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On the detection of a nonlinear damage
in an uncertain nonlinear beam using
stochastic Volterra series

Abstract

In the present work, two issues that can complicate a damage detection process are considered: the uncertainties
and the intrinsically nonlinear behavior. To deal with these issues, a stochastic version of Volterra series is proposed
as a baseline model, and novelty detection is applied to distinguish the condition of the structure between a reference
baseline state (presumed “healthy”) and damaged. The studied system exhibits nonlinear behavior even in the reference
condition, and it is exposed to a type of damage that causes the structure to display a nonlinear behavior with
a different nature than the initial one. Additionally, the uncertainties associated with data variation are taken into
account in the application of the methodology. The results confirm that the monitoring of nonlinear coefficients and
nonlinear components of the system response enables the method to detect the presence of the damage earlier than
the application of some linear-based metrics. Besides that, the stochastic treatment enables the specification of a
probabilistic interval of confidence for the system response in an uncertain ambient, thus providing more robust and

reliable forecasts.
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Introduction

Structural Health Monitoring (SHM) techniques aim to
reduce the maintenance cost and increase the reliability
and security of aerospace, civil, or mechanical engineering
structures |. Moreover, within the hierarchy of complexity
that SHM methodologies may achieve, damage detection
is the first step, and its performance is fundamental to
the success of the subsequent application of higher forms
of SHM in the hierarchyQ. In this sense, many authors
have studied and developed various damage detection
techniques to be implemented for different structures and
applications>~’. Of course, there is no general approach that
can be used to detect damage in all real systems, since
the ubiquitous challenge when the intrinsically nonlinear
behavior of many systems® and the data variation related to
uncertainties*'? is counted in the analysis.

Many otherwise-linear structures can exhibit nonlinear
phenomena induced by the presence of damage, and in
this situation, any form of nonlinearity detector is akin to
detecting damage''. Such damage that produces nonlinear
behavior, for example, delamination '>!?, rubbing and unbal-
ance in rotor systems'*'® and opening cracks'’""" may
be detected through the observation of nonlinear behavior
in the measured responses. However, as mentioned before,
many structures fundamentally present nonlinear behavior
even in the reference condition?’, causing confusion in the
nonlinearity (as a proxy for damage) detection process®.
Additionally, systems’ measured output can exhibit data
variability from sources such as environmental or input
load variation, aleatoric noise, changes in boundary condi-
tions, variations in the fabrication processes (i.e., unit-to-unit

variability), and others?'~>*. These variations all confound
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the damage detection process, suggesting the use of prob-
abilistic tools’*2°, regression models>’, machine learning
algorithms 2%, probabilistic model selection approaches?*?,
outlier analysis®**** and novelty detection methods>. Con-
sidering the data variation problem is important in reducing
the number of false alarms 033, although there are situations
where variability can mask positive detections as well.
Villani et al. (2019)%¢ introduced an extension of the
deterministic Volterra series approach used by Bruce et
al. (2017)*7 to detect damage in intrinsically nonlinear
systems based on input/output measurements, recognizing
data variation. The authors examined the identification of
the nonlinear data-driven model several times, using Monte
Carlo simulations, to create a stochastic reference model
capable of predicting the nonlinear performance and the
fluctuations in the response at the same time. Two main
strategies were suggested to detect the presence of a crack
in an initially nonlinear beam, considering simulated data,
based on the random kernel contributions and random
kernel coefficients. The results presented an adequate
performance in distinguishing the intrinsically nonlinear
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behavior and the data variation from the nonlinearity caused
by the damage. Although the simulated results showed
a promising performance of the method, experimental
practice suggested the use of a stochastic Volterra expansion
to explore the model space, particularly in the more
challenging present problem of inherent nonlinearity, rather
than induced nonlinearity. The authors also hypothesized
that a formulation using the kernels’ coefficients and
contributions concomitantly in the same index could be
attractive to enhance the robustness of the method, leaving
the method to detect damage with diverse characteristics
without loss of performance. Additionally, in the simulations
performed, only the variation of linear parameters was
considered in the data variation scenario, a simplification
that might not reflect the behavior of structures that operate
in the nonlinear regime of motion under the presence of
uncertainties. This simplification caused a low variation
of the high-order kernels coefficients, suggesting that a
more realistic application encompassing the variation of the
nonlinear components could complicate the application of
the approach.

