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Abstract

In inductive transfer learning, fine-tuning pre-trained convolutional networks

substantially outperforms training from scratch. When using fine-tuning, the

underlying assumption is that the pre-trained model extracts generic fea-

tures, which are at least partially relevant for solving the target task, but

would be difficult to extract from the limited amount of data available on the

target task. However, besides the initialization with the pre-trained model

and the early stopping, there is no mechanism in fine-tuning for retaining the

features learned on the source task. In this paper, we investigate several reg-

ularization schemes that explicitly promote the similarity of the final solution

with the initial model. We show the benefit of having an explicit inductive

bias towards the initial model. We eventually recommend that the baseline

protocol for transfer learning should rely on a simple L2 penalty using the

pre-trained model as a reference.
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1. Introduction

It is now well known that modern convolutional neural networks [e.g.

24, 43, 20, 44] can achieve remarkable performance on large-scale image

databases, e.g. ImageNet [8] and Places 365 [51], but it is really dissatisfying

to see the vast amounts of data, computing time and power consumption

that are necessary to train deep networks. Fortunately, such convolutional

networks, once trained on a large database, can be refined to solve related

but different visual tasks by means of transfer learning, using fine-tuning

[48, 43].

Some form of knowledge is believed to be extracted by learning from the

large-scale database of the source task and this knowledge is then transferred

to the target task by initializing the network with the pre-trained parameters.

However, we will show in the experimental section that some parameters may

be driven far away from their initial values during fine-tuning. This leads to

important losses of the initial knowledge that is assumed to be relevant for

the targeted problem.

We argue that the standard L2 regularization, which drives the parame-

ters towards the origin, is not adequate in the framework of transfer learning,

and thereby provides suboptimal results for the target problem. We advo-

cate for a coherent parameter regularization approach, where the pre-trained

model is both used as the starting point of the optimization process and as

the reference in the penalty that encodes an explicit inductive bias, so as

to help preserve the knowledge embedded in the initial network during fine-

tuning. This simple modification keeps the original control of overfitting,

by constraining the effective search space around the initial solution, while
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encouraging committing to the acquired knowledge. We show that it has

noticeable effects in transfer learning scenarios.

The penalties that encourage similarity with the starting point of the fine-

tuning process will be denoted with the SP suffix. Despite the existence of

several approaches akin to L2-SP, many works disregard the inconsistency

of using L2 in transfer learning scenarios. In this paper, we evaluate -SP

regularizers based on the L2, Lasso and Group-Lasso penalties, which can

freeze some individual parameters or groups of parameters to the pre-trained

values. We also test the L2-SP and Group-Lasso-SP variants that use the

Fisher information to measure similarity. We elaborate on [26] by adding

experimental evidences in classification and semantic segmentation, using

several convolutional network architectures, and additional analyses. Our

experiments indicate that all tested parameter regularization methods using

the pre-trained parameters as a reference get an edge over the standard L2

weight decay approach. We eventually recommend using L2-SP as the stan-

dard baseline for transfer learning tasks when benchmarking new algorithms.

2. Related Work

The regularization scheme we advocate in this paper is related to several

existing approaches. In this section, we first recall the techniques proposed

for inductive transfer learning with convolutional networks. We then survey

the regularizers that were proposed to encourage similarity of parameters or

features across different tasks.

Regarding transfer learning, we follow the nomenclature of Pan and Yang

[36], who categorized several types of transfer learning according to domain

and task settings during the transfer. A domain corresponds to the feature
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space and its distribution, whereas a task corresponds to the label space

and its conditional distribution with respect to features. The initial learning

problem is defined on the source domain and source task, whereas the new

learning problem is defined on the target domain and the target task.

In the typology of Pan and Yang, we consider the inductive transfer

learning setting, where the target domain is identical to the source domain,

and the target task is different from the source task. We furthermore focus on

the case where a vast amount of data was available for training on the source

problem, and some limited amount of labeled data is available for solving the

target problem. Under this setting, we aim at improving the performance on

the target problem through parameter regularization methods that explicitly

encourage the similarity of the solutions to the target and source problems.

We also refer to works on new problems that were formalized or popularized

after Pan and Yang, such as lifelong learning, but their typology remains

valid.

