
HAL Id: hal-02316115
https://hal.science/hal-02316115v1

Preprint submitted on 15 Oct 2019 (v1), last revised 10 Mar 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On foundational aspects of RDF and SPARQL
Dominique Duval, Rachid Echahed, Frederic Prost

To cite this version:
Dominique Duval, Rachid Echahed, Frederic Prost. On foundational aspects of RDF and SPARQL.
2019. �hal-02316115v1�

https://hal.science/hal-02316115v1
https://hal.archives-ouvertes.fr

ON FOUNDATIONAL ASPECTS OF RDF AND SPARQL

DOMINIQUE DUVAL 1, RACHID ECHAHED 2, AND FRÉDÉRIC PROST 2

Abstract. We consider the recommendations of the World Wide Web Consortium
(W3C) about the Resource Description Framework (RDF) and the associated query lan-
guage SPARQL. We propose a new formal framework based on category theory which
provides clear and concise formal definitions of the main basic features of RDF and
SPARQL. We propose to define the notions of RDF graphs as well as SPARQL ba-
sic graph patterns as objects of some nested categories. This allows one to clarify, in
particular, the role of blank nodes. Furthermore, we consider basic SPARQL CON-
STRUCT and SELECT queries and formalize their operational semantics following a
novel algebraic graph transformation approach called POIM.

1. Introduction

Mathematical semantics of computer science languages has been advocated since early
1970’s. It allows one to give precise meaning of syntactical objects and paves the way
for involved reasoning methods such as modularity, compositionality, security as well as
advanced verification techniques, to quote a few. Nowadays, data science represents one
of the most influential technology in our society. Mastering the languages involved in
the encoding of data or the formulation of queries is a necessity to elaborate robust data
management systems. In this paper, we consider the most recent recommendations of
the World Wide Web Consortium (W3C) about the Resource Description Framework
(RDF) [W3C14a] and the associated query language SPARQL [W3C13] and propose a
mathematical semantics of these formalisms.

The key data structure in RDF is the structure of RDF graph. In [W3C14a, Sec-
tion 3], an RDF graph is defined as a set of RDF triples, where an RDF triple is of
form (subject, predicate, object). The subject is either an IRI (Internationalized Resource
Identifier) or a blank node, the predicate is an IRI and the object is either an IRI, a literal
(denoting a value such as a string, a number or a date) or a blank node. Blank nodes are
arbitrary elements as long as they differ from IRIs and literals and they do not have any
internal structure: they are used for indicating the existence of a thing and the blank
node identifiers are locally scoped. For instance, the triples (Paul, knows, blank1) and
(blank2, knows,Henry) mean that Paul knows someone and someone knows Henry. Sur-
prisingly, a triple such as (Paul, blank3, Henry) standing for “there is some relationship
between Paul and Henry” is not allowed in RDF, but only in generalized RDF [W3C14a,
Section 7]. Following the theoretical point of view we investigate in this paper, there is
no harm to consider blank predicates within RDF triples. We thus consider data graphs
in a more general setting including RDF graphs.

The query language SPARQL for RDF databases is based on basic graph patterns, which
are kinds of RDF graphs with variables [W3C13, Section 2]. In this paper, we consider

Date: 1 Laboratoire Jean Kuntzmann, Univ. Grenoble Alpes, CNRS, France
2 Laboratoire d’Informatique de Grenoble, Univ. Grenoble Alpes, CNRS, France
October 15, 2019.

1

query graphs which generalize basic graph patterns by allowing blanks to be predicates.
The SPARQL query processor searches for triples within the given RDF database which
match the triple patterns in the given basic graph pattern, and returns a result set or an
RDF graph. Considering basic graph patterns, one may wonder what is the difference
between variables and blank nodes. SPARQL specifications in [W3C13, Section 4.1.4]
suggest similarities between them, whereas in [W3C13, Section 16.2], they make a clear
difference between them. In the formalization of SPARQL we propose, blank nodes and
variables are clearly distinguished by their respective roles in the definition of homomor-
phisms.

In SPARQL, the SELECT query form is described lengthily. This query form can be
compared to the SELECT query form of SQL, which returns a set of results. In contrast,
the CONSTRUCT query form returns a graph of results. The latter is described very
shortly in [W3C13, Section 16.2]. Following our formalization, the CONSTRUCT query
form is more fundamental than the SELECT query form. Actually, we start by proposing
an operational semantics for CONSTRUCT queries based on a new approach of algebraic
graph transformations which we call POIM and we show afterward how SELECT queries
can be easily encoded as CONSTRUCT queries.

The paper is organized as follows. Section 2 defines the objects and the morphisms of
the categories of data graphs and query graphs. We use basic notions of category theory,
mainly colimits (such as coproducts and pushouts). These notions are defined in all
textbooks on category theory, and Wikipedia [Wik] provides an elementary presentation.
All colimits used in this paper are kinds of “unions” of specific sets. We describe them
also in a set-theoretic way, so that it should be possible to get an idea of the content of the
paper without knowing the formal definition of colimits. Section 3 introduces the PO-IM
algebraic transformation where rewrite rules are of the following shape L → K ← R

with L,K and R being basic graph patterns. Afterward, we define, in Section 4, two
different calculi for running a CONSTRUCT query against a data graph G. We first
define a high-level calculus as a mere application of the PO-IM transformation. Then
we propose a low-level calculus which is defined by means of several applications of the
PO-IM transformation followed by a “merging” process. The low-level calculus is close
to the description of the running process in SPARQL. Both calculi are shown to return
the same result. In Section 5, we show how the PO-IM transformation can be adapted to
define the operational semantics of the SELECT queries. Concluding remarks are given
in Section 6. The missing proofs can be found in the Appendix.

2. Graphs of triples

2.1. Graphs of triples.

The set of IRIs (Internationalized Resource Identifiers), denoted Iri , is defined in
[W3C14a]. The set of literals (numbers, strings, booleans or dates), denoted Lit , with its
usual operations, is defined in [W3C14a]. The sets Iri and Lit are disjoint. In addition
let B be some countably infinite set, disjoint from Iri and Lit . The elements of B are
called the blanks. According to [W3C14a, 3.1], an RDF graph is a set of RDF triples
and an RDF triple consists of three components: the subject, which is an IRI or a blank
node; the predicate, which is an IRI; and the object, which is an IRI, a literal or a blank
node. The set of nodes of an RDF graph is the set of subjects and objects of triples in the
graph.