Then, in Villani et al. (2019)® the authors showed
the experimental application of the approach based on
the Volterra kernels’ contributions to detect damage in
an intrinsically nonlinear beam, considering data variation
related to the reassembly of the experimental setup.
However, the damage simulated was associated with the
loss of mass that reflected in the variation of the natural
frequencies of the equivalent linear system. In this situation,
the damage did not have influence in the estimation of the
kernels’ coefficients. These results pointed to the demand for
developing a hybrid approach capable of making use of the
kernels’ contributions and coefficients together in a robust
index. Moreover, an experimental application considering
damage with direct influence on the nonlinear components of
the response could improve the performance of the approach
with regard to the differentiation between the intrinsically
nonlinear behavior and damage-induced nonlinear behavior.

Hence, this paper aims to cover issues that were not
yet considered in both previous works: (a) an experimental
application of the stochastic Volterra series methodology
with the presence of damage that produces nonlinear
behavior to the system - a breathing crack emulation; (b)
the observance of variation in the intrinsic nonlinearity of
the structure including the data variability, thus not only
considering its realization in the linear components; (c) the
generalization of the approaches studied before with the
development of a new hybrid method that considers both
the kernels’ coefficients and contributions simultaneously
in the damage index; and, finally, (d) the construction of a
theoretical distribution of the damage index calculated in the
reference condition to reduce the number of experimental
realizations needed to estimate the threshold value based
on the Kernel Density Method used before (a practical
problem when we consider real-world experiments). To the
best knowledge of the authors, this is the first paper that
assumes nonlinear changes associated with an experimental
mechanism of damage with the assumption of reference
already nonlinear, but unlike Born et al. (2010)%, here
considering the inherent uncertainties in the experimental
setup to perform a rigorous stochastic SHM method.
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In this context, an intrinsically nonlinear beam is analyzed,
with natural data variation in the full experimental context,
to investigate the performance of the proposed methodology.
The variation simulated in the data reflects merged changes
both in linear and nonlinear components of the system
response. Furthermore, the novelty detection is reshaped
to hold the random kernels’ contributions and coefficients
in the same damage index, using Principal Component
Analysis (PCA) and Mahalanobis distance metrics. A formal
hypothesis test is presented to create a more robust damage
detection methodology, based on a theoretical distribution
for the Mahalanobis distance determined in the reference
condition of the structure. The results exposed in this work
have demonstrated the beneficial performance of a nonlinear
metric to detect damage in this situation and the capability of
the stochastic Volterra series to predict the data variation in
a probabilistic framework, improving the statistic confidence
of the method.

To be familiar with the Volterra series model application in
damage detection problems, find the motivation to the study
of the nonlinear phenomena in the procedure, and have more
details about the Volterra series reformulation to predict the
nonlinear responses considering data variation, the interested
reader is referred to seeing Bruce et al. (2017)°7, Villani et
al. (2019)% and Villani et al. (2019)%. The present paper
will be centered on the primary differentiation between the
approach used here, and the one analyzed previously and
in the experimental results obtained with the application of
the method contemplating an initially uncertain nonlinear
system subjected to the presence of damage that provokes
nonlinear phenomena to the structure behavior, that was not
done before.

The present paper is organized as follows. Section “The
damage detection methodology based on stochastic Volterra
series” describes the stochastic mathematical model used to
describe the nonlinear systems response and the approach
proposed to detect the damage considering the data variation
related to uncertainties. Section “Experimental setup” shows
the nonlinear structure considered in this work, the damage
simulated and the main characteristics of its behavior.
Section “Application of the proposed methodology” shows
the application of the methodology proposed and the main
results obtained. Finally, the section “Final remarks” presents
the conclusions of the work.

The damage detection methodology based
on stochastic Volterra series

This section outlines the methodology proposed to be
practiced in the damage detection problem in initially
nonlinear systems, taking into account the data variation
related to uncertainties. The development of the stochastic
model is briefly described, with more detail in Villani
et al. (2018)%°. Additionally, the reader can obtain more
information about the deterministic Volterra series expanded
using Kautz functions in Bruce et al. (2017)%.

The stochastic version of the Volterra series

In order to take into account the uncertainties in the
model formulation, a parametric probabilistic approach is
assumed. Thus, the model parameters are assumed as random
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parameters and the model response as a random process>'~>3.