2.1. Representation Transfer in Convolutional Networks

Donahue et al. [10] selected the features computed at different layers of

the pre-trained AlexNet [24] and plugged them into an SVM or a logistic

regression classifier for learning a new task. This approach outperformed

the state of the art of that time on the Caltech-101 database [13]. Similar

approaches were proposed by Oquab et al. [35]. Later, Yosinski et al. [48]

showed that fine-tuning the whole AlexNet resulted in better performances

than using the network as a static feature extractor. Fine-tuning pre-trained

VGG [43] on the image classification task of VOC-2012 [12] and Caltech 256

[18] achieved the best results of that time.
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Ge and Yu [14] proposed a scheme for selecting a subset of images from

the source problem that have similar local features to those in the target

problem and then fine-tuned a pre-trained convolutional network. Besides

image classification, many procedures for object detection [15, 39, 40] and

image segmentation [30, 6, 50] have been proposed relying on fine-tuning

to improve over training from scratch. These approaches showed promising

results in a challenging transfer learning setup, as going from classification to

object detection or image segmentation requires rather heavy modifications

of the architecture of the network.

The success of transfer learning with convolutional networks relies on the

generality of the learned representations that have been constructed from a

large database like ImageNet. Yosinski et al. [48] also quantified the trans-

ferability of these pieces of information in different layers, e.g. the first layers

learn general features, the middle layers learn high-level semantic features

and the last layers learn the features that are very specific to a particular

task. That can be also noticed by the visualization of features [49]. Overall,

the learned representations can be conveyed to related but different domains

and the parameters in the network are reusable for different tasks.

All these state-of-the-art results were obtained while ignoring the inad-

equacy for transfer learning of the weight decay regularization term, which

encourages deviations from the starting point. More appropriate regularizers

have been applied in other circumstances, as described below, but, despite

its simplicity and efficiency, the L2-SP regularizer we advocate in this paper

has never been considered for transferring representation in convolutional

networks. To the best of our knowledge, we present the first results on trans-
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fer learning with convolutional networks that are simply based on this type

of regularization term.

2.2. Regularizers for Similar Learning Problems

Lifelong Learning. In lifelong learning [45, 37], a series of tasks is learned

sequentially by a single model. The knowledge extracted from the previous

tasks may be lost as new tasks are learned, resulting in what is known as

catastrophic forgetting. In order to achieve good performance on all tasks,

Li and Hoiem [27] proposed to use the outputs of the target examples, com-

puted by the original network on the source task, to define a learning scheme

retaining the memory of the source tasks when training on the target task.

They also tried to preserve the pre-trained parameters instead of the outputs

of examples but they did not obtain interesting results.

Kirkpatrick et al. [23] developed a similar approach with success. They

get sensible improvements by measuring the sensitivity of the parameters of

the network learned on the source data thanks to the Fisher information. The

Fisher information matrix defines a metric in the parameter space, which is

used in their regularizer to preserve the representation learned on the source

data, thereby retaining the knowledge acquired on the previous tasks. This

scheme, named elastic weight consolidation, was shown to avoid forgetting,

but fine-tuning with plain stochastic gradient descent was more effective than

elastic weight consolidation for learning new tasks. Hence, elastic weight

consolidation may be thought as being inadequate for transfer learning, where

performance is only measured on the target task. We will show that this

conclusion is not appropriate in typical transfer learning scenarios with few

target examples.
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Domain Adaptation. In domain adaptation [31, 32], the target task is iden-

tical to the source task and no (or few) target examples are labeled. Most

approaches are searching for a common representation space for source and

target domains to reduce domain shift, like [42, 16]. Rozantsev et al. [41]

proposed a parameter regularization scheme for encouraging the similarity

of representations in the source and target domains. Their regularizer favors

similar source and target parameters, up to a linear transformation. Encour-

aging similar parameters has also been proposed and shown to be helpful

in speaker adaptation problems [28, 34] and multilingual speech recognition

[21].

Beyond Deep Networks. Regularization has been a means of building shrink-

age estimators for decades. Shrinking towards zero is the most common

form of shrinkage, but shrinking towards adaptively chosen targets has been

around for some time, starting with Stein shrinkage [see e.g. 25, chapter 5],

where it can be related to empirical Bayes arguments. Shrinking towards

a reference has also been used in maximum entropy models [5] or SVM

[47, 3, 46]. These approaches were shown to outperform standard L2 reg-

ularization with limited labeled data in the target task [3, 46]. They differ

from the application to deep networks in several respects, the more important

one being that they consider a fixed representation, with which transfer aims

at producing similar classification parameters, that is, similar classification

rules. For deep networks, transfer aims at learning similar representations

upon which classification parameters will be learned from scratch. Hence,

even though the techniques we discuss here are very similar regarding the

analytical form of the regularizers, they operate on very different objects.
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3. Regularizers for Fine-Tuning

In this section, we detail the penalties we consider for fine-tuning. Pa-

rameter regularization is critical when learning from small databases. When

learning from scratch, regularization is aimed at facilitating optimization and

avoiding overfitting, by implicitly restricting the capacity of the network, that

is, the effective size of the search space. In transfer learning, the role of regu-

larization is similar, but the starting point of the fine-tuning process conveys

information that pertains to the source problem (domain and task). Hence,

the network capacity has not to be restricted blindly: the pre-trained model

sets a reference that can be used to define the functional space effectively

explored during fine-tuning.

