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Abstract

Barteria fistulosa and B. dewevrei, central African rain-forest trees, provide nesting 

cavities for Tetraponera aethiops and T. latifrons ants, respectively, which protect them 

against herbivores. To compare protection efficiency between these two symbioses, for 

20 plants of each species in two sites in Gabon we measured the time elapsed before 

ants reached a focal leaf, for host leaves that were undisturbed, damaged (cut with 

scissors) or subjected to slight vibration (mimicking such damage), and for damaged 

leaves of the non–host Barteria species. Tetraponera aethiops displayed stronger 

protective behaviour than did T. latifrons. Time to reach a damaged host leaf 

(4.5 ± 2.6 min, mean ± SD) did not differ significantly from time to reach a leaf 

subjected to slight vibration (5.2 ± 3.0 min) for T. aethiops, but response to a leaf 

subjected to slight vibration (9.5 ± 1.9 min) was significantly slower than that to a 

damaged leaf (7.8 ± 1.9 min) for T. latifrons. The faster response of T. aethiops to slight 

vibration may have masked a response of this species to chemical signalling. Both ants 

reached damaged host leaves faster than damaged leaves of the non–host Barteria sp., 

indicating host plant specificity in ant responses.
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Introduction

Ant–plant interactions, particularly protection mutualisms (Heil & McKey 2003), are 

widespread in tropical rain forests. In addition to numerous non-symbiotic interactions 

mediated by plant-provided food sources such as extrafloral nectar (Heil 2015), symbiotic

mutualisms also occur. In these, myrmecophytic plants provide nesting space in the form 

of hollow twigs, petioles, stipules, leaf pouches, etc.—more or less specialized structures 

termed domatia—and food in the form of extrafloral nectar, food bodies, secretions of 

plant-nourished hemipteran trophobionts, or combinations of these, to their host ants 

(Davidson & McKey 1993, McKey et al. 2005). In return, ants defend their host plant 

against herbivores and pathogens (Letourneau 1998, Rosumek et al. 2009). About 700 

plant and 110 ant species are involved in this type of symbiosis (Chomicki & Renner 

2015, Davidson & McKey 1993). In some cases, the interaction is obligatory for one or 

even both partners (Gaume & McKey 1999, Moog 2009, Yu & Davidson 1997).

Protection of myrmecophytic plants by ants has been thoroughly studied 

(Janzen 1966, Rosumek et al. 2009).  Like many other plants, myrmecophytic plants 

release volatile compounds, to which their resident ants are attracted (reviewed in Blatrix 

& Mayer 2010). Whereas the role of chemical signalling in ant–plant symbioses has been 

demonstrated by several studies, a smaller number of studies show that vibrations 

produced by herbivore movement also induce ant patrolling (Dejean et al. 2008, 2009, 

Federle et al. 1998, Lapola et al. 2003, Madden & Young 1992).

Protection level often differs among systems depending on the capacity of the 

ants to counter plant enemies (Bruna et al. 2004, Lapola et al. 2003). This capacity may 
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partly depend on colony size (Duarte Rocha & Godoy Bergallo 1992), which in turn 

depends strongly on plant investment in the resident ant colony. Both protective 

behaviour and the level of plant investment in ants are driven by coevolution. However, 

studies comparing the efficiency with which different ants protect the same plant species 

have so far compared ants belonging to different genera that have independently evolved 

associations with the same host plant (Bruna et al. 2004, Lapola et al. 2003). These 

studies thus cannot distinguish differences that may have resulted from coevolutionary 

interactions with the host plant from those that already existed prior to their host 

associations.

In this study we compare the level of protection conferred on host plants by 

two closely related species of Tetraponera (Pseudomyrmecinae), T. aethiops Smith, 1877 

and T. latifrons (Emery, 1912), that both live in symbiotic associations with 

myrmecophytes of the genus Barteria (Passifloraceae), suggesting that their common 

ancestor was also a symbiont of the plants’ common ancestor. Differences in their 

protective behaviour thus evolved in the context of this symbiosis. Comparison of their 

protective behaviour can thus shed light on differences driven by coevolutionary 

interactions. As association specificity seems weaker for B. dewevrei than for B. fistulosa,

coevolution between B. fistulosa and T. aethiops might be more intensive than between 

B. dewevrei and T. latifrons. We postulated that more intensive coevolution of ant and 

plant may have resulted in better protection of B. fistulosa by its ant associate T. aethiops.