2

subjectgfed`abc predicate
// objectgfed`abc

Using set-theoretic notations, this can be expressed as follows: let Tr = (Iri+B)× Iri ×
(Iri+Lit+B), then an RDF triple is an element of Tr and an RDF graph is a subset
of Tr . Let us also consider the following non-standard extension of RDF [W3C14a, 7]:
A generalized RDF triple is a triple having a subject, a predicate, and object, where each
can be an IRI, a blank node or a literal. A generalized RDF graph is a set of generalized
RDF triples. This means that a generalized RDF triple is an element of (Iri+Lit+B)3

and that a generalized RDF graph is a subset of (Iri+Lit+B)3.

In addition to the sets Iri for IRIs, Lit for litterals and B for blanks, let V be some
countably infinite set disjoint from Iri , Lit and B. The elements of V are called the
variables. According to [W3C13, 2] a set of triple patterns is called a basic graph pattern.
Triple patterns are like RDF triples except that each of the subject, predicate and object
may be a variable. Let TrV = (Iri+B+V)× (Iri+V)× (Iri+Lit+B+V), then a triple
pattern is an element of TrV and a basic graph pattern is a subset of TrV . Since TrV is
a subset of (Iri+Lit+B+V)3, each basic graph pattern is a subset of (Iri+Lit+B+V)3.

More generally let I denotes any countably infinite set called the set of immutable at-
tributes, generalizing the disjoint union Iri + Lit . Let IB = I+B, IV = I+V and
IBV = I+B+V .

Definition 2.1. For each set A, the triples on A are the elements of A3. For each triple
t = (s, p, o) on A the elements s, p and o of A are called respectively the subject, the
predicate and the object of t, and they are denoted subj (t), pred(t) and obj (t). A graph
on A is a set of triples on A, i.e. a subset of A3. For each graph T on A, the subset of A
made of the subjects, predicates and objects of T is called the set of attributes of T and
is denoted |T |; it follows that T is a subset of |T |3. A data graph is a graph on IB and a
query graph is a graph on IBV .

Thus, the RDF graphs are the data graphs where only nodes can be blanks and only
nodes that are not subjects can be literals, and the RDF terms of an RDF graph are
its attributes when it is seen as a data graph. Similarly, the basic graph patterns of
SPARQL are the query graphs where only nodes can be blanks and only nodes that are
not subjects can be literals.

The notions of inclusion, subgraph, image and union for graphs on A are defined as
inclusion, subset, image and union for subsets of A3.

For each data graph T , let I(T) = I∩T and B(T) = B∩T , so that |T | is the disjoint union
of I(T) and B(T). Similarly, for each query graph T , let I(T) = I ∩ T , B(T) = B ∩ T

and V (T) = V ∩ T , so that |T | is the disjoint union of I(T), B(T) and V (T).

Remark 2.1. Each graph T on A determines a graph in the usual sense of “directed
multigraph”, with nodes the elements of A which are subjects or objects of T and with
edges from s to o the triples (s, p, o) in T . This graph has no isolated node. This point
of view can be used for illustrating graphs on A by drawing each triple (s, p, o) as an

edge s
p
→ o. Note that the name of the edge s

p
→ o is the whole triple (s, p, o), since the

predicate p may be shared by several triples: see Example 2.1

3

Example 2.1. Let N = {0, 1, 2} and let lt (or <) be the relation “less than” on
N , i.e. lt = {(0, 1), (0, 2), (1, 2)}. Let P = {lt} = { {(0, 1), (0, 2), (1, 2)} } and
T = {(0, lt , 1), (0, lt, 2), (1, lt , 2)}. Then T is the set of (s, p, o) ∈ N × P × N such
that (s, o) ∈ p. Let A = {0, 1, 2, lt}, then both N and P are subsets of A and T is the
set of triples (s, p, o) on A such that (s, o) ∈ p. The graph T on A can be illustrated as
follows:

0WVUTPQRS
lt))❚❚

❚❚
❚❚

❚❚
❚❚

❚

lt // 2WVUTPQRS
1WVUTPQRS lt

55❥❥❥❥❥❥❥❥❥❥❥

2.2. Morphisms for graphs of triples.

The isomorphisms of RDF graphs are defined in [W3C14a, 3.6.] as follows. Two RDF
graphs G and G′ are isomorphic if there is a bijection M between the sets of nodes of the
two graphs, such that: – M maps blank nodes to blank nodes. – M(lit) = lit for all RDF
literals lit which are nodes of G. – M(iri) = iri for all IRIs iri which are nodes of G. –
The triple (s, p, o) is in G if and only if the triple (M(s), p,M(o)) is in G′.
With our notations, this means that two RDF graphs G and G′ are isomorphic if there is
a bijection M : |G| → |G′| such that (s, p, o) ∈ G if and only if (M(s),M(p),M(o)) ∈ G′

and M(x) = x for each x ∈ I(G) (which includes all predicates of G) and M(x) ∈ B(G′)
for each x ∈ B(G).

Definition 2.2. For each set A a morphism a : T → T ′ from a graph T on A to a graph
T ′ on A is a map a : T → T ′ (subsets of A3) such that a(s, p, o) = (M(s),M(p),M(o))
for a map M : |T | → |T ′| (subsets of A). This map M will be denoted |a|, this is not
ambiguous since M is determined by a. A morphism a : T → T ′ of graphs on A fixes a
subset C of A if |a|(x) = x for each x in |T | ∩ C.

Definition 2.2 provides a one-to-one correspondence between the morphisms a : T → T ′

of graphs on A and the maps |a| : |T | → |T ′| such that |a|3(T) ⊆ T ′. A morphism a fixing
C is determined by the restriction of the map |a| to A\C. Definition 2.2 is such that when
A = IB, the invertible morphisms fixing I between RDF graphs are the isomorphisms of
RDF graphs.

Definition 2.3. A matching morphism is a morphism of query graphs fixing I from a
query graph to a data graph. A query graph L matches a subgraph G′ of a data graph
G if there is a matching morphism m from L to G such that G′ is the image of m.

Thus, a matching morphism fixes each immutable attribute and it maps a variable or
a blank to any immutable attribute or blank. A match in the sense of SPARQL is
a matching morphism from a basic graph pattern to an RDF graph. Indeed, quoting
[W3C13, 4.1.4]: Blank nodes in graph patterns act as variables and [W3C13, 2]: a
basic graph pattern matches a subgraph of the RDF data when RDF terms from that
subgraph may be substituted for the variables and the result is RDF graph equivalent to
the subgraph. The expression “RDF graph equivalent” in the quotation above is the
old terminology for “RDF graph isomorphic”, which means that each blank node can be
replaced with a new blank node (compare [W3C04, 6.3] and [W3C14a, 3.6]).

