
HAL Id: hal-02315989
https://hal.science/hal-02315989v1

Submitted on 15 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new CP-approach for a parallel machine scheduling
problem with time constraints on machine qualifications

Arnaud Malapert, Margaux Nattaf

To cite this version:
Arnaud Malapert, Margaux Nattaf. A new CP-approach for a parallel machine scheduling prob-
lem with time constraints on machine qualifications. Integration of Constraint Programming, Artifi-
cial Intelligence, and Operations Research, pp.426-442, 2019, �10.1007/978-3-030-19212-9_28�. �hal-
02315989�

https://hal.science/hal-02315989v1
https://hal.archives-ouvertes.fr


A new CP-approach for a parallel machine
scheduling problem with time constraints on

machine qualifications.

Arnaud Malapert

Université Côte d’Azur, CNRS, I3S, France
arnaud.malapert@unice.fr

Margaux Nattaf

Univ. Grenoble Alpes, CNRS, Grenoble INP, G-SCOP, 38000
Grenoble, France

margaux.nattaf@grenoble-inp.fr

October 15, 2019

Abstract

This paper considers the scheduling of job families on parallel ma-
chines with time constraints on machine qualifications. In this problem,
each job belongs to a family and a family can only be executed on a subset
of qualified machines. In addition, machines can lose their qualifications
during the schedule. Indeed, if no job of a family is scheduled on a ma-
chine during a given amount of time, the machine lose its qualification for
this family. The goal is to minimize the sum of job completion times, i.e.
the flow time, while maximizing the number of qualifications at the end of
the schedule. The paper presents a new Constraint Programming model
taking more advantages of the CP feature to model machine disqualifi-
cations. This model is compared with two existing models: an Integer
Linear Programming (ILP) model and a Constraint Programming (CP)
model. The experiments show that the new CP model outperforms the
other model when the priority is given to the number of disqualifications
objective. Furthermore, it is competitive with the other model when the
flow time objective is prioritized.

keywords : Parallel Machine Scheduling, Time Constraint, Machine
Qualifications, Integer Linear Programming, Constraint Programming.

1



1 Introduction
Process industries, and specially semiconductor industries, need to be more and
more competitive and they are looking for strategies to improve their produc-
tivity, decrease their costs and enhance quality. In this context, companies must
pay constant attention to manufacturing processes, establish better and more
intelligent controls at various steps of the fabrication process and develop new
scheduling techniques. One way of doing it is to integrate scheduling and process
control [15]. This paper considers such a problem: the integration of constraints
coming from process control into a scheduling problem.

Semiconductor fabrication plants (or fabs) have characteristics that make
scheduling a very complex issue [7]. Typical ones includes a very large number
of jobs/machines, multiple job/machine types, hundreds of processing steps, re-
entrant flows, frequent breakdowns... Scheduling all jobs in a fab is so complex
that jobs are scheduled in each workshop separately. In this paper, the focus is
on the photolithography workshop, which is generally a bottleneck area. In this
area, scheduling can be seen as a scheduling problem on non-identical parallel
machines with job family setups (also called s-batching in [7]).

Fabrication processes of semiconductors are very precise and require a high
level of accuracy. Reliable equipment are required and valid recipe parameters
should be provided. Advanced Process Control (APC) systems ensure that each
process is done following predefined specifications and that each equipment is
reliable to process different product types. APC is usually associated with the
combination of Statistical Process Control, Fault Detection and Classification,
Run to Run (R2R) control, and more recently Virtual Metrology [8]. The main
interest of this paper is to consider, in scheduling decisions, constraints induced
by R2R controllers. As shown in the survey paper of [13], R2R control is be-
coming critical in high-mix semiconductor manufacturing processes.

R2R controller uses data from past process runs to adjust settings for the
next run as presented for example in [9] and [3]. Note that a R2R controller is
associated to one machine and one job family. In order to keep the R2R param-
eters updated and valid, a R2R control loop should regularly get data. Hence,
as presented in [11, 12], an additional constraint is defined on the scheduling
problem to impose that the execution of two jobs of the same family lies within
a given time interval on the same (qualified) machine. The value of the time
threshold depends on several criteria such as the process type (critical or not),
the equipment type, the stability of the control loop, etc. If this time constraint
is not satisfied, a qualification run is required for the machine to be able to
process again the job family on the machine. This procedure ensures that the
machine works within a specified tolerance and is usually time-consuming. In
this paper, we assume that qualification procedures are not scheduled either
because the scheduling horizon is not suficiently long or because qualification
procedures have to be manually performed and/or validated by process en-
gineers. Therefore, maintaining machine qualifications as long as possible is
crucial. More precisely, it is important to have as many remaining machine
qualifications as possible at the end of the schedule, so that future jobs can also

2



be scheduled.
To our knowledge, there are few articles dealing with scheduling decisions

while integrating R2R constraints. [2] and [6] study related problems, except
that they allow qualification procedures to be performed, the number or the type
of machines is different and the threshold is expressed in number of jobs instead
of in time. The scheduling problem addressed in this paper has been introduced
in [12], where two Integer Linear Programs (ILP) and two constructive heuristics
are proposed. More recently, [10, 11] develop a new ILP, modelling problem
constraints in a better way. The paper also present one Constraint Programming
(CP) model, as well as two improvement procedures of existing heuristics.

