (xn, yn)}, as shown in
Fig. 1. ASM also includes some gray level appearance around these points.
The main idea is that a statistical model of the shape and the gray level
appearance are created during the training phase based on manually labeled
images. Then, the testing phase is applied to face with unlabeled images.

Figure 1: The description of a shape by a set consisting of n points x =
{(x1, y1), (x2, y2), · · · , (xn, yn)}.

Training phase: Suppose that the training set contains m manually la-
beled images. We have a set of points xi for each image i, i ∈ {1, 2, . . . ,m}
to describe each object boundary. Therefore, the whole training set contains
m boundary points set

{
x1,x2, · · · ,xm

}
. First, all the boundary points of

the training set are aligned together using the Procrustes Analysis [27].
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After the alignment, the average position of these points set can then be
estimated by:

x̄ =
m∑
i=1

x′i/m (1)

where x′i, i ∈ {1, 2, . . . ,m} denotes the aligned boundary points set.
This process is illustrated in Fig. 2. The m samples of the training set are
shown in Fig. 2(a) while the aligned shapes x′i and the average shape are
shown in Fig. 2(b).

Figure 2: Illustration of manually delineated contours (a) and aligned con-
tours with the average shape (in red) (b).

The covariance matrix S is defined as:

S =
m∑
i=1

(x′i − x̄)T (x′i − x̄) (2)

The main variation modes can be obtained by applying the Principal
Component Analysis (PCA). Let P be the first t eigenvectors of S. There-
fore, any sample xi in the training set, i ∈ 1, 2, . . . ,m, can be described by
x̄, P and b:

xi = x̄ + Pb, i ∈ 1, 2, . . . ,m (3)

where b is a vector containing t parameters.
Once the shape model is built, the statistics of the gray levels around the

points should be included. As shown in Fig. 3, xi
j denotes the jth point of

the boundary points in the ith sample. For the jth point, a gray level profile
is built by sampling the image along the boundary normal direction. This
normal direction is approximated by the perpendicular of the line connecting
the two neighbors of xi

j : xi
j−1 and xi

j+1. We choose k samples on each side

of xi
j and compute the derivative gray value to perform a gradient profile gi

j .
Then, the normalized vector gj composed by all the m profiles is achieved
by:

gj →
1∑
i

∣∣∣gi
j

∣∣∣gj (4)
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Figure 3: The gradient profile (shown in red dots) of the jth boundary point
(shown in black dot)

Testing phase. For unlabeled images, the idea is to deform the shape
according to the mean shape x̄ and the statistics gray levels of each boundary
point x̄j . Firstly, the mean shape x̄ obtained in the training phase is used
for initialization. From this initial pose, the model is matched using the
following iterative approach. Then the statistics gray levels of each boundary
point x̄j are considered:

1. In order to predict the point set xnew for the unlabeled image, the
gray level appearance around the initial points x̄j , j ∈ 1, 2, . . . , n, is
examined in order to find the match points. The candidate points
are sampled along the boundary normal direction, as Fig. 3 shown.
For each point, the gray level profile gi

j is computed. The retained
candidate point is this with the lowest Mahalanobis distance using
variance Sj :

f(gi
j) = (gi

j − ḡj)
TS−1

j (gi
j − ḡj) (5)

2. The displacements dX of the current feature points are determined
from the Mahalanobis distance. The deformation component db is
estimated by:

db = PTdX (6)

And the shape updates as:

xnew = x̄ + Pdb (7)

The final point positions of the fitted model are obtained until dis(xnew−
x) < η, where dis is the Euclidean distance between two vectors and η is
a very small number. Considering the perspective of fitting accuracy, we
chose η = 0.0001.
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2.1.2 Active shape model for ultrasound image segmentation

ASM has proven to be effective on several medical image segmentation, such
as CT, fMRI, but it has some challenges when comes to ultrasound images
segmentation. This is mainly due to the speckle nature of the ultrasound
images. In an ultrasound image, one tissue in the ultrasound image appears
as a homogeneous region with similar speckle distribution. The main idea of
our framework is: (1) to estimate an ultrasound-based image representation
in which homogeneous region is characterized based on speckle specificities
and (2) to use this ultrasound-based image representation as the input for
ASM.