Since we are using early stopping, fine-tuning a pre-trained model is an

implicit form of inductive bias towards the initial solution. We explore here

how a coherent explicit inductive bias, encoded by a regularization term,

affects the training process. Section 4 shows that all such schemes get an

edge over the standard approaches that either use weight decay or freeze

part of the network for preserving the low-level representations that are built

in the first layers of the network.

Let w ∈ Rn be the parameter vector containing all the network param-

eters that are to be adapted to the target task. The regularized objective

function JΩ that is to be optimized is the sum of the standard objective

function J and the regularizer Ω(w). In our experiments, J is the negative

log-likelihood, so that the criterion JΩ could be interpreted in terms of max-

imum a posteriori estimation, where the regularizer Ω(w) would act as the

log prior of w. More generally, the minimization of JΩ is a trade-off between
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the data-fitting term and the regularization term.

L2 penalty. The current baseline penalty for transfer learning is the usual

L2 penalty, also known as weight decay, since it drives the weights of the

network to zero:

Ω(w) =
α

2
‖w‖2

2 , (1)

where α is the regularization parameter setting the strength of the penalty

and ‖·‖p is the p-norm of a vector.

L2-SP. Let w0 be the parameter vector of the model pre-trained on the

source problem, acting as the starting point (-SP) in fine-tuning. Using this

initial vector as the reference in the L2 penalty, we get:

Ω(w) =
α

2

∥∥w −w0
∥∥2

2
. (2)

Typically, the transfer to a target task requires some modifications of the

network architecture used for the source task, such as on the last layer used

for predicting the outputs. Then, there is no one-to-one mapping between

w and w0, and we use two penalties: one for the part of the target network

that shares the architecture of the source network, denoted wS , the other

one for the novel part, denoted wS̄ . The compound penalty then becomes:

Ω(w) =
α

2

∥∥wS −w0
S
∥∥2

2
+
β

2
‖wS̄‖

2
2 . (3)

L2-SP-Fisher. Elastic weight consolidation [23] was proposed to avoid catas-

trophic forgetting in the setup of lifelong learning, where several tasks should

be learned sequentially. In addition to preserving the initial parameter vec-

tor w0, it consists in using the estimated Fisher information to define the
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distance between wS and w0
S . More precisely, it relies on the diagonal of the

Fisher information matrix, resulting in the following penalty:

Ω(w) =
α

2

∑
j∈S

F̂jj
(
wj − w0

j

)2
+
β

2
‖wS̄‖

2
2 , (4)

where F̂jj is the estimate of the jth diagonal element of the Fisher information

matrix. It is computed as the average of the squared Fisher’s score on the

source problem, using the inputs of the source data:

F̂jj =
1

m

m∑
i=1

K∑
k=1

fk(x
(i);w0)

(
∂

∂wj
log fk(x

(i);w0)

)2

,

where the outer average estimates the expectation with respect to inputs x

and the inner weighted sum is the estimate of the conditional expectation of

outputs given input x(i), with outputs drawn from a categorical distribution

of parameters (f1(x(i);w), . . . , fk(x
(i);w), . . . , fK(x(i);w)).

L1-SP. We also experiment the L1 variant of L2-SP :

Ω(w) = α
∥∥wS −w0

S
∥∥

1
+
β

2
‖wS̄‖

2
2 . (5)

The usual L1 penalty encourages sparsity; here, by using w0
S as a reference

in the penalty, L1-SP encourages some components of the parameter vector

to be frozen, equal to the pre-trained initial values. The penalty can thus be

thought as an intermediate between L2-SP (3) and the strategies consisting

in freezing a part of the initial network. We explore below other ways of

doing so.

Group-Lasso-SP (GL-SP). Instead of freezing some individual parameters,

we may encourage freezing some groups of parameters corresponding to chan-

nels of convolution kernels. Formally, we endow the set of parameters with a
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group structure, defined by a fixed partition of the index set I = {1, . . . , p},

that is, I =
⋃G
g=0 Gg, with Gg ∩ Gh = ∅ for g 6= h. In our setup, G0 = S̄,

and for g > 0, Gg is the set of fan-in parameters of channel g. Let pg denote

the cardinality of group g, and wGg ∈ Rpg be the vector (wj)j∈Gg . Then, the

GL-SP penalty is:

Ω(w) = α

G∑
g=1

sg

∥∥∥wGg −w0
Gg

∥∥∥
2

+
β

2
‖wS̄‖

2
2 , (6)

where w0
G0 = w0

S̄
4
= 0, and, for g > 0, sg is a predefined constant that may

be used to balance the different cardinalities of groups. In our experiments,

we used sg = p
1/2
g .