4

The interpretations of a RDF graph are also kinds of morphisms. In Definition 2.4 we
define an interpretation of a data graph T in a universe of discourse U by generalising
Definition 2.2 according to [W3C14a, 1.2.]: Any IRI or literal denotes something in
the world (the “universe of discourse”). These things are called resources. The resource
denoted by an IRI is called its referent, and the resource denoted by a literal is called
its literal value. Asserting an RDF triple says that some relationship, indicated by the
predicate, holds between the resources denoted by the subject and object. This statement
corresponding to an RDF triple is known as an RDF statement. The predicate itself is an
IRI and denotes a property, that is, a resource that can be thought of as a binary relation.
Note that the binary relations on a set R are the subsets of R2 and that a binary relation
on R may be an element of R: see Example 2.1.

Definition 2.4. Given a set R and a subset P of R made of binary relations on R, let
U be the set of triples (s, p, o) in R3 such that p ∈ P and (s, o) ∈ p. The universe of
discourse with R as set of resources and P as set of properties is the graph U on R.
Given a universe of discourse U on a set R and a map MI : I → R, an interpretation of
a data graph T is a map i : T → U such that i = M3 for a map M : |T | → |U | which
extends MI .

2.3. Categories for graphs of triples.

Definition 2.5. For each set A the category made of the graphs on A (Definition 2.1)
with the morphisms between them (Definition 2.2) is called the category of graphs on
A and denoted G(A). For each subset C of A the subcategory of G(A) made of the
graphs on A with the morphisms fixing C is denoted GC(A). The category of data graphs
is D = G(IB) and for each subset C of IB the category of data graphs fixing C is
the subcategory DC = GC(IB) of D. The category of query graphs is Q = G(IBV)
and for each subset C of IBV the category of query graphs fixing C is the subcategory
QC = GC(IBV) of Q.

In this paper we consider categories DC and QC for various subsets C of IB and IBV

respectively. It will always be the case that C contains I, so that we can say that
immutable attributes have a “global scope”. In contrast, blanks have a “local scope”:
in the basic part of RDF and SPARQL considered in this paper, the scope of a blank
node is restricted to one data graph or one query graph. The note about blank node
identifiers in [W3C14a, 3.4] distinguishes two kinds of syntaxes for RDF: an abstract
syntax where blank nodes do not have identifiers and concrete syntaxes where blank nodes
have identifiers. In our approach this distinction is formalized as follows: a blank is an
attribute, which corresponds to a concrete syntax, and the abstract syntax is obtained
by considering data graphs as objects of the category DI up to isomorphism, so that
any blank node can be changed for a new blank node if needed. The flexibility of this
point of view is important: in order to formalize the SPARQL evaluation process for the
CONSTRUCT queries we have to consider a category DIB0

where IB0 = I + B0 for a
well-chosen set B0 of blanks: in this category only the blanks outside B0 have a local
scope.

Example 2.2. In all examples we use the following prefixes (@prefix for data and PREFIX

for queries):
Prefixes

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#>

5

Consider two RDF graphs G1, G2 as follows. They are isomorphic in DI but not in DIB

because blanks are swapped.
G1

<http://example.org/Al> foaf:knows _:b. _:c foaf:knows <http://example.org/Bob>.

G2

<http://example.org/Al> foaf:knows _:c. _:b foaf:knows <http://example.org/Bob>.

Now consider basic graph patterns G3 to G8. They are pairwise non-isomorphic in QIBV

because they are pairwise distinct. In QIV only G7 and G8 are isomorphic. In QI these
query graphs belong to two different isomorphism classes: on one side G3 and G4 are
isomorphic and on the other side G5, G6, G7 and G8 are isomorphic.

G3

<http://example.org/Al> foaf:knows _:b. _:b foaf:knows <http://example.org/Bob>.

G4

<http://example.org/Al> foaf:knows ?x. ?x foaf:knows <http://example.org/Bob>.

G5

<http://example.org/Al> foaf:knows _:b. _:c foaf:knows <http://example.org/Bob>.

G6

<http://example.org/Al> foaf:knows ?x. ?y foaf:knows <http://example.org/Bob>.

G7

<http://example.org/Al> foaf:knows ?x. _:b foaf:knows <http://example.org/Bob>.

G8

<http://example.org/Al> foaf:knows ?x. _:c foaf:knows <http://example.org/Bob>.

Assumption 2.1. From now on A is a set, C is a subset of A, C = A \ C
is the complement of C in A, and it is assumed that both C and C are

countably infinite.

Remark 2.2. Since C is countably infinite, when dealing with a finite number of finite
graphs on A it is always possible to find a new attribute outside C, i.e., an element of C
that is not an attribute of any of the given graphs. It follows from Definition 2.2 that
given a graph T on A, if any attribute of T in C is replaced by any new element of C the
result is a graph T ′ on A that is isomorphic to T in GC(A). The fact that C is countably
infinite will be used in Section 5.

Proposition 2.1. The coproduct of graphs T1, ..., Tk in GC(A) is the union T ′
1 ∪ ... ∪ T ′

k

where T ′
i is isomorphic to Ti in GC(A) for each i and |T ′

i | ∩ |T
′
j| ⊆ C for each i 6= j.

Proof. By Remark 2.2 there are graphs T ′
i ’s on A such that T ′

i
∼= Ti in GC(A) and

|T ′
i | ∩ |T

′
j | ⊆ C when i 6= j. Thus, up to isomorphism in GC(A) we can assume that

|Ti| ∩ |Tj | ⊆ C for each i 6= j, and the required result is that the coproduct T1 + ... + Tk

in GC(A) is the union T1 ∪ ... ∪ Tk in A3. Consider morphisms ai : Ti → T in GC(A) for
i = 1, ..., k and the maps |ai| : |Ti| → |T |. Note that |T1 ∪ ... ∪ Tk| = |T1| ∪ ... ∪ |Tk|
and that |T1| ∪ ... ∪ |Tk| is the disjoint union of the sets |Ti| \ C for i = 1, ..., k and
(|T1| ∪ ... ∪ |Tk|) ∩ C, because of the assumption |Ti| ∩ |Tj | ⊆ C for each i 6= j. Thus
we can define a map M : |T1 ∪ ... ∪ Tk| → |T | by: M(x) = |ai|(x) for each i and each
x ∈ |Ti| \C and M(x) = x for each x ∈ (|T1| ∪ ...∪ |Tk|)∩C. Then M coincides with |ai|
on |Ti| for each i. Thus for each t ∈ Ti we have M3(t) = |ai|

3(t), which proves that the
image of T1 ∪ ... ∪ Tk by M3 is in T and that the restriction of M3 defines a morphism
a : T1 ∪ ... ∪ Tk → T in GC(A) which coincides with ai on Ti for each i. �

Proposition 2.2. Let l : L → K and m : L → G be morphisms of graphs on A such
that l is an inclusion and m fixes C. Let us assume that |K| ∩ |G| ⊆ C (this is always

6

possible up to isomorphism in GC(A), by Remark 2.2). Let N : |K| → A be such that
N(x) = |m|(x) for x ∈ |L| and N(x) = x otherwise. Let D1 = N3(K) and D = G ∪D1.
Let n : K → D be the restriction of N3 and g : G → D the inclusion. Then the square
(l, m, n, g) is a pushout in GC(A).