In this paper, a new CP model, which take more advantages of the CP
features, is presented. The main idea of this model is to exploit the fact that once
a machine is disqualified, it is until the end of the schedule. The consequence
of this is that it is possible to model machine disqualifications more accurately.
Then, the performance of this model is compared with the two exact solution
methods described in [10]. The paper is organized as follows. Section 2 gives
a formal description of the problem. Section 3 presents the two models of [10].
Section 4 describes the new CP model and finally, Section 5 provides a detailed
comparison of the performance of each model.

2 Problem description
Formally, the problem takes as input a set of jobs, N = {1, . . . , N}, a set of
families F = {1, . . . , F} and a set of machines, M = {1, . . . ,M}. Each job j
belongs to a family and the family associated with j is denoted by f(j). For
each family f , only a subset of machine, Mf ⊆ M, is able to process a job of
f . A machine m is said to be qualified to process a family f if m ∈Mf .
Each family f is associated with the following parameters:
• nf denotes the number of jobs in the family. Note that

∑
f∈F nf = N .

• pf corresponds to the processing time of jobs in f .

• sf is the setup time required to switch the production from a job belonging
to a family f ′ 6= f to the execution of a job of f . Note that this setup
time is independent of f ′. In addition, no setup time is required between
the execution of two jobs of the same family.

• γf is the threshold value for the time interval between the execution of two
jobs of f on the same machine. Note that this time interval is computed
on a start-to-start basis, i.e. the threshold is counted from the start of a
job of family f to the start of the next job of f on machine m. Then, if
there is a time interval ]t, t+ γf ] without any job of f on a machine, the
machine lose its qualification for f .

The objective is to minimize both the sum of job completion times, i.e. the
flow time, and the number of qualification looses or disqualifications. Note that
the interest of minimizing the number of disqualifications comes from the fact

3



m1

m2

2 9 12 15 2122 26 30

f1 f1 f1

f2 f2 f2f3f3

f3f3

(a) An optimal solution for the flow time objective

m1

m2

2 3 9 11 17 20 27 37

f1 f1 f1

f2 f2

f2

f3f3 f3

f3

(b) An optimal solution for qualification losses

Figure 1: Two solution examples for PTC.
that, even if the time horizon considered is relatively small, the problem is solved
in a rolling horizon. Hence, it is interesting to preserve machine qualifications for
future jobs. In addition, it is relevant to consider that a machine cannot lose its
qualification for a family after the end of the schedule. Thus, this assumption
is made in the remaining of the paper. This problem, introduced in [12], is
called the scheduling Problem with Time Constraints (PTC). An example of
PTC together with two feasible solutions is now presented.

Example 1
Consider the following instance with
N = 10, M = 2 and F = 3:

f nf pf sf γf Mf

1 3 9 1 25 {2}
2 3 6 1 26 {1, 2}
3 4 1 1 21 {1, 2}

Figure 1 shows two feasible solutions. The first solution, described by Fig-
ure 1a, is optimal in terms of flow time. For this solution, the flow time is equal
to 1+2+9+15+21+1+2+12+21+30 = 114 and the number of qualification
losses is 3. Indeed, machine 1 (m1) loses its qualification for f3 at time 22 since
there is no job of f3 starting in interval ]1, 22] which is of size γ3 = 21. The
same goes for m2 and f3 at time 22 and for m2 and f2 at time 26.

The second solution, described by Figure 1b, is optimal in terms of number
of disqualifications. Indeed, in this solution, none of the machines loses their
qualifications. However, the flow time is equal to 1+2+9+17+19+9+18+20+
27 + 37 = 159. This shows that the flow time and the number of qualification
losses are two conflicting criteria. Indeed, to maintain machine qualifications,
one need to regularly change the job family executed on machines. This results
in many setup time and then to a large flow time value.Note also that disqualifications may occur after the last job on the machine.
For example, in Figure 1a, m1 become disqualified for f3 at time 22 whereas the
last job scheduled on m1 finishes at time 21. However, no disqualifications can
occur after the makespan Cmax.

Remark 1 (Bound on the makespan) In the remaining of the paper, the
following upper and lower bound on the makespan are defined. The upper bound
used is the same as in [12], i.e. T = Cmax =

∑
f∈F nf · (pf + sf ). A trivial

lower bound is Cmax = d(
∑
f∈F nf ∗ pf )/Me.

4



Remark 2 (Bi-objective optimization) In [12], PTC is studied using a weighted
sum of the flow time and number of disqualifications. The weight associated to
the flow time is α and is always equal to 1. The weight associated with the num-
ber of disqualifications is β and is set to 1 when the priority is given to the flow
time and to N · T when the priority is given to the number of disqualifications.
In this paper, two objective modelling are considered: the weighted sum and the
lexicographical order. The weighted sum is used in the ILP model in all cases
and in the CP model only when the minimization of the flow time is prioritized.
The lexicographical order is used in the CP model when the priority is given to
the number of disqualifications.

3 Existing Models
This section describes the two exact methods developped in [10]. First, the ILP
is described and then, the CP model. Note that both CP model described in
this paper use the CP Optimizer (CPO) framework. Indeed, CPO allow us to
handle in an efficient way precedence constraints and optional jobs. Further-
more, constraint propagation of these type of constraints is very efficient with
CPO.

3.1 ILP model
The ILP model in [10] is an improvement of two existing models introduced
in [12]. The first ILP model of [12] relies on a job-based formulation. Indeed,
in this model, a variable xmj,t is defined for each job j, each machine m and
each time t. This variable is then equal to 1 if and only if job j starts at time
t on machine m. However, in a solution, there is no need to know which job
start at which time on which machine. Indeed, only the family of the job is
important. Hence, a family-based model is developed in [12](IP2) and improved
in [10](IP3).