We tested the following hypotheses: (1) protective behaviour is elicited by vibration and/

or chemical signals, (2) protective behaviour of each ant species is more pronounced 
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toward its main host plant than toward the other Barteria species, (3) T. aethiops shows a 

more pronounced protective behaviour than T. latifrons.

Methods

Study species and study sites

The genus Barteria (Passifloraceae) comprises four tree species (Breteler 1999) endemic 

to central Africa. Barteria solida Breteler does not host ants. Barteria fistulosa Mast., B. 

dewevrei De Wild. & T. Durand and B. nigritana Hook. f. are myrmecophytes with 

hollow lateral branches. Barteria nigritana hosts various opportunistic species of ants, 

some of which provide some protection to their host (Djiéto-Lordon et al. 2004). 

Barteria dewevrei and B. fistulosa have three potential ant symbionts: Tetraponera 

aethiops, T. latifrons and Crematogaster sp. However, B. dewevrei preferentially hosts T. 

latifrons or Crematogaster sp., whereas B. fistulosa hosts T. aethiops preferentially, even 

when both Barteria and both Tetraponera species occur in syntopy (Kokolo et al. 2016). 

Barteria fistulosa is restricted to the tropical rain-forest environment, whereas B. 

dewevrei occurs in a wider range of habitats: rain forest, forest gallery and the 

forest/savanna ecotone. Protection of B. dewevrei by its ants has never been studied. The 

vigorous protection of B. fistulosa by T. aethiops is well-known by local people and has 

been the subject of several studies (Dejean et al. 2008, Janzen 1972, McKey 1974). The 

association between the two Barteria and their two Tetraponera ants shows a high degree
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of specificity: Tetraponera aethiops and T. latifrons have never been found nesting 

outside either B. fistulosa or B. dewevrei. Moreover, B. fistulosa does not grow well if not

occupied by one or the other of these two Tetraponera species. Barteria dewevrei seems 

to be less dependent upon Tetraponera ants, at least in some habitats, as many individual 

trees in some savanna sites are occupied by Crematogaster.

The experiments were conducted on 20 individuals of B. dewevrei occupied by T. 

latifrons in Souba (01°36’S, 14°03’E) and 20 individuals of B. fistulosa occupied by T. 

aethiops in Bongoville (1°37’S; 13°54’E). Souba is located at ~550 m asl on the Batéké 

Plateau, a highland covered by grassland and wooded savanna, criss-crossed by gallery 

forest. Bongoville is located at the foot of the Batéké Plateau, at ~400 m asl, along a 

stream in a tropical rain-forest environment.

Behavioural response of the ants to host plant disturbance

Behavioural tests were conducted in three steps. The first step aimed at measuring the 

spontaneous level of ant patrolling activity on leaves, i.e. without any disturbance of the

tree, as a control. Two leaves were randomly selected among the young leaves of two 

upper branches on each Barteria individual (one leaf per branch). Starting at an 

arbitrary time, we recorded the time lapse before each leaf was reached by a resident 

ant, once per leaf. We averaged the time lapse over the two leaves for each tree. This 

average was meant to temper the effect of heterogeneity expected with low levels of 

patrolling, and was used as a single value for each tree (undisturbed leaf = control leaf). 

