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Abstract Parametric motion models are commonly used in image sequence anal-
ysis for different tasks. A robust estimation framework is usually required to reli-
ably compute the motion model over the estimation support in presence of outliers,
while the choice of the right motion model is also important to properly perform
the task. However, dealing with model selection within a robust estimation setting
remains an open question. We define two original propositions for robust motion
model selection. The first one is an extension of the Takeuchi information crite-
rion (TIC). The second one is a new paradigm built from the Fisher statistic.
We also derive an interpretation of the latter as a robust Mallows’ CP criterion.
Both robust motion model selection criteria are straightforward to compute. We
have conducted a comparative objective evaluation on computer-generated im-
age sequences with ground truth, along with experiments on real videos, for the
parametric estimation of the 2D dominant motion in an image due to the camera
motion. They demonstrate the interest and the efficiency of the proposed robust
model selection methods.

1 Introduction

Adopting 2D parametric models is a common practice in motion estimation, mo-
tion segmentation, image registration, and more generally in dynamic scene analy-
sis. Video stabilization [25], video summarization [9], image stitching [41], motion
detection with a free-moving camera [47], motion layer segmentation [8], optical
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flow computation [5,10,50], tracking [39,51], time-to-collision estimation for obsta-
cle detection [27], action recognition and localization [16], crowd motion analysis
[30], to name a few, all may rely on 2D polynomial motion estimation. A key
issue then arises: how to choose the right motion model when adopting a robust
estimation setting?

This problem is most often circumvented by settling for empirical choice. The
affine motion model is for instance claimed as a good trade-off between efficiency
and representativeness without any available information on the dynamic scene.
However, a principled method is more powerful and satisfying to properly solve
the motion model selection problem [11,13,44]

The most known statistical criteria for model selection are without doubt
Akaike information criterion (AIC) [2], Bayesian information criterion (BIC) [38],
or Takeuchi information criterion (TIC) [7]. Broadly speaking, it starts from the
maximum likelihood, and amounts to add to the model fit, a weighted penalty
term on the model complexity or dimension, e.g., given by the number of the
model parameters. The definition of the weight depends on the statistical infor-
mation criterion. The likelihood term accounts for a Gaussian distribution of the
residuals involved in the regression issue. A comparative study of several of them
is reported in [46] for classification in pattern recognition. Let us add the Mal-
lows’ CP criterion [23] and the Minimum Description Length criterion (MDL) [32]
respectively equivalent to AIC and BIC under certain hypotheses. Finally, let us
mention the Akaike criterion with a correction for finite sample sizes (AICc) [7].

However, outliers are usually present whatever the motion estimation support,
the entire frame or a more local one. It may be due to local independent mo-
tions, occlusions, or any local violation of the assumptions associated with motion
computation. Robust estimation [14,15] is then required in many situations [5,
26,29,39] to cope with the presence of outliers. Indeed, least-square estimation
finds oneself biased in these cases. As a consequence, the aforementioned infor-
mation criteria involving a quadratic (i.e., Gaussian) likelihood term are no more
exploitable as they stand. Model selection must be revisited in the context of the
robust estimation setting.

So far, combining model selection and robust estimation for parametric mo-
tion computation has rarely been investigated [44]. In this paper, we propose two
different statistical criteria for robust motion model selection. The first one is an
extension of the Takeuchi information criterion (TIC). The second one tackles this
problem from a different perspective based on the Fisher statistic. An interpreta-
tion as a robust version of the Mallows’ CP criterion [23] is also provided.

We need a use case to validate the proposed methods in real situations. We
want to handle a single-model fitting task, so that we can focus on the robust
model selection problem. We take the task of estimating the global (or dominant)
motion in the image due to the camera motion for a shallow scene, which is of
primary interest for many applications, e.g., video stabilization or action recogni-
tion. In that context, the dominant motion in the image can be represented by a
2D parametric motion model. Indeed, this task is merely an estimation problem in
presence of outliers constituted by the independently moving objects in the scene.
It is not interwoven with other involved issues as in motion detection, motion
segmentation or object tracking. On the other hand, the multiple-model fitting
issue investigated in [22,42,43] is a different problem. The goal is to fit multiple
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instances of a given type of model over (unknown) subsets of data. These works
do not address the selection of the motion model type.

We described a preliminary version of this work in the short conference paper
[6]. The present paper is a significant extension of the latter. We have added several
contributions: a new criterion -the robust TIC-, improvements of the Fisher-based
criterion, an augmented related-work section, a revisited objective comparative
evaluation, more experiments on real videos.

The remainder of the paper is organized as follows. Section 2 is devoted to
related work and positioning of our approach. In Section 3, we recall a classi-
cal robust estimation method of 2D motion models, and formulate the model fit.
Section 4 describes our first robust motion model selection method called Ro-
bust Takeuchi Information Criterion (RTIC). In Section 5, we present our second
original method for robust motion model selection, called Fisher-based robust
information criterion (FRIC). Objective comparisons on computer-generated ex-
amples with ground-truth are reported in Section 6, along with experiments on
real videos, to assess the performance of our two criteria. Concluding remarks are
given in Section 7.

2 Related work and positioning

2.1 Review of related research

Statistical information criteria have been exploited in computer vision for years
[13], sometimes with specific formulations and characteristics. Geometric counter-
parts of AIC and MDL, respectively termed GAIC and GMDL, were proposed in
[18] to take into account a different formulation of model fitting along with the
dimension of the manifold involved in a 3D geometric transformation. AIC and
BIC were tested in [11] for 2D affine motion model classification, but they were
experimentally proven less efficient than a succession of hypothesis tests decid-
ing in turn on the non-zero parameters of the affine motion model. Indeed, AIC
tends to overestimate the complexity of the underlying model. In [49], the most
appropriate model among 2D polynomial motion models for motion estimation
from normal flows, was selected with a penalization factor given by the Vapnik’s
measure; the resulting algorithm was favorably compared to AIC, BIC and gen-
eralized cross-validation. In [37], a MDL-based criterion was designed for model
selection in 3D multi-body structure-and-motion from images. A MDL principle is
also adopted in [24] for non rigid image registration. On the other hand, the small-
sample-size corrected version of Akaike information criterion (AICc) was used in
[4] for a pixel-wise motion model selection with a view to crowd motion analysis
in video sequences.