Our implementation of Group-Lasso-SP can freeze feature extractors at

any depth of the convolutional network, to preserve the pre-trained feature

extractors as a whole instead of isolated pre-trained parameters. The group

Gg of size pg = hg×wg×dg gathers all the parameters of a convolution kernel

of height hg, width wg, and depth dg. This grouping is done at each layer of

the network, for each output channel, so that the group index g corresponds

to two indexes in the network architecture: the layer index l and the output

channel index at layer l. If we have cl such channels at layer l, we have a

total of G =
∑

l cl groups.

Group-Lasso-SP-Fisher (GL-SP-Fisher). Following the idea of L2-SP-Fisher,

the Fisher version of GL-SP is:

Ω(w) = α

G∑
g=1

sg

(∑
j∈Gg

F̂jj
(
wj − w0

j

)2
)1/2

+
β

2
‖wG0‖

2
2 .
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4. Experimental Results

We evaluate the aforementioned parameter regularizers for transfer learn-

ing on several pairs of source and target domains, and show the improvements

of -SP regularizers on the standard L2 in two different visual recognition

tasks, image classification and semantic segmentation. We use ResNet [20]

as our base network, since it has proven its wide applicability on transfer

learning tasks.

4.1. Image Classification

The source task is usually a classification task. Conventionally, if the

target task is also a classification task, the fine-tuning process starts by re-

placing the last layer with a new one, randomly generated, whose size is

defined by the number of classes in the target task.

4.1.1. Source and Target Databases

For comparing the effect of similarity between the source problem and

the target problem on transfer learning, we chose two source databases: Im-

ageNet [8] for generic object recognition and Places 365 [51] for scene clas-

sification. Likewise, we have four different databases related to four target

problems: Caltech 256 [18] contains different objects for generic object recog-

nition; MIT Indoors 67 [38] consists of 67 indoor scene categories; Stanford

Dogs 120 [22] contains images of 120 breeds of dogs; Foods 101 [4] collects

photos of 101 food categories, and is a much larger database than the previous

ones (yet with some noise in terms of image quality and class labels). Each

target database is split into training and test sets following the suggestion

of their creators, except for Stanford Dogs 120, whose original test set is a
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Table 1: Characteristics of the target databases: name and type, numbers of training and
test images per class, and number of classes.

Database task category # training # test # classes

Caltech 256–30 generic object recog. 30 20 257
Caltech 256–60 generic object recog. 60 20 257
MIT Indoors 67 scene classification 80 20 67

Stanford Dogs 120 specific object recog. 100 50 120
Foods 101 specific object recog. 750 250 101

0 10−4 10−3 10−2 10−1
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81

83

85

β

ac
cu

ra
cy

α = 0

α = 10−3

α = 10−2
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Figure 1: Classification accuracy (in %) on Stanford Dogs 120 for L2-SP, according to the
two regularization hyperparameters α and β respectively applied to the layers inherited
from the source task and the last classification layer (see Equation 3).

subset of ImageNet, thereby biasing the evaluation of fine-tuning algorithms.

To evaluate the test performance on Dogs, we use a part of the ImageNet

validation set that contains those 120 breeds of dogs. Table 1 collects details

for all target databases. In addition, we consider two configurations for Cal-

tech 256: 30 or 60 examples randomly drawn from each category for training,

and 20 remaining examples for the test set.

4.1.2. Training Details

Most images in those databases are color images. If not, we create a

three-channel image by duplicating the gray-scale data. All images are pre-

processed: we resize images to 256×256 and subtract the mean activity com-

puted over the training set from each channel, then we adopt random blur,
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random mirror and random crop to 224×224 for data augmentation. The

network parameters are regularized as described in Section 3. Cross valida-

tion is used for choosing the best regularization hyperparameters α and β:

α differs across experiments, and β = 0.01 is consistently picked by cross-

validation for regularizing the last layer. Figure 1 illustrates that the test

accuracy varies smoothly according to the regularization strength, and that

there is a sensible benefit in penalizing the last layer (that is, β ≥ 0) for the

best α values. When applicable, the Fisher information matrix is estimated

on the source database. The two source databases (ImageNet or Places 365)

yield different estimates. Regarding testing, we use central crops as inputs

to compute the classification accuracy.

Stochastic gradient descent with momentum 0.9 is used for optimization.

We run 9000 iterations and divide the learning rate by 10 after 6000 iter-

ations. The initial learning rates are 0.005, 0.01 or 0.02, depending on the

tasks. Batch size is 64. Then, under the best configuration, we repeat five

times the learning process to obtain an average classification accuracy and

standard deviation. All the experiments are performed with Tensorflow [1].