The second step aimed at testing the effect on ant reaction of physical damage to a leaf 
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(simulating an attack by a small herbivore, such as a phytophagous insect) and of slight 

vibration, which inevitably accompanies such experimental infliction of damage. Two 

leaves were randomly selected among the young leaves of two upper branches on each 

Barteria individual (one leaf per branch). The apex of one of the two leaves was cut 

with scissors (damaged leaf), and the other leaf was simply gently scraped superficially 

with the tip of scissors without inflicting damage (‘scraped leaf’). For each of the two 

leaves simultaneously we recorded the time lapse before it was reached by a resident 

ant, and the number of ants that touched the site of damage (damaged leaf only) over 30 

min. The two focal ant species, T. latifrons and T. aethiops, are very sensitive to 

physical disturbance of their host tree by an experimenter. They literally pour out of the 

hollow branches as soon as an experimenter manipulates, or even touches, the leaves. 

Any vibration, even weak, such as cutting a leaf with scissors, may thus induce such a 

reaction. Damaging the leaf necessarily implies also provoking vibrations. The level of 

vibration we applied to the leaf by scraping it with the tip of the scissors was meant to 

mimic that experienced by the leaf damaged with scissors. We recognize that scraping a 

leaf does not exactly reproduce the same physical disturbance caused by cutting the leaf 

blade with scissors. However, slightly scraping the leaf was the best proxy we could use

to control for a possible effect of the physical disturbance of cutting with scissors to test 

for the effect of emission of volatile compounds after such damage. Thus, the effect of 

damaging the leaf was tested by comparing the scraped and the damaged leaves 

(because the damage treatment corresponds to vibration + physical damage). The effect 

of scraping the leaf was tested by comparing the undisturbed and the scraped leaves. 

The third step aimed at testing specificity of the behavioural response of the ant species 
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to physical damage of the two plant species. On a leaf of each Barteria individual we 

placed a damaged leaf (apex cut with scissors) of the other Barteria species and 

recorded the time lapse before it was contacted by a resident ant. The host leaf upon 

which the damaged non-host leaf was placed was gently scraped to mimic the level of 

vibration of a leaf damaged with scissors, so we could compare time lapse of response 

to the damaged host leaf and to the damaged non-host leaf. We also compared responses

of the two ant species to each treatment.

Statistical tests were performed with R 3.1.0. P-values were adjusted using 

Holm’s method in the case of multiple comparisons.

Results

The time lapse before the ants reached the focal leaves varied significantly across 

treatments (host leaf undisturbed, host leaf scraped, host leaf damaged, non–host leaf 

damaged) for T. aethiops (Friedman test, statistic = 38, P = 0.000000036) and for T. 

latifrons (Friedman test, statistic = 36, P = 0.000000050).

Tetraponera latifrons ants reached the scraped host leaf significantly more 

quickly than the undisturbed leaf (mean ± SD, scraped: 9.5 ± 1.9 min, undisturbed: 

16.3 ± 5.7 min; Wilcoxon signed-rank test, V = 8, Padj = 0.0025, Figure 1), the damaged 

host leaf significantly more quickly than the scraped host leaf (damaged: 7.8 ± 1.9 min, 

scraped: 9.5 ± 1.9 min; V = 96, Padj = 0.020, Figure 1), and the damaged host leaf (B. 

dewevrei) significantly more quickly than the damaged non–host leaf (B. fistulosa) 
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(damaged host: 7.8 ± 1.9 min, damaged non-host: 10.8 ± 2.1 min; V = 171, 

Padj = 0.0014, Figure 1). Moreover, the number of ants of this species that touched the 

damaged site was significantly greater for the host leaf (B. dewevrei) than for the non–

host leaf (B. fistulosa) (damaged host: 9.1 ± 3.5 ants, damaged non-host: 6.6 ± 2.1 ants; 

V = 152, Padj = 0.045, Figure 1).

Tetraponera aethiops ants reached the scraped host leaf significantly more 

quickly than the undisturbed leaf (mean ± SD, scraped: 5.2 ± 3.0 min, undisturbed: 

16.6 ± 5.3 min; Wilcoxon signed-rank test, V = 1, Padj = 0.00087, Figure 1). The time 

lapse before T. aethiops ants reached the host leaf did not differ significantly between 

scraped and damaged leaves (scraped: 5.2 ± 3.0 min, damaged: 4.5 ± 2.6 min; V = 114; 

Padj = 0.46, Figure 1). Tetraponera aethiops ants reached the damaged host leaf (B. 

fistulosa) significantly more quickly than the damaged non–host leaf (B. dewevrei) 

(damaged host: 4.5 ± 2.6 min, damaged non-host: 7.15 ± 2.5 min; V = 178, 

Padj = 0.0036, Figure 1). Moreover, the number of ants of this species that touched the 

damaged site was significantly greater for the host leaf (B. fistulosa) than the non–host 

leaf (B. dewevrei) (damaged host: 15.2 ± 4.0 ants, damaged non-host: 13.3 ± 3.3 ants; 

V = 162, Padj = 0.045, Figure 1). 