In the family-based model, a variable xmf,t is introduced for each family f ∈
F , each machine m ∈ Mf and each time t ∈ T = {0, . . . , T − 1}, with T the
upper bound on the makespan (see Remark 1). This variable is set to one if
and only if one job of f starts at time t on machine m. Therefore, the number
of binary variables is reduced compared to the job-based model.

Similarly, a set of variable ymf,t is used to model disqualifications. This vari-
able is set to 1 only if family f lose its qualification on machine m at time t.
However, in (IP2), it may occur that a machine become disqualified after Cmax.
Thus, in (IP3), another variable set Y mf is defined to model the fact that a
machine becomes disqualified for a family before Cmax.

min. α ·
∑
f∈F

Cf + β ·
∑
f∈F

∑
m∈M

Ymf (1)

∑
m∈Mf

T−pf∑
t=0

xmf,t = nf ∀f ∈ F (2)

5



∑
m∈Mf

T−pf∑
t=0

(t+ pf ) · xmf,t ≤ Cf ∀f ∈ F (3)

nf · xmf ′,t +
t∑

τ=t−pf−sf′+1

xmf,τ ≤ nf ∀f 6= f ′ ∈ F2,

∀m ∈Mf ∩Mf ′ , ∀t ∈ T (4)

ymf,t +

t∑
τ=t−pf+1

xmf,τ ≤ 1 ∀f ∈ F , ∀t ∈ T , ∀m ∈Mf (5)

ymf,t +
t∑

τ=t−γf+1

xmf,τ ≥ 1 ∀f ∈ F , ∀t ≥ γf ∈ T , ∀m ∈Mf (6)

ymf,t−1 ≤ y
m
f,t ∀f ∈ F , ∀t ∈ T , ∀m ∈Mf (7)

1

M · (T − t)
∑
f ′∈F

T−1∑
τ=t−p

f
′

∑
m′∈Mf′

xm
′

f ′,τ + ymf,t−1 − 1 ≤ Ymf
∀t ∈ T , ∀f ∈ F , ∀m ∈Mf (8)

xmf,t ∈ {0, 1} ∀t ∈ T , ∀f ∈ F , ∀m ∈Mf (9)
ymf,t ∈ {0, 1} ∀t ∈ T , ∀f ∈ F , ∀m ∈Mf (10)
Ymf ∈ {0, 1} ∀f ∈ F , ∀m ∈Mf (11)

The objective of the model is described by (1). It is expressed as the weighted
sum of the flow time and the number of disqualifications. Constraints (2) ensure
that all jobs are executed. Constraints (3) is used to compute the completion
time of family f , i.e. the sum of completion time of all jobs of f . Constraints (4)
ensure that jobs of f and jobs of f ′ does not overlap and that the setup times
are satisfied. Constraints (5) are used to model both the fact that the execu-
tion of two jobs of the same family cannot occur simultaneously and the fact
that a machine has to be qualified to process a job. Constraints (6) make sure
that if no jobs of family f start on m during an interval ]t − γf , t], then m
becomes disqualified for f at time t. Constraints (7) maintain the disquali-
fication of the machine once it becomes disqualified. Finally, Constraints (8)
ensure that it is no longer necessary to maintain a qualification on a machine
if there is no job which starts on any machine in the remainder of the horizon,
i.e. 1

M ·(T−t)
∑
f ′∈F

∑T−1
τ=t−p

f
′

∑
m′∈Mf′ x

m′

f ′,τ = 0.

The number of variables of the model is F ·M · (2T + 1) and the number of
constraints is at most 2F + T ·M · (4F + F 2).

3.2 CP model
In this part, the CP model defined in [10] is described. The first part of the
model concerns the modelling of a classical parallel machine scheduling problem
(PMSP) with setup time and the second part deals with the modelling of the
disqualifications.

3.2.1 The parallel machine scheduling problem with setup time

The PMSP with setup time can be modeled using optional (or not) interval
variables introduced by [4, 5]. An (optional) interval variable J is associated
with four variables: a start time, st(J); a duration, d(J); an end time, et(J)
and a binary execution status x(J), equal to 1 if and only if the interval variable

6



is present in the final solution. If the job J is executed, it behaves as a classical
job that is executed on its time interval, otherwise it is not considered by any
constraint.

In the considered scheduling problem, a job j of family f can be scheduled
on any machine belonging toMf . Therefore, a set of optional interval variables
altJj,m is associated with each job j and each machine belonging toMf(j). The
domain of such variables is dom(altJj,m) = {[st, et) | [st, et) ⊆ [0, T ), st+pf(j) =
et}. Furthermore, a non-optional interval variable, jobsj is associated with each
job j. Its domain is dom(jobsj) = {[st, et) | [st, et) ⊆ [0, T ), st+ pf(j) = et}.

To model the PMSP with setup time, the following two sets of global con-
straints is used [14].

Alternative constraints Introduced in [4], this constraint models an exclu-
sive alternative between a bunch of jobs.

alternative
(
jobsj ,

{
altJj,m|m ∈Mf(j)

})
∀j ∈ N (12)

It means that when jobsj is executed, then exactly one of the altJj,m jobs must
be executed, i.e. the one corresponding to the machine m on which the job
is scheduled. Furthermore, the start date and the end date of jobsj must be
synchronised with the start and end date of the altJj,m jobs. However, if jobsj
is not executed, none of the other jobs can be executed. In our model, jobsj is a
mandatory job. This constraint models the fact that each job must be executed
on one and only one machine.