Robust model selection on its own was explored in the robust statistics litera-
ture along several directions [1,19,28,31,33,36]. In [33], a robust extension of AIC
(RAIC), was defined, coming up with substituting a general robust estimator ρ of
the model parameters θ for the maximum likelihood estimator. M-estimators are
incorporated in BIC and the asymptotic performance is studied in [21]. A special
case is the use of the Huber robust function [15], leading to the RBIC criterion.
The Mallows’ CP criterion is revisited in [34] to yield a robust version. The gen-
eralized information criterion (GIC), described in [19], can be applied to evaluate
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statistical models constructed by other procedures than maximum likelihood, such
as robust estimation or maximum penalized likelihood.

In contrast, to the best of our knowledge, very few similar investigations have
been undertaken regarding motion analysis in image sequences. In [3], the authors
designed a global energy function for both the robust estimation of mixture models
and the validation of a MDL criterion. The overall goal is to get a layering repre-
sentation of the moving content of an image sequence. The MDL encoding acts on
the overall cost of the representation comprising the number of layers, residuals
and motion parameters. However, the primary purpose was parsimonious motion
segmentation, and not motion model selection on its own. In [44], a robust exten-
sion of the Geometric Information Criterion (GIC) [17], termed GRIC, is proposed
in the vein of RAIC. It was applied to the selection of the 3D geometric transfor-
mation attached to a rigid motion and estimated through the matching of image
interest points. Geometrical and physical constraints are also explored in [12] for
image motion segmentation, with the so-called surface selection criterion (SSC)
primarily designed by the authors for range data segmentation. Better perfor-
mance is reported than with several information criteria, but the use of SSC here
is comparable to a regularization approach.

Since we start with a set of 2D parametric motion models meant to provide us
with an approximation of the unknown optical flow, we naturally adopt a para-
metric approach for the robust motion model selection problem. We are looking
for the simplest model among the set, able to describe the motion of the maxi-
mum amount of image points. An alternative could be to follow a non-parametric
approach by modeling the outliers themselves. This can be done by representing
the distribution of the noise as a mixture of two distributions, the second one
having small probability and taking large values. More specifically, in [20], robust
Gaussian process regression is investigated. However, comparing mixture of dis-
tributions seems intricate. We believe that it is much easier to compare directly
parametric motion models. The authors of [52] address the related problem of im-
age stitching when the projective assumption may be locally violated. The aim is
to estimate a globally projective warp while adjusting it on the data to improve
the fit. However, this data-driven method leads to a different problem, that is, the
adequacy of a given model, and not the selection among several different models.

2.2 Our approach

In computer vision and in particular in dynamic scene analysis, for instance when
estimating the global image motion, the concern is not only to choose the best
model, but also to get the largest possible inlier set. Selecting a simple global
motion model that only fits the apparent motion of a too limited part of the
static scene is not appropriate. As a consequence, the size of the inlier set must
be properly taken into account in the robust model selection criterion.

The problem of robust motion model selection is then three-fold: i) maximiz-
ing the motion model fit to the data, ii) penalizing the motion model complexity,
iii) accounting for the largest possible set of inlier points in the estimation sup-
port. Indeed, the two latter ones must be simultaneously satisfied, which might
be contradictory. By definition, this is an issue specific to robust model selection.
It apparently did not draw interest in the robust statistics literature, while it is
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Motion model Dimension Mathematical expression

Translation (T) 2 wθ = (a1, a4)T

Pan-tilt (PT) 2 wθ(p) = (a1 + a1x2 + a4xy, a4 + a1xy + a4y2)T

Translation + Rotation (TR) 3 wθ(p) = (a1 − a3y, a4 + a3x)T

Translation + Scale (TS) 3 wθ(p) = (a1 + a2x, a4 + a2y)T

Translation + Rotation + Scale (TRS) 4 wθ(p) = (a1 + a2x− a3y, a4 + a3x + a2y)T

Full affine (FA) 6 wθ(p) = (a1 + a2x + a3y, a4 + a5x + a6y)T

Planar surface rigid motion 8 wθ(p) = (a1 + a2x + a3y + a7x2 + a8xy,
(PSRM) a4 + a5x + a6y + a7xy + a8y2)T

Full quadratic (FQ) 12 wθ(p) = (a1 + a2x + a3y + a7x2 + a8xy + a9y2,
a4 + a5x + a6y + a10x2 + a11xy + a12y2)T

Table 1 Set of 2D polynomial motion models

of key importance in motion analysis. In this paper, we introduce two robust mo-
tion model selection methods in that perspective. The first one is in the vein of
approaches extending the non-robust model selection criteria, but here, we start,
in an original way, with the Takeushi criterion [7]. The second method promotes
a new paradigm based on Fisher statistic [35].

To make the robust motion model selection problem concrete, we will deal
with the dominant image motion estimation issue. The dominant (or global) im-
age motion is usually due to the camera motion, and then corresponds to the
background motion, i.e., the apparent motion of the static scene in the image se-
quence. Computing the dominant motion has many important applications such
as video stabilization, background subtraction in case of a free moving camera,
action recognition, image stitching, and image registration in general. Of course,
the proposed framework could be applied to other issues as well, for instance to
select the right motion model in each image region for motion layer segmentation.

3 Robust motion model estimation

First, we briefly recall the main principles of the robust estimation of parametric
motion models. The estimation process relies on the brightness constancy assump-
tion, and is embedded in a coarse-to-fine scheme to handle large displacements.
We will present it in the frame of the motion model computation over the whole
image domain Ω, but it can be straightforwardly adapted to the computation of
the motion model over a given area in the image. Then, we will define the motion
model fit for the estimated motion model parameters. Finally, we will describe the
set of 2D parametric motion models that will be considered, appertaining to the
category of polynomial models.

