
HAL Id: hal-02315795
https://hal.science/hal-02315795

Submitted on 7 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fertile Ground for Conflict
Nicolas Berman, Mathieu Couttenier, Raphaël Soubeyran

To cite this version:
Nicolas Berman, Mathieu Couttenier, Raphaël Soubeyran. Fertile Ground for Conflict. Journal of the
European Economic Association, 2021, 19 (1), pp.82-127. �10.1093/jeea/jvz068�. �hal-02315795�

https://hal.science/hal-02315795
https://hal.archives-ouvertes.fr


Fertile Ground for Conflict∗

Nicolas Berman† Mathieu Couttenier‡ Raphael Soubeyran§

This version: October 8, 2019

Abstract. We investigate how variations in soil productivity affect civil conflicts. We first present

a model with heterogeneous land in which variations in input prices (fertilizers) affect appropriable

rents and the opportunity costs of fighting. The theory predicts that spikes in input prices increase

the likelihood of conflicts through their effect on income and inequality, and that this effect is mag-

nified when soil fertility is naturally more heterogenous. We test these predictions using data on

conflict events covering all Sub-Saharan African countries at a spatial resolution of 0.5 × 0.5 degree

latitude and longitude over the 1997-2013 period. We combine information on soil characteristics

and worldwide variations in fertilizer prices to identify local exogenous changes in input costs. As

predicted, variations in soil productivity triggered by variations in fertilizer prices are positively asso-

ciated with conflicts, especially in cells where land endowments are more heterogeneous. In addition,

we find that the distribution of land fertility both within and across ethnic groups affects violence,

and that the effect of between-group heterogeneity in soil quality is magnified in densely populated

areas. Overall, our findings imply that inequality in access to fertile areas – an issue largely neglected

in the literature dealing with the roots of Sub-Saharan African civil wars – constitutes a serious threat

to peace at the local-level.
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1 Introduction

Are African conflicts rooted in fertile soils? Over the last decades, unequal access to productive

areas has often been mentioned as a key contributing factor to some of the deadliest wars on the

continent. In Rwanda for instance, increasing pressure over land stemming from rapid population

growth and soil depletion has most likely been one of the triggers of conflicts and genocide (André

and Platteau, 1998). Disputes over arable land have also historically played their part in conflicts

in Darfur (Faris, 2009).1 In many countries however, the apparent “ethnic” dimension of these

tensions has obscured the fact that they originated from rising land inequality and lack of access

to fertile soils.2 As a result, researchers have investigated the impact of ethnic divisions at great

length, largely overlooking similar investigations about the role of soil fertility (Peters, 2004).

This paper studies theoretically and empirically how variations in soil productivity influence

the occurrence of violence. We are interested both in the effect of changes in soil productivity

over time and in the role of its distribution across space. We proceed in two steps. First, we

present a dynamic theory of conflict over agricultural land in which two groups are endowed with

units of land that differ in terms of natural fertility. At each period, soil productivity varies

due to changes in fertilizer prices. We use this model to derive predictions that relate conflict

likelihood to fertilizer prices variations and to the distribution of land quality across groups. These

predictions are tested in the second part of the paper using detailed data on conflict events, soil

characteristics and local fertilizer prices.

In our model, an increase in the price of fertilizer reduces agricultural rents for both groups

and has two opposite effects on conflict probability: it at once lowers the value of what can

be appropriated through violence and decreases the opportunity cost of fighting. However, due

to heterogeneous land quality, the opportunity cost effect dominates: naturally fertile soils are

less dependent upon fertilizer use, which implies that the rents generated from these lands are

less sensitive to changes in fertilizer prices. As a consequence, when fertilizer prices rise, the

group endowed with the less fertile soil (the land-poor group) has a greater incentive to fight:

the decrease in rents from their own land (i.e. opportunity cost of fighting) is greater than the

decrease in the potential gains that stand to be obtained from land-rich. In other words, spikes

in fertilizer prices increase the risk of conflict through their effect on the level of rents and on

the dispersion of rents across groups (i.e. rent inequality). We also show that the positive link

between fertilizer price variations and conflict is magnified when natural soil quality is more

heterogeneous.

In sum, our model generates two testable predictions: a) variations in fertilizer prices are

positively associated with the likelihood of conflict, b) this association is stronger when natural

soil fertility is more heterogeneous. We test these predictions using a dataset in which the units

of analysis are cells of 0.5 × 0.5 degree latitude and longitude (approx. 55km × 55km at the

equator) covering all of Sub-Saharan Africa (ssa) from 1997 to 2013. Testing our theory requires

data on (i) conflict events, (ii) soil fertility, and (iii) local variations in fertilizer prices.3 First,

1The violent conflicts between Mauritania and Senegal and between Mali and Burkina Faso (the “wars between
brethren”) also originated from land disputes between pastoralists and herders (Van den Brink et al., 1995).

2Ethnic diversity has been shown to be linked to land characteristics such as soil quality (Michalopoulos, 2012).
3Instead of fertilizer prices, one could have also used weather shocks to study (heterogeneous) changes in soil

fertility across time and space. Weather shocks may however affect the likelihood of conflict through other channels
than agricultural productivity, such as migration, infrastructure quality or competition over water – channels that



we combine original geo-localized datasets on soil characteristics with information on conflict

occurrence. The Armed Conflict Location Events Data (acled) provides detailed information on

the date, location and type of conflict events, and can be used to identify subsets of events that

are more likely to be land-related. For each cell, we complement this conflict data with measures

of the natural fertility of soils, defined as their inherent nutrient content. These measures come

from the Harmonized World Soil Database and are available at a highly disaggregated level; this

allows us to calculate our measure of land inequality, as the variance of natural soil fertility within

each cell.

The final variable we construct is the local price of fertilizers. Direct information on time-

varying prices at a spatially disaggregated level is not readily available. Furthermore, even if we

were able to observe such prices, they would be endogenous to conflict. We circumvent this issue

by computing a proxy for local fertilizer prices. The measure we build is informed by the fact that

fertilizers are comprised of three main nutrients (nitrogen, phosphate and potassium) and that

the ideal composition of fertilizers varies across crops. More precisely, for each cell we identify the

main crop(s) produced – using the FAO’s Global Agro-Ecological Zones (gaez) – and the required

balance of nutrients for each of these crops. We then use data on the world prices of each nutrient

to construct a cell-specific, time-varying indicator of fertilizer price. Because our identification

strategy makes use of within-cell variations in fertilizer prices and conflicts over time, we are

able to control for cell-fixed effects and unobserved common time shocks. Moreover, since we use

the world prices of nutrients to compute local fertilizer prices, reverse causality from conflict to

fertilizer prices is unlikely to drive our results. Using external data for a subset of countries and

years, however, we show that such prices for specific nutrients are indeed transmitted to local

fertilizer prices. We also provide indirect evidence that the mix of nutrients used by farmers in

ssa is indeed correlated with the recommended mix for their particular crop.

We find empirical support for the predictions of the model. First, an increase in fertilizer price

makes local conflicts more likely to occur. Second, spikes in fertilizer prices are found to trigger

more conflict in cells where soil fertility is naturally heterogeneous, i.e. in cells characterized by

areas of both nutrient-rich as well as nutrient-poor soil. Quantitatively, the effect of variations in

fertilizer prices is 50% higher in cells where soil fertility is one standard deviation more heteroge-

neous than the sample mean. These results hold across various measures of conflicts, soil fertility

and nutrient mixes, and are robust to the use of alternative estimators and inference methods.

Dropping the years during which commodities prices spiked (2008-2009) has little effect on our

estimates. They also remain stable when we control for other co-determinants of violence that

might be correlated with soil characteristics or with fertilizer price variations (e.g. time-invariant

or slow-moving characteristics such as geography, institutions, social cleavages, or time-varying

determinants such as weather conditions, or the prices of produced or consumed commodities).

Interestingly, we find quantitatively stronger results when we restrict our sample to events that

are more likely to reflect conflict over land. On the other hand, no significant effect is detected

in countries where fertilizer use is close to zero.

We also provide suggestive evidence that our results indeed originate from the mechanisms at

play in our model. Using data at the household-plot level from the World Bank Living Standard

cannot be easily controlled for. See Sarsons (2015) for a discussion of the impact of rainfall on conflict through
other channels than income.
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Measurement Study (lsms), we document in particular that farmers whose plots are located on

nutrient-rich lands tend to use less fertilizer, and that the value of their land is less negatively

impacted by fertilizer prices. We also find that several indicators of violence at the individual

level significantly correlate with fertilizer prices. Importantly, we provide strong evidence that

fertilizer prices fluctuations significantly affect agricultural output in our sample of countries,

using a combination of yields measures at the regional, cell and household-plot levels. This is

key given the widespread belief that African farmers use little fertilizers compared to their Asian

or Latin-American counterparts (Morris et al., 2007).4 Combining our estimates of the elasticity

of yields to fertilizer prices with our baseline results on conflict, we show that the elasticity of

conflict to changes in agricultural productivity falls within the range found in the literature on

economic shocks and conflict (e.g. Miguel et al., 2004).

As mentioned earlier, several dramatic conflict episodes, such as the war and genocide in

Rwanda, were caused by a confluence of factors, namely population growth, scarcity of fertile

land, and inherent ethnic tensions. In the final part of the paper, we find support for this ac-

count on a much larger scale. More precisely, combining our data on soil fertility with geocoded

information on the contours of ethnic homelands, we split our cell-specific measure of soil fertility

heterogeneity into two components: one component arising from heterogeneity in soil quality

between ethnic groups, and the another component arising from differences in soil quality within

ethnic groups. We find that both within- and between-group land inequality amplify the impact

of fertilizer price variations on conflict. Inequality in soil quality between ethnic group tends

however to matter quantitatively more, especially in densely populated areas.

Related literature. Our paper relates to several strands of the literature. The recent decade

has seen a surge of empirical studies examining the roots of civil wars - first at the country-level,

and more recently using spatially disaggregated data. The role of natural resource extraction,

ethnic divisions, and income variations have received particular interest.6 Our paper contributes

in particular to the literature on agricultural income shocks, which typically associates conflict

with changes in commodity prices or demand (e.g. Dube and Vargas, 2013, Bazzi and Blattman,

2014, Berman and Couttenier, 2015, McGuirke and Burke, 2018), weather conditions (e.g. Miguel

et al., 2004, Hsiang et al., 2013, Couttenier and Soubeyran, 2014, Iyigun et al., 2017, Adhvaryu

et al., 2017, Harari and Ferrara, 2018), or long-run changes in agricultural productivity (Iyi-

gun et al., 2015). We complement these works by demonstrating that variations in the price of

an agricultural production technology (fertilizer) affect the likelihood of conflict, and that local

heterogeneity in agricultural productivity plays a key role in this dynamic.

We also contribute more specifically to the relatively scarce empirical literature on land con-

flicts. Hidalgo et al. (2010) study the determinants of land invasions in Brazil, and emphasize

the role of unequal landholding and land tenure systems. Di Falco et al. (2017) find that tenure

4A recent World Bank report (Sheahan and Barrett, 2014) challenges this view using survey data for 6 ssa
countries from the Living Standards Measurement Study. More than a third of the households are found to use
inorganic fertilizers in this sample, and this share reaches 55% in Ethiopia and 77% in Malawi. Moreover, even
low levels of fertilizer use do not necessarily imply that African farmers’ income are insensitive to world market
fertilizer prices variations. Available estimates of fertilizer demand price elasticity in Africa range from -0.82 to
-1.08,5 which suggests that the demand of fertilizer is inelastic but still sensitive to fertilizer price variations.

6On the role of natural resources, see, for example, Fearon and Laitin (2003), Ross (2004, 2006), Berman
et al. (2017), and Sanchez de la Sierra (forth.), and on ethnic fractionalization and polarization, see, Montalvo and
Reynal-Querol (2005), Esteban et al. (2012), and Michalopoulos and Papaioannou (2016), among many others.
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security and climate affect the likelihood of observing land disputes in Ethiopia and Guardado

(2018) finds that changes in crop prices trigger more violence in Peruvian districts where land

ownership is primarily individual. Our paper differs from these studies in terms of geographic

coverage (43 countries over a period of 17 years) as well as objectives. We focus on inequality

in terms of natural soil fertility, and we identify periods during which this inequality rises using

fertilizer price variations.

While we ultimately apply our theory to the case of agricultural production and fertilizer use,

we begin by extending the conflict model developed by Chassang and Padró i Miquel (2009) to

a situation in which rents are heterogeneous. Our paper therefore adds to existing models that

deal with the relationship between inequality among different individuals/groups and violence.