No-Overlap constraints An important constraint is that jobs cannot be
executed simultaneously on the same machine. It is a unary resource constraint.
Each machine can then be used by only on job at a time. To model this feature,
we use noOverlap constraints. This constraint ensures that the execution of
several interval variables do not overlap. It can also handle the setup time. Let S

be the matrix of setup times of the problem, i.e. (Sf ′,f ) =

{
0 if f = f ′

sf oherwise .

Then, the following noOverlap constraint makes sure that, for all pairs of jobs
(i, j) s.t. m ∈ Mi ∩ Mj , either the start of altJj,m occurs after the end of
altJi,m plus sf(j) or the opposite:

noOverlap
({
altJj,m|∀j s.t. m ∈Mf(j)

}
, S
)

∀m ∈M (13)

The exact semantic of this constraint is presented in [5].

Additional ordering constraints The authors of [10] add a non-mandatory
set of constraints to the model. Indeed, the model is correct without these con-
straints but adding them remove many symmetry in the model. The constraint
order the start of jobs belonging to the same family.

startBeforeStart(jobsj , jobs
′
j) ∀j, j′ ∈ N , j > j′, f(j′) = f(j) (14)

3.2.2 Modelling of the number of disqualifications

In the model of [10], disqualifications are modelled as optional interval variables.
The variable will be present in the final solution if and only if, the machine

7



became disqualified for the family. The start time of the variable corresponds to
the time at which the machine becomes disqualified. Therefore, a set of optional
interval variable, disqf,m, of length 0 is defined for each family f and each
machinem such thatm ∈Mf . The domain of these variables is dom(disqf,m) =
{[st, et) | [st, et) ⊆ [γf , T ), st = et}. In addition, the model will use a Cmax
interval variable of length 0 modelling the end time of the last job executed
on all machine, i.e. the end of the schedule. Its domain is dom(Cmax) =
{[st, et) | [st, et) ⊆ [0, T ), st = et}.

Then, the constraints used to model machine disqualifications are stated
below. The first set of constraints model the fact that each job has to be
executed before Cmax.

endBeforeStart(jobsj , Cmax) ∀j ∈ N (15)

Another set of constraints ensures that no job of a family f is scheduled on m
if m is disqualified for f , i.e. after the disqf,m job.

startBeforeStart(altJj,m, disqf(j),m, γf(j)) ∀j ∈ N , ∀m ∈Mf(j) (16)

Finally, the following constraints sets enforce a machine to become disqualified
if no job of family f is scheduled on m during an interval of size γf . Indeed,
the first set state that if a job of f is scheduled on m, either there is another
job of f scheduled on m less than γf units of time later, or the machine become
disqualified, or the end of the scheduled (Cmax) is reached.

x(altJj,m)⇒
∨
j′ 6=j

f(j)=f(j′)

(
st(altJj′,m) ≤ tj,m

)
∨
(
st(disqf(j),m) = tj,m

)
∨ (Cmax ≤ tj,m)

∀j ∈ N , ∀m ∈Mf(j) (17)

with tj,m = st(altJj,m) + γf(j). The second set of constraints ensures that if no
job of f is scheduled on m, then m becomes disqualified for f .∨

j∈N
f(j)=f(j′)

(
st(altJj,m) ≤ γf

)
∨
(
st(disqf(j),m) = γf

)
∨
(
st(Cmax) ≤ γf

)
∀f ∈ F ,∀m ∈Mf (18)

3.2.3 Objective function

In the considered problem, the objective is to minimize both the flow-time
and the number of disqualifications. In this CP model, the flow-time can be
expressed as flowT ime =

∑
j∈N et(jobsj) and the number of disqualifications

as nbDisq =
∑
f∈F

∑
m∈M x(disqf,m).

3.2.4 Model size

The number of variables of the model is at most N · (M + 1) +M · F + 1 and
the number of constraints is at most N2 + 2N +M · (1 + 2N + F ).

4 New CP Model
This section presents a new CP model that can be used to solve PTC. As said
earlier, PTC can be decomposed into two sub-problems: a PMSP with setup
time and a machine qualifications problem. The model described in this section

8



uses the same idea as in [10] to formulate the first sub-problem of PTC. However,
to model the machine qualification sub-problem a novel approach is developed
modelling qualifications as resource.

The first part of this section described the difference of modelling of the
PMSP between the model of Section 3.2 and the model of this section. The
second part is dedicated to the machine qualification sub-problem.

In the model, the two following assumptions are made. First, it is assumed
that jobs of the same family have consecutive index in N . More precisely, with
nf the number of jobs in family f then jobs with index in {1, . . . , n1} belong
to family 1, jobs with index in {n1 + 1, . . . , n1 + n2} are jobs of family 2, etc.
The second assumption made in the model is that it is equivalent to consider
the threshold either on an end-to-end basis or on a start-to-start basis. Indeed,
if a job of family f starts at time t on m, another job of f has to start before
t + γf . This is equivalent to: if a job of family f ends at time t + pf on m,
another job of f has to end before t+pf+γf . Therefore, the model consider the
threshold on an end-to-end basis. The motivation for this second assumption
will be given later in the section.

4.0.1 The parallel machine scheduling problem with setup time

As for the model of Section 3.2, the parallel machine scheduling problem with
setup time is model using interval variables jobsj , ∀j ∈ N , and optional interval
variables altJj,m. The constraints used are the same and, therefore, are not
described in this section.