3.1 Computation of motion model parameters

We consider a set of 2D polynomial motion models. They will be precisely defined
in Section 3.3 and Table 1. Let θm denote the parameters of model m, that is, the
polynomial coefficients for the two components of the velocity vector. Parameters
of the full model will be denoted by θM , if we have M models to test. wθm(p)
is the velocity vector supplied by the motion model m at point p = (x, y) of the
image domain Ω.
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We exploit the usual brightness constancy assumption [10] to estimate the
parameters of the motion model between two consecutive images of the video
sequence. It leads to the linear regression equation relating the motion model
parameters, through the velocity vector, and the space-time derivatives of the
image intensity I:

∇I(p).wθm(p) + It(p) = 0. (1)

Let us denote rθm(p) the left member of (1). The robust estimation of the motion
model parameters can be defined by:

θ̂m = arg min
θm

∑
p∈Ω

ρ(rθm(p)), (2)

where ρ denotes any robust penalty function. To quote a few examples of penalty
function among M-estimators, the Lorentzian function is used in [5], whereas the
Hampel estimator is preferred in [39], and the Tukey’s function is adopted in [29].

Equation (1) is in fact the linearization of the more general constraint I(p +
wθm(p))− I(p, t) = 0. As a consequence, it only holds for small displacements. A
usual way to overcome this problem, is to follow a coarse-to-fine scheme based on
image multi-resolution and incremental motion estimation [10]. More specifically,
we compute two image pyramids by applying a Gaussian filter and sub-sampling
by two in row and column the two consecutive images of the pair, from level to
level. The minimization of (2) is achieved by an iterative algorithm, the Iterated
Reweighting Least Squares (IRLS) method [14]. The IRLS method iteratively up-
dates weights at every point p ∈ Ω. The weights express the influence of each point
p in the estimation of the motion model parameters. These weights can be further
exploited to determine the inlier set associated with the estimated motion model
m.

Regarding the initialization of the IRLS algorithm, we proceed as follows. At
the very first iteration of the iterative estimation, at the coarsest resolution level,
we initialize all the weights to one and perform a first estimation of the motion
parameters. This of course amounts to a classical least mean-square estimation.
However, this is a very common practice, and it works well in practice, especially
since we use it only once at the coarsest image resolution. Afterwards, since we
switch to the incremental mode, we initialize the IRLS algorithm at every step of
the incremental estimation, by taking zero as initial value of the motion parameter
increment. Indeed, the latter is supposed to be small. In other words, we start by
updating the weights with the current estimate of the motion model parameters.
We usually need only a few iterations of the IRLS algorithm to converge. For more
information on estimation issues like initialization of IRLS, definition of the scale
parameter of the penalty function, impact of the outlier rate, estimation accuracy,
we refer the reader to [29].

3.2 Motion model fit

Once we compute an estimate θ̂m of the motion model parameters, we get the
residuals rθ̂m(p), for all p ∈ Ω, measuring the discrepancy between the input data
and the estimated motion model. To evaluate how the estimated motion model
fits the input data over the associated inlier set, we consider the residual sum of
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squares (RSS) obtained for the robustly estimated parameters θ̂m of the motion
model m, given by:

RSSm =
∑
p∈Im

r2
θ̂m

(p), (3)

where Im represents the set of inliers associated with the estimated motion model
m. The way the inlier set is computed will be further explained in Section 5.1.
The residual is formally defined by:

rθ̂m(p) = I(p+ wθ̂m
(p), t+ 1)− I(p, t), (4)

knowing that the left member of (1) is a linearized version of (4) as aforementioned.
We compute RSSm on the inlier set Im and not on the overall domain Ω, to

obtain the model fit evaluation precisely on the subset of points whose motion
conforms to the estimated motion model. In [45], the authors designed a method
for estimating deformable registration from feature correspondences between two
images. The outlying correspondences are removed once for all by first estimating
a simple parametric model. The rationale is that the outlier deviations are much
larger than the inaccuracies of the simple model fit for relevant correspondences.
However, on our side, we need to achieve the outlier removal for every model, since
the inlier set depends upon each motion model, and its cardinality is one of the
key ingredients of our robust motion-model selection criteria.

Furthermore, we need to introduce the expression RSS+
m, which represents the

residual sum of squares computed for the full model M over the inlier set Im
attached to model m. The full model, that is, the most complex one in the set
of the parametric motion models, will be specified in the next subsection 3.3. We
have:

RSS+
m =

∑
p∈Im

r2
θ̂M

(p). (5)

As recall in Section 3.1, the minimization in (2) is solved by applying the
Iteratively Reweighted Least Squares algorithm within a coarse-to-fine framework.
At convergence, the final weights αm(p), p ∈ Ω, are given by:

αm(p) =
ψ(rθ̂m(p))

rθ̂m(p)
, (6)

where the influence function ψ(.) is the derivative of the robust function ρ(.),

ψ(r) = dρ(r)
dr . In practice, we adopt the robust estimation method defined in [29],

and we use the publicly available Motion2D1 software implementing this method.

3.3 Set of parametric motion models

We are dealing with 2D polynomial motion models ranging from translation (poly-
nomial of degree 0) to quadratic models (polynomials of degree 2), including dif-
ferent affine models (polynomials of degree 1). They are forming a set of models
which is partly nested. The model complexity ranges from dimension 2 to dimen-
sion 12. The full set of motion models is given in Table 1 with their main features.

1 http://www.irisa.fr/vista/Motion2D/



8 Patrick Bouthemy et al.

The explicit equivalence, when available, between the 2D polynomial models and
3D physical motions assumes a perspective projection for the image formation and
3D rigid motion.

To make it easier to understand the relationship between 2D motion models
and 3D motion, let us briefly recall the mathematical relations which link them.
The 2D velocity vector w(p) = (u(p), v(p))T is the projection of the 3D velocity
vector of point P = (X,Y, Z)T in the scene, whose point p is the projection onto
the image plane. We follow the classical perspective projection assumption, and
we take a focal length of unity. We get:

u(p) = U
Z − x

W
Z −Axy +B(x2 + 1)− Cy

v(p) = V
Z − y

W
Z −A(y2 + 1) +Bxy + Cx,

(7)

where the instantaneous rigid motion is specified by the translational and ro-
tational velocities, respectively (U, V,W )T and (A,B,C)T in the 3D coordinate
systems, whose origin is located at the camera projection center and the Z-axis
aligned with the camera axis of view. We refer the reader for instance to [48] for
mathematical details. If we further assume that the scene is planar, then, any
depth Z is given by the plane equation: Z = Z0 + γ1X + γ2Y , and knowing that
x = X

Y and y = Y
Z , we come up with:

u(p) = B + U
Z0

+ x(−γ1 UZ0
− W

Z0
) + y(−γ2 UZ0

− C)

+x2(γ1
W
Z0

+B) + xy(γ2
W
Z0
−A)

v(p) = −A+ V
Z0

+ x(−γ1 VZ0
+ C) + y(−WZ0

+ γ2
V
Z0

)

+xy(γ1
W
Z0

+B) + y2(γ2
W
Z0
−A).