Therefore, a probability space (©, ,P) is considered, where
O represents the sample space, is a o-algebra over O, and
IP is a probability measure *°.

In the discrete-time domain, assuming the presence of
uncertainties, a single system output can be interpreted
as a random process realization that is a consequence of
a single deterministic input. The relationship between the
deterministic input and the random output can be described,
using the convolution notion?, through the stochastic
version of the Volterra series

oo lel
y(O, k) ="
n=1n;=0
Ny,—1 n
. Z Hﬂ(e7n17 "7n?7)Hu(k_ni)a (1)
ny,=0 =1

where (0, k) € © x Z — y(0, k) represents the single ran-
dom output that is consequence of the single deter-
ministic input k € Z; — u(k), (6,n1,..,n,) € O X Z"
H,,(0,n4,...,n,) represents the random version of the 7-
order Volterra kernel and Z, represents the set of integer
positive numbers.

The principal benefit of the Volterra series model is the
capability to reproduce the system output as a sum of linear
and nonlinear contributions

YO, k) = vy (0. k) =

——

linear

nonlinear

where (0,k) € © x Z, — y1(0,k) is the random output
obtained using the first random kernel, (6,k) € © x Z; +—
y2(6, k) is the random output obtained using the second
random kernel, and so on. In this work, the series
will be truncated in the third order kernel because of
the cubic characteristic of the nonlinear system response
investigated, and the capability to classify linear and
nonlinear contributions in the total response will be used in
the damage detection procedure as feature sensitive to the
presence of damage.

On the other hand, as broadly addressed in previous
works 393740 the central disadvantage of the approach is the
challenge in achieving the convergence when a high number
of terms is used. To solve this problem, the Volterra series
can be extended utilizing the Kautz functions*'*2, and the
system random output can be represented as

oo Jp
yio, k) = > Y .
n=1¢;=1
I n
D By (0yin, i) [[ 1, 0F), 3
ip=1 j=1

where Ji, ..., J, represents the number of Kautz functions
used in the kernels projections, the n-order random
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Volterra kernel expanded in the orthonormal basis is
represented by the random process (0,i1,...,i,) € © X
Z" + B,(0,i1,...,i,) and the random process (6,k) €
© x Zy — 1;;(0, k) is a filtering of the deterministic input
signal by the random Kautz functions. The Kautz functions
are supposed random because their definition depends on
the dynamics of the system and, as the system response is
considered as a random process, it is presumed that the Kautz
functions will randomly change too.

Conclusively, the coefficients of the kernels can be
calculated using the least-squares approximation in a
deterministic way?®’, and then, adopting Monte Carlo
simulations, the process is repeated until the stochastic
model converges. The Monte Carlo method was chosen
because it is easier to perform when the deterministic
algorithm is known>***, More information about the random
Kautz functions and the process of the random Volterra
kernels estimation may be found in Villani et al. (2019) 36,38

Damage detection based on novelty detection

In the previous work, two points were analyzed separately
in the damage detection process: the kernel coefficients
and the kernel contributions. Nevertheless, it is difficult
for practical applications to decide which feature is better.
Thus, the damage detection index used here examines both
features jointly. Regarding the stochastic model identified
with training data in the reference condition, the damage-
sensitive index may be determined in the reference status.
First of all, recognizing that the Volterra series will be
truncated in the third order kernel, the kernels coefficients
can be allocated together to be used as damage sensitive
feature

]Bl(gv 1)
B1(972)
lzn(97i1) - : ]
B1(07 Jl)
BQ(H7 17 1)
IB2(97272)
qua(eail = Z2) = : ) (4)
IB2(07 J27 JQ)
Bs(0,1,1,1)
IB3(97 27 2a 2)

B3(97 J37 J37 J3)

where the random process (6,i1) € © X Zy —  1in(0,41)
represents the coefficients of the first kernel, (0,41 = i) €
O X Zi — qua(B,i1 = i2) represents the coefficients of
the diagonal of the second kernel and (0,4, =iy =i3) €
O X Zy— (0,41 =ig = i3) represents the coefficients
of the main diagonal of the third kernel.

Additionally, the contribution of the kernels can be
calculated as
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J1
Yiin(0, k) = > By (0,i1) 114, (0, k),
i1=1
J2 J2
Youa(0,8) = > Y By (0,i1,42) la, (0, k) b, (0, k) ,
’ll 122 1
4)
J3 Jg J3
Yeur (0, k) Z Z 21533 (0,d1,12,13) ...