The source code is publicly available for reproducibility purposes. 1

4.1.3. Comparison across Penalties, Source and Target Databases

A comprehensive view of our experimental results is given in Figure 2.

Each plot corresponds to one of the four target databases listed in Table 1.

The red points mark the accuracies of transfer learning when using Places 365

as the source database, whereas the blue points correspond to the results ob-

1 https://github.com/holyseven/TransferLearningClassification
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tained with ImageNet. As expected, the results of transfer learning are much

better when source and target are alike: the scene classification target task

MIT Indoor 67 (top left) is better transferred from the scene classification

source task Places 365, whereas the object recognition target tasks benefit

more from the object recognition source task ImageNet. Besides showing

that choosing an appropriate source domain is critical in transfer learning

(see [2, 9] for example), for our purpose of evaluating regularizers, these re-

sults display similar trends for the two source databases: all the fine-tuning

strategies based on penalties using the starting point -SP as a reference per-

form consistently better than standard fine-tuning (L2). There is thus a

benefit in having an explicit bias towards the starting point, even when the

target task is not too similar to the source task.

Interestingly, the best source database for Foods 101 is Places 365 with L2

regularization and ImageNet for the penalties using the starting point -SP as

a reference. Considering the relative failure of L2-SP-Fisher, it is likely that

Foods 101 is quite far from the two sources but slightly closer to ImageNet.

The benefit of the explicit bias towards the starting point is compara-

ble for L2-SP and L2-SP-Fisher penalties; the strategies based on L1 and

Group-Lasso penalties behave rather poorly in comparison. They are even

less accurate than the plain L2 strategy on Caltech 256–30 when the source

problem is Places 365. Stochastic gradient descent does not handle well these

penalties whose gradient is discontinuous at the starting point where the op-

timization starts. The stochastic forward-backward splitting algorithm [11],

which is related to proximal methods, leads to substandard results, presum-

ably due to the absence of a momentum term. In the end, we used plain
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Figure 2: Classification accuracies (in %) of the tested fine-tuning approaches on the four
target databases, using ImageNet (dark blue dots) or Places 365 (light red dots) as source
databases. MIT Indoor 67 is more similar to Places 365 than to ImageNet; Stanford Dogs
120, Caltech 256 and Foods 101 are more similar to ImageNet than to Places 365.

stochastic gradient descent on a smoothed version of the penalties eliminat-

ing the discontinuities of their gradients, but some instability remains.

4.1.4. Fine-Tuning from a Similar Source

Table 2 displays the results of fine-tuning with L2-SP and L2-SP-Fisher,

which are compared to the current baseline of fine-tuning with L2, and the

state-of-the-art references [14, 33]. We report the average accuracies and their

standard deviations on 5 different runs. Since we use the same data and the

same starting point, runs differ only due to the randomness of stochastic

gradient descent and to the weight initialization of the last layer.

In the first part of Table 2 (first three lines), we observe that L2-SP

and L2-SP-Fisher always improve over L2 by a clear margin, and that this
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Table 2: Average classification accuracies (in %) of L2, L2-SP and L2-SP-Fisher on 5
different runs. The source database is Places 365 for MIT Indoors 67 and ImageNet for
Caltech 256, Stanford Dogs and Foods. References of the state of the art are taken from
[14], except for Foods-101 where it is from [33]. For Dogs, there is no reference that is based
on the test set used here to avoid the overlap with the Imagenet training set. Enhanced
variants respecting the aspect ratio and using the 10-crop test are marked with a star (∗).
Results with the highest accuracy in each part are highlighted in bold.

Caltech-30 Caltech-60 Indoors Dogs Foods

L2 81.5±0.2 85.3±0.2 79.6±0.5 66.3±0.2 84.6±0.1
L2-SP 83.5±0.1 86.4±0.2 84.2±0.3 74.9±0.2 85.4±0.3

L2-SP-Fisher 83.3±0.1 86.0±0.1 84.0±0.4 74.4±0.1 85.1±0.1

L2∗ 82.7±0.2 86.5±0.4 80.7±0.9 67.7±0.3 86.7±0.2
L2-SP∗ 84.9±0.1 87.9±0.2 85.2±0.3 77.1±0.2 87.1±0.1

L2-SP-Fisher ∗ 84.8±0.1 87.9±0.1 85.2±0.1 76.9±0.1 87.0±0.1

Reference 83.8±0.5 89.1±0.2 85.8 — 90.3

improvement is even more important when less data are available for the

target problem (Caltech–30 vs. Caltech–60 and Foods vs. others). When

fewer training examples are available for the target problem, the role of

the regularizer is more important. Meanwhile, little difference is observed

between L2-SP and L2-SP-Fisher. Note that we do not report here the

performances of training from scratch, but that transfer learning really helps

in these setups: we could only reach 76.9% accuracy on Foods 101 (with 10

times more computing efforts, that is, number of epochs).