(8)

A pan-tilt camera motion is a pure rotation of component A around the X-axis,
and component B around the Y -axis, and then, C,U, V,W are all equalling zero.
Applying this to equations (8) gives the expression of the 2D motion model PT,
with a1 = B and a4 = −A. A rotation in the plane, i.e., around the Z-axis,
means that only C 6= 0, which explains the expression of motion model TR, with
a3 = C. A translation along the axis of view implies that only W 6= 0, which
leads to the expression of motion model TS, with a2 = −W/Z0. Finally, we can
easily infer from eq.(8), that the 8-parameter PSRM model precisely accounts for
a rigid motion between a planar surface and the camera. Let us add that the
constant monomial of models PT, TR, TS and TRS, does not necessarily mean
that the underlying physical motion has actually a translation component. Indeed,
the constant part is merely the velocity vector given by the motion model at the
origin of the image coordinate system. The in-plane rotation is not necessarily
centered at the origin. The same holds for the focus of expansion in case of scaling
motion, knowing that the scaling motion in the image is due to a translation
of the camera along its axis of view. Finally, let us recall that our 2D motion
models are defined in the velocity field space, not in the point-to-point geometrical
transformation space. Nevertheless, parallels can be drawn. For instance, the 8-
parameter quadratic motion model is the counterpart of the homography.
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The FQ model corresponding to the full polynomial of degree 2 has no specific
physical interpretation. It will act in the sequel as the full model M , that is, the
most complex model in the set of the tested parametric motion models.

Let us stress that this 3D motion interpretaton is just given to motivate the
set of 2D parametric motion models, which incidentally are of common use in
many applications of video processing and dynamic scene analysis. Indeed, we are
not concerned with any 3D scene recovery goal. The latter is a different task. The
motion model selection is still relevant, even if no physical interpretation is sought,
that is, just finding the right 2D motion model to represent the (unknown) optical
flow field in the image, in other words, finding the right polynomial to represent
an unknown function. Besides, we do not claim that there is a correct model on its
own. We just aim to select the most appropriate one among the set of predefined
motion models.

4 Robust motion model selection with RTIC

An intuitive approach for defining a robust motion model selection framework is
to draw from classical statistical information criteria. However, instead of starting
from AIC or BIC, we consider the Takeuchi information criterion (TIC) which is
a more general derivation of Akaike’s information criterion [7].

4.1 TIC criterion

TIC can be written as follows:

TIC(m) = 2K(θ̂m) + 2 tr(P (θm)Q(θm)−1), (9)

where K denotes the contrast function. Equivalently, it could be referred to as the
negated logarithm of the likelihood, or the pseudo-likelihood function. ”tr” is the
trace of the matrix. The two mxm matrices P (θm) and Q(θm) respectively involve
first and second mixed partial derivatives of the likelihood function w.r.t. model
parameters. In the regression case, the two matrices P and Q are defined by:

P (θm) = E[
∂

∂θi
g(rθ(p))

∂

∂θj
g(rθ(p))

T ]|θ=θ̂m

Q(θm) = E[
∂2

∂θi∂θj
g(rθ(p))]|θ=θ̂m , (10)

where {θi, i = 1,m} and {θj , j = 1,m} denote components of the parameter vector
θm, function g(.) is defined by K(θm) =

∑
p g(rθm(p)), rθm(p) acts as the regression

residual, and E denotes expectation.

4.2 Robust TIC

In the context of robust estimation, the g function is now specified as a robust
penalty function ρ(.), which was introduced in eq.(2). We come up with the fol-
lowing expression of the Takeuchi information criterion, which we will call Robust
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Takeuchi Information Criterion (RTIC) to make it short:

RTIC(m) = 2
∑
p∈Ω

ρ(rθ̂m(p)) + 2qm
E[ψ(rθ(p))

2]

E[ψ′(rθ(p))] |θ=θ̂m
, (11)

where qm is the dimension (i.e., number of parameters) of model m, ψ(.) is the
influence function as defined in subsection 3.2, and ψ′ its derivative.

We develop two versions of RTIC for the Talwar and Huber penalty functions,
which are well-knonw simple enough robust functions. The Talwar function is
defined by:

ρtal(r) =

{
r2/2 if |r| ≤ α
α2/2 if |r| > α

(12)

Knowing that the inlier set Im corresponds to points p such that |rθm(p)| ≤ α, we
estimate the expectation as:

E[ψ(rθ(p))
2] ' 1

|Ω|
∑
p∈Ω

ψ(rθ(p))
2 =

1

|Ω|
∑
p∈Im

r2θ(p),

and E[ψ′(rθ(p))] '
|Im|
|Ω| , (13)

where |.| denotes the cardinality of the set. We get the following expression of
RTIC for the Talwar penalty function:

RTICtal(m) = 2
∑
p∈Ω

ρ(rθ̂m(p)) +
2qm
|Im|

∑
p∈Im

r2
θ̂m

(p). (14)

We make the same development for the Huber function defined as follows:

ρhub(r) =

{
1
2r

2 if |r| ≤ α
α(|r| − 1

2α) if |r| > α,
(15)

and the RTIC expression turns out to write for the Huber function:

RTIChub(m) = 2
∑
p∈Ω

ρ(rθ̂m(p))+
2qm
|Im|

(
∑
p∈Im

r2
θ̂m

(p)

+
∑

p∈Ω\Im

α2). (16)

The selected model m̃ is the one minimizing RTICtal(m) (respectively RTIChub(m))
among the tested models. The parameters θ̂m are obtained from (2) with the Tal-
war (resp. Huber) ρ-penalty function. In contrast to RAIC and RBIC, the size
|Im| of the inlier set explicitly intervenes in the second term of the expression of
the two RTIC variants (14) and (16). Minimizing RTIC implies to maximize the
size of the inlier set.
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5 Robust motion model selection with FRIC

On the other hand, we have investigated a very different approach than those
proposed so far for robust model selection. As in [11], we adopt now a two-class
hypothesis test approach. This is first motivated by the fact that we are dealing
with a non nested set of parametric motion models. For instance, both the rotation
and the scaling models involve three parameters as described in Section 3.3, but
they account for quite different motions. Moreover, we aim to select the model m
which explains the motion of the maximum number of points in the estimation
support, that is, with the largest possible inlier set. Let us stress that taking
the simplest motion model, while maximizing the size of the inlier set, may be
contradictory in most tasks of dynamic scene analysis. Then, it is benificial to
explicitly tackle this issue from the off.