The time lapse before the ants reached the undisturbed leaf did not differ 

significantly between the two ant species (mean ± SD, T. latifrons: 16.3 ± 5.7 min, T. 

aethiops: 16.6 ± 5.3 min; Mann–Whitney U-test, W = 191, Padj = 0.81), indicating no 

significant difference in the spontaneous level of patrolling activity. Tetraponera 

aethiops ants reached their host leaf (B. fistulosa) significantly more rapidly than T. 
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latifrons reached theirs (B. dewevrei), whether leaves were simply scraped (T. aethiops: 

5.2 ± 3.0 min, T. latifrons: 9.5 ± 1.9 min; W = 344, Padj = 0.00084) or damaged (T. 

aethiops: 4.5 ± 2.6 min, T. latifrons: 7.8 ± 1.9 min; W = 336, Padj = 0.0014). Moreover, 

the number of T. aethiops ants that contacted the damaged host leaf during 30 min was 

significantly larger than for T. latifrons (T. aethiops: 15.2 ± 4.0 ants, T. latifrons: 

9.1 ± 3.5 ants; W = 345, Padj = 0.0000029). Tetraponera aethiops ants were significantly

faster and more numerous than T. latifrons in contacting the damaged non–host leaf (T. 

aethiops on B. dewevrei: 7.15 ± 2.5 min, 13.3 ± 3.3 ants; T. latifrons on B. fistulosa: 

10.8 ± 2.1 min, 6.6 ± 2.1 ants; time lapse: W = 55, Padj = 0.00078; number of ants: 

W = 383, Padj = 0.0000029).

Discussion

Behavioural response of Tetraponera ants to disturbance of their Barteria host plants

Most ants associated with myrmecophytes respond to leaf damage in less than five 

minutes (reviewed in Blatrix & Mayer 2010). The time lapse before T. aethiops and T. 

latifrons reached a damaged leaf appeared comparatively long (4.5 ± 2.6 and 

7.8 ± 1.9 min, respectively), when we consider that the Tetraponera ants associated with

Barteria are well known for their particularly prompt aggressive reaction to human 

intruders (Janzen 1972). As we were aware of this particularity, we took special care to 

limit physical disturbance as much as possible when manipulating experimental leaves 

(“scraped” and “damaged” treatments). The treatments we applied were probably more 

representative of the disturbance induced by small insects than that induced by 
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mammals. Comparing the African Barteria/Tetraponera symbiosis with the American 

Acacia/Pseudomyrmex symbiosis, Janzen (1972) noted that the protection behaviour 

displayed by Tetraponera aethiops is particularly adapted to protect its host plant 

against large herbivores such as mammals. For instance, the number of workers of 

Tetraponera aethiops patrolling Barteria fistulosa is much lower than in the 

Acacia/Pseudomyrmex symbiosis. The relatively slow reaction time measured in our 

experiments with Tetraponera on Barteria likely reflects the low spontaneous patrolling

activity of these ants and their weaker reaction to insect herbivory than to mammal 

herbivory.