In the second part of Table 2, we boost the performance of fine-tuning

with L2, L2-SP and L2-SP-Fisher by exploiting additional training and post-

processing techniques, that is, by respecting the aspect ratio of images and

by using the 10-crop test, which were not used in this paper except here.

We apply these techniques, resizing images with the shorter edge being 256

and keeping the aspect ratio (the standard resizing technique ignores it)
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for training, and averaging the predictions of 10 cropped patches (the center

patch, the four corner patches, and all their horizontal reflections) for testing.

The improved results are above state of the art for Caltech–30, and close to

state of the art for Indoors, without making use of the advanced techniques

employed by Ge and Yu [14] and Martinel et al. [33]. These results show

that simply changing the regularizer from L2 to L2-SP or L2-SP-Fisher is

remarkably efficient not only for baseline models, but also for more advanced

ones.

4.2. Semantic Image Segmentation

We now evaluate L2 and L2-SP on transfer learning from classification

to segmentation. The task of semantic segmentation differs substantially

from classification, thereby requiring important modifications to the network

structure. Despite these differences, segmentation still benefits a lot from

transfer from an image classification source task.

4.2.1. Source and Target Databases

We used large databases, ImageNet [8] and Microsoft COCO [29], as

source databases. ImageNet targets image classification; Microsoft COCO is

for object detection and semantic image segmentation. Pre-training on Im-

ageNet can largely increase the performance for most image-related learning

tasks, moreover pre-training on ImageNet and then on COCO can further

raise segmentation performance. Both pre-training schemes are evaluated.

Two databases for semantic image segmentation are used as targets:

Cityscapes [7] and Semantic Boundaries Dataset (SBD) [19]. Cityscapes

is a database with an evaluation benchmark for pixel-wise segmentation of
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real-world urban street scenes. It consists of 20000 images with coarse an-

notations, and 5000 images with high quality pixel-wise labeling, which are

split into a training set (2975 images), a validation set (500 images) and a

test set (1525 images). All images in Cityscapes have a 2048×1024 pixel

resolution. SBD is an augmented version of the Pascal VOC segmentation

database [12], resulting in 10582, 1449, and 1456 images for training, valida-

tion, and testing respectively. All images in SBD have a resolution no larger

than 500×500 pixels, and 20 different categories are considered, plus one for

the background.

4.2.2. Training Details

Most training techniques for segmentation are borrowed from classifica-

tion and we only present here the differences in Table 3. The full source

code is also available2. We consider four convolutional networks for image

segmentation. FCN [30] is one of the most classical structures for segmen-

tation. ResNet [20] can also be used for image segmentation by removing

the global pooling layer. DeepLab [6] and PSPNet [50] stayed top-ranked

for some time on the Cityscapes and Pascal VOC benchmarks and are two

favored structures.

4.2.3. Results

With L2 and L2-SP, under the same setting, we use all these architectures

for Cityscapes and PSPNet for SBD. Note that a few learning settings, like

batch size and crop size, differ from the original work of Zhao et al. [50]. This

is not essential for our purpose, since we aim at demonstrating the consistency

2https://github.com/holyseven/PSPNet-TF-Reproduce
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Table 3: Training and test details for segmentation on Cityscapes. Abbreviations used in
this table: lr - learning rate; poly lr - polynomial learning rate policy; bs - batch size; bn
- batch normalization; rdm scale - random scale; ms test - multi-scale test.

FCN ResNet DeepLab PSPNet

training

lr policy fixed lr poly lr

bs×h×w 2×800×800 8×836×836

bn stats frozen but trained β and γ all training

rdm scale no [0.5, 2.0]

test
ms test no yes

image size whole image 836×836 crops

Table 4: Mean Intersection over Union scores (in %) on Cityscapes validation set. Note
that the initial model for DeepLab-COCO is pre-trained on ImageNet and then on Mi-
crosoft COCO, others are only pre-trained on ImageNet, and that PSPNet-extra uses
20000 extra coarsely labeled images of Cityscapes for training whereas PSPNet only uses
the training set (finely labeled images). Results with higher mIoU scores are highlighted
in bold.

Method L2 L2-SP

FCN 66.9 67.9
ResNet-101 68.1 68.7
DeepLab 68.6 70.4
DeepLab-COCO 72.0 73.2
PSPNet 78.2 79.4
PSPNet-extra 80.9 81.2

of the improvements, throughout diverse network structures (FCN, ResNet-

101, DeepLab, and PSPNet) of L2-SP compared to L2 regularization.