Esteban and Ray (2011b) consider a rent-seeking game between groups of different sizes and show

that the equilibrium level of conflict depends on inequality, fractionalization and polarization (see

also Esteban and Ray, 1999). Fearon (2007), on the other hand, considers a rent-seeking model in

which a rebel group enters into conflict with the government in order to appropriate the national

tax revenue. In this framework, greater income inequality among citizens increases the number

of relatively poor people and decreases the marginal cost of recruitment for both rebels and the

government, which, in turn, leads to an increase in the intensity of the conflict. Compared with

these papers, we use a model that more closely aligns with bargaining models, in which both

peace and conflict are potential outcomes, rather than a rent-seeking game in which conflict is

inherent. More importantly, while they find that the level of conflict increases with inequality

in static frameworks, we consider a dynamic model that demonstrates that the probability of

conflict increases when inequality in soil fertility is high, while the relationship between average

inequality and the likelihood of conflict is ambiguous. The underlying mechanism comes from our

agricultural production model: fertilizer prices impact inequality and conflict because they affect

less the (appropriable) revenue of the rich than the opportunity cost of the poor. This in turn is

due to the fact that fertile soils use less fertilizers, which makes their rents less sensitive to such

price variations – a mechanism that we test empirically using household-level survey data.

While early cross-sectional empirical studies typically failed to find evidence of a positive link

between income or wealth inequality and conflict (Lichbach, 1989), our results are consistent with

more recent work. Macours (2011), for instance, finds that rebel recruitment was more intensive

in Nepali districts where inequality between landlords and landless has previously increased. We

also contribute to the debate on the effect of inequality within or across ethnic groups. While

some studies argue that between-group inequality is a cause of conflict (Cederman et al., 2011;

Guariso and Rogall, 2017), other argue that it decreases conflict probability (Mitra and Ray,

2014).7 Within-group inequality could matter as well (Huber and Mayoral, 2019), for instance

if it made it easier for the rich to hire fighters within their own ethnic group (Esteban and Ray,

2008, Esteban and Ray, 2011a).8 Our final set of results suggest that both between and within

ethnic groups inequality shocks (in terms of soil fertility) have a conflict-inducing effect in ssa

countries, between-group inequality being especially important in densely populated areas. This

7Guariso and Rogall (2017) provide cross-country evidence that economic inequality shocks (rainfall) between
ethnic groups increase the likelihood of conflict.

8Using a theoretical model from a different perspective, De Luca and Sekeris (2012) show that the intensity
of the fight between a rebel group (landless individuals) and landlords is greatest for intermediate values of land
inequality between the landlords.
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is in line with Mwesigye and Matsumoto (2016) who find, based on data from rural Uganda,

that land conflicts are more likely to occur in areas characterized by high population growth and

ethnically diverse communities. In general, our conclusions lend support to the view that land

related violence must be analyzed in conjunction with wider processes of socio-ethnic divisions

and discrimination, and with demographic changes. Our findings on the role of population density

echo the recent cross-country analysis of Acemoglu et al. (2017).

Finally, this paper sheds light on the potential effects of the recent skyrocketing of fertilizer

prices and contribute to the debate about technology adoption in ssa agriculture. Some literature

has argued that access to modern inputs such as fertilizers were a key factor on the difference

between the rapid growth of agricultural yields in Asia and the stagnation of yields in Africa

(Morris et al., 2007); this has led some authors to argue in favor of fertilizer subsidies for African

countries (Duflo et al., 2011). Our findings imply that, despite the relatively limited use of

fertilizers in ssa countries, variations in fertilizer prices do have a significant effect on agricultural

yields, income, and political stability. More generally, our results support the view that fertilizer

use, or the lack thereof, can be a trigger of conflict. For instance, Eltahir (2017) describes the

conflict in the Nile basin in the following way: “In order to expand agricultural production in

Africa, there are two possible routes: horizontal expansion using more land and more water, or

vertical expansion using the same land and water volume, but producing more crops aided by

fertilizers [...]. The first route usually leads to conflicts over land or water (or both). The second

route can help countries avoid these conflicts.”

In the following section, we present our model of land heterogeneity and conflict. Section 3

describes the data and the methodology used to construct our main variables of interest. Section

4 contains our econometric approach, the baseline results, and a number of sensitivity analyses.

In section 5 we investigate the role of ethnic boundaries in the link between soil fertility and

conflict. The last section concludes.

2 A Model of Land Heterogeneity and Conflict

In this section we develop a dynamic model of conflict among two groups that control an

area of land characterized by heterogeneous soil fertility. We build the model in two parts. The

first part explores the general dynamics of conflict between the two groups which enables us to

make predictions about the relationship between economic shocks, inequality, and conflict. The

second part focuses on agricultural output and links fertilizer price, soil fertility, and land rents.

This enables us to deliver our two main testable predictions regarding the relationship between

fertilizer price, the distribution of soil fertility and the likelihood of conflict.

2.1 Inequality Shocks and Conflict

This component of the model builds on Chassang and Padró i Miquel (2009), who assume

that land productivity is homogenous and focus on the relationship between wealth and conflict.9

Unlike Chassang and Padró i Miquel (2009), however, we consider land to be heterogeneous with

respect to soil fertility. In this section, we extend their model to incorporate heterogeneity in land

productivity in order to study the relationship between this measure of inequality and conflict.

9They show that the relationship between poverty and the likelihood of conflict is ambiguous while negative
income shocks increase the likelihood of conflict.
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Consider two groups i ∈ {1, 2} that share a territory of size 2. Assume that each group

controls 1 unit of land. The total rent from land i at time t is given by rit. The amount of rent

depends on fertilizer use and on soil fertility (we formalize these relationships later).

One group may decide to use violence in order to seize the land of the other group. For the

sake of simplicity, we exclude the possibility of peaceful (costless) land transfers. We assume

that if a group attacks, it has a first mover advantage and wins the conflict with probability

µ > 1/2.10 If both groups decide to attack, then the probability of winning the conflict is 1/2

for both groups. When conflict occurs, there is a probability, denoted d ∈ (0, 1], that all existing

agricultural production is completely destroyed.11

In each period of time t, rents from agricultural lands vary, because fertilizer prices and output

prices vary. Income shocks are captured by the fact that rent rit is independently drawn from

a cumulative distribution function Fi (.) over (0,+∞). The expected value of rit is denoted ri,

with r2 < r1. Each group discounts the future by a factor δ.

The timing of the game is the following. First, r1t and r2t are observed by the two groups. If

neither group chooses to attack, then each group produces and consumes their production, and

the next period begins. If at least one group decides to attack, there is a decisive war, and the

winner of the conflict uses all land to produce, consumes the yields produced, and controls all

land forever. While this assumption is convenient, it can be relaxed: our results are qualitatively

unchanged if the defeated group regains its land more than one period after the conflict occurred

(see the appendix for the proof).

Consider the choice of whether to attack for group i ∈ {1, 2} at time t. If peace is reached at

time t, then group i obtains the following expected payoff:

rit + δV P
i , (1)

where V P
i is the expected continuation value when peace is reached.

If group i decides to deviate and launch an attack, its expected payoff is given by:

µ
(
(r1t + r2t) (1− d) + δV V

i

)
, (2)

where V V
i is the expected continuation value when war occurs and i is victorious.

This continuation value is:

V V
i = E

 ∑
τ=0,...,+∞

δτr1τ

+ E

 ∑
τ=0,...,+∞

δτr2τ

 , (3)

or,

V V
i =

r1 + r2

1− δ
≡ V V . (4)

10One could alternatively make the assumption that the richest group is also the strongest, i.e. it has a larger
first mover advantage. Our results hold as long as inequalities are sufficiently large and/or the level of rents is
small. A sufficient condition is |r1t − r2t|/(r1t + r2t) > ( δ

1−δ + 1− d)|µ1 − µ2| for all t, where µi is the probability
of winning for group i = 1, 2 if it decides to attack first. Our results are also unchanged if there is no first mover
advantage (µ = 1/2) as long as the rents are not symmetric, i.e. r1t 6= r2t for all t. See Dow et al. (2017) for a
conflict model in which the winning probability is endogenous and depends on agricultural income.

11One may also interpret d as the proportion of agricultural production that is destroyed.
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Hence, peace is reached at time t only if:

rit + δV P
i > µ

(
(r1t + r2t) (1− d) + δV V

)
, (5)

for i ∈ {1, 2}.

To elaborate on this condition, we make the following assumption:

Assumption [no switching]: The most profitable land (on average) is also the most profitable

land at each point in time: ∆rt = r1t − r2t ≥ 0 for all t.

This assumption is sufficient to show that the group with less fertile soil (group 2) has a greater

incentive to attack than the other group (group 1). Indeed, by this assumption, we can show

that V P
1 ≥ V P

2 , that is, the expected continuation value in the event of peace cannot be larger

for the group who owns the less profitable land than for the group who owns the more profitable

land.12 Hence, using condition (5), we deduce that peace occurs at time t only if group 2 has no

incentive to launch an attack, that is:

(1− µ (1− d)) r2t − µ (1− d) r1t > δ
(
µV V − V P

2

)
, (6)

Condition (6) illustrates the trade-off between the opportunity cost of conflict and the rapacity

gain (a benefit of conflict) in the current period. To see this, let Ψt denote the likelihood that a

conflict occurs, independently of expected future play:

Ψt = µ (1− d) r1t︸ ︷︷ ︸
Rapacity gain

− (1− µ (1− d)) r2t︸ ︷︷ ︸
Opportunity cost

. (7)

Conflict is more likely (i.e. group 2 has a greater incentive to launch an attack) if the rent of the

land-rich (group 1) is temporarily large or if the rent of the land-poor (group 2) is temporarily

small. Indeed, independently from future play, group 2 faces a trade-off between the expected

current loss from conflict, i.e. the opportunity cost, (1− µ (1− d)) r2t, and the expected current

gain from conflict, i.e. the rapacity gain, µ (1− d) r1t. The opportunity cost of conflict increases

with the rent from its land, r2t, and the rapacity gain increases with the rent from land controlled

by group 1, r1t.

Notice that the expected continuation value V P
2 is bounded above: V P

2 ≤ 1
2
r1+r2
1−δ . Hence,

the right hand side in condition (6) is non negative. Thus, a necessary condition for peace is

1−2µ (1− d) > 0. This condition can be rewritten as 1−µ (1− d) > µ (1− d). This implies that

the probability that a group loses its current rents is larger than the probability of winning the

current rents of the other group. We maintain this assumption throughout the rest of the paper.

This assumption excludes the trivial case in which conflict occurs immediately.

The likelihood of conflict defined in (7) can also be written in terms of average rents and the

difference between rents:

Ψt =
1

2
∆rt − [1− 2µ (1− d)] rt, (8)

12More precisely, this holds for the subgame perfect equilibrium in which players use threshold strategies and
launch an attack only when the realizations of the left-hand side in condition (6) are lower than a given constant
threshold. We also show that such a subgame perfect equilibrium exists.
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where rt ≡ (r1t + r2t) /2 is the average rent at time t. This leads to the following result regarding

the relationship between average rents, rent inequality, and conflict:

Proposition [Inequality and Conflict]: Conflict occurs if current rents (rt) are low enough

or if current rent inequality (∆rt) is sufficiently large.

The first part of this Proposition, i.e. conflict occurs if current rents are low enough, echoes

Chassang and Padró i Miquel (2009). The second part of the Proposition, i.e. conflict occurs

if current rent inequality is sufficiently large, however, differs from the results in the literature.

Indeed, while existing studies argue that a higher average level of inequality increases the likeli-

hood of conflict (Esteban and Ray, 2011b; Fearon, 2005), we find that a higher average level of

inequality, measured by r1−r2 (holding the average rent constant), may be associated with either

more conflict (if V P
2 decreases) or less conflict (if V P

2 increases). Rather, our results suggest that,

conflict is more likely to occur when current inequalities are high.

This general result cannot be easily tested because agricultural rents are difficult to measure

accurately in developing countries and are moreover likely to be endogenous to conflict (or corre-

lated with other co-determinants of conflicts). In the empirical section of the paper, we consider

fertilizer price variation and the distribution of soil fertility as sources of exogenous and hetero-

geneous economic shocks. To derive our predictions, we complement our theory with a simple

model of agricultural production.

2.2 Soil Fertility, Fertilizer and Conflict

We now specify how rents depend on fertilizer prices and soil fertility. For simplicity, we

assume that agricultural production only depends on soil fertility and the quantity of fertilizer

used (at the end of the present Section, we discuss why not considering other inputs such as land

quantity is not crucial in our context). Let the rent from land i at time t be given by:

rit ≡ πtg (si, fit)− ctfit, (9)

where πt is the output price, g is the production function, si is soil fertility, ct is the price of fertil-

izer and fit is the quantity of fertilizer used at time t. The production function is nondecreasing

in both si and fit and strictly concave in fit, i.e. gs ≥ 0, gf ≥ 0 and gff < 0. Because fertilizers

are comprised of nutrients (nitrate, phosphorus and potassium) and our empirical measure of soil

fertility is the natural availability of nutrients in the soil (see section 3), fertilizers and soil fertility

are assumed to be substitutes, i.e. gsf < 0. Existing empirical evidence supports this assumption

as long as soil fertility is not extremely low.13,14 Assuming that the price of agricultural output

is πt, group i′s optimal choice of fertilizer is given by:

Maxfit≥0 {πtg (si, fit)− ctfit} . (10)

13The assumption is reasonable since the returns to nutrients are decreasing (Halliday and Trenkel, 1992) and
fertilizers are composed of nutrients. In Appendix D.1.1, we provide a more detailed discussion of the link between
returns to fertilizers and soil fertility.