Our experiments showed that both ant species, T. latifrons and T. aethiops, 

reached the leaves more rapidly when these were scraped than when they were 

undisturbed, demonstrating their response to vibrations. Dejean et al. (2008) already 

showed that T. aethiops responds to vibration induced by herbivory. However, only T. 

latifrons responded more strongly to physical damage than to scraping. Behavioural 

response of T. aethiops did not differ between a scraped and a damaged (thus also 

vibrated) leaf of its host plant, B. fistulosa, but T. aethiops proved to react more rapidly 

than T. latifrons in both cases. This difference between the two ants cannot be due to 

varying levels of spontaneous patrolling, as these did not differ significantly. These 

results suggest that perception of chemical signals (volatile compounds emitted from the

damaged site) improves protection of B. dewevrei by its host ant T. latifrons. Given that 

damaged leaves were also vibrated by the investigator and that T. aethiops reacts very 

strongly to scraping, the effect of chemical signals on T. aethiops may have been 

masked by the effect of scraping in our experimental design. Thus, we cannot conclude 
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on the effect of chemical signalling on T. aethiops. We hypothesize that the responses of

T. aethiops to chemical signals and vibration could have evolved to target respectively 

small insects feeding on the leaves (which are unlikely to induce detectable vibration) 

and large herbivores such as mammals. Response of T. aethiops to chemical signals 

should be tested in a vibration-free context. Similar chemical signalling of leaf damage 

has been demonstrated in many ant–plant symbioses (reviewed in Blatrix & Mayer 

2010). Perception of chemical signals indicating herbivory should improve protection 

efficiency because it allows the ants to locate sites of herbivory quickly and accurately 

(Agrawal 1998, Gonçalves-Souza 2016, Pacheco & Del Claro 2018). In various 

myrmecophytic interactions, ant patrolling is focused on young leaves and shoots, even 

when these are not disturbed (reviewed in Blatrix & Mayer 2010). Such directed 

patrolling is most likely driven by chemical signalling to provide constitutive protection

of the most vulnerable plant parts. Plant chemical signalling of herbivore damage and 

ant behavioural response to it are expected to coevolve because both partners benefit 

from deterrence of herbivores.

Specificity of ant behavioural response to host plant species

Our study revealed a certain level of specificity in the behavioural response of the two 

ant species to disturbance of the plant. We showed that both ant species, T. aethiops and 

T. latifrons, responded more strongly (faster recruitment and more ants recruited) to 

damage to leaves of their usual host plant species (B. fistulosa and B. dewevrei for T. 

aethiops and T. latifrons, respectively) than to damage on leaves of the non–host plant 
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species (B. dewevrei and B. fistulosa for T. aethiops and T. latifrons, respectively). As 

there is a preferential association between T. aethiops and B. fistulosa on the one hand 

and between T. latifrons and B. dewevrei on the other hand (Kokolo et al. 2016), 

specificity of the behavioural response might be a product of ant–plant coevolution 

within each pair of species. Alternatively, specificity of ant response in the Barteria–

Tetraponera system might result from ants acquiring familiarity with the signals of the 

plant species they presently live on. For instance, arboreal ants have been shown to nest 

preferentially on plant species to which they have been exposed during development 

(Djiéto-Lordon & Dejean 1999), probably because of a pre–imaginal imprinting process

directed on plant odour.

Notwithstanding the specific responses of the ants to damage of their host 

plant, we showed that T. aethiops responded more strongly to leaf disturbance (scraping 

and damage), a signal of potential herbivory, than T. latifrons. This difference is 

expected to translate into better protection conferred by T. aethiops than by T. latifrons. 

As the association between T. aethiops and B. fistulosa is more specific than the 

association between T. latifrons and B. dewevrei (Janzen 1972, Kokolo et al. 2016), we 

speculate that the difference in response level might be the result of a tighter 

coevolution between T. aethiops and B. fistulosa. Tetraponera aethiops and T. latifrons 

are sister species (Ward 1991) and are the only African species of their species-group 

(Ward 2006). The differences we observed in their protective behaviour have thus likely

evolved after their divergence from a common ancestor that was also in symbiosis with 

Barteria. This situation is different from those studied by Bruna et al. (2004) and Lapola

et al. (2003), where comparisons involved phylogenetically distant ant species that 
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independently colonized the same plant. The differences between the two species of 