Zl 122 123 1

. |37i1 (97 k) |37i2 (6‘7 k) |3,i3 (0, k) s

where (6,k) € © X Z4 > Yiin (0, k) is the linear contribu-
tion, (0,k) € © X Zy — Yqua(0, k) is the quadratic con-
tribution and (0,k) € © X Zy — Yeup(0, k) is the cubic
contribution. So, to reduce the order of the classification
problem, the Principal Component Analysis (PCA)Z0-44—46
can be applied to the kernels contributions

ylm(ﬁ, k‘) > PCA > Clm(e, 1), .
Yaua (8, k) > PCA > Cyua(0,1), ...
ycub(e, ]ﬂ) > PCA > (Ccub(ﬁ ].)7

Clm(e npcu)a
qua(e npca)7 (6)

cub (9 npca) )

where (0, npeqa) € © X Zy +— Cyin (0, npeq) represents the
principal components of the linear contribution, (6, npeq) €
© X Zy — Cyua(0,npeq) represents the principal compo-
nents of the quadratic contribution, (0, npc,) € © X Zy —
Ceup(0,npcq) represents the principal components of the
cubic contribution and 7., is the number of principal
components considered. The number of components was
defined based on the contribution of each component in the
construction of the covariance matrix **.

After the calculation of the kernels coefficients and
the principal components of the kernels contributions, the
damage index can be defined in the reference condition

Liin = [ 1in(0,11) Crin(0, Mpea) [(N. x (7 411pe0)) 5
wa(0,i1 =d2)  cun(0,i1 =iz =i3) ... @)

]Inlin = [ qua
(Cqua(ganpca) Ccub(97npca)](NS><(J2+J3+2npm))a

where I, and I,;, are, respectively, the linear and
nonlinear indices in the reference situation. The linear
and nonlinear indices will be assessed with the aim of
comparison between the linear and nonlinear methodologies
performance. So, in the reference condition, I;;, is a N X
(J1 + npeq) matrix and Lz, is @ Ny X (J2 + J5 + 2npeq)
matrix, being N the number of observations used in the
training phase of the reference stochastic model.

Now, with the structure in an unknown (“test”) situation,
a new deterministic model can be identified, and the indices
may be estimated in the unknown status

Ilin = [)\lin(il) Clin(npca)](lx(,]1+npm)) P
Inlin - P\qua(il = Z2) )\cub(il = i2 = Zd) (8)

. Cqua(npca) Ccub(”pca)](lx(J1+npm))a
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where 7, and Z,;, are, respectively, the linear and
nonlinear indices in an unknown condition. As the indices
calculated in the reference condition are matrices composed
by more than one single feature, the novelty detection has to
be performed considering multivariate data. Therefore, the
comparison between the indices calculated in the reference
and an unknown condition can be made considering de
squared Mahalanobis distance ***/

Di = [Tn — i1, )" Z1), [T — b, ), ©)
where m = lin or m = nlin, ug,, and Xy, are, respectively,

the mean vector and the covariance matrix of the index
calculated in the reference condition. The simple machine
learning method based on Mahalanobis distance is used
here because the classification is done between two
possible conditions (healthy and damaged) and the goal
is to examine the performance of the Volterra kernels
characteristics as damage sensitive features and not to
investigate the differences between refined classification
methods. Other classification methods can be used in the
future to improve the methodology depending on the real
application confronted.

With the squared Mahalanobis distance calculated, a
hypothesis test may be proposed. In this work, this distance
calculated in the reference condition is modeled with a chi-
square distribution, which may be calculated based on the
assumption of independence and normality in the underlying
multivariate features from which the squared Mahalanobis
distance is calculated ***°. Ideally, a sumpling distribution of
the Mahalanobis distance is desirable, but no such analytical
form is known to exist, so the theoretical model is fit to the
(limited) empirical data obtained. This approximation has
satisfactory performance, as will be shown further along. So,
the hypothesis is proposed

Hy :
Hy:

where X2 is the chi-square distribution, Hy is the null-
hypothesis (healthy condition) and H; is the alternative
hypothesis (damaged condition).