5.1 Fisher statistic

The first step is to compare any model m of the set of tested models to the full
model M . To this end, we consider the Fisher statistic [35], which can be expressed
as follows:

F(m) =
(RSSm − RSS+

m)/(qM − qm)

RSS+
m/(|Im| − qM )

, (17)

where again |.| designates the set cardinality, qm represents the number of pa-
rameters of model m. Both RSSm and RSS+

m are evaluated on the inlier set Im
attached to the tested model m. To really deal with Fisher statistic, both model
parameters, θm and θM , must be estimated on the same set too. Therefore, we re-
estimate θm and θM over Im in a least-square setting, before evaluating F(m). By
the way, it also improves the estimated parameters of model m, and consequently,
the model fit.

In addition, we must check that the estimate of |Im| has no noticeable vari-
ability, so that it has no impact on the Fisher statistic. An image point p belongs
to the inlier set if its attached weight at the end of the IRLS procedure, is greater
than a given threshold. We can at least empirically assess the absence of significant
variability, by providing histograms of weights computed for the estimation of the
motion parameters in the IRLS procedure, as explained in subsection 3.1. Samples
are supplied in Fig.1, with the Tukey function used in the robust motion model
parameter estimation. Similar behavior was observed in many experiments. The
plots show that the weight histograms are clearly bimodal, with one mode close
to 0 and the second one close to 1, after normalization of the weights. Then, it is
easy to get the inlier set Im. The threshold used to determine the inlier set is not
critical at all, and this step does not introduce any randomness in |Im|. Indeed,
the range of values for the threshold value is large. In practice, we will set it to
0.5. Then, we can assume that the cardinality of the inlier set is as legitimate as
the fit residual and the model complexity in the definition of the robust model
selection criterion. The configuration is even simpler in the case of the Talwar and
Tukey functions, since the weights are null for outliers and strictly positive for
inlier points.

The denominator of expression (17) can be interpreted as a non-biased em-
pirical estimate of the full model variance computed on Im. It will be denoted
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Fig. 1 Examples of histograms of weights supplied by the IRLS procedure in the robust esti-
mation of the image dominant motion model for two different experiments.

by:

σ̂2
M (Im) =

RSS+
m

|Im| − qM
. (18)

The statistic F(m) allows us to decide whether model m is a more significant
representation of the unknown true motion than the full model M over Im which
is the validity domain of model m in Ω. However, it will supply all the models
m of that type. We need to take into account the dimension qm of model m to
further select the right one.

5.2 Fisher-based robust information criterion (FRIC)

Starting from (17), and penalizing the complexity of the model expressed by the
number qm of model parameters, we define the Fisher-based robust information
criterion:

FRIC1(m) = F(m)(qM − qm) + 2qm. (19)

Under the assumption of validity of model m, F(m) follows a Fisher distribu-
tion F (qM − qm, |Im| − qM ). Then, the first term of the right member of (19)
(approximately) follows a χ2 distribution with qM − qm degrees of freedom.

We can now write the test for selecting the best motion model m̃ in this robust
model selection framework:

m̃ = arg min
m

FRIC1(m). (20)

The theoretical behavior of this test can be qualitatively described as follows.
FRIC1(m) is supposed to decrease when evaluating in turn the first successive
models in decreasing (or equivalently increasing) complexity order up to the opti-
mal model m∗, and then to increase for the subsequent models. This is confirmed
by Fig.2 which contains plots of FRIC1(m) values for several experiments.

We design a second version of the Fisher-based robust model selection criterion,
by incorporating the number of inliers in the model complexity penalization as in
the BIC criterion, that is:

FRIC2(m) = F(m)(qM − qm) + 2 log(|Im|)qm. (21)
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Fig. 2 Plots of FRIC1(m) values corresponding to the set of tested motion models for several
experiments. Tested motion models are those listed in Table 1, and ordered according to the
number of parameters. The true model is FA.

Dominant motion model a1, a4 a2, a3, a5, a6 a7, a8
T1 [-10,10] - -
T2 [-10,-1]∪[1,10] - -

FA1 [-10,10] [-0.001,0.001] -
FA2 [-10,-1]∪[1,10] [-0.1,-0.001]∪[0.001,0.1] -

PSRM1 [-5,5] [-0.01,0.01] [-0.001,0.001]
PSRM2 [-10,-1]∪[1,10] [-1e10−4,-1e10−2]∪[-1e10−4,-1e10−2] [-1e10−5,-1e10−4]∪[1e10−5,1e10−4]

Table 2 Range of parameter values for the different motion models.

5.3 Interpretation of FRIC as robust Cp

We now provide another interpretation of the Fisher-based robust information
criterion (FRIC) defined in (19). Let us first make σ̂2

M (Im) appear in the expression
of FRIC1(m) as follows:

FRIC1(m) =
(RSSm − RSS+

m)

σ̂2
M (Im)

+ 2qm, (22)

By exploiting (3) and (18), it can be further developed into:

FRIC1(m) =
1

σ̂2
M (Im)

∑
p∈Im

r2
θ̂m

(p)− |Im|+ qM + 2qm. (23)

If we neglect qM which is a constant term for the test (20), expression (23) can be
viewed as the Mallows’ CP criterion [23], computed over the inlier set attached to
model m with |Im| as the number of observations. Then, our test (20) could also
be interpreted as a robust version of the Mallows’ CP criterion.