Proof. The square (l, m, n, g) is a commutative square in GC(A). Consider morphisms
a : G→ T and b : K → T in GC(A) such that a◦m = b◦ l. Then the maps |a| : |G| → |T |
and |b| : |K| → |T | are such that |a| ◦ |m| = |b| ◦ |l|. Since D = G∪D1 and D1 = N3(K),
it follows from the definition of N that |D| = |G| + (|K| \ |L|). Let M : |D| → |T | be
the map such that M(x) = |a|(x) for x ∈ |G| and M(x) = |b|(x) for x ∈ |K| \ |L|, then
M ◦|g| = |a| and M ◦N = |b|. Thus M3(t) = |a|3(t) for each t ∈ G and M3(n(t)) = |b|3(t)
for each t ∈ K, which proves that M3(D) is in T and that the restriction of M3 defines
a morphism c : D → T in GC(A) such that c ◦ g = a and c ◦ n = b. �

Remark 2.3. The construction in Proposition 2.2 does not depend on C: it provides a
pushout of l and m in GC(A) for any C fixed by m and satisfying Assumption 2.1.

3. The PO-IM transformation

3.1. Basic construct queries. A SPARQL query like “CONSTRUCT {R} WHERE
{L}” is called basic when both R and L are basic graph patterns. In such a query,
variables with the same name in L and R denote the same RDF term, whereas it is not
the case for blank nodes. The statement “blank nodes in graph patterns act as variables”
in [W3C13, 4.1.4] holds for L, whereas blank nodes in R give rise to new blank nodes
in the result of the query as in Example 3.4. Thus, the meaning of blank nodes in L is
unrelated to the meaning of blank nodes in R, and in both L and R each blank can be
replaced by a new blank.

We generalise this situation in Definition 3.1 by allowing any data graphs for L and R up
to isomorphism in QIV : the immutable attributes and the variables in L and R are fixed
but each blank can be replaced by a new blank. Thus, without loss of generality, we can
assume that B(L)∩B(R) = ∅. Under this assumption, the set of triples K = L∪R with
the inclusions of L and R in K is the coproduct of L and R in the category QIV . We also
assume that each variable in R occurs in L, so that every substitution for the variables
in L provides a substitution for the variables in R; the relevance of this assumption is
discussed in Remark 3.2. This assumption V (R) ⊆ V (L) is equivalent to V (K) = V (L).

Definition 3.1. A basic construct query is a pair of finite query graphs (L,R) such that
B(L) ∩ B(R) = ∅ and V (R) ⊆ V (L), up to isomorphism in the category QIV . The

transformation rule of a basic construct query (L,R) is the coproduct PL,R = (L
l
→ K

r
←

R) of L and R in QIV , where K = L ∪ R with l and r the inclusions. Its left-hand side
is L and its right-hand side is R.

PL,R = L
l

⊆
// K = L ∪ R R

r

⊇
oo

3.2. Basic construct queries with one match.

Example 3.1. Consider the following SPARQL CONSTRUCT” query and its corre-
sponding basic CONSTRUCT query which is the pair (L,R) where:

7

CONSTRUCT {?x vcard:FN ?name}

WHERE {?x foaf:name ?name}

L

?x foaf:name ?name.
R

?x vcard:FN ?name.

There are no blanks in L nor in R, thus the transformation rule is L
l
→ K

r
← R where l

and r are the inclusions of L and R in K = L ∪R:
K

?x foaf:name ?name ; vcard:FN ?name.

Example 3.2. Now the SPARQL CONSTRUCT query from Example 3.1 is modified by
replacing the variable ?x by the blank node : x giving:

CONSTRUCT { _:x vcard:FN ?name }

WHERE { _:x foaf:name ?name }

The corresponding basic construct query is the pair (L,R) where one blank has been
modified so as to ensure that B(L) ∩ B(R) is empty:

L

_:x foaf:name ?name.
R

_:b vcard:FN ?name.

There is no blank common to L and R, thus the transformation rule is L
l
→ K

r
← R

where l and r are the inclusions of L and R in K = L ∪ R:
K

_:x foaf:name ?name. _:b vcard:FN ?name.

3.3. The PO-IM transformation. When a basic SPARQL query “CONSTRUCT {R}
WHERE {L}” is runned against an RDF graph G, and when there is precisely one match
of L into G, the result is an RDF graph H which is obtained by substituting for the
variables in R. This substitution can be seen as a match of R into H . We claim that the
process of building H with this match of R into H from the match of L into G can be
seen as a two-steps process involving an intermediate match of K in some RDF graph
D. The definition of this process relies on an algebraic construction that we call the
PO-IM transformation: PO for pushout and IM for image (Definition 3.2). The PO-
IM transformation is related to a large family of algebraic graph transformations based
on pushouts, like the SPO (Simple Pushout), DPO (Double Pushout) or SqPO (Sesqui
Pushout) for instance [CHHK06, CMR+97].

The PO-IM transformation is defined as a functor between categories of matches.

Given a query graph X , the category of matches of X is the categoryMatch(X) where an
object is a matching morphism from X to any data graph and an arrow from m : X → Y

to m′ : X → Y ′ is a morphism g : Y → Y ′ in DI such that g ◦ m = m′. Given
a morphism r : R → K in QI , the image factorisation functor along r is the functor
r+ : Match(K) → Match(R) that maps each n : K → D to r+(n) : R → H where H

is the image of n ◦ r : R → D and r+(n) is the restriction of n, as in the right part of
Diagram (1) where h : H → D is the inclusion. Given a morphism l : L → K in QI ,
the cobase change functor along l is the functor l∗ :Match(L) →Match(K) that maps
each m : L→ G to l∗(m) : K → D defined from the pushout of l and m in QI as in the
left part of Diagram (1). Note that “the” functor l∗ is defined only up to isomorphism,
so that we can assume that |K| ∩ |G| ⊆ I, at the cost of changing some blanks. The
pushout (l, m, l∗(m), g) is described in Proposition 2.2: the data graph D is G∪D1 where
D1 = N3(K) and N : |K| → A is such that N(x) = |m|(x) for x ∈ |L| and N(x) = x

otherwise, the morphism l∗(m) : K → D is the restriction of N3 and g : G → D is the
8

inclusion. Note that D1 is a data graph because of the assumption V (K) = V (L), so
that D = G ∪D1 is also a data graph.