Besides, the probability of a distance value calculated to
be included in the theoretical chi-square distribution can
be computed integrating its Probability Density Function
(PDF)S()

b = FDRI0) = |

where p,, is the probability of the value D2, belonging to
the chi-square distribution, I'(.) is the Gamma function, and
v is the number of degrees-of-freedom. Finally, a sensitivity
value can be determined depending on the application and
probability of false alarms tolerated, and the hypothesis test
can be rewritten

D2 ~ X?,

D2 X2, (10)

D}, ((v=2)/2,—t/2

LT
2 /2(v)2)

Y

H 1:Pm < ﬂ ’
where [ represents the sensitivity chosen for the hypothesis
test. The definition of this parameter depends on the practical
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application and, as an experimental laboratory setup is
utilized, several values will be examined to study the
performance of the method. Figure 1 shows a flowchart of the
damage detection approach. On the left, it can be observed
the training phase, with the identification of the stochastic
reference model and the estimation of the damage indices
in the reference condition. On the right, it is represented
the identification of a new model in an unknown status
and the calculation of the new indices. Then, the indices
are correlated using the squared Mahalanobis distance, and
finally, the hypothesis test is applied to classify the condition
of the structure between healthy and damaged.

Experimental setup

The experimental setup used is presented in Fig. 2. The
structure monitored is formed by a clamped-free beam,
that is constructed by gluing four thin beams of Lexan
together, 2.4 x 24 x 240 [mm?] each one, with the intention
of emulating a damage propagation that is described further
on. At the free boundary, two steel masses are affixed and
interact with a magnet, generating a nonlinear behavior in
the system response, even in the reference condition due to
added magnetic potential. Moreover, the setup includes:

e A National Instruments acquisition system:

— CompactDAQ Chassis(NI cDAQ-9178);

— A C Series Sound and Vibration Input Modules
(NI-9234);

— A C Series Voltage Output Module (NI-9263).

Electrodynamic Transducer Labworks Inc. (ET-132);
Amplifier MB Dynamics SL500VCF);

Load cell PCB PIEZOTRONICS (208C02);
Accelerometer PCB PIEZOTRONICS (352C22).

The electrodynamic transducer is employed to excite the
structure with different signals and considering two levels of
input (low - 1 V RMS and high - 6 V RMS). The output
data is measured by the accelerometer positioned close to
the free extremity of the beam, because the authors are
only interested in the region of the first mode shape of
the structure (see Fig. 2). The input signal analyzed is the
voltage signal applied in the electrodynamic transducer. As
a single-input/single-output (SISO) model is considered, this
pair of signals is enough to identify the Volterra kernels and
monitor the structure health. All the acquisition parameters,
signals considered, and equipment used were the same in the
experiments performed considering the different structural
conditions.

Intrinsically nonlinear behavior

The mechanical system used exhibits nonlinear operation
even in the reference condition, without the presence of
damage. Figure 3a shows the results obtained during the
stepped sine test applied considering two levels of input.
When the input applied has a low level of amplitude (1 V
RMS), the output signal shows linear characteristics for both
up-sweep and down-sweep inputs. However, when the input
signal is at a sufficiently high amplitude (6 V RMS), the
nonlinear phenomena can be seen with the jump presented
in the test. Additionally, Fig. 3b shows the time-frequency
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diagram of the system response considering a high level of
a chirp input in the region of the first mode shape of the
structure. The presence of the cubic harmonic in the response
confirms the nonlinear characteristic of the response caused
by the interaction between the magnet and the steel masses.

So, the system studied presents nonlinear behavior, subject
to sufficient level of input, even when the structure is healthy.
This characteristic is obtained because the magnetic force
changes nonlinearly with distance from the end masses to
the magnet. This intrinsically nonlinear behavior can be
confused with the simulated damage that causes a distinct
nonlinear characteristic to the system response, as will be
seen next.