Let us point out that (23) explicitly involves the aforementioned trade-off be-
tween maximizing the size |Im| of the inlier set and minimizing the complexity
(i.e., the number qm of parameters) of the selected motion model. In contrast, for
existing robust model selection criteria such as RAIC or RBIC which write

RAIC =
∑
p∈Ω

ρ(rθ̂m(p)) + qm, (24)

and
RBIC =

∑
p∈Ω

ρ(rθ̂m(p)) + log |Ω| qm, (25)

the model selection is only implicitly influenced by the size of the inlier set attached
to model m through the values of the robust function ρ(.) at the outlier points.
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Hence, the impact depends on the asymptotic behavior of the robust function.
The same holds for [34] where in addition the penalty term requires additional
expensive computation to be evaluated.

6 Experimental results

As pointed out in the introduction, we take the computation of the dominant image
motion to experimentally validate our robust motion selection methods. In contrast
to motion segmentation for instance, it is a pure estimation problem. Furthermore,
it must tackle the presence of outliers consisting in independently moving objects
in the scene, since the dominant motion in the image is (most generally) induced by
the camera movement. Thus, it is a robust estimation problem. Finally, choosing
the right 2D motion model to properly approximate the dominant image motion is
an issue, since the camera motion and the scene depth are most often unknown. In
addition, it is a typical and very frequently needed task in dynamic scene analysis.
However, there is no available benchmark for this purpose, and inferring ground
truth on real videos may be not that easy. Since we focus on the model selection
issue, we will report selection results only. The accuracy of the estimated motion
model is conveyed by the model fit term of the criterion, and it is not a concern
on its own for this work.

6.1 Objective evaluation on synthetic examples

To quantitatively assess the performance of the model selection criteria, we carried
out a comparative objective evaluation on a synthetic dataset. We generated a
series of image pairs by applying a velocity field to a real image, as shown in Fig.3.
The velocity field involves two parametric subfields chosen from the list given in
Table 1. The first parametric motion subfield is the dominant motion, and the
outliers, forming a rectangular region in the middle of the image, undergo the
second one. We used bilinear intensity interpolation when needed to reconstruct
the second image. We used border replication to deal with image boundaries.
We generated outlier motion in the synthetic examples with a parametric motion
model for the sake of efficiency. However, when estimating the global motion and
computing the robust selection criteria, we never model the outlier motion nor
estimate it. It could be anything, as the dust cloud in the real example of Fig.8,
or many independently moving cars in Fig.9.

Three groups of 3000 synthetic image pairs were generated, each group formed
by different dominant and secondary motions. The first group involves a translation
(T) motion model as dominant motion model and a full affine (FA) as secondary
motion. The second set has a FA model as dominant motion and a planar surface
rigid motion (PSRM) as secondary motion model. The last group has a PSRM
model as the dominant one and a T model as the secondary one. Each group is
divided in two sub-groups of 1500 image pairs each depending on the range used
for the values of the parameters of the dominant motion, as summarized in Table 2.
For each motion model used to create the image pairs, the value of its parameters
is randomly selected in the interval given in Table 2.
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Fig. 3 From left to right: the input image, the second image generated from the first one, by
applying a translation as dominant motion and a different translation on the outlier rectan-
gular area in the middle of the image, as plotted in the right part.

Fig. 4 Rates of correct classification for each group of experiments obtained with the four
model selection criteria (given in percentage of the total number of examples in each experi-
ment).

True dominant motion models
Tested models T T FA FA PSRM PSRM

T 76.9 76.4 0.1 1.5 0.1 0.1
TR 9.3 7.7 0.7 0.6 0.1 0.2
TS 1.4 11.8 0.3 1.1 0.1 0.1

TRS 0.1 0.6 2.1 0.2 0.3 0.2
FA 0.4 0.3 80.5 83.4 0.2 2.1
PT 2.1 0.7 0.1 3.9 0.9 2.4

PSRM 1.3 0.4 7.3 6.9 74.4 74.7
FQ 8.5 2.1 8.9 2.4 23.9 20.2

Table 3 Scores obtained with criterion FRIC2 for all the tested models and for the six ex-
periments, in percentage of the total number of examples in each experiment.

We proceed to the selection of the dominant motion model in each experiment
for each compared criterion. Rates of correct selection are summarized in Fig.4.
For a fair comparison, we decided to use the same penalty function for all the
compared criteria in all the experiments, that is, to estimate the parametric mo-
tion models and to compute the four robust motion-model selection criteria. For
implementation issues, we took the Talwar penalty function, with α set to 2.795
as recommended in [40]. It is available in the Motion2D software, which is not
the case for the Huber function. Still, we we will refer to the compared existing
method as RBIC. In addition, for the sake of notation simplicity, we will write
RTIC instead of RTICtal. Scores are given in percentage of the total number of
the images in each experiment.

Overall, the proposed criteria FRIC1, FRIC2 and RTIC outperform the existing
one RBIC. Regarding FRIC2, the rate of successful motion model selection is
rather stable at a high level, ranging from a minimum of 74.4% of frames to a
maximum of 83.4%. FRIC1 also provides good results, but it has a lowest success
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rate with a minimum of 61.2% and a maximum of 82.1%. In general, RBIC has a
close but lower success rate than the three new criteria, and even reaches down to
a very low rate at 38.6% for the FA2 experiment. RTIC has the lowest success rate
in the T2 experiment by a small margin, while being the best performing criterion
for all the other experiments.. Especially, when the complexity of the dominant
motion models increases, RTIC yields the best results, even scoring over a 94%
success rate in a couple of experiments.

Tables 3 and 4 detail the scores obtained with FRIC2 and RTIC respectively,
the two best criteria, for all the tested models and for the six subsets of exper-
iments. Wrong selections are spread, but mostly concern more complex models
than the true one.

True dominant motion models
Tested models T T FA FA PSRM PSRM

T 80.3 60.7 0 0 0 0
TR 11 15.9 0 0 0 0.1
TS 4 17.2 0 0 0 0

TRS 0.4 3.2 0.2 0 0 0
FA 0.6 0.5 95 87.3 0 0.2
PT 3.4 1 0 0.4 0 0

PSRM 0 0.7 1.1 9.1 87.5 94.4
FQ 0.3 0.8 3.7 3.2 12.5 5.3

Table 4 Scores obtained with criterion RTIC for all the tested models and for the six exper-
iments, in percentage of the total number of examples in each experiment.