2.2 Ultrasound Image Representation

2.2.1 Rayleigh Mixture Model

This section aims at providing speckle property from an RMM description
of the ultrasound image. In ultrasound images, the intensity distributions
have been demonstrated to be Rayleigh distributions due to the speckle [22,
24, 25]. The histogram of ultrasound Region of Interest (ROI) is shown in
Fig. 4. Fig. 4(a) shows the ROI inside the yellow bound box while Fig. 4(b)
presents the histogram of ROI that is more likely a Rayleigh distribution.

Figure 4: The liver part of the abdominal ultrasound image as the region of
interest (a) and the histogram for the ROI (b).

Let Z = {z1, z − 2, . . . , zN} be a set of pixel intensities of a given region
of interest of N pixels from an ultrasound image. We assume that the
pixel intensities can be described by the following mixture of L Rayleigh
distributions:

p(xi|Ψ) =
L∑

j=1

πjp(zi|σj) (8)
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where L is the number of the Rayleigh distributions of the RMM, πj is
the weight of each component, p(zi|σj) is the probability density function
(PDF) of the Rayleigh distribution, and σj is the variance of the Rayleigh
distribution. p(zi|σj) is given by:

p(zi|σj) =
zi
σ2
j

exp

(
− z2

i

2σ2
j

)
(9)

Eq. (8) is characterized by the parameter set Ψ = {π1, π2, · · · , πL, σ1, σ2, · · · , σL}
composed by the weights and Rayleigh parameters of the mixture model.
To guarantee that p(zi|Ψ) is a true distribution function, the condition∑L

j=1 πj = 1 must hold.
The model of the whole ultrasound image is then:

p(Z,Ψ) =
N∏
i

p(zi|Ψ) (10)

2.2.2 Expectation Maximum (EM) Algorithm

The expectation maximization (EM) algorithm is applied for parameters es-
timation. In RMM, the estimation of the parameter set Ψ = {π1, π2, · · · , πL, σ1, σ2, · · · , σL}
is achieved by maximizing the likelihood function:

L(Z,Ψ) = log p(Z|Ψ) =
N∑
i=1

log
L∑

j=1

πjp(zi|Ψ) (11)

The parameters set Ψ̂ can then be estimated by:

Ψ̂ = arg max
Ψ
L(Z,Ψ) (12)

To solve Eq. (12), the EM algorithm is applied [22]. The procedure is
shown as follows.

Step 1: Initialize parameter set Ψ(0), where π
(0)
j = 1

L , j = {1, 2, . . . , L} and

σ
(0)
j = randomvalue;

Step 2: Expectation step (E-step). The expectation of the likelihood func-
tion is computed by:

Q(t)(Z,Ψ(t),Ψ) = E
[
L(Z,Ψ(t),Ψ))

]
=

N∑
i=1

L∑
j=1

γij [log p(zi, σj) + log πj ]
(13)
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where Ψ(t) is the previous estimation of the parameters and γij is the
distribution of the unobserved variables, which is defined as follows:

γij =
πijp(zi|σj)
p(zi|Ψ(t))

(14)

Step 3: Maximization step (M-step). The new parameter set Ψ(t+1) is
achieved by:

Ψ(t+1) = arg max
Ψ
Q(t)(Z,Ψ(t),Ψ) (15)

π
(t+1)
j =

1

N

N∑
i=1

γ
(t)
ij (16)

σ
(t)
j =

√√√√ 1

N

N∑
i=1

γ
(t)
ij

z2
i

2
(17)

When the EM algorithm procedure is finished, the parameters of RMM
are obtained. Once the RMM is established, the clustering images are ob-
tained from the original images. Fig. 5 shows the generation of clustering
images from original images with three examples.

3 Active shape model with Rayleigh features

ASM-RMMC method is proposed for the prostate ultrasound image seg-
mentation. Similar to conventional ASM, ASM-RMMC consists of training
stage and testing stage as shown in Fig. 6. In this flowchart, the blue part
shows the procedure of the training stage while the red part shows the testing
stage.