Cumulative constraints The model is also reinforced by considering the set
of machines as a cumulative resource of capacity M . Indeed, each job consumes
one unit of resource (one machine) during its execution and the total capacity
of the resource (total number of machines available) is M . This is expressed
using the global constraint cumulative [1].

cumulative({(jobsj , 1) | ∀j ∈ N},M) (19)

Makespan modelling As for the previous model, the makespan of the schedul-
ing is needed to model machine disqualifications. The constraints presented in
this section concern the link between the makespan and the PMSP. A constraint
linking the makespan with the number of disqualifications will be presented later
in the paper.

Unlike the previous model, the makespan is modeled here as an interval
variable starting at time 0 and spanning the execution of all jobs. This is
modelled using span constraints. Introduced in [5], this constraint states that
an executed job must span over a set of other executed jobs by synchronising
its start date with the earliest start date of other executed jobs and its end date
with the latest end date. It is expressed by the following constraints:

span(Cmax, {jobsj | ∀j ∈ N}) (20)
st(Cmax) = 0 (21)

In addition, the size of the interval has to be between the upper and the
lower bound on the makespan defined in Remark 1.

9



4.0.2 Machine qualifications problem

In this section, the model for the machine qualifications problem is described.
The main idea of the model is that, each time a job of family f is scheduled on a
machine m, a qualification interval of size γf will occur right after. This interval
“models” the fact that machine m remains qualified for family f until, at least,
the end of the interval. To model this feature, optional interval variable are
used. Indeed, for each job j and each machine m ∈Mf(j), an optional interval
variable, qualj,m, of size γf(j) and taking its value in {0, . . . , T + maxf γf}. is
created. Then, a variable qualj,m will be present in the solution only if altJj,m
is present and will start at the end of altJj,m. This is expressed by the following
set of constraints.

x(altJj,m) = x(qualj,m) ∀j ∈ N , ∀m ∈Mf(j) (22)

endAtStart(altJj,m, qualj,m) ∀j ∈ N , ∀m ∈Mf(j) (23)

Hence, a job of f can only be scheduled on m during a qualification interval
of f on m. This is modeled using cumulative functions. A cumulative function
Qf,m counts, at each time t, the number of qualification intervals for (f,m) in
which t is. If the number of qualification intervals for (f,m) is greater than 1,
then a job of f can be scheduled on m. Otherwise, the number of interval is
zero and m is disqualified for f . Qf,m is expressed as:

Qf,m = pulse(0, γf + pf , 1) +
∑
j∈N
f(j)=f

∑
m∈Mf(j)

pulse(qualj,m, 1)

Indeed, at the beginning of the scheduled, the machine is qualified from time
0 to γf + pf . In addition, each time an interval variable qualj,m is scheduled,
Qf(j),m increases by one. Then, when a job of f is scheduled on m, Qf,m has to
be greater than one and one can show that Qf,m is always smaller than nf +1.

alwaysIn(Qf(j),m, altJj,m, 1, nf(j) + 1) ∀j ∈ N , ∀m ∈Mf(j) (24)

Example 2 (Example of cumulative function) Considering the instance of
Example 1. The cumulative function Qf3,m1 corresponding to Figure 1b is de-
scribed by Figure 2.

1

2

3

4

Cmax

pulse(0, γf3 + pf3 , 1)

qualj7,m1

qualj8,m1

qualj9,m1

5 10 15 20 25 30 35

f2 f2f3f3 f3

Figure 2: Example of cumulative function to model qualifications.
Each time a job of f3 ends, the value of the function Qf3,m1 increases by one

and decreases when the qualification interval ends. While the value of Qf3,m1

is greater than one, it is possible to schedule jobs of f3 on m1. Here, Qf3,m1
is

always greater than one for t ∈ [0, Cmax) meaning that m1 remains qualified for
f3 at the end of the schedule.

10



Machine disqualifications Another dummy optional interval variable set,
endQf,m, is introduced to check if a machine has been disqualified for a family
during the schedule. The variable is present in the final solution only if the
machine is still qualified at the end of the schedule. In this case, the variable
start at time 0, ends at time Cmax+ pf and the function Qf,t has to be greater
than one during the whole execution of job endQf,m (otherwise, the machine
has been disqualified).

st(endQf,m) = 0 ∀f ∈ F , ∀m ∈Mf (25)
endAtEnd(Cmax, endQf,m, pf ) ∀f ∈ F , ∀m ∈Mf (26)
alwaysIn(Qf,m, endQf,m, 1, nf + 1) ∀f ∈ F , ∀m ∈Mf (27)

Note that this modelling is possible because the threshold were considered on
an end-to-end basis. Otherwise, the use of constraints alwaysIn is not possible.

4.0.3 Ordering constraints

The following sets of constraint (partially) order variables in the solution. These
(partial) ordering is used to break symmetries in the model. Recalling that it
is assumed that jobs of the same family have consecutive index in N . Then
constraints (28) state that jobsj−1 has to start before jobsj and constraints (29)
that the maximum time lag between these jobs is γf(j). Constraints (30) order
jobs that cannot be executed in parallel. Indeed, job j can overlap at most
Mf(j) − 1. Hence, job j −Mf(j) cannot overlap job j and has to end before.
Constraints (31) ensure that the qualification interval corresponding to job j is
separated from the qualification interval of j − 1 by at least the duration of the
job. Finally, constraints (32) model the fact that, on a machine m, jobs of a
same family are ordered, i.e. smaller index scheduled first.