We conducted complementary experiments to analyse the behaviour of the cri-
teria in presence of noise. We corrupted the two images with independent Gaussian
noise of increasing variances (5, 10, 15, 20) for a series of 100 pairs of images with T
model as dominant motion and PSRM model as secondary motion. When adding
independent noise on the pixel intensities, the brightness constancy assumption
is no more strictly valid. Table 5 supplies the relative performance change of the
robust motion-selection criteria in presence of noise of varying levels. The percent-
age of relative variation is given with respect to the selection score of the true
model T obtained with a reference small noise of variance 2. We can observe that
RBIC is not robust to noise. RTIC is slighlty and smoothly affected (as one could
expect) by noise up to a variance of 15. Somewhat surprisingly, the FRIC crite-
ria have a more irregular behaviour, especially FRIC1, knowing that the absolute
performance score of FRIC1 is much lower than those of RTIC and FRIC2.

To compare the selection criteria on the same fair basis, as aforementioned, we
used the simple Talwar robust function to estimate the motion model, since it is
implemented in the Motion2D software. The Tukey function is also available in
the Motion2D software. Then, we rerun the experiments on the synthetic dataset
for the FRIC criteria, to know if their performance may depend on the robust
fitting stage. From Table 6, we can observe that results are similar apart from
experiment PSRM1 where results are a bit different. Then, there is no evidence
for any dependence on the robust function used.
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Image noise variance
Criteria 5 10 15 20
RBIC -42% -36% -54% -54%
RTIC -5% -8% -11% -21%
FRIC1 +21% -17% +26% -17%
FRIC2 +24% +32% +10% -16%

Table 5 Relative change in performance of selecting the true model, with added Gaussian
noise of increasing variance. Numbers are averaged over a sequence of 100 image pairs with
T as dominant motion.

FRIC criteria and robust functions
Experiments FRIC1-Tw FRIC1-Tk FRIC2-Tw FRIC2-Tk

T1 64.6 64.5 76.9 76.8
T2 61.2 60.5 76.4 75.9

FA1 73.3 68.0 80.5 76
FA2 82.1 81.6 83.4 82.9

PSRM1 72.7 64.8 74.4 68.8
PSRM2 71.7 68.9 74.7 73.6

Table 6 Comparison of FRIC criteria results for two different robust functions, Talwar (Tw)
and Tukey (Tk) functions respectively, for the same experiments as those of Fig.4.

6.2 Results on real image sequences

To evaluate the performance of the proposed criteria on real cases, we carried out
experiments on two sets of video sequences. The first one contains videos acquired
with a robot setup in our lab, the second set gathers videos collected on the web.

For the real experiments, we keep a subset of five motion models of Table 1:
{T, TR, TS, PSRM,FQ}. FA was removed since it does not precisely correspond
to any given camera motion. Clearly, inferring the ground-truth motion models in
real sequences is harder. As a consequence, we limited the set of motion models to
models representative of real physical camera motion. In addition, FQ still serves
as the full model. PT is removed since it involves the same two parameters as T,
and the perceived motion is quite similar for the two respective camera motions.

Let us make a cautious observation on the ground truth issue when dealing with
real videos. In contrast to the experiments with computer-generated sequences
reported in the preceding subsection 6.1, we cannot state right away which motion
model is the true one. We can just try to infer it from the 3D motion of the camera
and the 3D structure of the scene, given the relation between the 3D (rigid) motion
of the camera, and the 2D image motion recalled in subsection 3.3. For the videos
acquired with our robot set-up, we control the robot motion and the scene layout,
but to a certain extent. As a consequence, the ground truth cannot be established
with 100% confidence. For the experiments on the video sequences downloaded on
the net, reported later on in this subsection, we deduced the ground truth only
from the visual inspection of the sequences. It is definitively subject to even greater
uncertainty on the exact 3D motion of the camera and the pose of the scene.

The first set of real image sequences were acquired with a camera mounted
on a Cartesian coordinate robot available in our lab. The setup enables to apply
a given motion type to the robot. Ideally, the motion applied to the robot, and
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Fig. 5 Robotic setup for the acquisition of video sequences. The camera is mounted at the
robot end effector. The scene background is a planar surface formed by a poster. The outlier
object is a square flat object translating along an axis put on the poster.

then to the camera, induces the dominant motion of the image sequence. Since
we estimate one single motion model to account for the dominant image motion,
we need to assume a planar scene so that the ground-truth motion model can be
inferred unambiguously for the dominant image motion. Otherwise, in case of a
non shallow scene, we would need multiple motion models and a segmentation
framework to fit a motion model to each part of the scene, since depth and surface
orientation impact on the resulting image motion. However, this is beyond the
scope of this work. For these lab video sequences, a poster depicting an aerial
view of a city constitutes the scene background. In addition, we introduce an
independent motion in the scene using an additional single axis robot bearing a
flat object and moving in the field of view of the camera. The complete setup is
drawn on Fig.5. A sample of acquired images is given in Fig.6 showing that the
outlier moving region may occupy a substantial part of the image (on the left of
the image).

We report two experiments. In the first experiment, a rotation around the
view axis is applied to the robot to produce an image sequence of 146 frames as
illustrated in Fig.6. Since the rotation axis does not pass by the optical center,
the expected dominant motion model is the combination of a translation and a
in-plane rotation (TR).

Fig. 6 First and last frames of the first robot sequence, and the dominant flow between frames
0 and 1 computed with TR model. The outlier area is framed in red in the first image.

Table 7 contains the model selection results provided by our criteria FRIC1,
FRIC2 and RTIC, along with RBIC. FRIC2 and RTIC select the true motion
model (TR) with a good percentage rate of 64.8% and 76% respectively. Let us
observe that the motion models without rotation (T and TS) are never selected,
demonstrating that the key component of the dominant motion is consistently well
identified. FRIC1 selection is more balanced between TR and the full model FQ.
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T TR TS PSRM FQ
FRIC1 0 46.4 0 7.8 45.8
FRIC2 0 64.8 0 6.7 28.5
RTIC 0 76 0 0.5 23.5
RBIC 0.6 0 0 3.9 95.5

Table 7 Selected motion models over the sequence of Fig.6 for the four compared criteria (in
percentage of the total number of frames).