Training stage: In order to achieve the mean shape and the main vari-
ation modes described in Eq. (1) - Eq. (3), the statistical shape model is
built from the landmarks as described in Section 2.1. Then, the clustering
images are generated through RMM as described in Section 2.2 and used to
build the appearance model as described in Section 2.1.

Testing stage: In order to delineate the prostate on unlabeled ultrasound
images, a two-steps approach is performed as follows.

Step 1: Ultrasound representative image generation. The RMM is used di-
rectly to generate the clustering images to take part in the deformation
stage.
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Figure 5: The generation of clustering images from original images using
Rayleigh Mixture Model.

Figure 6: The flowchart of Active Shape Model with Rayleigh Mixture Model
clustering method including training stage (shown in blue) and testing stage
(shown in red).
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Step 2: Deformation. The trained mean shape on the clustering images
as initialization. The shape is iterative deformed according to the
approach described in Eq. (5) - Eq. (7) until the convergence condition
holds.

4 Experiments

In this section, experiments were conducted to evaluate the proposed method
on in vivo prostate ultrasound images. The proposed method was imple-
mented in MATLAB R2019a on an Intel(R) Core(TM) i5 6500 computer,
3.40 GHz and 8 GB RAM.

4.1 Ultrasound images dataset

The ultrasound data are transrectal prostate ultrasound (TRUS) image
acquired intra-operatively on a prostate HIFU therapy Ablatherm device
(https://www.edap-tms.com/ ) on real patients receiving prostate HIFU ab-
lation. The data were provided and anonymized directly by EDAP company,
(Vaulx-en-Velin, France). They were acquired with the patients has writ-
ten consent under the clinical condition at Edouard Herriot Hospital, Lyon,
France. Moreover, this study was approved by the Institutional Review
Board of Edouard Herriot Hospital. On these patients, a urethral catheter
was placed to protect the urethra from injury during HIFU ablation, but
this catheter-induced an ultrasonic shadow as it shown in Fig. 5(a). The
transrectal ultrasound imaging probe is operating at 7.5 MHz. A slice has
500× 490 pixels with a transverse pixel size of 0.154 mm/pixel and a thick-
ness of 2 mm.

4.2 Qualitative evaluation

At first, we evaluated the proposed method from the visual quality point of
view. The procedure of the proposed method consisted of two stages: (1)
Initialization and (2) ASM deformation on the clustering images as shown in
Fig. 6. Fig. 7 shows two representative segmentation of ASM-RMMC. The
first and second rows show the deformations from patient #1 and patient
#2, respectively. The initialization is shown in Fig. 7 column (a). The
deformations are illustrated in Fig. 7 columns (b) - (d) which present the
intermediate shapes after 5, 10, 15 iteration steps. When the deformations
satisfied dis(xnew − x) < 0.0001, the final results are achieved, as shown in
Fig. 7 column (e).

We also compared the visual quality between ASM-RMMC and two other
close methods in which the clustering image is computed using different
methods. One is ASM-GFC that utilizes Gabor features for the cluster-
ing image while the other is ASM-GMMC that utilizes the classical Gaus-
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Figure 7: The results of prostate segmentation by using Active Shape Model
with Rayleigh Mixture Model clustering method for two patients.

sian Mixture Model (GMM). Gabor filters is a conventional texture feature
extraction tool and has been applied for prostate ultrasound images seg-
mentation using ASM in [11]. Fig. 8 shows the Gabor features clustering
process. The original images are shown in Fig. 8(a). Firstly, Gabor features
(6 scales, 12 directions) are extracted and then the K-means algorithm is
used to generate the clustering images as shown in Fig. 8(b). GMM is the
most common finite model that many previous works are based on it for im-
ages segmentation [20]. Similar to the framework described in section 2.2,
the parameters of the GMM were estimated using the EM algorithm and
then the GMM was used to produce a clustering image.