Damage simulated

The damage imposed on the structure aims to simulate a
breathing crack present in the system. In this sense, four
different beams were built to be used in the application of
the damage detection methodology:

e Training beam: beam constructed with 4 intact Lexan
beams and used in the training phase of the algorithm
(see Fig. 4a);

e Test beam: beam constructed with 4 intact Lexan
beams and used in the test phase of the algorithm (see
Fig. 4a);

e Damage I: beam constructed with 3 intact and 1 cut
beam (see Fig. 4a and b);

e Damage II: beam constructed with 2 intact and 2 cut
beams (see Fig. 4a and b);

The cut in the beams is positioned close to the excitation
point (see in Fig. 2b). This spot was chosen to obtain the
required nonlinear behavior to test the performance of the
algorithm. The damage condition might be judged severely,
but the position and excitation combined were defined to
generate a condition that is difficult to detect — mainly in the
condition Damage I — as will be shown further along. Figure
5 shows the time-frequency diagram of the system response
considering a chirp input with a high level of amplitude and
the structure in damaged conditions. In Fig. 5a it is observed
the appearance of a quadratic harmonic when we compare
with Fig. 3b, that is a consequence of the crack, without
significant alterations in the behavior of other components
of the response (first and third harmonics look similar to
the ones observed in Fig. 3b). With the propagation of the
damage (damage II) the quadratic and cubic harmonics grow
up and the resonance frequency changes (see in Fig. 5b).

So, it is recommended that the initial propagation of the
damage has influence in the quadratic harmonic of the system
and when the extension of the damage is more significant, all
linear and nonlinear components of the response are affected.
The damage detection approach applied has to be able to
detect the appearance of the nonlinear behavior caused by
the damage, without confusing this evolution with the cubic
nonlinear behavior caused by the presence of the magnet.
Additionally, the problem becomes more complicated when
the data variation is assumed in the problem, requiring a
strategy to separate these effect as shown in the next section.
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Figure 3. Intrinsically nonlinear behavior of the system. (a) Stepped sine test, where —A—, —a—, —[J— and —m— represent,
respectively, frequency up and frequency down considering low level of input, and frequency up and frequency down considering
high level of input. (b) Time-frequency diagram of the system response.

Data variation varied from 2 mm to 3.5 mm during the tests, repeated on

) different days to obtain a total of 200 experimental tests for
In order to study the performance of the strategy in the o,.h beam constructed.

presence of data variation or other uncertainties, the distance
between the magnet and the steel masses (see in Fig. 2b) was
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Figure 5. Time-frequency diagram of the system response obtained in damaged conditions; (a) damage | and (b) damage II.

Figure 6 illustrates the variation of the system response
during the tests. The results consider only the first mode
shape frequency range, as only this range will be examined
in the damage detection process. It is clear that it is easy
to classify the structural condition when the extension of
the damage is even more severe (damage II), but it is
not plausible to observe visually the deviation between the
reference and damage I conditions when the Frequency
Response Function (FRF) and the linear modal parameters
are considered. These modal parameters were estimated
considering a line-fit method>' and the experimental
realizations of the FRF.

These results show how hard it is to detect the presence
of the damage when the data variation is considered in the
analysis. In the scenario considered in this work, with the
experimental data measured, the model proposed has to be
able to detect the presence of the damage in the uncertain
ambient state without confusions between the nonlinear
behavior caused by the presence of the magnet and that
one caused by the presence of the damage. In this sense,
the next section presents the main results obtained with the
application of the methodology based on stochastic Volterra
series.

Application of the proposed methodology

This section matches the application of the methodology
described in the section “The damage detection methodology
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based on stochastic Volterra series” to detect damage
admitting the experimental setup described in section
“Experimental setup”. The main results obtained are shown,
and the performance of the linear and nonlinear analysis are
compared.

Reference model identification

The first step to the utilization of the methodology is the
estimation of the stochastic reference model. As mentioned
before, the first three Volterra kernels were considered in
the analysis. The number of Kautz functions and the Kautz
parameters related to each Volterra kernel were defined
as described in the previous work Villani et al. (2018)%.
So, the number of functions used here are J; =2, Jo, =4
and J3 = 6. To obtain the input/output signals used in the
kernels estimation, the structure was excited admitting a
chirp input signal varying the excitation frequency from 25
to 40 Hz (first mode shape region) and considering two
levels of amplitude (1 V RMS - linear system behavior
and 6 V RMS - nonlinear system behavior). The chirp
input is attractive because it excites the linear and nonlinear
components of the system response with enough energy,
leading to a better estimation of the high-order kernels '**7-2,
The output signal considered (velocity vibration signal) is
obtained through the integration of the acceleration signal
measured by the accelerometer (see Fig. 2). The velocity
signals are used because of the previous implementation
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of the model identification procedure considering this type
of output. As done before’®*’, the kernel estimation is
performed in two steps, i.e., the first kernel is identified
considering the underline linear behavior of the system, and
then, the second and third kernels are identified considering
the nonlinear components of the system response.