RBIC selects the full model in almost the whole sequence. For this experiment,
RTIC is the best criterion by a large margin.

Fig. 7 First and last frames of the second robot sequence, and the dominant flow between
frames 0 and 1 computed with TS model.

For the second experiment with the robotic setup, a translation is applied along
the axis of the Cartesian robot, parallel to the camera line of sight (the Z-axis),
producing a divergent motion in the image, as displayed in Fig.7. However, the
focus of expansion is not at the center of the image plane. Then, the expected
dominant motion model is TS. A sequence of 170 frames was acquired. Results
are collected in Table 8. The most frequent choice of our three selection criteria
throughout the sequence is the PSRM model. The TS model is the second most
frequent selected model for the two FRIC criteria, while RBIC selects the full
model over almost all the frames. The FRIC criteria yield a better performance
than RTIC. However, the real robot motion may not be perfectly aligned with the
camera axis of view, thereof the possible occurrence of the PSRM configuration
(component U or V of the 3D translation would not be strictly equal to 0), which
may explain the results. If we add the scores for TS and PSRM, we get a cumu-
lated score of 71.2%, 77.6% and 58.2%, for FRIC1, FRIC2, and RTIC respectively,
whereas RBIC stagnates at a score of 7.6%. For this experiment, we can conclude
that FRIC2 is the best criterion by a large margin.

T TR TS PSRM FQ
FRIC1 0 0 23.5 47.7 28.8
FRIC2 0 0 28.2 49.4 22.4
RTIC 0 0.6 15.3 42.9 41.2
RBIC 0 0 4.1 3.5 92.4

Table 8 Motion models selected by the compared criteria over the second robot sequence (in
percentage of the total number of frames).
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We now report results on three video sequences taken from the net. The first
one depicts a field scene acquired from an airborne camera. The sequence contains
84 frames and the scene is almost planar. The outlier moving object is the reaping
machine with the dust cloud behind it (Fig.8). It is difficult to infer the precise
ground truth from the video alone, we do not know the camera orientation with
respect to the ground and its exact motion. However, it can be assumed that the
PRSM model should be the most relevant one. Since in previous experiments,
FRIC2 systematically outperforms FRIC1, we only include FRIC2 in the next
experiments.

Fig. 8 First and last frames of the field scene sequence, and the dominant flow between frames
2 and 3 computed with PSRM model.

Table 9 shows that both proposed criteria FRIC2 and RTIC first select PSRM
as the dominant motion of the sequence. However, FRIC2 achieves a greater correct
classification rate of 73.8% of the image pairs, than RTIC which obtains a rate of
54.8%. In contrast, RBIC selects the full model as dominant motion, with PSRM
in second place.

T TR TS PSRM FQ
FRIC2 9.5 0 3.6 73.8 13.1
RTIC 0 0 2.4 54.8 42.8
RBIC 0 1.2 13.1 34.5 51.2

Table 9 Selected motion models over the field sequence of Fig.8 for the three compared cri-
teria.

The second real video consists of a sequence of 54 frames (Fig.9). Visually,
the camera moves away from the scene, which leads to consider TS as the true
dominant motion model. As in the previous sequence, the scene is almost planar
and the vehicles present in it constitute the outliers to the dominant motion.
We report in Table 10 the selection scores of the compared criteria for the five

Fig. 9 First and last frames of the roundabout sequence and the dominant motion between
the first and second images computed with TS model.
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tested motion models in the sequence of Fig.9. The right motion model TS is
correctly selected by FRIC2, but not by RTIC nor RBIC, both selecting the FQ
model.

T TR TS PSRM FQ
FRIC2 16.6 0 72.2 5.6 5.6
RTIC 0 5.6 0 16.6 77.8
RBIC 0 0 0 16.7 83.3

Table 10 Motion models selected by the three compared criteria over the roundabout sequence
of Fig.9.

The last real video example involves a sequence where a partly planar scene is
recorded from an aerial camera (Fig.10). A passing train introduces outliers to the
dominant motion, The camera motion is apparently parallel to the ground with a
slight rotation. We can assume that the TR motion model is the true one.

Fig. 10 First and last frames of the train sequence and the dominant motion between the
first and second frames computed with TR model.

We can observe in Table 11 that FRIC2 selects TR as dominant motion, both
with a rate of 45.9%. They also select T and TS in almost half of the sequence,
which are still reasonable choices. RTIC and RBIC incorrectly select the full model
for most of the sequence.

For these three real image videos, FRIC2 is the one which consistently supplies
good results. Let us add that the RAIC criterion will not give better results than
RBIC which is almost always stuck on the full model FQ when dealing with real
image sequences. Indeed, the RAIC penalty of the model dimension (eq.(24) is far
lower than the one of RBIC (eq. (25).

T TR TS PSRM FQ
FRIC2 25 45.9 20.8 8.3 0
RTIC 0 0 0 4.2 95.8
RBIC 0 8.3 8.3 0 83.4

Table 11 Motion models selected by the three compared criteria over the train sequence of
Fig.10.
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7 Conclusion

We have proposed two new robust motion model selection criteria. The first one is
a robust version of the Takeuchi information criterion called RTIC. The second one
departs from the usual approach by starting from the Fisher statistic. We designed
two variants of the latter, FRIC1 and FRIC2. All three are easy to compute. The
three criteria explicitly tackle the trade-off between the size of the inlier set (to
be maximized) and the complexity of the motion model (to be minimized). In
addition, FRIC1 can be viewed as a proposition for a robust Mallows’ CP criterion.

Experiments on synthetic and real image sequences, along with comparison
with RBIC, demonstrate that our criteria achieve superior performance. RTIC
supplied the best performance on the synthetic dataset, whereas FRIC2 performed
the best on the tested real videos. This demonstrates that the two proposed robust
motion selection criteria, RTIC and FRIC, are complementary and bring valuable
contributions. The proposed robust motion selection criteria could be also applied
to other tasks involving parametric models.
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