Table 4 reports the results on Cityscapes validation set. We fine-tuned

FCN, ResNet, DeepLab and PSPNet with the standard L2, and L2-SP, all

other things being equal. We readily observe that fine-tuning with L2-SP

in place of L2 consistently improves the performance in mean Intersection

over Union (mIoU) score, for all networks. The best model (PSPNet-extra
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with L2-SP) has been evaluated on the test set and is currently on the

public benchmark of Cityscapes3, with 80.3% mIoU, to be compared to 80.2%

obtained by Zhao et al. [50].

For PSPNet on SBD, we apply the same protocol, except that images

are cropped to 480×480, enabling a larger batch size of 16. The results on

the public validation set are again in favor of L2-SP, which reaches 79.9% in

mIoU compared to 78.3% for L2. On the test set, L2-SP reaches 79.8%4.

5. Analysis and Discussion

Having confirmed the versatility of -SP regularizers on classification and

segmentation tasks, with different network architectures, we now analyze

their behavior. Among all -SP methods, L2-SP and L2-SP-Fisher always

reach a better accuracy on the target task. We expected L2-SP-Fisher to

outperform L2-SP since Fisher information provides a relevant metric in

parameter space and was shown to help in lifelong learning, but there is no

significant difference between the two options in our setups. Since L2-SP

is simpler than L2-SP-Fisher, we recommend the former, and we focus on

the analysis of L2-SP, although most of the discussion would also apply to

L2-SP-Fisher.

5.1. Behavior on the Source Task

The variants using the Fisher information matrix behave like the simpler

variants using a Euclidean metric on parameters. One reason is that, contrary

3https://www.cityscapes-dataset.com/method-details/?submissionID=1148
4http://host.robots.ox.ac.uk:8080/anonymous/NAAVTI.html
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to lifelong learning, our objective does not favor solutions that retain accu-

racy on the source task. Hence, the metric defined by the Fisher information

matrix is less relevant for our actual objective that only relates to the target

task. Table 5 reports the drop in performance when the fine-tuned mod-

els are applied on the source task, without any retraining, simply using the

original classification layer instead of the classification layer learned for the

target task. The performance drop is consistently smaller for L2-SP-Fisher

than for L2-SP. This confirms that L2-SP-Fisher is indeed a better approach

in the situation of lifelong learning, where accuracies on the source tasks

matter. In comparison to L2-SP-Fisher and L2-SP, L2 fine-tuning results in

catastrophic forgetting: the performance on the source task is considerably

affected by fine-tuning.

The relative drops in performance with Foods 101 follow the pattern

observed for the other databases except that the decrease is much larger.

This may be a sign of the substantial divergence of the data distribution of

Foods 101 from the one of ImageNet, with a compromise between the source

task and the target task met far from the starting point.

5.2. Fine-Tuning vs. Freezing the Network

Freezing the first layers of a network during transfer learning [48] is an-

other way to ensure a very strong inductive bias, letting fewer degrees of free-

dom to transfer learning. Figure 3 shows that this strategy, which is costly

to implement if one looks for the optimal number of layers to be frozen, can

improve L2 fine-tuning considerably, but that it is rather inefficient for L2-SP

fine-tuning. Among all possible choices, L2 fine-tuning with partial freezing

is dominated by the plain L2-SP fine-tuning. Note that L2-SP-Fisher (not
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Table 5: Classification accuracy drops (in %, the lower, the better) on the source tasks due
to fine-tuning based on L2, L2-SP and L2-SP-Fisher regularizers. The source database is
Places 365 for MIT Indoors 67 and ImageNet for Caltech 256, Stanford Dogs and Foods
101. The classification accuracies of the pre-trained models are 54.7% and 76.7% on Places
365 and ImageNet respectively. Results with the lowest drops are highlighted in bold.

L2 L2-SP L2-SP-Fisher

MIT Indoors 67 24.1 5.3 4.9
Caltech 256–30 15.4 4.2 3.6
Caltech 256–60 16.9 3.6 3.2

Stanford Dogs 120 14.1 4.7 4.2
Foods 101 68.6 64.5 53.2

displayed) behaves similarly to L2-SP.

5.3. Layer-Wise Analysis

We complement our experimental results by an analysis relying on the

activations of the hidden units of the network, to provide another view on

the differences between L2 and L2-SP fine-tuning. Activation similarities

are easier to interpret than parameter similarities, as they provide a view

of the network that is closer to the functional perspective we are actually

pursuing. Matching individual activations makes sense, provided that the

networks slightly differ before and after tuning so that few roles are switched

between units or feature maps.

The dependency between the pre-trained and the fine-tuned activations

throughout the network is displayed in Figure 4, with boxplots of the R2 coef-

ficients, gathered layer-wise, of the fine-tuned activations with respect to the

original activations. This figure shows that, indeed, the roles of units or fea-

ture maps have not changed much after L2-SP and L2-SP-Fisher fine-tuning.