The deterministic model is identified several times,
considering the 200 experimental realizations obtained from
the healthy training beam, to construct the stochastic
reference model. Figure 7 presents the verification and
validation of the model identified. Figures 7a and 7b shows
the stochastic model output with 99% of confidence bands,
in the time domain, considering the same chirp input used
in the model estimation with a high level of amplitude (6 V
RMS), in comparison with experimental data measured. It
is observed that the stochastic model can predict the system
output considering the data variation. Additionally, Fig. 7c
shows the stochastic model output with 99% of confidence
bands, in the frequency domain, holding a single sine input
with excitation frequency close to the system resonance
frequency (=~ 35 Hz) and a high level of amplitude (6 V
RMS), in comparison with experimental data measured. As
can be seen, the stochastic model can predict the harmonic
components of the response. This characteristic is unusual in
the sense that as the damage considered produces variations
in the nonlinear components of the response, it is expected
that the model could be sensitive to these variations with
adequate performance to detect the damage faster than
the linear approach. With the stochastic reference model
estimated, the damage detection procedure can be applied
and the results obtained are shown in the next section.

Damage detection performance

First of all, it is interesting to observe whether the
Mahalanobis distance computed considering the indices
obtained in the reference condition (I;;,, and I,,;;,,) belongs to
the chi-square distribution, as proposed in the methodology.
Figure 8 shows adjustment between the histograms obtained
from the Mahalanobis distance, calculated with the indexes
in the reference condition, and the chi-square theoretical
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distribution. Of course, the theoretical approximation is not
perfect but satisfactory, considering the limited amount of
data available in the analysis. Moreover, this approximation
overcomes the problems involving the empirical estimation
of distributions based on experimental data, and the Kernel
Density Estimator used before, related to the needed
amount of experimental data and the choices of the kernel
and smoothing parameter*’. This aspect of the indices
distribution allows the application of the hypothesis test
proposed based on the probability of the distance calculated
belonging to the chi-square distribution.

The evolution of the distance calculated from the indices
with the propagation of the damage is presented in Fig. 9.
It is observed that the linear index is not sensitive to the
presence of the damage at the beginning of the propagation,
i.e., the damage I condition (see Fig. 9a). The nonlinear
index presented more sensitivity to the presence of damage,
showing an adequate separation between the damage I
condition and the reference condition (see Fig. 9b). Besides,
the nonlinear index calculated from the data measured
considering the test beam presents some outliers that will
be reflected, probably, in false positives, depending on the
threshold value used. These outliers are a consequence of
the high sensitivity of the nonlinear components to structural
variations. These results are not unexpected since the test and
training beams are nominally the same, but not identical.
The use of more than one training beam could improve
the methodology performance in a real application. Another
interesting aspect of the index used is the increase of the
distance values with the propagation of the damage that,
in the future, may be well correlated to the severity of the
damage.

Considering the distances determined, the hypothesis test
proposed may be applied. Table 1 shows the results obtained
for both linear and nonlinear indices. It is clear that the
nonlinear index presented a higher capability to detect the
presence of the damage. The false alarms (false detection)
are also higher considering the nonlinear index. However,
this value can be reduced without loss of performance to
detect the damage with the decrease of the test sensitivity as
perfomed, e.g., by Avendafio-Valencia and Fassois (2017)°!.
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The linear index presented problems to detect the damage I  structure. In some applications, this value can also be
condition, even with the variation of the test sensitivity. In  optimized to present a better performance in the damage
real applications, the value of the test sensitivity (3) has to detection process, based on measured data obtained from
be determined depending on the level of security/confidence ~ damaged structures®'.

required and on the previous knowledge about the monitored

Prepared using sagej.cls



10

Journal Title XX(X)

Table 1. Results obtained through the application of the hypothesis test.