14Marenya and Barrett (2009b) provide evidence of an S-shaped relationship between marginal agricultural
yields and fertilizer inputs and soil fertility (soil carbon stocks) in Western Kenya. Therefore, as a robustness check
in the empirical section, we drop the regions where soil fertility is below a certain threshold.
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The first order condition for an interior solution is given by:15

gf (si, fit) =
ct
πt
. (11)

Hence, fit is a decreasing function of fertilizer price, i.e. ∂fit/∂ct = 1/ (πtgff ) < 0. It is also a

decreasing function of soil fertility:

∂fit/∂si = −gsf/gff < 0. (12)

This condition implies that farmers use lower amounts of fertilizer on fertile soils.

Notice that, as expected, rents from land decrease when the price of fertilizers increases.

Indeed, the effect of a marginal increase in the price of fertilizer on agricultural rents is given by:

∂rit/∂ct = −fit. (13)

The increase in the rent from land i generated by a marginal increase in the price of fertilizer

equals minus the amount of fertilizer used.

We are now able to examine the effect of changes in fertilizer price on the likelihood of conflict.

The derivative of the likelihood of conflict (7) with respect to fertilizer price is:

∂Ψt

∂ct
= µ (1− d)

∂r1t

∂ct
− (1− µ (1− d))

∂r2t

∂ct
. (14)

Since an increase in the price of fertilizer decreases rents for both groups, the resulting effect on

the likelihood of conflict is a priori ambiguous. However, the marginal decrease in the rents from

the land with the most fertile soil is smaller than the marginal decrease in the rents from the

land with the less fertile soil. Indeed, using (12) and (13), we obtain:

∂r2t

∂ct
= −f2t <

∂r1t

∂ct
= −f1t < 0. (15)

This condition implies that the negative effect of fertilizer prices on agricultural rents is magnified

for less fertile soils.

Since the weight placed on rents from soils with lower fertility is larger than the weight placed

on rents from soils with greater fertility, 1 − µ (1− d) > µ (1− d), the right-hand side in (14) is

always positive. This result is summarized in the following proposition:

Proposition [Fertilizer Price and Conflict]: An increase in fertilizer price makes conflict

more likely. Formally,
∂Ψt

∂ct
> 0. (16)

This result can be interpreted in terms of current opportunity cost and rapacity gain. An

increase in the price of fertilizer decreases the rents provided by the less fertile soil, hence the

opportunity cost of fighting decreases. An increase in the price of fertilizer also decreases the

rents provided by the soil with greater fertility, which decreases the incentive to seize this land.

15Our results are not qualitatively affected if one take corner solutions into account.
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In other words, the rapacity gain also decreases. Since larger quantities of fertilizer are used on

the less fertile soil, the rents from the poorer quality land more sensitive to an increase in fertilizer

price. As a result, the former effect is stronger than the latter, which makes conflict more likely.

Next we explore how the impact of an increase in fertilizer price on conflict is affected by the

initial distribution of soil fertility. Specifically, we consider the effect of a change in the difference

in soil fertility (the effect of a change in average soil fertility level is relegated to the Appendix).

To do so, let us denote s and ∆s as the average and the difference of soil fertility between groups,

respectively, with s = 1
2 (s1 + s2) and ∆s = s1 − s2. Let us (re)define s1 and s2 as functions of s

and ∆s with s1 = s+ 1
2∆s and s2 = s− 1

2∆s. Condition (11) becomes:

gf

(
s+

1

2
∆s, f1t

)
=
ct
πt

and gf

(
s− 1

2
∆s, f2t

)
=
ct
πt
. (17)

These conditions characterize the amount of fertilizer used by each group as a function of the

prices, the average soil fertility and the difference in soil fertility.

Now consider the effect of an increase in the difference in soil fertility on ∂Ψt/∂ct. Differen-

tiating (14) with respect to the difference in soil fertility, we obtain:

∂2Ψt

∂ct∂∆s
= µ (1− d)

∂2r1t

∂ct∂∆s
− (1− µ (1− d))

∂2r2t

∂ct∂∆s
. (18)

The sign of the effect depends on the weighted difference between the cross derivatives of

the rents with respect to the price of fertilizer and the difference in soil fertility. Using (17) and

differentiating (13) with respect to the difference in soil fertility, these cross derivatives can be

written as:
∂2r1t

∂ct∂∆s
= −1

2

∂f1t

∂s1
> 0 and

∂2r2t

∂ct∂∆s
=

1

2

∂f2t

∂s2
< 0. (19)

An increase in the difference of soil fertility dampens the negative effect of fertilizer price on the

rents from the more fertile soil and it magnifies the negative effect of fertilizer price on the rent

from the less fertile soil. This leads to the following result:

Proposition [Soil Fertility Heterogeneity and Conflict]: The interaction effect of an in-

crease in fertilizer price and in the difference in soil fertility on the likelihood of conflict is always

positive. Formally,
∂2Ψt

∂ct∂∆s
> 0. (20)

The intuition of this result is the following. An increase in the difference of soil fertility amplifies

the decrease in opportunity cost and attenuates the decrease in rapacity gain. Hence, the cross-

effect of increased fertilizer price and inequality in soil fertility on the likelihood of conflict is

positive.

Notice that the last proposition is obtained holding the average level of soil fertility constant.

How average soil fertility itself affects the relationship between fertilizer price and conflict is

theoretically unclear. Section B.4 of the appendix provides a detailed discussion of this issue.

The general conclusion is that a change in average soil fertility may increase or decrease the
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likelihood of conflict following a fertilizer price shock depending on how soil fertility is measured.

For instance, a nonlinear increasing transformation of the variable can reverse the sign of the

relationship. Empirically, we indeed find that the sign of this effect varies depending on the

indicator used to measure soil fertility.16

2.3 Discussion

The two main theoretical predictions we investigate can be summarized as follows. First,

an increase in fertilizer prices makes conflict more likely. This is because more costly inputs

lead to a drop in the opportunity cost of engaging in conflict for the land-poor, which is greater

in magnitude than the decrease in the rents that stand to be appropriated from the land-rich.

Second, the probability of conflict increases to an even greater extent if fertilizer prices increase

in areas where soil fertility is more heterogeneous. When soil fertility is more heterogeneous, the

decrease in the opportunity cost for the land-poor is magnified, and the drop in the rapacity gain

is dampened.17 Before turning to the tests of these core predictions, we discuss the empirical

relevance of several intermediate implications of the model, as well as the results implied by

extending the model in various directions.

2.3.1 Assumptions and implications of the model: empirical evidence

In our agricultural production model, increases in fertilizer prices trigger conflict partly be-

cause the most fertile soils require less fertilizer, which makes the rent from these lands less

sensitive to variations in the price of this input. In section D.1 of the online appendix, we dis-

cuss existing evidence and provide new estimates supporting these assumptions and intermediary

results. First, we discuss the assumption that returns to fertilizers decrease when soil fertility

increases in light of existing evidence and using geo-coded data from the World Bank lsms sur-

veys. Second, we discuss three implications of our agricultural production model: (a) farmers

use lower amounts of fertilizers on fertile soils (an implication of equation 12), (b) agricultural

yields and rents from land decrease when the price of fertilizer increases (an implication of equa-

tion 13), (c) the negative effect of fertilizer prices on agricultural yields and rents is larger for

less fertile soils (an implication of equation 15). Concerning the implication (a), existing papers

find at most weak support for this relationship (Sheahan and Barrett, 2014, 2017) but they use

measures of self-assessed, perceived soil quality. Combining geo-coded data from the World Bank

lsms surveys with our measure of nutrient availability (see section 3.3), we find stronger support

for our assumption, though the results are sensitive to the specification (online appendix section

D.1.1). In the case of the implication (b), we find that our cell-specific measure of fertilizer prices

correlates significantly with agricultural yields at the aggregate and local levels (online appendix

section D.1.2). We use several measures of yields or agricultural output: a sub-country mea-

sure from fao-agromaps, a cell-level proxy based on a standard vegetation index (Normalized

16See Prediger et al. (2014) for a study on pastoralists’ likelihood to engage in antisocial behavior towards their
fellow commons users when they are located in low-yield areas rather than in high-yield areas.

17Our main predictions therefore relate conflict likelihood to changes in rents triggered by variations in fertilizer
prices. How soil fertility heterogeneity affects conflict independently of fertilizer price variations is theoretically
ambiguous. The online appendix B provides more discussion of this relationship. We show that, in contrast
with fertilizer prices which only influence the tradeoff between current payoffs (left hand side in condition 6), soil
fertility heterogeneity affects both the tradeoff between current payoffs and between future payoffs (right hand side
in condition 6). The resulting effect is ambiguous. We however provide some suggestive evidence that, within our
sample, soil fertility heterogeneity is positively correlated with conflicts across space.
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Difference Vegetation Index, ndvi) and household-plot level information from the World Bank

lsms surveys. This is important because one could have argued that the relatively low usage

of fertilizers by ssa countries could have made agricultural output insensitive to fertilizer price

fluctuations. Finally, thanks to the lsms data, we also find support for the implication (c): dif-

ferent measures of land value correlate negatively with our measure of fertilizer prices, especially

in regions where land is nutrient-poor.

2.3.2 Extensions of the model

We have assumed that both groups use fertilizers. In fact, if the price of fertilizers is sufficiently

high, the land-rich (group 1) may stop using these inputs. This would not affect our two main

predictions: in that case, the rents of group 1 become insensitive to fertilizer price variations.

The rapacity gain would remain constant while the opportunity cost of group 2 would still vary

with the price of fertilizer. In the online appendix (section C), we also consider an extension of

the model in which the land-poor group (group 2) faces budget constraints, and as a result stops

using fertilizers when the price goes beyond a certain level. This implies that the rents from

the less fertile soil become insensitive to fertilizer price variations when the price of fertilizers is

sufficiently high. Fertilizer prices now have a non-monotonic effect on conflict while the cross-

effect of fertilizer price and soil fertility heterogeneity is still always positive. We provide some

evidence of such non-monotonicity; we however find that in the data, the impact of fertilizer price

changes on conflict is always positive, as predicted by our baseline model.

Finally, we have assumed that the only exogenous difference in agricultural productivity be-

tween the two groups is soil fertility. This leads us to conclude that the group with more fertile

soil gets larger agricultural rents than the other group. This intermediate results is consistent

with existing evidence (Marenya and Barrett, 2009a,b; Liverpool-Tasie et al., 2017), and thus we

believe that our simple agricultural production model is sufficient to capture the main intuitions.

Notice that, from a theoretical point of view, exogenous characteristics that influence agricultural

productivity beyond soil fertility (such as land quantity) may lead to a situation where the group

with more fertile soil gets smaller rents than the other group (if the group with more fertile soil

owns a much smaller land surface for instance). In this case, our first prediction could be reversed

(to the extent that the weights 1−µ(1−d) and µ(1−d) are of sufficiently similar magnitude) and

our second prediction would be reversed. These alternative predictions are, however, based on

an assumption that is not supported by existing empirical evidence and they are not consistent

with our main empirical results.

3 Data

Testing the predictions of the model first requires defining a level of spatial aggregation. At

this level of aggregation, we must then build measures of (i) conflict events, (ii) natural soil

fertility, and (iii) variations in fertilizer prices. In this section we summarize the main variables

used in our baseline estimations. For each of these variables, we also use alternative measures in

our sensitivity analysis; their description appears in the online appendix A.

3.1 Unit of analysis

Our units of analysis are cells of size 0.5×0.5 degrees latitude and longitude (around 55×55
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kilometers at the equator), covering the entire set of ssa countries. Most of the data we use

throughout the paper are available at a more disaggregated level. For this reason, we aggregate

the data in order to generate a dataset at the cell-year level. We use this level of aggregation rather

than administrative boundaries in order to ensure that our unit of analysis is not endogenous to

conflict events. We assign a country to each cell based on the end-of-period boundaries. Note

that we check that our main results are not sensitive to our choice of spatial scale, by reproducing

our analysis using 0.25×0.25 and 1×1 degree cells.

3.2 Conflict data

We use conflict event data from the Armed Conflict Location and Event dataset (acled)

which contains information on the geo-location of conflict events in all African countries over the

period from 1997 to 2013 (Raleigh and Dowd, 2014). These data, that have been widely used in

recent conflict literature, contain information about the date, the location (longitude/latitude)

of conflict events within each country, and the nature of the actors on both sides of the conflicts.

Events are compiled from various sources, including press accounts from regional and local news,

humanitarian agencies, and research publications. Geographic precision specifies at least the

municipality level in more than 95% of cases, and is even finer (i.e. village level) for more

than 80% of observations. For each data source, we aggregate the data by year and by 0.5×0.5

degree cell.18 We focus on Sub-Saharan African countries only; North African countries possess

significant reserves of phosphate (in particular Morocco and Western Sahara), which would affect

our identification strategy.