The PO-IM transformation is defined as a functor between categories of matches. Given
a query graph X , the category of matches of X is the category Match(X) where an
object is a matching morphism from X to any data graph and an arrow from m : X → Y

to m′ : X → Y ′ is a morphism g : Y → Y ′ in DI such that g ◦ m = m′. Given
an inclusion r : R → K in QI , the image factorisation functor along r is the functor
r+ : Match(K) → Match(R) that maps each n : K → D to r+(n) : R → H where
H is the image of of R in D and r+(n) is the restriction of n, as in the right part of
Diagram (1), and h : H → D is the inclusion. Given an inclusion l : L → K in QI ,
the cobase change functor along l is the functor l∗ :Match(L) →Match(K) that maps
each m : L → G to l∗(m) : K → D defined from the pushout of l and m in QI as
in the left part of Diagram (1), so that D is a kind of “union of G and K over L”, as
follows. Note that the functor l∗ is defined only up to isomorphism, so that we can assume
that |K| ∩ |G| ⊆ I, at the cost of changing some blanks. The pushout (l, m, l∗(m), g)
is described in Proposition 2.2: the data graph D is G ∪ D1 where D1 = N3(K) and
N : |K| → A is such that N(x) = |m|(x) for x ∈ |L| and N(x) = x otherwise, the
morphism l∗(m) : K → D is the restriction of N3 and g : G → D is the inclusion. Note
that D1 is a data graph because of the assumption V (K) = V (L), so that D = G∪D1 is
also a data graph. Now the PO-IM transformation is defined categorically (Definition 3.2)
then it is described in a set-theoretic way (Proposition 3.1).

Definition 3.2. Let (L,R) be a basic construct query and L
l
→ K

r
← R its transforma-

tion rule. The PO-IM transformation functor of (L,R) is the functor

PoImL,R = r+ ◦ l∗ :Match(L)→Match(R)

composed of the cobase change functor l∗ and the image factorisation functor r+. The
result of applying PoImL,R to a matching morphism m : L → G is the morphism
PoImL,R(m) : R→ H or simply the query graph H .

(1) L

(PO)

l //

m

��

K

l∗(m)=n

��

(IM)

R
roo

r+(n)=p

��

G
g

// D H
hoo

Proposition 3.1. Let (L,R) be a basic construct query and m : L → G a matching
morphism. Let P : |R| → A be defined by P (x) = |m|(x) for x ∈ V (R) and P (x) = x

otherwise. Then, up to isomorphism in QI , the result of applying PoImL,R to m is
p : R→ H where H = P 3(R) and p is the restriction of P 3.

Proof. With the notations of Diagram (1), we know that H = |p|3(R) where |p|(x) =
|n|(x) for every x ∈ |R|, and we know that |n|(x) = |m|(x) for x ∈ |L| and |n|(x) = x

otherwise. The proposition follows since |L| ∩ |R| is the disjoint union of I(L) ∩ I(R),
that is fixed by all morphisms in QI , and V (L)∩ V (R), with V (L)∩ V (R) = V (R) since
V (R) ⊆ V (L). �

Remark 3.1. Note that the result of applying PoImL,R tom is unchanged if G is replaced
by any subgraph that contains the image of m. For instance G can be replaced by the

9

image of m without changing the result. This remark can be used for controling the size
of the graphs involved. All graphs L, R and G are finite, so that K, D and H are finite
as well. But typically G is “large” whereas L and R are “small”, so that K and R are
“small” but D is “large”. When G is replaced by the image of m then all graphs are
“small”.

Remark 3.2. When L and R are basic graph patterns and G is an RDF graph, Proposi-
tion 3.1 shows that the result returned by SPARQL when the query “CONSTRUCT {R}
WHERE {L}” is runned against G is the same as the result H of applying PoImL,R and
then dropping all the triples that are not RDF triples; note that there is no triple con-
taining an unbound variable in H because V (R) ⊆ V (L). Indeed here is the description
from [W3C13, 16.2], simplified in order to fit with the assumption that there is exactly
one match: The CONSTRUCT query form returns a single RDF graph specified by a
graph template. The result is an RDF graph formed by [...] substituting for the variables
in the graph template [...]. If [...] [this] instantiation produces a triple containing an
unbound variable or an illegal RDF construct, such as a literal in subject or predicate
position, then that triple is not included in the output RDF graph. The graph template
can contain triples with no variables (known as ground or explicit triples), and these also
appear in the output RDF graph returned by the CONSTRUCT query form.

Example 3.3. Consider the SPARQL CONSTRUCT query from Example 3.1, and let
us run this query against the RDF graph G:

CONSTRUCT {?x vcard:FN ?name}

WHERE {?x foaf:name ?name}

G

_:a foaf:name "Alice";

foaf:mbox <mailto:alice@example.org>.

There is a single matching morphism m, it is such that m(?x) = :a and m(?name) =
"Alice". The PO-IM transformation produces successively the following data graphs D
and H , where H is the query result:

D

_:a foaf:name "Alice" ;

foaf:mbox <mailto:alice@example.org> ;

vcard:FN "Alice".

H

_:a vcard:FN "Alice".

Example 3.4. Now consider the SPARQL CONSTRUCT query from Example 3.2:

CONSTRUCT { _:x vcard:FN ?name }

WHERE { _:x foaf:name ?name }

Let us run this query against the RDF graph G from Example 3.3. There is a single
matching morphism m, it is such that m(: x) = :a and m(?name) = "Alice". The
PO-IM transformation produces successively the following data graphs D and H , where
H is the query result:

D

_:a foaf:name "Alice" ;

foaf:mbox <mailto:alice@example.org>.

_:b vcard:FN "Alice".

H

_:b vcard:FN "Alice".