Hypothesis test sensitivity ~ Percentage of false detection [%]

Percentage of true detection [%]

B Training Beam Test Beam Damage I Damage 11
102 0.5 15.5 345 100
Linear Index 1074 0 0 5 100
1076 0 0 0 100
10~12 0 0 0 75
102 4.5 12.5 100 100
Nonlinear Index 1074 1 7 100 100
1076 0 4.5 100 100
10712 0 1.0 96.5 100
However, a better way to analyze the damage detection 1.0 s sma 4t sl s anssid sasisissaa “A““l
capability of the methodology is computing the Receiver Iﬁ.
Operating Characteristics (ROC) curve. This curve relates »n ®
the false alarm ratio with the true detection ratio obtained -% 0.9 ‘P."‘
applying the hypothesis test for different values of sensitivity °®
(). As a result, the closer to the point (0,1) is the curve, and ,§ 0.8 ./0..
better is the performance of the index because it presents &
a higher probability of detecting the damage with a low Q& 07 o/.
level of false alarms. This curve is used here to study the §
discrepancies between the performance of the linear and F 0.6
nonlinear approaches proposed. Figure 10 shows the curves '
obtained after the application of the hypothesis test using
different threshold values, considering both indices (linear 0-50 02 0.4 06 08 10

and nonlinear) and all structural conditions studied (training
beam, test beam, the damage I and damage II) . In the figure,
it can be seen that the nonlinear index presents a better
performance since the red curve is close to the point (0,1).
This result was expected as the linear components of the
response are not sensitive to the initial propagation of the
damage (see Fig. 9 and Tab. 1).

Moreover, the performance of the nonlinear index (almost
perfect, but this is admittedly a consequence of a finite
data set), with the curve very close to the point (0,1),
was achieved in an experimental laboratory application.
Even with the consideration of the data variation simulated
during the experimental tests, these results do not reflect
a real-structure application. It is supposed in a real-world
application a higher number of confounding effects, different
types of damage occurring coincidentally and other aspects
that may decrease the methodology performance. However,
the capability of the features related to the nonlinear kernels
to detect the presence of the damage before the ones reported
to the linear kernel and the ability of the methodology to do
not confuse the intrinsically nonlinear behavior of the system
with the presence of damage, showed as the main result of
this work, must be preserved.

Final remarks

The problem of damage detection in an intrinsically
nonlinear system, regarding the data variation associated
to uncertainties, subjected to the presence of damage that
causes a nonlinear characteristic in the system response was
investigated in this paper. In this sense, an initially nonlinear
beam was analyzed, and the data variation was emulated
by the random variation imposed in the experimental setup
(variation of the distance between the magnet and the
beam). The damage studied was a breathing crack that
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False Alarm Ratio

Figure 10. Receiver Operating Characteristics (ROC) curve. @
represents the linear index and a represents the nonlinear
index.

effects the system to exhibit a nonlinear operation with
a distinct character of the initial one. In this condition,
the methodology has to be adequate to distinguish the
intrinsically nonlinear operation and the data variation to the
presence of the damage. A method based on a stochastic
version of the Volterra series, with the use of the random
kernels coefficients and contributions as damage detection
features, combined with a novelty detection technique, was
applied to solve the problem.

Unlike what has been shown in the previous works
published ***%, the kernels coefficients, and the kernels
contributions approach were applied together, considering
a unique index to monitor the structural condition, aiming
to augment the robustness of the method. Moreover, a
theoretical distribution was introduced to the Mahalanobis
distance computed in the reference condition to reduce
the possible problems related to the use of the kernel
density estimator previously assumed. Additionally, for
the first time, the methodology was examined through
an experimental application considering an intrinsically
nonlinear beam subordinated to the presence of damage that
produces nonlinear aspects to the system response, all this
considering data variation that reflects changes in the linear
and nonlinear components of the response.

The results obtained revealed that the monitoring of
the nonlinear components of the system response, denoted
by the high-order kernels coefficients and contributions
considered as damage detection features, is a helpful method
to be implemented in damage detection problems when the
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nonlinear system response is present. Again, the nonlinear
metric confirmed to be more sensitive to the appearance
of the damage and showed better performance considering
the data variation compared with the monitoring of linear
components. Finally, the use of the stochastic reference
model, combined with the novelty detection technique and
the hypothesis test, exhibited satisfactory performance to
overcome the problem related to the data measured variation,
providing the metric for detecting the presence of the damage
with probabilistic confidence even in an uncertain ambient.
Based on the results achieved, although the application was
performed considering an experimental laboratory setup, the
authors believe that in real-world applications the nonlinear
metric will also demonstrate a higher performance than the
linear one for this kind of problem.
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