startBeforeStart(jobsj−1, jobsj) ∀j ∈ N s.t. f(j) = f(j − 1) (28)
startBeforeSart(jobsj , jobsj−1,−γf(j)) ∀j ∈ N s.t. f(j) = f(j − 1) (29)

endBeforeStart(jobsj−Mf(j)
, jobsj) ∀j ∈ N s.t. f(j) = f(j −Mf(j)) (30)

startBeforeStart(qualj−1,m, qualj,m, pf(j))

∀m ∈Mf(j), ∀j ∈ N s.t. f(j) = f(j − 1) (31)

endBeforeStart(altJi,m, altJj,m) ∀m ∈Mf(j), ∀i < j ∈ N s.t.f(i) = f(j) (32)

4.0.4 Objective function

The objective function is modeled using two integer variables: flowT ime ∈
{Cmax, . . . , Cmax} and qualified ∈ {1, . . . ,

∑
f∈FMf}. The expressions of

these variables are given below:

flowT ime =
∑
j∈N

et(jobsj) (33)

qualified =
∑
f∈F

∑
m∈Mf(j)

x(endQf,m) (34)

Then, the objective is expressed as a sum, i.e. (flow − qual), or using
the lexicographical order, e.g. lex(−qual, f low). Note that, in this model, the
number of machine qualified at the end of the schedule is maximized which is
equivalent to minimize the number of machine becoming disqualified during the
schedule.

11



4.0.5 Model size

The number of variables of the model is at most N · (2M + 1) +M · F + 3 and
the number of constraints is at most N2 ·M + 4N +M · (1 + 4N + 3F ) + 6.

5 Experiments
This section starts with the presentation of the instances used in the experiments
(Section 5.1). Then, the general framework of the experiments is described
in 5.2. Finally, the three model presented in the paper are used to solve the
instances and the results are compared and analysed (Section 5.3).

5.1 Instance generation
The benchmark instances used to perform our experiments are extracted from [10].
In this paper, 19 instance sets are generated with different number of jobs (N),
machines (M), family (F ) and qualification schemes. Each of the instance sets
is a group of 30 instances and are generated as follows.

In each generated instances, each family can be executed by at least one
machine and each machine is qualified to process at least one job family. Fur-
thermore, since short thresholds may lead to very quick machine disqualifica-
tions, the time thresholds of job families are chosen sufficiently large compared
to their associated processing times, i.e. maxf∈F pf ≤ minf∈F γf . Then, to en-
sure diversity, each set of instances contains 10 instances with small threshold
(corresponding to duration needed to process one to two jobs of another family
than f), 10 with medium threshold (two to three jobs) and 10 with large thresh-
old (three to four jobs). In addition, setup times are not chosen too large so that
the risk of disqualifying a machine due to a setup time insertion is “acceptable”,
i.e. maxf∈F sf ≤ minf∈F pf .

Table 1 presents the parameters of the different instance sets. In the first
rows, the different number of jobs N is given, number of machines M is de-
scribedby the second row and number of families F is detailed in the third row.
Note that each triplet (n,m, f) corresponds to 30 instances. Among those in-
stances, at least 99, 5% are feasible. Indeed, experiments in [10] show that only
one 60-job instance and two 70-job instances have an unknown status. For all
other instances, at least one of the algorithms presented in [10] is able to find a
feasible solution.

N 20 30 40 50 60 70
M 3 4 3 4 5 3 4
F 4 5 2 3 4 5 2 3 4 5 4 5 3 3 4 5 5 4 5

Table 1: Instance characteristicsThe instances generated are relatively small compared to industrial instances.
However, due to the complexity of the problem, it is important to first analyse
and compare the results of the three models described in this paper. Finding

12



good solutions for industrial instances is a real challenge and is an important
research direction for future work.

5.2 Framework
The experiment framework is defined so the following questions are addressed:
Question 1. Which model is the best at finding a feasible solution, proving the

optimality and/or finding good upper bounds (especially when solving
large instances)?

Question 2. Does the performance of a model change depending on the objective
function or on the time limit?

The models are implemented using IBM Ilog Optimization Studio 12.8. That
is CPLEX 12.8 for the ILP model and CP Optimizer 12.8 for CP models. All the
experiments were led on a computer running on Ubuntu 16.04.5 with 32 GB of
RAM and one Intel Core i7-3930K 3.20GHz processors (6 cores). Furthermore,
two time limits are used in the experiments: 30 and 600 seconds.

Two heuristics are used to find solutions which are used as a basis for the
models. These heuristics are called Scheduling Centric Heuristic and Qualifi-
cation Centric Heuristic [10]. The goal of the first heuristic is to minimize the
flow time while the second one tries to minimize the number of disqualifications.

In the following of the section ILP model, CPO model and CPN model de-
notes respectively the ILP model of section 3.1, the previous CP model described
in Section 3.2 and the new CP model detailled in Section 4. Furthermore, to
describe the performance of the different models, the following indicators are
used in the table of Section 5.3: %sol. described the percentage of instances
for which feasible solution is found; %opt. shows the percentage of instances
for which the optimality is proven; %vbs provides the percentage of instances
for which the model is the virtual best solver, i.e. has found the best solution
compared to others; #dis. gives the average number of disqualified machines
and finally, obj. is used to show the average of the sum of the flowtime and the
number of disqualified machines.

In addition, a bold value in the table means that the corresponding indicator
has the best values among its row, i.e. compared to the one of the others model.

5.3 Comparison of the three models
This section aims at comparing the results of the three models. First, the results
are described for the tight time limit, i.e. 30 seconds. Then, the results with
the 600-seconds time limits are given.