We construct a dummy variable equal to one if at least one conflict occurs in the cell during

the year; we interpret this variable as cell-specific conflict incidence. As an alternative measure

of conflict, we compute a variable containing the number of events observed in the cell during

the year. Note that our results are also robust to modeling the onset and ending of cell-specific

conflicts separately. Figure 1.A provides a visual representation of our data across cells (a larger

version appears in the online appendix section A.7, figure A2). Events are observed over the

entire Sub-Saharan African continent, with some clusters appearing in the Great Lakes Regions,

Nigeria, and West Africa.

A unique feature of the acled dataset is that it includes information about the characteristics

of the actors on both sides of the conflicts as well as – for a large subset of observations – a

description of the event. As an alternative measure of conflict incidence, we make use of the

richness of the acled dataset in order to identify conflicts that are likely to be land-related as

well as those that are likely to have occurred between local actors. We thus define “land conflicts”

as events (i) involving communal militias (i.e. local armed groups, fighting for a local objective) on

both sides and/or (ii) whose description include specific keywords related to land.19 Figure A2.B

18See Besley and Reynal-Querol (2014), Michalopoulos and Papaioannou (2016), or Berman et al. (2017) for
papers combining data that is structured similarly to our own with the same conflict data we use. We only keep
events that are geolocalized at the finer precision level for our analysis. We also drop duplicated events, i.e. events
for which all of the acled variable’s content (precise date, location, actors, description, etc.) is the same for several
observations – in these cases we retain only one observation for the event. This eliminates 1.7% of events. Finally,
we drop from our baseline estimates events related to riots and protests in order to conform to the objectives of
our model.

19acled refers communal militias as groups whose “goal [...] is often for the defense of localized territories,
livelihoods, community wealth, etc.”. We include events whenever the descriptions include the following keywords:
“land dispute”, “dispute over land”, “control of land”, “over land”, “clash over land”, “land grab”, “farm land”,
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Figure 1: Data visualization

A. ACLED data B. Soil fertility C. Fertilizer price change

Note: Only the cells included in our final sample (i.e. the cells for which all of our main variables are non-missing)
appear in these figures. Figure A: Armed Conflict Location and Event dataset (ACLED) events (all events). Figure
B: cell-specific soil fertility variance. Data obtained from the International Institute for Applied System Analysis.
Soils are ordered in five categories ranging from 1 (“no or slight constraints”) to 5 (“very severe constraints”).
Figure C: largest increase in the cell-specific fertilizer price index over the 1997-2013 period.

in the online appendix (section A.7) shows the spatial distribution of our measure of land-related

conflicts. These conflicts tend to be geographically concentrated, and mostly occur in East Africa,

which illustrates a limitation of our measure of land-related conflicts. Specifically, the measure

relies on the event description provided in the acled data, for which the methods and quality

of coding vary widely across countries. In some countries, the description may be absent or very

short, or may use a different terminology, which may have prevented us from identifying potential

land-related events. For this reason, we use the broader measure of violent conflicts described

above in our baseline, and focus on land-related events for comparison purposes. Note that the

acled dataset does not include information on who attacked in the first place.

3.3 Soil fertility

One of our objectives is to understand how the heterogeneity in soil fertility within regions

affects the transmission of agricultural input price shocks to conflict. As an empirical counterpart

to our model of soil fertility, we use the quantity of nutrients naturally available in the soil. When

soil quality is poor, fertilizers can be used as substitutes.

Our baseline data source is the Harmonized World Soil Database (hwsd) built jointly by the

fao (Food and Agriculture Organization) and iiasa (International Institute for Applied System

Analysis). This data uses models that incorporate location-specific soil attributes (texture, or-

ganic carbon, pH, and total exchangeable bases) to compute, among other measures, an index

of nutrient availability.20 The index assigns soils to one of five categories ranging from 1 (“no or

slight constraints”) to 5 (“very severe constraints”). Although, the data are available by spatial

units of 5 arc-minutes (approx. 9km × 9km at the equator), while our units of observation are

cells of 30 arc-minutes. For each cell, we thus compute the average value, the mode, as well

“land invaders”, “land invasion”, “land redistribution”, “land battle”, “over cattle and land”, “invade land”, “over
disputed land”, “over a piece of land”.

20Each soil attribute is associated with a rating. The nutrient availability index is calculated as the average of
the rating of the attribute with the smallest rating and the average rating of the three other attributes. See Fischer
et al. (2008) for a detailed description.
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as the standard deviation and the variance of this variable, which we use as a measure of the

heterogeneity of soil fertility. We also compute the share of soil fertility in each category and

define high fertility cells as those for which the share of soil with “no or slight constraints” is

above 50%. Figure 1.B plots the spatial distribution of heterogeneity in soil fertility (see Figure

A3 in the online appendix section A.7, for larger maps and the distribution of average soil fertil-

ity). Figures A7 to A10 in the online appendix (section A.8) focus on four specific countries for

which we plot the distribution of the mode, average, standard deviation and Herfindahl index of

nutrient availability. In a country such as Ethiopia, soil fertility is relatively concentrated across

cells, with most regions displaying a high level of average fertility (Figures A7 and A8); fertility

within cells, in contrast, appears to be highly heterogeneous (Figures A9 and A10). In Zimbabwe,

however, nutrient availability is more concentrated, both across and within cells.

3.4 Measuring local variations in fertilizer prices

The final piece of information required to test our predictions are cell-specific fertilizer prices.

Direct information on local fertilizer prices is not widely available, and if it were, these prices

would likely be endogenous to conflicts. To identify exogenous local variations in fertilizer prices,

we combine three types of data: (i) data on crop specialization (what crops are produced in each

cell), (ii) information on crop-specific nutrients uptakes (what mix of nutrients should be included

in the fertilizers used for each crop), and (iii) data on the annual price of each nutrient.

The general idea behind our measure is the following. Different cells are specialized in different

crops, and the content of the fertilizers used to produce these crops should, in theory, differ (see the

end of the present section for further discussion). Fertilizers typically contain a mix of nitrogen,

phosphate and potassium (N-P-K), but this mix varies across different types of fertilizers in

order to meet crop-specific needs.21 Hence, combining data on local crop specialization with the

international market price of each fertilizer component, we are able to construct a fertilizer price

that varies across locations and over time.

First, we identify the main crop(s) produced by each cell using data from the fao’s Global

Agro-Ecological Zones (gaez). This data is constructed from models that use location character-

istics such as climate information (for instance, rainfall and temperature) and soil characteristics.

This information is combined with crop’ characteristics in order to generate a global gis raster

of the suitability of a grid cell for cultivating each crop. The main advantage of this data is

that crop suitability is exogenous to conflicts, as it is not based on actual production. In our

benchmark estimations, we use the main crop produced in the cell, which is defined as the crop

with the highest suitability level.

Second, we gather information about the required N-P-K mix of nutrients (measured in kg/ha)

for each crop. Our benchmark data are generated by the International Plant Nutrient Institute

(ipni) and include information on the nutrient requirements of 42 crops (Table A2, online ap-

pendix section A.4).

Finally, we obtain the real international market prices of each nutrient from the World Bank

Commodities Dataset. A graph of each price series over time is shown in the online appendix

(section A.4), Figure A1. The three price spikes that occurred between 2008 and 2009 were due

21Most fertilizers contain multiple nutrients. Each fertilizer has a N-P-K rating that consists of three num-
bers (αN , αP , αK). The first number is the percentage of nitrogen (N), the second number is the percentage of
phosphorus pentoxide (P2O5) , and the third number is the percentage of potassium oxide (K20).

15



to a rise in demand triggered by US biofuel programs and to the imposition of a 135% Chinese

export tariff on phosphate (see Schröder et al., 2010).

Equipped with these data, we compute, for each cell, the international market price of a

kilogram of local fertilizer based on the identified main crop and the required N-P-K mix for this

crop:

Pct = PNt α
N
i(c) + PPt α

P
i(c) + PKt α

K
i(c), (21)

where the {PNt , PPt , and PKt } represent the real international market prices of nitrogen, phos-

phate, and potassium, i(c) is the crop with the highest suitability in the cell, and {αNi(c), α
P
i(c), and

αKi(c)} are the required proportion (%) of the three nutrients for crop i(c). These proportions are

computed from the quantities of nutrients that are removed from the soil at the time of harvest

(in kg/ha), with αNi + αPi + αKi = 1, for each crop i. We use the main crop in our baseline esti-

mations as re-weighting equation (21) across crops may introduce some noise. However, because

multiple cropping practices may be prevalent in many regions, we demonstrate that our results

are robust to using the five most suitable crops in the computation of our price index.22

Figure 1.C above shows the largest yearly fertilizer price change observed for each cell over

the period (see online appendix section A.7 Figure A3 for additional maps on fertilizer prices),

which lies between 70% (for cells in which suitable crops require fertilizers with low amounts

of phosphate) and almost 130% (for cells in which suitable crops require phosphate intensive

fertilizers). As we will show later, the average change in fertilizer price is positive but relatively

low (around 6%), which implies that drops in prices are not uncommon.

3.5 Identification assumptions

When interpreting Pct as a measure of exogenous changes in local fertilizer prices, we make

several implicit assumptions. Section D of the online appendix lists these assumptions and section

D.2 provides a detailed discussion of various pieces of empirical evidence supporting them. We

summarize this discussion here.

Our first identification assumption is that the international market prices of nutrients are

exogenous to conflict. Reverse causality could be an issue in our case only if the use of a specific

mix of nutrients in conflict-affected cells in ssa impacts the international market price of this

mix. This seems very unlikely: ssa countries are not large consumers nor producers of fertilizers.

Consumption of fertilizer relies mostly on imports and almost all of the world production occurs

in Europe, North America, and Asia (Hernandez and Torero, 2013). Taken together, the countries

in our dataset represent only 4% of world imports and 2% of world consumption of fertilizer.23

Second, we assume that changes in the international market prices of nutrients are transmitted

to local markets. We investigate the validity of this assumption using data on a subset of countries

and nutrients in section D.2.1 of the online appendix. We gathered data for urea and phosphate,

at the market level, for about 350 markets located in 17 countries over a 4-year period (2010-

22When identifying the most suitable crop using GAEZ, we need to restrict our sample to the crops for which
we observe the ideal NPK mix. For 78% of the cells, this has no incidence as the most suitable crop is one for
which we have NPK data. Removing other 22% of the cells has little impact on our results (if anything these are
marginally reinforced).

23Authors’ computations based on fao-stat data. Note also that, since fertilizer use is an investment, more
conflict or anticipated conflicts (i.e. insecure property rights) should be associated with less fertilizer use (Jacoby
et al., 2002) and lower prices. We find the opposite: variations in international market prices and conflicts are
positively correlated.
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2013)24 and regressed local market-level prices on the international market price of the nutrient,

both in logs. Controlling for various sets of fixed effects, we confirm that variations in international

market prices do have a significant impact on local prices. Online appendix section D.2.1 provides

additional details and discussion.25

A last identification assumption we make is that the fertilizers used by local farmers should

indeed reflect, at least to some extent, the “ideal” mix of nutrients they should use given the

crop(s) they grow. This assumption is weaker than it might appear at first: we do not need

to assume that farmers systematically use the ideal mix. Our only requirement is that the

fertilizers that are locally available partly reflect the specialization of the cell – that is, that

the nutrient composition of fertilizers available in, say, a maize producing cell should be closer

to the mix of nutrients suitable for growing maize than the composition of fertilizers in other

cells. In section D.2.2 of the online appendix, we provide evidence that this is indeed the case,

i.e. that our measure of fertilizer price indeed correlates with the actual (unobserved) local

prices of fertilizers. We build on the results of section D.1.2, where we find that our measure

of fertilizer prices indeed correlates strongly with various measures of agricultural yields: a sub-

country measure from fao-agromaps; a cell-level proxy based on a standard vegetation index

(ndvi) and household-plot level information for six countries covered by the World Bank lsms

surveys. These measures systematically correlate negatively with our fertilizer prices. Given that

in all estimations we control for common time shocks, our identification arises from differences

in fertilizer prices across crops, which are themselves driven by different mixes of nutrients. If

farmers all used the same mix across regions producing different crops, or used simply urea for

instance, or used a random mix of locally available fertilizers, we would expect these estimates

to be insignificant.

3.6 Other data

We complement our dataset with additional cell-specific information. In particular, we add

cell-level information from prio-grid v.2 (Tollefsen et al., 2012): geographical characteristics,

population, and weather. We also control for economic shocks such as variations in the prices

of produced and consumed agricultural commodities (Berman and Couttenier, 2015, McGuirke

and Burke, 2018) or in the price of locally produced natural resources such as oil and minerals

(Berman et al., 2017). Finally, in the last part of the paper we make use of information on

ethnic homelands boundaries from Murdock (1959). More details about these variables and their

sources are provided in the corresponding robustness section, and the full description appears in

the online appendix, section A.5.

3.7 Final sample statistics

Table 1 provides descriptive statistics for our main variables (section A.6 of the online appendix

provides additional statistics about the variables used in our sensitivity analysis). Our sample

contains 6,565 cells belonging to 43 ssa countries, and covers the period from 1997 to 2013.