Fig. 9 presents the segmentation results on five images of the testing
dataset obtained by ASM-GFC, ASM-GMMC, and ASM-RMMC. The red
dots indicate contours estimated by the segmentation algorithms while the
star lines indicate manual delineations by an expert. The segmentation re-
sults provided by ASM-GFC, ASM-GMMC, and ASM-RMMC are displayed
on the first, second, and third column, respectively. The first to fifth lines
in Fig. 9 present the segmentation results of five patients. Obviously, ASM-
RMMC is the most effective to detect prostate contours from ultrasound
images in visually. The reason is that the clustering images generated by
RMM clustering further reduce inhomogeneity of ultrasound image.

4.3 Quantitative evaluation

In order to evaluate the proposed method quantitatively, we also compared
ASM-RMMC with ASM-GFC and ASM-GMMC. Four evaluation indexes
were applied: Dice Similarity Coefficient (DSC), Mean Average Distance
(MAD), False Positive Error (FPE) and False Negative Error (FNE) [28].

DSC is used to measure the overlap between the areas of the segmented
contour (Ss) to this of the manual delineation (Sd) considered as ground-
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Figure 8: The illustration of the Gabor features clustering from the original
images (a) to the clustering images (b).

truth [29]. The DSC gives a value between 1 (perfect overlap) to 0 (no
overlap).

DSC =
2(Ss ∩ Sd)

(Ss) + (Sd)
(18)

The MAD is a distance-based metric that calculates the average (in
pixels) of the absolute closest distances expressed between the estimated
contour and each point of the manually delineated landmarks. The closer
MAD is to 0, the better is the segmentation result.

FPE (Eq. (19)) is defined as the ratio of the number of the total pixels
of the segmented prostate region outside the ground-truth (the false pos-
itives) to the number of the total pixels of the ground-truth [28, 30, 31].
FNE (Eq. (20)) is defined as the ratio of the number of the total pixels
of the ground-truth pixels outside the segmented prostate region (the false
negatives) to the number of the total pixels of the ground-truth [28, 30, 31].

FPE =
Ss − (Ss ∩ Sd)

Sd
× 100% (19)

FPE =
Sd − (Ss ∩ Sd)

Sd
× 100% (20)

Considering the small size of the dataset (30 ultrasound images), we
utilized 6-fold cross-validation to evaluate the proposed method. The 6-
fold cross-validation separated the dataset into 6 parts randomly, and we
utilized one part as test images. That means, 25 of these images are selected
randomly as the training set while the other 5 prostate ultrasound images
are used as the testing set. Six experiments were conducted and the results
are shown in Table 1.
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Figure 9: The results of prostate ultrasound image segmentation for five
patients (#1 - #5).
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DSC aspect:As shown in Table 1, ASM-RMMC reached scores of 95%±
0.81% which is an improvement of 2% compare to the scores obtained by
ASM-GFC (93%±1.47%). We can also see that ASM-RMMC has the same
mean DSC scores as ASM-GMMC (95%±1.17%), but its standard deviation
is slightly smaller that means the ASM-RMMC is more robust. MAD aspect:
ASM-RMMC reached MAD of 1.86± 0.02 pixels while ASM-GFC achieved
MAD of 2.29 ± 0.04 pixels and ASM-GMMC achieved 1.92 ± 0.03 pixels.
Clearly, compared to ASM-GFC and ASM-GMMC, the MAD obtained by
ASM-RMMC decreases by 18.78% and 3.13%, respectively. These decreases
indicated that ASM-RMMC estimated more accurately the contours than
ASM-GFC and ASM-GMMC. FPE aspect: the FPE of ASM-GFC, ASM-
GMMC and ASM-RMMC are 3.67%± 0.74%, 2.88%± 0.52%, and 2.10%±
0.36%, respectively. FNE aspect: the FNE of ASM-GFC, ASM-GMMC
and ASM-RMMC are 4.24% ± 0.47%, 3.39% ± 0.49%, and 2.78% ± 0.71%,
respectively. In both FPE and FNE metrics, ASM-RMMC showed better
scores than ASM-GFC and ASM-GMMC.