Tetraponera much more likely reflect coevolution with their Barteria hosts. From a 

mechanistic point of view, our study demonstrates that these differences are not due to 

different levels of spontaneous patrolling activity. However, the shorter time lag before 

reaching the disturbed leaves and the larger number of ants recruited for T. aethiops than

for T. latifrons could result from colonies of T. aethiops being larger, leading to more 

ants involved in defending the plant. It would be worth investigating the level of food 

rewards provided by the two Barteria species to their ant symbionts to test the 

hypothesis that B. fistulosa invests more resources into its symbiont to sustain a higher 

level of protection, and to see whether such a difference has translated into larger, 

denser colonies of T. aethiops in its host than of T. latifrons in its host.
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Figure caption

Figure 1. Behavioural response of the ants Tetraponera aethiops and T. latifrons to 

treatments on leaves of their host plants, Barteria fistulosa and B. dewevrei, expressed 

as differences in time lapse (“T”, min) before the ants reached the focal leaves and in 

number of ants (“N”) that touched the damaged site. Treatments were tested in a paired 

design as follows: host leaf undisturbed vs host leaf scraped with the tip of scissors, host

leaf scraped vs host leaf damaged, non-host leaf damaged vs host leaf damaged. 

Damage was performed with scissors, and thus damaged leaves were inevitably also 

subjected to slight vibration that we mimicked by gently scraping the leaf with the tip of

scissors. Experiments were conducted in Gabon. Vertical lines represent median, boxes 

represent interquartile range, and whiskers extend to the data extremes.  n.s.: not 

significant, *: P < 0.05, **: P < 0.01, ***: P < 0.001.
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	The time lapse before the ants reached the focal leaves varied significantly across treatments (host leaf undisturbed, host leaf scraped, host leaf damaged, non–host leaf damaged) for T. aethiops (Friedman test, statistic = 38, P = 0.000000036) and for T. latifrons (Friedman test, statistic = 36, P = 0.000000050).
	Tetraponera latifrons ants reached the scraped host leaf significantly more quickly than the undisturbed leaf (mean ± SD, scraped: 9.5 ± 1.9 min, undisturbed: 16.3 ± 5.7 min; Wilcoxon signed-rank test, V = 8, Padj = 0.0025, Figure 1), the damaged host leaf significantly more quickly than the scraped host leaf (damaged: 7.8 ± 1.9 min, scraped: 9.5 ± 1.9 min; V = 96, Padj = 0.020, Figure 1), and the damaged host leaf (B. dewevrei) significantly more quickly than the damaged non–host leaf (B. fistulosa) (damaged host: 7.8 ± 1.9 min, damaged non-host: 10.8 ± 2.1 min; V = 171, Padj = 0.0014, Figure 1). Moreover, the number of ants of this species that touched the damaged site was significantly greater for the host leaf (B. dewevrei) than for the non–host leaf (B. fistulosa) (damaged host: 9.1 ± 3.5 ants, damaged non-host: 6.6 ± 2.1 ants; V = 152, Padj = 0.045, Figure 1).
	Tetraponera aethiops ants reached the scraped host leaf significantly more quickly than the undisturbed leaf (mean ± SD, scraped: 5.2 ± 3.0 min, undisturbed: 16.6 ± 5.3 min; Wilcoxon signed-rank test, V = 1, Padj = 0.00087, Figure 1). The time lapse before T. aethiops ants reached the host leaf did not differ significantly between scraped and damaged leaves (scraped: 5.2 ± 3.0 min, damaged: 4.5 ± 2.6 min; V = 114; Padj = 0.46, Figure 1). Tetraponera aethiops ants reached the damaged host leaf (B. fistulosa) significantly more quickly than the damaged non–host leaf (B. dewevrei) (damaged host: 4.5 ± 2.6 min, damaged non-host: 7.15 ± 2.5 min; V = 178, Padj = 0.0036, Figure 1). Moreover, the number of ants of this species that touched the damaged site was significantly greater for the host leaf (B. fistulosa) than the non–host leaf (B. dewevrei) (damaged host: 15.2 ± 4.0 ants, damaged non-host: 13.3 ± 3.3 ants; V = 162, Padj = 0.045, Figure 1).