5.3.1 30-seconds time limit
Minimizing the number of disqualifications over the flow time Table 2
gives indicators for the three models solved using the lex(−qual, f low) objective
with 30-seconds time limit.

13



ILP model CPO model CPN model

N %sol.%opt.%vbs#dis. %sol.%opt.%vbs#dis. %sol.%opt.%vbs#dis.

20 100 54.4 55.6 1.1 100 69.4 86.1 0.6 100 82.2 90.6 0.6
30 97.2 21.7 23.3 3.1 99.4 51.1 59.4 1.4 98.9 56.7 71.1 1.2
40 100 23.3 26.7 0.9 100 63.3 63.3 0.6 100 83.3 90 0.2
50 100 0 6.7 2.9 100 33.3 36.7 1.4 100 56.7 73.3 0.8
60 88.3 0 0 7.5 90 8.3 33.3 3.4 90 21.7 56.7 2.8
70 86.7 0 0 9.5 91.1 4.4 41.1 5 91.1 15.6 52.2 4.1

Table 2: Lexicographic minimization of the disqualified machines and the flow-
time within 30 seconds.

Table 2 shows that the ILP model finds less feasible solutions than the CP
models. Furthermore, the ILP model does not scale well for large instances.
Indeed, the ILP model is never the VBS and its average number of disqualified
machines is very high for the largest instances compared to the CP models.

On the other hand, the CPN model obtains better results than the CPO
model. Indeed, the percentage of proof of optimality is higher with CPN model.
The model is also more often the VBS regardless of the instance size. Further-
more, the difference between the average numbers of qualified machines of both
model increases with the instance size. This shows that the CPN model scales
better than the CPO model.

Minimizing the flow time over the number of disqualifications Table 3
gives indicators for the three models solved using the (flow − qual) objective
with 30-seconds time limit.

ILP model CPO model CPN model

N %sol.%opt.%vbs obj. %sol.%opt.%vbs obj. %sol.%opt.%vbs obj.

20 100 96.7 97.8 334.7 100 0 87.8 334.8 100 65.6 90 334.7
30 97.8 69.4 72.2 782.5 99.4 0 71.1 770 98.9 24.4 57.8 766.8
40 100 90 90 1536 100 0 93.3 1530 100 60 100 1529
50 100 60 70 2265 100 0 76.7 2159 100 10 73.3 2151
60 88.3 5 8.3 3228 90 0 50 2792 90 0 36.7 2805
70 86.7 4.4 5.6 4256 90 0 52.2 3583 91.1 0 43.3 3562

Table 3: Weighted sum minimization of the flowtime and number of disqualified
machines within 30 seconds.Table 3 shows that the ILP model is more competitive than when the priority
is given to the number of disqualifications. Indeed, despite the fact that it finds
a little less feasible solutions than the CP Models, it is better at proving the
optimality of its solution. However, the ILP model does not scale well as shown
by the high objective values for the largest instances.

On the other hand, the CPO model is the most efficient for finding good
upper bounds, but completely fails at proving the optimality of its solution.
The CPN model proves optimality less often than the ILP model. However,

14



it is only slightly dominated by the CPO model in terms of being the VBS.
However, the CPN model still have the lowest objective values.

5.3.2 600-seconds time limit

Table 4 gives indicators for the three models solved using both lexicographic
and weighted sum minimization with 30-seconds and 600-seconds time limit.
Only challenging instances with 60 jobs are used to save computation time.

For the lexicographic minimization, the CPN model confirms its predomi-
nance. For all three models, the percentages of solved instances remain constant,
the percentages of optimality proof only slightly increase, and the average num-
bers of disqualified machines significantly decrease.

For the weighted sum minimization, the ILP model becomes the best model.
The percentages of solved instances and optimality proof significantly improve
and the model often becomes the VBS. Nevertheless, the CPN model model has
the best average objective.

Most of the times, the low improvements of the number of solved instances or
optimality proofs suggest that the solvers is subject to thrashing and therefore
cannot diversify the search.

ILP model CPO model CPN model

t %sol.%opt.%vbs#dis. %sol.%opt.%vbs#dis. %sol.%opt.%vbs#dis.

30s 88.3 0 0 7.5 90 8.3 33.3 3.4 90 21.7 56.7 2.8
600s 90 0 3.3 4.2 90 11.7 28.3 2.9 90 23.3 61.7 2.2

t %sol.%opt.%vbs obj. %sol.%opt.%vbs obj. %sol.%opt.%vbs obj.

30s 88.3 5 8.3 3228 90 0 50 2792 90 0 36.7 2805
600s 98.3 55 75 2873 90 0 33.3 2755 90 0 33.3 2744

Table 4: Weighted sum and leximin minimization over instances of 60 jobs
within 600 seconds.6 Conclusions and further work
A parallel machine scheduling problem was studied where some Advanced Pro-
cess Control constraints are integrated: minimal time constraints between jobs
of the same family to be processed on a qualified machine to avoid losing the
qualification. Two criteria to minimize are considered: the sum of completion
times and the number of disqualifications.

For this problem, a new CP model was proposed. This model improves the
modelling of machine disqualifications. Indeed, when the number of disqualifi-
cations is prioritized, this model is better than the existing methods (ILP model
and CPO model) in terms of objective value and in terms of optimality proof.
However, when the flow time is prioritized, the performance of the model is less
impresive. In this case, the CPO model tends to have better performance for
small-time limit and the ILP model performs better in case of larger time limit.