The improvement of the scores can also be noticed on the boxplots in
Fig. 10. For all the metrics ASM-RMMC shows better median values and
smaller inter-quartiles ranges than ASM-GFC and ASM-GMMC. The statis-
tics show that the proposed method ASM-RMMC outperforms ASM-GFC
and ASM-GMMC. The Kruskal-Wallis test by rank (the non-parametric
equivalent of ANOVA) was conducted to find if significant differences ex-
ist between the scores distributions of ASM-GFC, ASM-GMMC and ASM-
RMMC. The respective p values (p < 0.05 for DSC, p < 0.001 for MAD,
p < 0.005 for FPE and p < 0.05 for FNE) allowed us to conclude that the
accuracy improvements brought by ASM-RMMC are statistically significant.

Test1 Test2 Test3 Test4 Test5 Test6 mean std dev

Mean
ASM-GFC 94 92 93 94 95 91 93 1.47

DSC ASM-GMMC 95 93 96 95 96 94 95 1.17
% ASM-RMMC 95 94 96 96 96 95 95 0.81

Mean
ASM-GFC 2.27 2.32 2.29 2.27 2.24 2.34 2.29 0.04

MAD ASM-GMMC 1.91 1.97 1.95 1.92 1.89 1.93 1.92 0.03
pixel ASM-RMMC 1.87 1.89 1.85 1.84 1.85 1.88 1.86 0.02

Mean
ASM-GFC 3.67 3.98 4.05 4.67 2.64 3.01 3.67 0.74

FPE ASM-GMMC 2.76 2.98 3.12 3.72 2.25 2.47 2.88 0.52
% ASM-RMMC 2.14 2.19 2.27 2.60 1.58 1.79 2.10 0.36

Mean
ASM-GFC 4.21 4.46 4.81 3.39 4.35 4.21 4.24 0.47

FNE ASM-GMMC 3.13 3.46 3.78 2.54 3.86 3.56 3.39 0.49
% ASM-RMMC 2.71 2.87 3.13 1.42 3.39 3.18 2.78 0.71

Table 1: Review of segmentation performances announced in 6-fold cross
validation (Mean DSC, MAD, FPE and FNE).
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Figure 10: Boxplots of the DSC, MAD, FPE and FNE obtained by 6-fold
cross validation of ASM-GFC, ASM-GMMC and ASM-RMMC. The p values
were computed with the Kruskal–Wallis test by rank.

Furthermore, the obtained DSC and MAD scores of our proposed ASM-
RMMC is compared with these mentioned in four related works of the liter-
ature: Ladak [32, 33], Cosio [34], Yan [35] and Ghose [36] (see Table 2). In
these papers, there are two kind of units to represent the results of the MAD:
as pixels and as mm. Compared to Ladak and Ghose, the ASM-RMMC
MAD is decreased from 4.4±1.8/4.5±2.14 pixels to 1.87±0.51 pixels by 57%
and 58%, respectively. Compared to the works of Cosio, Yan, and Ghose,
the ASM-RMMC MAD is decreased from 1.65± 0.67/2.1± 1.02/2.1± 1.02
mm to 0.28 ± 0.15 mm by 63%, 66%, and 57%, respectively. Moreover,
compared to Ghose, the DSC of ASM-RMMC is increased from 91% ± 9%
to 95%± 1%.

The computation time of ASM-GFC, ASM-GMMC, and ASM-RMMC
is shown in Table 3 and Fig. 11. The mean total time for ASM-GFC reaches
780.01 s, in which about 729 s are spent for Gabor features extraction, 46.53
s for clustering and 3.06 s for ASM. The mean total time for ASM-GMMC
takes 42.49 s (merely 1/18 of ASM-GFC’s time cost), in which about 39.26
s is used for GMM and 3.23 s for ASM. Notably, the mean total time for
ASM-RMMC is less than 8 s (merely 1/98 of ASM-GFC’s time cost), in
which about 4.91 s is used for RMM and 2.98 s for ASM. The proposed
ASM-RMMC is the most efficient. The reason is that RMM costs much
less computation time during ultrasound image clustering since it has fewer
parameters to be estimated than GMM.
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Method MAD DSC

Ladak [32, 33] 4.4± 1.8 pixels / - -
Cosio [34] -/ 1.65± 0.67 mm -
Yan [35] -/ 2.1± 1.02 mm -
Ghose [36] 4.5± 2.14 pixels/ 1.26± 0.6 mm 91± 9
ASM-RMMC 1.87± 0.51 pixels / 0.28± 0.15 mm 95± 1

Table 2: Review of segmentation performances announced in the literature
(MAD and DSC).