24We do not use this data directly in our conflict estimations because: (i) these local prices are likely to be
endogenous to conflicts, and (ii) the time frame and geographical coverage are limited.

25Note that even in countries where fertilizers were subsidized over the period, we expect variations in the world
prices of fertilizers to have an impact on the price paid by farmers, as the subsidies typically represent only a share
of the total cost.
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Pr(conflict) equals 1 if at least one conflict event occurs within the cell-year.

At least one conflict event occurred in 7% of the 111,605 cell-year units. Unsurprisingly, the

unconditional probability of land-related conflicts is much lower at 1%. Conditional on at least

one conflict event being observed, the number of conflicts is 1.25 on average. The average level

of soil fertility, computed from our baseline data on nutrient availability, is equal to 2.11, which

is close to 2, the value defined as “moderate constraints” in our dataset (1 denotes “no or slight

constraints”, 5 denotes “very severe constraints”). The correlation between the mean and the

variance of soil fertility is around 12%. Finally, the average fertilizer price in a cell is around

$210 per metric ton, with significant year-to-year variations observed during our time period: the

third quartile of the log-change in this variable shows a 22% increase in price, and the largest

observed increase is as high as 130%. Negative price shocks also occur often – the median of the

variable is close to zero.

Table 1: Descriptive statistics

Obs. Mean S.D. 1st Quartile Median 3rd Quartile

Pr(conflict> 0) 111605 0.07 0.26 0.00 0.00 0.00
Pr(conflict> 0) (land-related) 111605 0.01 0.08 0.00 0.00 0.00
# conflicts 111605 0.09 0.38 0.00 0.00 0.00
# conflicts (if > 0) 7945 1.25 0.75 0.69 1.10 1.61
Soil fertility (mean) 111588 2.11 0.79 1.42 2.00 2.81
Soil fertility (mode) 111588 2.07 0.92 1.00 2.00 3.00
Soil fertility (variance) 111588 0.38 0.29 0.16 0.42 0.50
Fertilizer price ($/ton) 111605 209.97 106.89 116.27 180.96 286.68
∆ ln fertilizer price 105040 0.06 0.24 -0.10 0.01 0.22
Share irrigated 111605 0.33 1.84 0.00 0.00 0.04
Share agriculture 111605 22.27 26.33 1.53 11.33 33.94

Source: Authors’ computations. See main text and online appendix A for data sources. Pr(conflict> 0) is a dummy taking the value 1 if at least
one conflict is observed in the cell that year. # conflicts is the number of conflict events observed. Soil fertility (mean), Soil fertility (mode)
and Soil fertility (variance) are respectively the mean, mode and variance of nutrient availability within the cell. Fertilizer price ($/ton) is our
measure of fertilizer price from equation (21).

4 Econometric strategy and results

4.1 Empirical specification

We denote cells by c and years by t. Our first prediction states that variations in fertilizer

prices have a positive impact on the likelihood of violence within a cell. We estimate the following

specification:

Conflictct = α1 lnPct + D′ctβ + ηc + µt + εct, (22)

where Conflictct is our conflict variable at the cell-year level, with conflicts being measured in

terms of incidence (i.e. a binary variable coding for non-zero events) in our baseline specification,

although we also estimate specifications using conflict intensity (number of events), onset and

ending as alternative dependent variables. We also study the specific subset of events that we
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consider to be land-related. Pct is our measure of cell-specific fertilizer price shocks from equation

(21), which measures the price of the fertilizer for the main crop produced by the cell c at time

t, or, in our sensitivity analysis, the price of the fertilizers for the 5 main crops produced by

the cell. Pct varies across cells and time because the fertilizers needed for different crops are

characterized by different nutrient composition and the prices of these nutrients vary through

time, as explained above. D′ct is a set of potential time-varying cell-specific co-determinants of

conflicts that we consider in our robustness analysis. These include weather-related conditions,

and other world demand or price shocks, related to mineral or agricultural output. Finally, ηc

and µt are cell and year fixed effects, respectively. ηc accounts for any time-invariant or slow-

moving cell characteristics, such as geography, institutions, or culture, that may affect conflict;

µt captures common time shocks, in particular global commodity price variations, that might be

correlated with fertilizer prices.

According to prediction 1, estimates of α1 should be positive, e.g. spikes in fertilizer price make

conflict more likely.26 In our theoretical model, this is due to the fact that, in an environment

where soil fertility is unequally distributed, an increase in the price of fertilizer diminishes the

opportunity cost of conflicts more than it decreases the rapacity gain, i.e. the production that

can be appropriated through violence for groups who possess less fertile soils. Hence, conflict

probability rises.

Our second prediction relates soil fertility heterogeneity to the effect of fertilizer price changes

on conflict. We therefore augment equation (22) with an interaction term between fertilizer prices

and a measure of soil fertility heterogeneity:

Conflictct = α1 lnPct+α2 lnPct×V(Fertilityc) +α3 lnPct×Fertilityc+D′ctβ+ηc+µt+εct, (23)

where V(Fertilityc) is a measure of the heterogeneity of soil fertility in cell c. In our baseline

estimations, this measure represents the variance of nutrient’ availability within the cell. Note

that we control for Fertilityc, the average fertility level in the cell, as required by the model

(see condition (20) and the paragraph before equation (17)). D′ct includes interaction terms

between lnPct and cell-specific variables that may be correlated with V(Fertilityc), and which we

also consider in our robustness checks. These include various geographical and socio-economic

characteristics.

Following the second prediction of the model, we expect α2 to be positive, e.g. increases in

fertilizer prices trigger more conflicts in cells in which natural soil fertility is more heterogeneous.

This is because, keeping average fertility constant, in regions where soil fertility is more hetero-

geneous, the drop in the opportunity cost resulting from an increase in fertilizer prices is greater

than in more homogeneous regions, and the decrease in the rapacity gain is lower. However, as

discussed in the appendix, we note that the sign of α3 is theoretically ambiguous and may depend

on our measure of soil fertility.

Econometric issues. As a benchmark, equations (22) and (23) are estimated using a linear

probability model (LPM), and include cell (ηc) and year (µt) fixed effects. A LPM more natu-

26An alternative approach would be to focus on price growth over time (i.e. difference in log-prices). Section
F.2 in the online appendix discusses this alternative specification. We argue that the use of levels is consistent with
our theory, and show that it is statistically supported by unit root tests.
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rally handles multiple fixed effects and spatial correlation, and better deals with rare events than,

for instance, a logit model (King and Zeng, 2001). We do, however, check the results we obtain

using nonlinear estimators, specifically logit when the dependent variable is conflict incidence,

or Poisson when the dependent variable is the number of events. We also consider a number of

alternative specifications, adding in particular country-specific time trends or country×year fixed

effects to equations (22) and (23).

Given the high spatial resolution of the data, and because both conflicts and crop specializa-

tion are geographically clustered, we allow the error term to be spatially correlated, and auto-

correlated in our baseline estimations.27 More precisely, we apply a spatial HAC correction to our

standard errors, allowing for both cross-sectional spatial correlation and location-specific serial

correlation, following the method developed by Conley (1999). As in Berman et al. (2017), we

impose no constraint on the temporal decay for the Newey-West/Bartlett kernel that weights se-

rial correlation across time periods. The horizon at which serial correlation is assumed to vanish

can be infinite (i.e. 100,000 years). In the spatial dimension we retain a radius of 500km for the

spatial kernel.28 We also provide robustness results allowing for different radiuses and temporal

decays.

The main potential threat to causal identification in equations (22) and (23) is arguably the

existence of other shocks correlated with variations in fertilizer prices, or of cell characteristics

correlated with soil fertility heterogeneity (in equation (23)). We therefore perform extensive

robustness exercises, including time-varying variables such as variations in mineral prices, agri-

cultural commodity demand, and climate, as well as time-invariant variables that reflect the

geography and other characteristics of the cell, interacted with Pct.

4.2 Baseline results

Our baseline results appear in Table 2 below. Columns (1) and (2) consider the full set

of conflict events, and columns (3)-(4) restrict the dependent variable to land-related conflicts.

We find support for our two theoretical predictions. First, variations in local fertilizer price are

positively and significantly correlated with conflict probability (columns (1) and (3)). Second,

this effect is magnified in cells characterized by more heterogeneous soil fertility (columns (2) and

(4)). The coefficient of the interaction between the average soil fertility level and fertilizer price

is significant only in column (2).

When all conflicts events are considered, our estimates from column (1) imply that a standard

deviation increase in fertilizer price (i.e. an increase of approximately 0.5 in logs) raises conflict

probability by 5.9 percentage points, a moderate impact. In cells where soil fertility is one

standard deviation more heterogeneous than the sample average, the same standard deviation

increase in fertilizer price rises conflict probability by 9.5 percentage points. Interestingly, these

figures – relative to average conflict probability – are much larger in the case of land-related

conflicts.29 We come back to the quantitative interpretation of our results in section 4.5 below.

27A related issue is related to temporal and spatial spillovers in the effect of fertilizer prices. We come back to
this question in our robustness section below.

28We employ the recent Stata routine acreg developed by Collela et al. (2018) based on Hsiang (2010) and
Conley (1999).

29The coefficients displayed in Table 2 are lower in columns (3) and (4), but this is only due to the very low
probability of this type of event in our sample.
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Table 2: Baseline results

(1) (2) (3) (4)
Dep. var. Conflict incidence
Conflicts —— All events —— —– Land-related —–

ln fertilizer price 0.119a 0.156a 0.018b 0.019b

(0.041) (0.043) (0.007) (0.007)

× V(Fertility) 0.058a 0.007a

(0.009) (0.003)

× Fertility 0.021a 0.001
(0.004) (0.001)

Cell and Year FE Yes
Countries 42
Period 1997-2013
Observations 111605 111588 111605 111588
Average predicted conflict prob. 0.071 0.071 0.006 0.006

Increase in conflict prob. after a one s.d. increase in fertilizer price1

Average cell 0.059 0.062 0.009 0.009

1 s.d. more heterogeneous cell 0.096 0.043

c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors in parentheses, allowing for spatial correlation
within a 500km radius and for infinite serial correlation. ln fertilizer price is our baseline fertilizer price shock, computed using the required
NPK mix (from IPNI) for the main crop produced by the cell (from GAEZ). Fertility is the mean of nutrient availability of the cell, i.e minus
the categorial variable with values ranging from 1 to 5 (from HWSD). V(Fertility) is the variance of the nutrient availability level within the
cell (from HWSD). In columns (1) and (2) the dependent variable is a dummy taking the value 1 if at least a conflict event is observed in
the cell during the year, 0 otherwise. In columns (3) and (4), the dependent variable is a dummy taking the value 1 if at least a land-related

event is observed in the cell during the year, 0 otherwise. 1 In columns (1) and (3), we compute the effect of a standard deviation increase
in fertilizer prices given the estimated coefficient. In columns (2) and (4), we compute the effect of a standard deviation increase in fertilizer

prices, respectively for the average cell – a cell with the average value of Fertility and V(Fertility) –, and then for a cell with the average value

of Fertility and a value of 1 standard deviation above the mean of V(Fertility).

4.3 Sensitivity analysis

In this section we first discuss specification issues; we then show that our main results of Table

2, columns (1) and (2) are robust to a large battery of sensitivity checks. Most of the tables are

relegated to the online appendix (section F), in which we discuss these results at length.

4.3.1 Omitted variables

In the first important set of robustness checks we control for potential omitted variables (online

appendix section A.5 provides the source of each variable). In Table 3, we add country×year fixed

effects (or country-specific time-trends) to filter out all time-varying country characteristics that

could be correlated to both the dynamics of conflicts and with global changes in fertilizer prices

(columns (1) to (4)). Such fixed effects capture for instance the fact that in 2008, in the midst

of the spike of fertilizers’ and other commodities’ prices, the stock exchange collapsed in South

Africa and Nigeria. They can also capture country-specific abilities to subsidize fertilizers during

bad times. It is reassuring that our results were not driven by unobserved heterogeneity across

country×year. Columns (5)-(6) show even more restrictive specifications, where time-varying

21



fixed effects are defined at the sub-national level (second administrative units). This rules out

the possibility that our results are caused by regional characteristics correlated with conflicts and

fertilizer prices (e.g., fertilizer subsidies).

Table 3: Alternative specifications

(1) (2) (3) (4) (5) (6)
Dep. var. Conflict incidence

ln fertilizer price 0.085b 0.071b 0.112a 0.094a 0.064b 0.072b

(0.034) (0.034) (0.035) (0.035) (0.032) (0.032)

× V(Fertility) 0.025a 0.023a 0.003a

(0.006) (0.007) (0.001)

× Fertility -0.004 -0.006 0.003a

(0.003) (0.004) (0.001)

Cell FE Yes Yes Yes Yes Yes Yes
Country×Year FE Yes Yes No No No No
Country-specific time trends No No Yes Yes No No
Country×Region×Year FE No No No No Yes Yes
Observations 111588 111571 111605 111588 109599 109582

c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors in parentheses, allowing for spatial correlation
within a 500km radius and for infinite serial correlation. Regions are defined as the country-specific second administrative units.