Experiment results show that a good CP model needs to make some improve-
ments on the modelling and/or the solving of the parallel machine scheduling

15



problem with the flow time objective. Interesting research directions include
the improvement of variable bounds, specially the makespan. It also includes
the study of good relaxations of the problem to enhance the performance of
constraint programming models.

Another relevant research perspective consists in scheduling jobs on a longer
time horizon, where lost qualifications could be automatically recovered after
a given qualification procedure. Qualification procedures, requiring time on
machines, would then also be scheduled.

References
[1] Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog

(revision a) (01 2012)

[2] Cai, Y., Kutanoglu, E., Hasenbein, J., Qin, J.: Single-machine scheduling
with advanced process control constraints. Journal of Scheduling 15(2),
165–179 (Apr 2012). https://doi.org/10.1007/s10951-010-0215-8, https://
doi.org/10.1007/s10951-010-0215-8

[3] Jedidi, N., Sallagoity, P., Roussy, A., Dauzere-Peres, S.: Feedforward run-
to-run control for reduced parametric transistor variation in cmos logic
0.13 µm technology. IEEE Transactions on Semiconductor Manufacturing
24(2), 273 –279 (2011)

[4] Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Pro-
ceedings of the Twenty-First International Florida Artificial Intelligence
Research Society Conference, May 15-17, 2008, Coconut Grove, Florida,
USA. pp. 555–560 (2008), http://www.aaai.org/Library/FLAIRS/2008/
flairs08-126.php

[5] Laborie, P., Rogerie, J., Shaw, P., Vilím, P.: Reasoning with conditional
time-intervals. part II: an algebraical model for resources. In: Proceedings
of the Twenty-Second International Florida Artificial Intelligence Research
Society Conference, May 19-21, 2009, Sanibel Island, Florida, USA (2009),
http://aaai.org/ocs/index.php/FLAIRS/2009/paper/view/60

[6] Li, L., Qiao, F.: The impact of the qual-run requirements of APC on the
scheduling performance in semiconductor manufacturing. In: Proceedings
of 2008 IEEE International Conference on Automation Science and Engi-
neering(CASE). pp. 242–246 (2008)

[7] Moench, L., Fowler, J.W., Dauzère-Pérès, S., Mason, S.J., Rose, O.: A
survey of problems, solution techniques, and future challenges in schedul-
ing semiconductor manufacturing operations. Journal of Scheduling pp. 1–
17 (2011), http://dx.doi.org/10.1007/s10951-010-0222-9, 10.1007/s10951-
010-0222-9

16

https://doi.org/10.1007/s10951-010-0215-8
https://doi.org/10.1007/s10951-010-0215-8
http://www.aaai.org/Library/FLAIRS/2008/flairs08-126.php
http://www.aaai.org/Library/FLAIRS/2008/flairs08-126.php
http://aaai.org/ocs/index.php/FLAIRS/2009/paper/view/60
http://dx.doi.org/10.1007/s10951-010-0222-9


[8] Moyne, J., del Castillo, E., Hurwitz, A.M.: Run-to-Run Control in Semi-
conductor Manufacturing. CRC Press, 1 edn. (2000)

[9] Musacchio, J., Rangan, S., Spanos, C., Poolla, K.: On the utility of run
to run control in semiconductor manufacturing. In: Proceedings of 1997
IEEE International Symposium on Semiconductor Manufacturing Confer-
ence. pp. 9–12 (1997)

[10] Nattaf, M., Dauzère-Pérès, S., Yugma, C., Wu, C.H.: Parallel machine
scheduling with time constraints on machine qualifications, Manuscript
submitted for publication.

[11] Nattaf, M., Obeid, A., Dauzère-Pérès, S., Yugma, C.: Méthodes de ré-
solution pour l’ordonnancement de familles de tâches sur machines paral-
lèles et avec contraintes de temps. In: 19ème édition du congrès annuel de
la Société Française de Recherche Opérationnelle et d’Aide à la Décision,
ROADEF2018

[12] Obeid, A., Dauzère-Pérès, S., Yugma, C.: Scheduling job families on non-
identical parallel machines with time constraints. Annals of Operations
Research 213(1), 221–234 (Feb 2014). https://doi.org/10.1007/s10479-012-
1107-4

[13] Tan, F., Pan, T., Li, Z., Chen, S.: Survey on run-to-run control algorithms
in high-mix semiconductor manufacturing processes. IEEE Transactions on
Industrial Informatics 11(6), 1435–1444 (2015)

[14] Wolf, A.: Constraint-based task scheduling with sequence dependent setup
times, time windows and breaks. In: GI Jahrestagung (2009)

[15] Yugma, C., Blue, J., Dauzère-Pérès, S., Obeid, A.: Integration of
scheduling and advanced process control in semiconductor manufac-
turing: review and outlook. Journal of Scheduling 18(2), 195–205
(Apr 2015). https://doi.org/10.1007/s10951-014-0381-1, https://doi.org/
10.1007/s10951-014-0381-1

17

https://doi.org/10.1007/s10951-014-0381-1
https://doi.org/10.1007/s10951-014-0381-1

	Introduction
	Problem description
	Existing Models
	ILP model
	CP model
	The parallel machine scheduling problem with setup time
	Modelling of the number of disqualifications
	Objective function
	Model size


	New CP Model
	The parallel machine scheduling problem with setup time
	Machine qualifications problem
	Ordering constraints
	Objective function
	Model size


	Experiments
	Instance generation
	Framework
	Comparison of the three models
	30-seconds time limit
	600-seconds time limit


	Conclusions and further work