Method Stage #1 #2 #3 #4 #5 mean

ASM-GFC
Clustering 749.45 773.15 785.66 773.59 791.89 776.75

ASM 3.69 3.84 3.92 1.20 3.65 3.06
Total 763.14 776.99 789.58 774.79 795.54 780.01

ASM-GMMC
Clustering 37.42 43.23 35.60 41.91 38.12 39.26

ASM 3.72 3.81 3.86 1.20 3.56 3.23
Total 41.14 47.04 39.46 43.11 41.68 42.49

ASM-RMMC
Clustering 4.81 4.54 4.56 4.81 4.70 4.91

ASM 3.78 3.79 3.76 1.17 3.51 2.97
Total 8.59 8.33 8.32 5.98 8.21 7.88

Table 3: Computation time of segmentation on five testing patients’ data
(#1-5) using ASM-GFC, ASM-GMMC, and ASM-RMMC. (Unit: seconds)

Figure 11: Computation time of segmentation using ASM-GFC, ASM-
GMMC, and ASM-RMMC.
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5 Discussion

Active shape model (ASM) is a method which generally gives good methods
since it is able to catch relatively large shape variability. However, when
directly applied on US images, the estimation of the shape deformations is
difficult because of the gray level in-homogeneities induced by the speckle.
This problem can be by-passed by extracting some region-based information
from statistics on speckle and using it to perform the ASM. Several statistics
on the speckle have been proposed (texture features, Gabor filter, Mixture
Model, ...). However our feeling was to use some statistics related to the
physics of ultrasound imaging. The fully developed speckle model indicates
that, in B-mode ultrasound, the pixels intensities follow a Rayleigh distribu-
tion. We considered so the US image as a Mixture of Rayleigh distributions
in order to extract some more homogeneous tissues region from the US im-
age and used this information to perform the ASM. This assumption seems
to be verified since ASM-RMMC showed higher accuracy than ASM-GFC
and ASM-GMMC which are based on two clustering methods, respectively
on Gabor filters and on Gaussian mixture Model, which are not directly
related to the physics of speckle generation.

More surprisingly, ASM-RMMC showed also higher computer time effi-
ciency than the two other methods. This efficiency was awaited compared
to ASM-GFC because the computation of the Gabor filter banks is known
to be computation intensive. However, the computation of the RMM was
also shorter than this of GMM because the Rayleigh distribution is based
on only one parameter whereas the Gaussian distribution is defined by two
parameters.

The evaluation was performed on a relative small dataset of 30 ultra-
sound images. However, the 6-fold cross-correlation was able to show that
ASM-RMMC had higher performances in terms of accuracy and computa-
tion time than the two other methods. This increase of performance was
statistically significant since that the Kruskal-Wallis test by rank showed p
values always lower than 5%.

However, in the future, we will endeavor to collect more prostate ultra-
sound images for a more deeper evaluation of the proposed ASM-RMMC
and also we will attempt to extend the proposed ASM-RMMC to the US
images segmentation of other organs, such as uterus, liver, ...

6 Conclusion

In this paper, for prostate ultrasound image segmentation, we proposed
the ASM-RMMC by combining ultrasound image properties represented by
Rayleigh Mixture Model (RMM) and prostate shape information represented
by Active Shape Model (ASM). A clustering image with more homogeneous
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tissues regions is generated based on RMM, then the deformation of ASM
is implemented on this image. We conducted some experiments on clinical
prostate ultrasound images. The proposed method presents more accuracy
for the prostate boundaries estimation and less computational complexity
than other related works. In the future, the proposed method will be applied
on other kinds of tissue that has a regular shape, such as liver and kidney.
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