Table 4 controls for cell-specific time-varying factors such as commodity prices and weather

conditions. In recent literature conflict likelihood has been shown to be associated to fluctuations

in the prices of agricultural commodities, produced (Dube and Vargas, 2013, Berman and Cout-

tenier, 2015, McGuirke and Burke, 2018) or consumed (McGuirke and Burke, 2018), to changes

in mineral prices (Berman et al., 2017) or to rainfall variations (Harari and Ferrara, 2018, Guariso

and Rogall, 2017, Adhvaryu et al., 2017). These shocks could be correlated to our fertilizer prices.

Similarly, soil quality might correlate with production and consumption patterns. We sequentially

include agricultural price shocks, local rainfall variations, oil and mineral prices. The producer

prices of agricultural goods are computed as the sum of the world price of all crops produced in

the cell, weighted by the share of each crop in cultivated land (in the spirit of Berman and Cout-

tenier, 2015 and McGuirke and Burke, 2018). Consistent with these papers, we find a negative

impact of such shocks (column 2). The crop consumption price index is computed as the weighted

sum of the world prices of consumed crops, with weights being defined at the country-level by

nutritional intake shares from FAO Food Balance Sheets data (McGuirke and Burke, 2018). Its

coefficient is positive but less precisely estimated.30 In all instances our coefficients of interest

remain statistically significant and of similar magnitude as in our benchmark specification. Sim-

ilarly, including rainfall, the world price of oil for oil-producing cells or the price of the main

mineral produced in the cell (as in Berman et al., 2017) has little impact on our estimates.31

30Note that the statistical significance of the coefficients on the producer and consumer price indexes is quite
sensitive to our choice of spatial clustering of the standard errors. When clustering at the cell-level, for instance,
the producer price is significant at the 1% level.

31The number of observations is lower than in our baseline sample for several reasons. First, not all countries
have consumption data in the FAO Food Balance Sheets, and so the consumer price index cannot be computed for
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Table 4: Additional time-varying controls

(1) (2) (3) (4) (5) (6)
Dep. var. Conflict incidence

ln fertilizer price 0.119b 0.121b 0.122b 0.121b 0.119b 0.174a

(0.056) (0.056) (0.056) (0.056) (0.058) (0.067)

× V(Fertility) 0.042b

(0.017)

ln producer price index -0.076c -0.076c -0.076c -0.010 -0.111
(0.043) (0.043) (0.043) (0.044) (0.088)

× V(Fertility) -0.006
(0.067)

ln consumer price index 0.028 0.027 0.030 -0.006 0.053
(0.063) (0.064) (0.063) (0.061) (0.092)

× V(Fertility) -0.005
(0.065)

ln rainfall 0.010 0.011 -0.000 -0.035c

(0.010) (0.010) (0.010) (0.018)

× V(Fertility) -0.008
(0.016)

ln oil price × oil field 0.035c 0.029c -0.075c

(0.019) (0.017) (0.040)

× V(Fertility) 0.033
(0.050)

ln main mineral price × mine 0.054b 0.159a

(0.023) (0.055)

× V(Fertility) 0.104
(0.076)

Cell and Year FE Yes Yes Yes Yes Yes Yes
Observations 85680 85680 85680 85680 70560 70546

c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors in parentheses, allowing for spatial correlation
within a 500km radius and for infinite serial correlation. ln producer price index is computed as in Berman and Couttenier (2015) and McGuirke
and Burke (2018) using M3-crop data as the sum of the world price of all crops produced in the cell, weighted by the share of each crop in
cultivated land. ln consumer price index is computed as in McGuirke and Burke (2018) as the weighted sum of the world prices of consumed
crops, weights being defined at the country-level by nutritional intake shares from FAO Food Balance Sheets data. ln oil price equals the world
price of oil interacted with a dummy denoting onshore petroleum deposits (from Prio-Grid v.2). ln price mineral is price of the main mineral
produced by the cell during the period, and equals zero if no active mine is recorded in the cell over the period – see Berman et al. (2017).
Finally, rainfall is the yearly total amount of precipitation (in millimeter) in the cell, based on monthly meteorological statistics from the Global
Precipitation Climatology Centre (as appearing in Prio-Grid v.2).

Our measures of soil fertility could also conceivably be correlated with a number of local

characteristics affecting the response of the cell to economic shocks. This might be especially true

of time-invariant geographical / topographic characteristics; section A.9 of the online appendix

indeed shows that our measure of the variance of soil fertility correlates with the presence of

water and forest in the cell. Socio-economic characteristics (e.g. income or, population density)

can also correlate with fertility and affect conflicts. Table 5 shows that indeed, some of these

our entire sample. Second, the data on minerals from Berman et al. (2017) stops in 2010.
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characteristics do affect the impact of fertilizer prices on conflicts. In columns (1)-(2), we therefore

add to our baseline specification a set of interaction terms between fertilizer prices and time-

invariant geographical characteristics. Quite intuitively, we find that fertilizer price variations

have a stronger impact in cells where agricultural or harvested area represent a larger share of

the total surface. Agricultural specialization could also correlate with cell-specific characteristics

that affect the prevalence of malaria. In column (3), we find that the inclusion of the interaction

between fertilizer price and malaria suitability at the cell-level leaves our result unchanged.32 In

columns (4) to (9), we control for local socio-economic characteristics, specifically: population

density and nighttime lights (which could serve as a proxy for either GDP or population density).33

We find that conflict is more responsive to fertilizer price changes in denser cells, as measured by

population or nighttime luminosity. However, in all estimations our coefficients of interest remain

remarkably stable.34

Finally, despite the wide array of fixed effects and additional controls that we have included,

it could be the case that the residual unobserved heterogeneity still co-moves with the world

prices of fertilizers. We perform a placebo analysis to exclude this last concern and check the

validity of our approach. We replace the price of fertilizer in the cell with the price of a fertilizer

whose mix of nutrients is different from the one of the main crop of the cell. More precisely, we

randomly assign a main crop to each of the cells and estimate specification (1) of Table 2 with

this fake fertilizer price variable. We repeat this Monte Carlo procedure in 1,000 draws. Figure

F1 in the online appendix (section F.1) displays the sampling distribution of the coefficient of

fertilizer price for each estimation. Reassuringly, the Monte Carlo coefficients are distributed far

from their baseline estimates and are massively insignificant. This confirms that our baseline

results are not driven by unobserved co-movements with fertilizer prices.

4.3.2 Econometric specification

Our main specification uses the level of log fertilizer price, and does not take into account

potential lagged effects in the temporal or spatial dimensions. Section F.2 of the online appendix

discusses both assumptions. As pointed in Ciccone (2011) in the context of rainfall-induced

income shocks, the correct specification of the econometric model involves levels, unless price ex-

hibits non-stationarity. We show that the use of levels is both theoretically founded and supported

by unit root tests, which show that our price series are stationary. We also find that allowing

for spatial spillovers doubles the estimated impact of fertilizer price variations, while including

temporal lags has little influence on the magnitude of the effect. The results on spatial lags echo

the findings of Berman et al. (2017) and McGuirke and Burke (2018), who study respectively the

links between mineral prices and food price variations on conflict at the local-level.

32Cervellati et al. (2016) show that suitable conditions for malaria increase the incidence of civil violence. We
employ the Malaria Ecology Index used by Kiszewski et al. (2004) and developed by Gordon McCord as a measure
of malaria at the cell level.

33These data were obtained from prio-grid and the Global Land Survey dataset, respectively. Demographic
and economic variables are measured before the start of the period. A complete description of the variables is
provided in section A.5 of the online appendix.

34Soil quality and its dispersion could affect ethnic diversity in particular, as found by Michalopoulos (2012). If
this is the case, then our estimates would confound the magnifying effect of heterogeneous land endowments with
that of ethnic divisions. We come back to the role of ethnic divisions in section 5.
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Table 5: Additional time-invariant controls

(1) (2) (3) (4) (5) (6)
Dep. var. Conflict incidence
Controls —— Geography —— Socio-economic

ln fertilizer price 0.158a 0.147a 0.149a 0.148a 0.148a 0.149a

(0.044) (0.047) (0.042) (0.047) (0.043) (0.046)

ln fertilizer price × V(Fertility) 0.055a 0.056a 0.059a 0.067a 0.054a 0.062a

(0.009) (0.009) (0.009) (0.010) (0.009) (0.011)

ln fertilizer price × Fertility 0.017a 0.020a 0.020a 0.021a 0.019a 0.018a

(0.004) (0.004) (0.004) (0.005) (0.004) (0.004)

ln fertilizer price × % agriculture 0.025c 0.018
(0.015) (0.016)

ln fertilizer price × % forest -0.027b -0.038a -0.024c

(0.013) (0.012) (0.014)

ln fertilizer price × % barren -0.015 -0.017 -0.009
(0.011) (0.018) (0.013)

ln fertilizer price × % water -0.031 -0.033 -0.042
(0.039) (0.040) (0.043)

ln fertilizer price × % mountains -0.012 -0.005 -0.009
(0.012) (0.012) (0.012)

ln fertilizer price × % harvested 0.136c

(0.075)

ln fertilizer price × Malaria index 0.000 0.000
(0.000) (0.000)

ln fertilizer price × Density pop. 0.003b -0.001
(0.002) (0.002)

ln fertilizer price × Lights 0.069a 0.067a

(0.014) (0.014)

Cell and Year FE Yes
Observations 111486 96951 111588 97682 111588 97580

c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors in parentheses, allowing for spatial correlation within
a 500km radius and for infinite serial correlation. % agriculture, % forest, % barren, % water % mountains and % harvested are the percentage
of the cell’s area covered respectively by agricultural land, forest, barren land, water, mountainous area and the percentage harvested (all from
prio-grid). Malaria index is a measure of the incidence of malaria at the cell-level from Gordon McCord. Density pop. is the log of population

density in 1990 from LandScan. lights is the log of nighttime luminosity in 1995 from prio-grid. ln fertilizer price × Fertility is included as a
control variable but its coefficient is not reported.

4.3.3 Measurement

In the online appendix section F.3, we show that our results are not sensitive to changes: i)

in the level of aggregation, ii) to alternative measure and definition of conflicts, iii) to alternative

measure of fertility, and iv) to the required nutrient mix by crop.

First, we show that changes in the level of spatial aggregation of our data does not influence

our results qualitatively. We reproduce our baseline estimations using two alternative levels of

aggregation, one smaller (0.25×0.25 degree cells) and the other larger (1×1 degree cells) than our
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baseline.

Second, we use a number of alternative datasets and definition of conflicts. We start with an

alternative dataset, ucdp-ged, that records only deadly events pertaining to conflicts associated

with more than 25 conflict-related deaths in a given year. We also use a measure of conflict

intensity (number of events, number of fatalities), measures of conflict onset or ending instead of

incidence and also discuss the results obtained when looking at various subcomponents of acled

events.

Third, our baseline proxy for natural soil fertility is a measure of nutrient availability based

on the soil texture, pH level, and on the amount of organic carbon. This is the closest measure

to that described in our model, in which natural soil fertility and fertilizer use are substitutes.

We consider the following alternative measures: (i) a classification of soils from fertile to infertile

from the EU Commission, (ii) the nitrogen density of the soil, and (iii) the percentage of irrigated

land in the cell. Since soil fertility and fertilizer use might be substitutes as long as natural soil

fertility does not fall below a certain level (Marenya and Barrett, 2009b), we also check that our

results are robust to dropping with very low levels of soil fertility.

Fourth, we compute alternative versions of our fertilizer prices: (i) using an alternative source

of data for the “ideal mix” of nutrient, as the required nutrient mix by crop is experimentally

measured and may vary from one data source to another (Halliday and Trenkel, 1992); (ii) using

the five main suitable crops for each cell weighted by the relative suitability of each crop within

the cell, in order to allow for multiple cropping; (iii) using an alternative data source to identify

the main crops from actual harvested area (Monfreda et al., 2008).

4.3.4 Other robustness

Estimation. We check whether our baseline results are sensitive to alternative estimations meth-

ods of both the coefficients and their standard errors (online appendix F.4). We first replicate

the baseline estimates with various cutoffs of spatial correlation of the error term. Second, we

estimate our baseline specification using non-linear estimators instead of LPM.

Sensitivity to specific countries, years or crops. In the online appendix F.5, we perform a

systematic sensitivity analysis and drop each country, year and main crop one by one from our

sample. Our coefficients of interest remain remarkably stable. In particular, dropping the years

during which commodities prices spiked (2008-2009) has little effect on our results – if anything

it slightly increases our estimates. Across countries, Angola is found to contribute significantly

to our estimates, although these remain highly significant when we drop it.

4.4 Underlying mechanisms

As mentioned earlier, section D.1 of the online appendix provides several pieces of empirical

evidence that support the main implications of our model. Using lsms data we find in particular

that being located in a fertile area tends to decrease the amount of inorganic fertilizers used by

households, and that land value decreases with fertilizer prices, especially in nutrient-poor areas.

While these results should be interpreted with caution due to the small number of countries and

the likely presence of some degree of noise in the data, they are a favorable indication of our key

theoretical mechanisms. Importantly, we also show that our measure of fertilizer prices affects
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negatively several measures of yields at the local-level, some of them being available for the entire

set of ssa countries and over most of our period of study.