4. Basic construct queries

In Section 3 we defined the PO-IM transformation and we applied it to run a CON-
STRUCT query against a data graph G, under the strong assumption that there is
exactly one matching morphism from L to G. Now we define two different calculi for

10

running a CONSTRUCT query against a data graph G without any assumption on the
number of matching morphisms. The high-level calculus (Definition 4.1) is defined as a
simple application of the PO-IM transformation. The low-level calculus (Definition 4.2)
is defined from several applications of the PO-IM transformation followed by a “merg-
ing” process, it is less simple but it fits with the description of the running process in
SPARQL. In Theorem 4.1 we prove that both calculi return the same result.

4.1. The high-level calculus. Let k be a natural number. According to Proposition 2.1,
for each query graph T the query graph k T , coproduct of k copies of T in QI , can be
built (up to isomorphism) as follows: for each i ∈ {1, ..., k} let Ti be a copy of T where
each blank and variable has been renamed in such a way that there is no blank or variable
common to two of the Ti’s, then the query graph k T is the union T1 ∪ ... ∪ Tk. Now let

(L,R) be a basic construct query. The transformation rule PL,R = (L
l
→ K

r
← R) is a

cospan in QI , that gives rise to the cospan k PL,R = (k L
k l
→ k K

k r
← k R). Since l and r

are inclusions, this renaming can be done simultaneously in the copies of L, K and R,
so that k K = k L ∪ k R and k l and k r are the inclusions. Thus, (k L, k R) is a basic
construct query and Pk L,k R = k PL,R is its transformation rule. As before, we can assume
that B(k L) ∩B(G) = ∅ and B(k R) ∩ B(G) = ∅ without loss of generality.

Definition 4.1. Let (L,R) be a basic construct query and let G be a data graph such that
B(L)∩B(G) = ∅ and B(R)∩B(G) = ∅. Let m1, ..., mk be the matching morphisms from
L to G. Build the basic construct query (k L, k R) in such a way that B(k L)∩B(G) = ∅
and B(k R) ∩B(G) = ∅. Let m be the matching morphism from k L to G that coincides
with mi on the i-th component of k L. The high-level query result (or simply the query
result) of (L,R) against G is the result H of applying the PO-IM transformation functor
PoImk L,k R to the match m : k L→ G, as in Diagram (2).

(2) k L

(PO)

k l //

m

��

k K

(IM)n

��

k R
k roo

p

��

G
g

// D H
h

oo

Example 4.1. Let us run the query from Example 3.1 against the following RDF graph
G in the high-level calculus:

G

_:a foaf:name "Alice" ; foaf:mbox <mailto:alice@example.org>.

_:b foaf:name "Bob" ; foaf:mbox <mailto:bob@example.org>.

There are two matching morphisms m1 and m2, such that m1(?x) = :a, m1(?name) =
"Alice" and m2(?x) = :b, m2(?name) = "Bob".

The high-level calculus builds the transformation rule 2L
2 l
→ 2K

2 r
← 2R where:

2L
?x1 foaf:name ?name1.

?x2 foaf:name ?name2.

2K
?x1 foaf:name ?name1 ;

vcard:FN ?name1.

?x2 foaf:name ?name2 ;

vcard:FN ?name2.

2R
?x1 vcard:FN ?name1.

?x2 vcard:FN ?name2.

The matching morphism m : 2L→ G is such that m(?x1) = :a, m(?name1) = "Alice"

and m(?x2) = :b, m(?name2) = "Bob". The PO-IM transformation produces first D

then the query result H :
11

D

_:a foaf:name "Alice"; vcard:FN "Alice"; foaf:mbox <mailto:alice@example.org>.

_:b foaf:name "Bob"; vcard:FN "Bob"; foaf:mbox <mailto:bob@example.org>.

H

_:a vcard:FN "Alice". _:b vcard:FN "Bob".

4.2. The low-level calculus. Our low-level calculus is a two-step process: first one local
result is obtained for each match, using a PO-IM transformation, then the local results
are glued together in order to form the low-level query result. In order to simplify the
notations we assume that B(L) ∩B(G) = ∅ and B(R) ∩ B(G) = ∅; since blanks are not
fixed by the morphisms in QI this can be done without loss of generality.

Definition 4.2. Let (L,R) be a basic construct query and let G be a data graph such
that B(L)∩B(G) = ∅ and B(R)∩B(G) = ∅. Let m1, ..., mk be the matching morphisms
from L to G. For each i = 1, ..., k let Gi be the image of mi and let us still denote mi the
restriction mi : L → Gi. The local result Hi of (L,R) against G along mi is the result
of applying the PO-IM transformation functor PoImL,R to the match mi : L → Gi. Let
IB(G) = I +B(G). The low-level query result Hlow of (L,R) against G is the coproduct
of the Hi’s in the category DIB(G) of data graphs with morphisms fixing all immutable
attributes and the blanks that are in G.

(3) L

(PO)

l //

mi

��

K

(IM)ni

��

R
roo

pi

��

Gi gi
// Di Hi

hi

oo

Example 4.2. Let us run the same query against the same RDF graph as in Example 4.1,
but now in the low-level calculus.

The matching morphism m1 produces G1, D1 and H1:

G1

_:a foaf:name "Alice".

D1

_:a foaf:name "Alice" ;

vcard:FN "Alice".

H1

_:a vcard:FN "Alice".

Similarly, the matching morphism m2 produces G2, D2 and H2:

G2

_:b foaf:name "Bob".

D2

_:b foaf:name "Bob" ;

vcard:FN "Bob" .

H2

_:b vcard:FN "Bob".

Finally we get the query result Hlow , which coincides with H from Example 4.1:
Hlow

_:a vcard:FN "Alice". _:b vcard:FN "Bob".

Example 4.3. This example illustrates how local results are “merged” to compute the
result in the low-level calculus. The SPARQL query is the following:

CONSTRUCT {?x rel:acquaintanceof ?z .}

WHERE {?x foaf:knows ?y.

?y foaf:knows ?z. }

Its transformation rule is L
l
→ K

r
← R where:

12

L

?x foaf:knows ?y.

?y foaf:knows ?z.

K

?x foaf:knows ?y ;

rel:acquaintanceof ?z.

?y foaf:knows ?z.

R

?x rel:acquaintanceof ?z.

This query is runned against the following graph G:
G

<http://example.org/Alice> foaf:knows <http://example.org/Bob> .

<http://example.org/Bob> foaf:knows _:c .

_:c foaf:knows <http://example.org/Alice>

There are three matching morphisms m1, m2, m3, defined as follows:
m1(?x) = <http://example.org/Alice>, m1(?y) = <http://example.org/Bob>, m1(?z) = :c,

m2(?x) = :c, m2(?y) = <http://example.org/Alice>, m2(?z) = <http://example.org/Bob>,

m3(?x) = <http://example.org/Bob>, m3(?y) = :c, m3(?z) = <http://example.org/Alice>.