The online appendix E contains two additional exercises which again suggest that our results

are indeed likely driven by the channels at play in our model.

4.4.1 Violence at the individual-level

We show that our measure of fertilizer prices correlates with several measures of violence at the

individual or household levels, using two different datasets (online appendix section E.1). First,

we combine 3 waves of the Afrobarometer surveys (rounds 3 to 5) which contain geo-localized

information at the individual-level for 28 African countries and around 80,000 individuals over

the period 2005-2013. Note that the Afrobarometer is not a panel but a repeated cross-section,

hence we cannot track individuals over time. To measure violence, we use the following questions:

(i) Q11.a “During the past year, have you or anyone in your family: Had something stolen from

your house?” and (ii) Q11.b “During the past year, have you or anyone in your family: Been

physically attacked?”. Second, we use household-level information from the World Bank lsms,

which cover only six countries but with a panel structure. To measure violence, we use the fact

that the surveys ask households wether they did face a number of shocks. We use information on

the two following shocks: (i) theft / robbery / other violence; (ii) involuntary loss of house/land.

For each type of shock, we construct dummies which equal 1 if the household did face at least

once the shock in the previous year(s). As explained in more details in the online appendix, these

data are less harmonized and more noisy than the one of the Afrobarometer. We find results

broadly consistent with our story, especially in the case of the Afrobarometer and when using the

land-related shocks from the lsms. The latter finding echoes our previous one obtained with our

measure of land-related conflict from acled (Table 2, columns (3) and (4)).

4.4.2 Heterogeneity across countries

We finally explore whether countries are heterogeneous in the way they react to variations in

fertility triggered by fertilizer prices (online appendix section E.2). We first show our coefficients

of interest are increasing in country-level fertilizer consumption. We use data on the intensity

of fertilizer use for a subset of 30 countries from fao-stat. Quantitatively, the direct effect of

fertilizer prices on conflict doubles when we compare the country that uses the least fertilizer

(Central African Republic) with the country that uses the most (Malawi). Quite reassuringly, we

do not detect any significant effect of fertilizer price variations in countries where fertilizer use is

close to zero. We then make use of information on the legal security of land tenure. Specifically,

we rely on estimates of the extent to which the security of land tenure for indigenous peoples

and communities is legally codified in national laws (see section A.5 for more information). We

find a smaller effect of fertilizer price on conflict in countries where land tenure is better secured,

especially when controlling for broad institutional quality indicators. The coefficients on the triple

interaction terms involving the variance of soil fertility are insignificant, which is not surprising

given how demanding these specifications are and how noisy our land security proxy is.

4.5 Quantifications

How large is the effect of fertilizer prices on conflict? As shown in Table 4 above, the average

27



effect of fertilizer price changes is quite similar in magnitude to the one found in the case of the

world price of agricultural output or in the case of the prices of minerals. This might seem sur-

prising at first given the widespread belief that fertilizers are not frequently used in Sub-Saharan

Africa and therefore represent a small fraction of overall production costs in these countries. In

fact, recent studies have shown that the use of fertilizers in this region is higher than usually

thought. Sheahan and Barrett (2014), using data from the World Bank LSMS surveys on six

ssa countries, find that a third of surveyed farmers use inorganic fertilizers, and that this share

reaches 55% in Ethiopia and 77% in Malawi. The average amount of fertilizers used is 57 kg/ha,

a number twice larger than estimates from previous studies. Available estimates of fertilizer de-

mand price elasticity in Africa range from -0.82 to -1.08,35 which suggests that the demand of

fertilizer is inelastic but still sensitive to fertilizer price variations.

All this is consistent with the fact that we find significant effect of fluctuations in our fertilizer

prices on yields in our sample of ssa countries (online appendix section D.1.2). These estimates

can also be used to quantify the changes in conflict probability implied by fertilizer prices through

their effect on agricultural productivity, and to compare these with existing literature. Using the

figures from Miguel et al. (2004), for instance, we find that a 1% increase in rainfall-induced GDP

growth leads to a 9.5% decrease in the probability of conflict. Using the results from Hodler and

Raschky (2014), we find that the elasticity of conflict to nighttime lights is 6.5: a 1% increase in

GDP growth leads to a 6.5% decrease in the probability of conflict.36

In our case, to compute the elasticity of conflict to agricultural productivity, we need an

estimate of the elasticity of agricultural productivity to fertilizer price. Using our own estimates

from the online appendix Tables D3 and D4 (section D.1.2), we find that the elasticity of conflict

to agricultural output lies between 4.4 and 11.3. In other words, a 1% increase in agricultural

productivity leads to a decrease in the probability of conflict ranging from 4.4% to 11.3%.37

When using instead existing estimates of yields response to fertilizer and estimates of the fertilizer

demand price elasticity from the literature, we find that the elasticity of conflict to agricultural

productivity is lower and lies between 1.75 and 3.8.38 Overall, these orders of magnitude are

consistent with Miguel et al. (2004) and Hodler and Raschky (2014).

35These elasticities were estimated using data from Malawi (Chembezi, 1990; Komarek et al., 2017) and Tanzania
(Brekke et al., 1999).

36Miguel et al. (2004) find that the effect of the log of GDP growth on the likelihood of conflict is −2.55 (Table 4,
column (6)) and the unconditional probability of conflict is 0.27 in their data. Hodler and Raschky (2014) find
that the effect of the log of lights on the probability of conflict is −0.3 (Table 2, column (5)) and the unconditional
conflict probability is 0.046.

37We use our main estimate of the effect of fertilizer price on conflict, 0.119 from Table 2, column (1). We get
each bound by dividing 0.119 by the unconditional probability of conflict in our data (0.07) and by our bound
estimates of the elasticity of agricultural yield to fertilizer price, −0.39 from Table D4 (in which the analysis covers
six countries performed at the household-plot level) or −0.15 from Table D3 (columns (1) and (2), where the
analysis covers Africa and is performed at the regional-level), respectively.

38Recent estimates of yields response to fertilizer (nitrogen) range from 15 to 25 kg of grain per kg of N. These
values were estimated using data from Kenya (Marenya and Barrett, 2009b; Matsumoto and Yamano, 2011; Sheahan
et al., 2013), Zambia (Xu et al., 2009), Ghana (Chapoto and Ragasa, 2013) and Burkina Faso (Koussoube and
Nauges, 2017). Available estimates of fertilizer demand price elasticity range from -0.82 to -1.08. These elasticities
were estimated using data from Malawi (Chembezi, 1990; Komarek et al., 2017) and Tanzania (Brekke et al., 1999).
We use the average N fertilizer use of 36.9kg/ha provided in Sheahan and Barrett (2014) who use LSMS data. We
also consider an average yield of 1 ton/ha (World Bank, see McArthur and McCord, 2017). Using these figures, we
find that the elasticity of yields to fertilizers is between 0.55 and 0.9. Multiplying this range by the range of values
of the fertilizer demand price elasticities, we find that the elasticity of yields to fertilizer price ranges between -0.97
and -0.45.
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5 Crop heterogeneity, ethnic divisions and population pressure

Thus far, in the model as well as in our empirical analysis, we have abstracted from the

ethnic dimension of conflicts. The issues of heterogeneous access to fertile soils and of ethnic

diversity are however likely to be intertwined. As shown by Michalopoulos (2012), regions where

the land characteristics are more heterogeneous are on average more ethnically diverse. Even if

it falls beyond the scope of our model, we can nonetheless assess the empirical relevance of two

potential mechanisms through which ethnic lines might affect how conflict react to land fertility

shocks. First, pre-existing ethnic tensions may exacerbate the effect of rising land inequality.

The civil war and subsequent genocide in Rwanda illustrate this possibility, as they have been at

least partly triggered by the combination of historical ethnic divisions between Tutsi and Hutu

(divisions which are themselves linked to their agricultural practices), population growth and

soil depletion (André and Platteau, 1998). We can assess whether between group inequality in

soil quality might on the contrary magnify the impact of fertilizer prices on conflicts, especially

when combined with population pressure. Second, within an ethnic group, heterogeneity of crop

production may help to cope with the adverse impact of fertilizer price variations on conflict by

providing opportunities for co-insurance.

5.1 Land inequality within and between ethnic groups

Our baseline results show that land inequality magnifies the effect of negative effect of input

prices on conflict. Soil quality inequality could, however, be observed either across or within

the homelands of ethnic groups, both of which could in theory affect the likelihood of conflict.

Larger between-group inequality could exacerbate grievances, frustrations, and feelings of relative

deprivation (Cederman et al., 2011; Guariso and Rogall, 2017), and these issues could coincide

with the rapacity gain/opportunity cost channels described in our model. Within-group inequality

could matter, as well (Esteban and Ray, 2008, 2011a; Huber and Mayoral, 2019). In Esteban

and Ray (2011a), for instance, more inequality within ethnic groups makes conflicts more likely

because it makes it easier for the rich to finance them by hiring fighters.

Our methodology is the following. Combining maps of ethnic boundaries with our baseline

information on nutrient availability, we construct measures of within- and between-ethnic groups

soil heterogeneity using a simple variance decomposition.39 Specifically, we decompose the total

variance of soil quality observed in a given cell over the territories of identified ethnic groups into

the variance within groups and the variance across groups:40

V(Fertility) = VW (Fertility) + VB(Fertility)

Or:
1

A

∑
e∈E

∑
j∈T (e)

(sj − s)2 =
1

A

∑
e∈E

∑
j∈T (e)

(sj − se)2 +
1

A

∑
e∈E

Ae(se − s)2 (24)

39The empirical strategy we use in this section is in the same spirit than Guariso and Rogall (2017). They
compute a measure of inequality using rainfall on ethnic homelands and aggregate this information in order to
provide cross-country evidence that economic inequality shocks (in terms of rainfall) between ethnic groups increase
the likelihood of conflict. However, they do not find any significant effect of economic inequality shocks (rainfall)
within ethnic groups on the likelihood of conflict.

40See for instance Helpman et al. (2017) for an application of such a decomposition to within and between sector
wage inequality.
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where e is an ethnic-group, E is the set of ethnic groups observed in the cell, j is our geograph-

ical unit of observation of nutrient availability (pixels of 5 arc-minutes), and T (e) is the set of

geographical units covered by the homeland of ethnic group e. sj , se, and s denote nutrient

availability in area j, average nutrient availability over the area in which group e is observed, and

average nutrient availability across all the pixels of the cell, respectively. Finally, A and Ae are,

respectively, the sizes (in number of pixels) of the area covered by all ethnic groups and by ethnic

group e. In other words, the overall variance of soil fertility in the cell (over the areas covered by

at least one ethnic group) is the sum of the average variance within groups and of the variance

of the average fertility across groups.

We compute two versions of {V(Fertility),VW (Fertility),VB(Fertility)} based on two alter-

native datasets that map the borders of ethnic homelands. We use the contours of historical

ethnic homelands from Murdock (1959), although we provide robustness exercises in the online

appendix F.6 using data from the Geo-referencing of Ethnic Groups (greg), which is drawn

from the Soviet Atlas Narodov Mira (Weidmann et al., 2010).41 In our baseline specification,

we replace the interaction term between fertilizer price and V(Fertility) by two interaction terms

between fertilizer price and each component of the variance of soil fertility. The between-group

variance is set to zero in cells where only one ethnic group is present.

Columns (1) to (4) of Table 6 contain the results. We start by reporting the results on the

effect of the overall variance in column (1),42 and then split the variable into its within and

between-group components in column (2). The remaining regressions add controls for ethnic

polarization (similar results are obtained when controlling for fractionalization instead) and the

number of ethnic groups in the cell. Both within and between group land inequality are found to

magnify the effect of fertilizer price variations.43 The coefficient on between-groups inequality is

however found to be twice as high as the one on the within-group variance.

The role of population pressure. As mentioned above, anecdotal evidence suggests that

competition for fertile lands is more likely to trigger conflict in densely populated areas. Return-

ing to the example of Rwanda, while population pressure has surely been one of the war’s causes,

several scholars have even argued that this in fact served as the main motivation for a genocide

that was purposefully planned by a small Hutu elite (e.g. Diamond, 2005). More recently, Ace-

moglu et al. (2017) used cross-country data to show that exogenous changes in population growth

were positively associated with civil wars.

In the last two columns of Table 6, we investigate the links between population pressure,

soil fertility shocks, and conflicts. In column (5) we add interaction terms between the log of

population density in the cell (in 1990 to mitigate endogeneity concerns) and fertilizer prices.

Fertilizer price shocks indeed have a slightly stronger effect in densely populated areas. What

is more, this effect is only observed in cells where land is unequally distributed (column (6)).

41Figure A6 in the online appendix (section A.7) plots the obtained variances, within and across groups.
42Note that the estimated coefficients are not the same as in our baseline table. This is because the variance of

soil fertility is computed over the territories wherein at least one ethnic group is identified, which do not necessarily
cover the entire cell.

43In Table F11 of the online appendix (section F.6), we show that the coefficient estimates on the interaction
with between-group inequality are positive but statistically insignificant at conventional levels. A reason that might
explain this discrepancy is the highest variability of the measure when using Murdock instead of greg data due to
the largest number of groups present in the Murdock dataset. The contribution of the between-group component
is 8% using Murdock, and 4% when using greg, which is likely insufficient to identify an effect.
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Table 6: Soil fertility heterogeneity within and between ethnic groups

(1) (2) (3) (4) (5) (6)
Dep. var. Conflict incidence

ln fertilizer price 0.152a 0.151a 0.147a 0.152a 0.140a 0.144a

(0.043) (0.043) (0.043) (0.043) (0.046) (0.046)

× V(Fertility) 0.047a

(0.008)

× VB(Fertility) 0.090a 0.072b 0.081b 0.069b 0.002
(0.030) (0.031) (0.032) (0.033) (0.031)

× VW (Fertility) 0.044a 0.046a 0.045a 0.051a 0.044a

(0.009) (0.009) (0.009) (0.010) (0.080)

× Ethn. Pol. 0.037 0.060b 0.037 0.040
(0.023) (0.028) (0.025) (0.025)

× # groups -0.004
(0.004)

× Ethn. Pol. 0.037 0.040
(0.025) (0.025)

× Density pop. 0.003c -0.000
(0.002) (0.002)

× VB(Fertility) × Density pop. 0.030b

(0.014)

× VW (Fertility) × Density pop. 0.007b

(0.003)

Cell and Year FE Yes Yes Yes Yes Yes Yes
Observations 111316 111316 111316 111316 97580 97580

c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors in parentheses, allowing for spatial correlation within

a 500km radius and for infinite serial correlation. ln fertilizer price × Fertility is included as a control variable. VW (Fertility) is the variance of
soil fertility (nutrient availability) within ethnic groups, computed by cell. VB(Fertility) is the variance of soil fertility between ethnic groups,
computed by cell. V(Fertility) is the overall variance of soil fertility, computed by cell. Ethn. Pol. is an index of ethnic polarization in the cell.
# groups is the number of ethnic groups present in the cell. Density pop. is the log of population density in 1990. Data on ethnic groups are
obtained from Murdock (1959).

When the variance of soil quality is zero, population density no longer has an effect. On the other

hand, in denser areas, the impact of both within- and between-group inequality on conflict are

stronger. Again, the interaction between population density and between-group inequality has a

much larger coefficient than the interaction with inequality within groups.

In a nutshell, the results presented in Table 6 imply that violence is more likely to occur

when inequality rises, whether between or within groups, and especially in densely populated

areas. Between-group inequality appears to contribute more than within-group inequality when

population density is high. Yet, changes in within-group inequality also matter significantly: a

larger part of our sample is composed of cells in which a single ethnic group is observed (hence

all of the variance is within-group); in these cells, fertilizer prices do have a significant impact on
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conflict, especially when soil fertility is heterogeneous. More generally, the findings in this section

clearly point to the need for more research focusing on the nexus between inequality, population

growth, and conflicts.

5.2 Crop heterogeneity within ethnic groups

Within the homeland of an ethnic group, a more diversified crop production may dampen the

adverse effect of fertilizer prices shocks. Its impact may be mitigated when the crops produced are

heterogeneous in terms of nutrient needs; in this case actual price variations might be negatively

correlated across space, generating possibilities of co-insurance.44 Note that this might not be the

case, however, if these price variations increase inequality within and/or between ethnic groups:

in this case a price shock might trigger more conflicts.

We explore this potential source of heterogeneity in two different ways. We first construct

indexes of crop suitability heterogeneity at the following three alternative levels: i) cell, ii) cell ×
ethnic group, and iii) ethnic group. We make use of information on ethnic homeland boundaries

from Murdock (1959). An alternative source for ethnic boundaries is the data from greg. Given

our level of spatial disaggregation, our preferred source however is Murdock (1959), which contains

many more groups than greg (835 versus 250 over the geographical area we consider), which is

key to be able to identify sufficient variation.

Denote by sni the share of nutrient n for given crop i from IPNI. We first compute:

HETi =
∑

n=N,P,K

∑
m 6=n

(sni − smi)2 (25)

HETi represents the sum of the squares of the differences in nutrient shares for a given crop,

i.e. an indicator of nutrient heterogeneity. We then sum across the five most suitable crops of

spatial unit c (which can be a cell, an ethnic-group × cell, or an ethnic group):

HETc =
5∑
i=1

HETi (26)

We interpret HETc as an indicator of crop production heterogeneity, i.e. how much the most

suitable crops of spatial unit c require different mixes of nutrients.

In columns (1) to (3) of Table 7 we interact our fertilizer price shocks with the three different

versions of HETc. We find that, indeed, fertilizer price variations have significantly smaller effects

in cells or ethnic groups producing more heterogeneous – in terms of nutrient shares – crops. When

all versions of HETc are simultaneously introduced in column (4), only the ethnic group version

remains statistically significant. This last result has to be taken with caution, however, because

all three measures are highly correlated.

A potential issue with the estimates of columns (1) to (4) is that a cell could produce very

heterogeneous crops and yet face positively correlated price shocks if the prices of nutrients do not

move in opposite directions. Moreover, these indicators do not capture heterogeneity across cells

(within or between groups). Therefore, another, perhaps more satisfactory way of looking at this

coinsurance mechanism is to include several versions of the fertilizer prices, interacted with each

other. The results are provided in columns (5) to (7), the most interesting results being displayed

44We thank a referee for suggesting this mechanism.
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Table 7: Crop heterogeneity and the impact of fertilizer prices on conflict

(1) (2) (3) (4) (5) (6) (7)
Dep. var. Conflict incidence

ln fertilizer price 0.170a 0.170a 0.174a 0.175a 0.528c 0.415 0.520c

(0.045) (0.045) (0.045) (0.045) (0.287) (0.269) (0.288)

× V(Fertility) 0.052a 0.052a 0.052a 0.051a

(0.009) (0.009) (0.009) (0.009)

× HETc (cell) -0.044b -0.054
(0.018) (0.054)

× HETc (cell × ethnic group) -0.043b 0.043
(0.018) (0.057)

× HETc (ethnic group) -0.062a -0.054b

(0.024) (0.026)

ln fertilizer price neighbors 0.746b 1.450a

(0.328) (0.436)

× ln fertilizer price -0.095c -0.224a

(0.053) (0.077)

ln fertilizer price ethnic homeland 0.415 -0.723b

(0.280) (0.368)

× ln fertilizer price -0.062 0.131b

(0.048) (0.067)

Cell and Year FE Yes Yes Yes Yes Yes Yes Yes
Observations 111588 111571 111588 111571 111588 111588 111588

c significant at 10%; b significant at 5%; a significant at 1%. Conley (1999) standard errors in parentheses, allowing for spatial correlation
within a 500km radius and for infinite serial correlation. ln fertilizer price is our baseline fertilizer price shock, computed using the required
NPK mix (from IPNI) for the main crop produced by the cell (from GAEZ). V(Fertility) is the variance of the nutrient availability level within
the cell (from HWSD). Columns (1) to (4) control for an interaction term between fertilizer prices and the mean of nutrient availability of
the cell. See equations (25) and (26) for a definition of HETc. When computed at the cell×ethnic group or ethnic group levels, HETc is the
average of all crop heterogeneity in the homeland(s) of the ethnic group(s) present in the cell. ln fertilizer price neighbors is the fertilizer price
of the main crop of the first and second degrees neighboring cells. ln fertilizer price ethnic group is the average fertilizer price of the main crop
produced in the homeland(s) of the ethnic group(s) present in the cell.

in column (7). In these estimations we include the fertilizer price of the neighboring cells (first

and second degrees) and of the ethnic homeland of the group(s) present in the cell, and interact

these with our baseline measure. We observe that an increase in the fertilizer price of the cell

itself, everything else equal, raises the probability of conflict – our baseline results. If a positive

fertilizer price shock occurs at the same time as a negative one in neighboring cells, the effect is

reinforced, as shown by the negative coefficient on the interaction between ln fertilizer price in the

cell and in the neighbors (columns (5) and (7)). This is consistent with the idea that, cross-cells

inequality increases when the prices move in the opposite direction, which triggers more conflict.

On the other hand, the interaction with the price in the ethnic homeland is positive in column

(7). This finding is consistent with the coinsurance mechanism: if the co-ethnics of the cell’s

residents face an opposite shock, the likelihood of conflict decreases.

5.3 The geography of soil fertility and conflicts

Which areas are more likely to be affected by variations in soil productivity? Figures 2.a and

2.b provide a visual representation of the predicted impact of a one standard deviation increase
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in fertilizer prices on conflict across Sub-Saharan countries. Figure 2.a is based on column (3) of

Table 6: the heterogeneity of the effect arises primarily from differences across regions in terms of

land inequality (either between or within ethnic groups). Figure 2.b is constructed from column

(6) of Table 6, i.e. we consider also variations in terms of population density. Note that Figures

A5 and A6 in the online appendix (section A.7) show the spatial distribution of each of these

variables.

Figure 2: Effect of a one standard deviation increase in fertilizer prices on conflict

(a) Inequality within/between groups (b) Population pressure

Note: These figures represent the predicted increase in the probability of conflict occurring, following a one standard deviation increase in
fertilizer prices. Figure (a) plots the predictions obtained from column (3) of Table 6; Figure (b) adds an interaction with population density,
and displays the predictions from column (6) of Table 6.

When considering only the variance in soil fertility, a stronger effect is found along a diagonal

that begins in Northern Ethiopia, and continues to South Africa. The estimated impact becomes

more heterogeneous when population density is taken into account. In particular, the increase in

conflict probability becomes much stronger around Nigeria, Rwanda and more generally in the

Great Lakes region. It remains high in most parts of Ethiopia, Kenya, and in Eastern South

Africa, regions characterized by large populations and heterogeneous land endowments.

These spatial patterns correspond to conflict narratives in these regions. For instance, Peters

(2004) writes:

“[...] some of the most intense competition and conflict over land resources and patterns of

exclusion are found in the most densely populated areas such as Rwanda and Burundi, where

commentators have included land conflicts in the complex causes of ’ethnic’ hostility and civil

war, and in the Kenyan Highlands and Hausa areas of Northern Nigeria where land sales and

landlessness have long been common. Even where overall population density may not be high,

intense competition has developed over valued resources, such as wetlands and river valleys in

semi-arid regions or in areas with a single annual rainy season. Many of these, dubbed ’key

resources’ by ecologists working in Southern Africa [...], are coming under intensified use, and

generating increased social competition and conflict among farmers [...]” (Peters, 2004, p.293).
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6 Conclusion

In this paper, we provide an analysis of the effect of variations in soil productivity on violence

at the local level. From a theoretical perspective, we show that changes in land inequality, defined

as the level of geographical dispersion of natural agricultural soil fertility, positively affects the

likelihood of conflict. Changes in fertilizer prices, through their effect on income and inequality,

also increase the likelihood of conflict, especially in regions characterized by high levels of initial

inequality. Combining data on local agricultural specialization, soil fertility and conflict events

over ssa countries with information on international market prices of fertilizer, we find support for

these predictions. We conduct a variety of robustness exercises, controlling for potential omitted

factors, changes in estimation techniques, and alternative methods of measuring our key variables.

We also find that country characteristics play a role: specifically, the impact of changes in fertilizer

price – and hence, the effect of increases in soil fertility heterogeneity – is magnified in countries

with weak institutions, or more insecure land tenure arrangements for local communities.

Note that we cannot exclude the possibility that, beyond farmers’ incomes, other channels are

at work. In particular, food prices might be a channel of transmission of fertilizer price shocks

to conflict. Some authors (e.g. Childers et al., 2011) indeed argue that the spike in fertilizer

prices was one of the cause of the global food crisis of 2008 which led to violence in many African

countries.

In the last part of the paper we incorporate an ethnic dimension to the analysis, and find

that the distribution of soil fertility both within and across ethnic groups matters. Between-

group inequality matters especially in densely populated areas, a result that accords well with

case-specific evidence on several well-known civil war episodes throughout Africa.

Our work has a number of implications and indicates several avenues for future research. With

respect to policy, our results suggest that fertilizer price fluctuations have a significant effect on the

occurrence of violence because they generate agricultural yields fluctuations. Therefore, policies

aiming at limiting such fluctuations and reducing fertilizer prices could be considered as tools

to reduce conflict. Land redistribution – an issue often neglected in empirical papers dealing

with the roots of civil wars in Africa – should also be a key consideration of strategies to reduce

conflict.

In general, our findings imply that inequality in access to fertile lands, both within and across

ethnic groups, must be considered as a serious threat to peace at the local-level. The results

presented in the last section suggest that complex interactions exist between land inequality both

between and across ethnic groups, population density, soil fertility, and conflict. The model

presented in this paper features only some of these elements. One specific direction for future

research would be to extend our theory to include more than two groups. Such a model could

be used to shed light on these complex interactions, as well as to study the emergence and the

diffusion of conflicts over space as a result of unevenly distributed economic shocks.
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