The three local results H1, H2, H3 are respectively:
H1

<http://example.org/Alice> rel:acquaintanceof _:c.

H2

_:c rel:acquaintanceof <http://example.org/Bob>.

H3

<http://example.org/Bob> rel:acquaintanceof <http://example.org/Alice>.

The blank :c in H1 and H2 is not duplicated in the coproduct because it comes from G.
Thus the result is the data graph Hlow :

Hlow

<http://example.org/Alice> rel:acquaintanceof _:c.

_:c rel:acquaintanceof <http://example.org/Bob>.

<http://example.org/Bob> rel:acquaintanceof <http://example.org/Alice>.

4.3. Running a basic construct query. Now we prove that both calculi return the
same result.

Theorem 4.1. Let (L,R) be a basic construct query and let G be a data graph. The low-
level query result of (L,R) against G is the same as the high-level query result of (L,R)
against G. Assume (without loss of generality) that B(G)∩B(L) = ∅ and B(G)∩B(R) =
∅. Let m1, ..., mk be the matching morphisms from L to G. Let H0 be the data graph
H0 = H1 ∪ ... ∪Hk where each Hi is obtained from R by replacing each variable x in R

by mi(x) and each blank in R by a new blank. Then both H and Hlow coincide with H0.

Proof. For the high-level calculus, we get as a straightforward consequence of Proposi-
tion 3.1 that H = |p|3(k R) where k R = R1 ∪ ... ∪ Rk and |p| : |k R| → A satisfies
|p|(x) = |mi|(x) for each i and each x ∈ V (Ri) and |p|(x) = x otherwise. In particular
|p|(x) = x for each blank x in k R. Since each blank y in R gives rise to one new blank
yi in Ri for each i we get H = H0. For the low-level calculus, Proposition 3.1 says
that for each i = 1, ..., k the local result is Hi = |pi|

3(R) where |pi| : |R| → A satisfies
|pi|(x) = |mi|(x) when x ∈ V (R) and |pi|(x) = x otherwise. Thus Hi is obtained from R

by replacing each variable x by mi(x). It follows that each blank in Hi is either in G or
in R. Then Proposition 2.1 proves that the query result is the union H ′

1 ∪ ... ∪H
′
k where

H ′
i is obtained from Hi by replacing each blank that is not in G by a new blank, so that

Hlow = H0. �

13

Remark 4.1. Let us consider the description of the SPARQL result in [W3C13, 16.2].
The CONSTRUCT query form returns a single RDF graph specified by a graph template.
The result is an RDF graph formed by taking each query solution in the solution sequence,
substituting for the variables in the graph template, and combining the triples into a single
RDF graph by set union. If any such instantiation produces a triple containing an unbound
variable or an illegal RDF construct, such as a literal in subject or predicate position,
then that triple is not included in the output RDF graph. The graph template can contain
triples with no variables (known as ground or explicit triples), and these also appear in
the output RDF graph returned by the CONSTRUCT query form. This description
relies on the notion of “solution” and “solution sequence”, or rather “solution set”, that
has been introduced previously in [W3C13, 2.2] for dealing with the SELECT queries.
Here we consider the CONSTRUCT queries as the fundamental SPARQL queries, so we
never refer to the solutions of any SELECT query. However Theorem 4.1 applied to a
SPARQL CONSTRUCT query and an RDF graph G gives an explicit description of the
result that fits with the description in [W3C13, 16.2], if one takes into account two facts:
the assumption V (R) ⊆ V (L) ensures that there cannot be any unbound variable (see
Section 6); and the non-RDF triples in the low-level result must be dropped in order to
ensure that illegal RDF constructs are not included.

5. Basic select queries

The CONSTRUCT query form of SPARQL returns a data graph whereas the SELECT
query form returns a table, like the SELECT query form of SQL. Both in SQL and in
SPARQL, it is well-known that such tables are not exactly relations in the mathematical
sense: in mathematics a relation on X of arity k is a subset of Xk while the result of a
SELECT query in SQL or SPARQL is a multiset of elements of Xk. In order to avoid
ambiguities, a multiset of elements of Xk is called a multirelation on X of arity k.

A string x can be used for identifying an immutable attribute or a variable or a blank.
In order to avoid confusion we write “?x” when x is a variable and “ : x” when x is a
blank.

A SPARQL query like “SELECT ?s1, ..., ?sk WHERE {L}” is called basic when L is a
basic graph pattern and ?s1, ..., ?sk are distinct variables. We generalise this situation
by defining a basic select query as a pair (L, S) where L is a query graph and S is a
set of variables. Then we associate to each basic select query (L, S) a basic construct
query (L,R(S)) and we define the result of running the basic select query (L, S) against
some data graph G from the data graph H result of running the basic construct query
(L,R(S)) against G.

5.1. Relational data graphs and query graphs.

Definition 5.1. A relational data graph on a finite set {s1, ..., sk} of immutable attributes
is a data graph made of triples (: lj , si, yi,j) where the : lj ’s are pairwise distinct blanks
and the yi,j’s are in I, for i ∈ {1, ..., k} and j is in some finite set J , up to isomorphism
in DI .

The fact that a relational data graph is defined up to isomorphism in DI means that the
blanks : lj can be modified, as long as they remain pairwise distinct.

Proposition 5.1. Each relational data graph S = {(: lj , si, yi,j)}i∈{1,...,k},j∈J determines
a multirelation Rel(S) = {(y1,j, ..., yk,j)}j∈J on IB of arity k.

14

Definition 5.2. The relational query graph on a set of variables S = {?s1, ..., ?sk} is the
query graph R(S) made of the triples (: r, si, ?si)i∈{1,...,k} where : r is a blank and the
si’s are pairwise distinct immutable attributes, up to isomorphism in the category QIV .

The fact that a relational query graph is defined up to isomorphism in QIV means that
the blank : r can be modified.

Example 5.1. The following query graph is relational: _:r nameX ?x ; nameY ?y.

and the following data graph is relational on {nameX, nameY} with corresponding multire-
lation:

_:l1 nameX "Alice" ; nameY "Bob".

_:l2 nameX "Alice" ; nameY "Caty".

_:l3 nameX "Alice" ; nameY "Caty".

nameX nameY

"Alice" "Bob"

"Alice" "Caty"

"Alice" "Caty"

5.2. Basic select queries.

Definition 5.3. A basic select query is a pair (L, S) where L is a finite query graph and
S is a finite set of variables such that each variable in S occurs in L. The basic construct
query associated to a basic select query (L, S) is (L,R(S)) where R(S) is the relational
query graph on S.

Proposition 5.2. Let (L, S) be a basic select query and let G be a data graph. Let
m1, ..., mk be the matching morphisms from L to G. The query result of (L,R(S)) against
G is H1∪ ...∪Hk where each Hi is obtained from R by replacing each variable x by mi(x)
and each blank by a new blank. It is a relational data graph.

Proof. Since there is no blank in R(S), this is Theorem 4.1 applied to the construct query
(L,R(S)). �

Definition 5.4. The query result of (L, S) against G is the multirelation Rel(H) on IB

where H the query result of (L,R(S)) against G.

Theorem 5.1. Let L be a basic graph pattern and S = {?s1, ..., ?sk} a set of variables
included in V (L). Let G be an RDF graph. The result of running the SPARQL query
“SELECT ?s1, ..., ?sk WHERE {L}” against G is the query result of (L, S) against G.

Proof. The SPARQL result is described in [W3C13, 2.2] as follows: Each solution gives
one way in which the selected variables can be bound to RDF terms so that the query
pattern matches the data. The result set gives all the possible solutions. Proposition 5.2
applied to this situation provides the same result. Note that all triples in the query result
are RDF triples. �

Example 5.2. Consider the following simple SPARQL SELECT query, that we run
against the RDF graph G defined as follows:

SELECT ?nameX ?nameY

WHERE{ ?x foaf:knows ?y ;

foaf:name ?nameX.

?y foaf:name ?nameY.}

G

_:a foaf:name "Alice" ;

foaf:knows _:b ; foaf:knows _:c.

_:b foaf:name "Bob".

_:c foaf:name "Caty".

On the one hand, the SPARQL result is:
15

nameX nameY

"Alice" "Bob"

"Alice" "Bob"

"Alice" "Caty"

On the other hand, the associated basic construct query is:

CONSTRUCT { _:r <http://example.org/nameX> ?nameX.

_:r <http://example.org/nameY> ?nameY.}

WHERE { ?x foaf:knows ?y ; foaf:name ?nameX.

?y foaf:name ?nameY.}

with result H :
H

_:l1 <http://example.org/nameX> "Alice"; <http://example.org/nameY> "Bob".

_:l2 <http://example.org/nameX> "Alice"; <http://example.org/nameY> "Bob".

_:l3 <http://example.org/nameX> "Alice"; <http://example.org/nameY> "Caty".

Thus H is a relational data graph and its associated multirelation Rel(H) is indeed the
result of the SELECT query.

6. Conclusion

Relational algebra [Cod90] is the main mathematical foundation underlying SQL-like
formalism for databases. However new frameworks such as RDF and SPARQL, where
data structures are represented as graphs, are better adapted to the needs of big data
and web applications. So, new mathematical foundations are needed to cope with this
change in data encodings, see e.g., [AAB+17].

In this paper, we make the bet to base our work entirely on algebraic theories behind
graphs and their transformations. We define suitable categories of data graphs and query
graphs. Our definition of homomorphisms of query graphs make clear the differences
between blank nodes and variables. Besides, we propose to encode CONSTRUCT and
SELECT queries as graph rewrite rules, of the form L → L ∪ R ← R, and define
their operational semantics following a novel algebraic approach called POIM. From the
proposed semantics, one may easily notice that blanks in L play the same role as variables,
so that blanks within L are not mandatory and can be replaced by variables, whereas
blanks in R are used for creating new blanks in the result of a CONSTRUCT query.
One of the benefits of using category theory is that coding of data graphs as sets of
triples is not that important. The results we propose hold for all data models which
define a category with enough colimits. For intance, one may expect to define data graph
categories for the well-known Edge-labelled graphs or Property graphs [RWE13].

We are not aware of any existing work close to ours. In [AJK15], even if the authors use
a categorical setting, their objectives and results depart from ours as they mainly encode
every ontology as a category. The operational semantics we propose can clearly benefit
from all proposals regarding efficient graph matching implementation, see e.g. [FLM+10].
As in [KRU15], we focus on the CONSTRUCT query form as the fundamental query form.
In addition we propose a translation of the SELECT queries as CONSTRUCT queries
compatible with their operational semantics.

In this paper we consider basic graphs and queries, which form a significant kernel of
RDF and SPARQL. Future work includes the generalization of the present work to other

16

features of RDF and SPARQL in order to encompass general SPARQL queries. We also
consider studying RDF Schema [W3C14b] and ontologies from this point of view.

References

[AAB+17] Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj
Vrgoc. Foundations of modern query languages for graph databases. ACM Comput. Surv.,
50(5):68:1–68:40, 2017.

[AJK15] S. Aliyu, S.B. Junaidu, and A. F. Donfack Kana. A category theoretic model of RDF ontology.
International Journal of Web & Semantic Technology (IJWesT), 2015.

[CHHK06] Andrea Corradini, Tobias Heindel, Frank Hermann, and Barbara König. Sesqui-pushout
rewriting. In ICGT 2006, volume 4178 of LNCS, pages 30–45. Springer, 2006.

[CMR+97] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and
Michael Löwe. Algebraic approaches to graph transformation - part I: basic concepts and
double pushout approach. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars,
pages 163–246. World Scientific, 1997.

[Cod90] Edgar F. Codd. The relational Model for Database Management (Version 2 ed.). Addison-
Wesley, 1990.

[FLM+10] Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu. Graph homomorphism
revisited for graph matching. PVLDB, 3(1):1161–1172, 2010.

[KRU15] Egor V. Kostylev, Juan L. Reutter, and Mart́ın Ugarte. CONSTRUCT queries in SPARQL.
In 18th International Conference on Database Theory, ICDT 2015, March 23-27, 2015, Brus-
sels, Belgium, pages 212–229, 2015.

[RWE13] Ian Robinson, Jim Webber, and Emil Eifrem. Graph Databases. O’Reilly Media, Inc., 2013.
[W3C04] Ressource Description Framework (RDF): Concepts and Abstract Syntax. W3C Recommen-

dation, February 2004. .
[W3C13] SPARQL 1.1 Query Language. W3C Recommendation, march 2013. https://www.w3.org/

TR/sparql11-query/.
[W3C14a] RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation, February 2014. .
[W3C14b] RDF Schema 1.1. W3C Recommendation, February 2014. www.w3.org/TR/2014/

REC-rdf-schema-20140225/.
[Wik] Limit (category theory). Wikipedia.

17