The R2 coefficients are very close to 1 on the first layers, and smoothly de-
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Figure 3: Classification accuracies (in %) of fine-tuning with L2 and L2-SP on Stanford
Dogs 120 (top) and Caltech 256–30 (bottom) when freezing the first layers of ResNet-101.
The dashed lines represent the accuracies reported in Table 2, where no layers are frozen.
ResNet-101 begins with one convolutional layer, then stacks 3-layer blocks. The three
layers in one block are either frozen or trained altogether.

crease throughout the network, staying quite high, around 0.6, for L2-SP

and L2-SP-Fisher at the greatest depth. In contrast, for L2 regularization,

some important changes are already visible in the first layers, and the R2

coefficients eventually reach quite low values at the greatest depth. This il-

lustrates in detail how the roles of the network units are remarkably retained

with L2-SP and L2-SP-Fisher fine-tuning, not only for the first layers of the

networks, but also for the last high-level representations before classification.

We now look at the diagonal elements of the Fisher information matrix,

still computed on ResNet-101 from training inputs of ImageNet. Their dis-
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Figure 4: R2 coefficients of determination with L2 and L2-SP regularizations for Stanford
Dogs 120. Each boxplot summarizes the distribution of the R2 coefficients of the activa-
tions after fine-tuning with respect to the activations of the pre-trained network, for all
the units in one layer. ResNet-101 begins with one convolutional layer, then stacks 3-layer
blocks. We display here only the R2 at the first layer and at the outputs of some 3-layer
blocks.

tributions across layers, displayed in Figure 5, show that the network is more

sensitive to the parameters of the first layers, with a high disparity within

these layers, and are then steady with most values within one order of mag-

nitude. As a result, L2-SP-Fisher is very similar to L2-SP, except for being

more conservative on the first layers. This observation explains the small dif-

ferences between L2-SP and L2-SP-Fisher that are observed in our transfer

learning setups.

5.4. Computational Efficiency

The -SP penalties introduce no extra parameters, and they only increase

slightly the computational burden. L2-SP increases the number of floating

point operations required for a learning step of ResNet-101 by less than

1%. Hence, at a negligible computational cost, we can obtain significant

improvements in classification accuracy, and no additional cost is experienced

at test time.

25



1 10 19 28 37 46 55 64 73 82 91 100

−7

−5

−3

−1

Layer index

lo
g

1
0
(F̂

jj
)

Figure 5: Boxplots of the diagonal elements of the Fisher information matrix (log-scale)
computed on the training set of ImageNet using the pre-trained model. We display here
these elements at the first layer and then at the last layer of all 3-layer blocks of ResNet-
101.

5.5. Theoretical Insights

5.5.1. Effect of L2-SP

Analytical results are very difficult to obtain in the deep learning frame-

work. Under some (highly) simplifying assumptions, the effect of L2 regular-

ization can be analyzed by doing a quadratic approximation of the objective

function around the optimum [see, e.g. 17, Section 7.1.1]. This analysis shows

that L2 regularization rescales the parameters along the directions defined

by the eigenvectors of the Hessian matrix.

A similar analysis can be used for L2-SP regularization. Let J be

the unregularized objective function and JSP (w) = J (w) + α
2
‖w −w0‖2

2

be the regularized objective function. Let ŵ = argminwJ (w) and ŵSP =

argminwJ
SP (w) be their respective minima. The quadratic approximation

of J (ŵ) gives

H(ŵSP − ŵ) + α(ŵSP −w0) = 0 , (7)

where H is the Hessian matrix of J w.r.t. w, evaluated at ŵ. Since H is
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symmetric and positive semidefinite, it can be decomposed as H = PΛPT.

Applying the decomposition to Equation (7), we obtain the following rela-

tionship between ŵSP and ŵ:

PTŵSP = (Λ + αI)−1ΛPTŵ + α(Λ + αI)−1PTw0 . (8)

This equation shows that, in the direction defined by the i-th eigenvector of

H, ŵSP is a convex combination of the projections of ŵ and w0 on that direc-

tion. Indeed noting λi the eigenvalue corresponding to the i-th eigenvector,

the terms of the convex combination are λi
λi+α

and α
λi+α

.

This contrasts with L2 that leads to a trade-off between the optimum of

the unregularized objective function and the origin. Clearly, searching for

a solution in the vicinity of the pre-trained parameters is intuitively much

more appealing, since it is the actual motivation for using the pre-trained

parameters as the starting point of the fine-tuning process.

5.5.2. Bias-Variance Analysis

We propose here a simple bias-variance analysis for the case of linear

regression, for which this analysis is tractable. Consider the squared loss

function J(w) = 1
2
‖Xw − y‖2, where y ∈ Rn is a vector of continuous

responses, and X ∈ Rn×p is the matrix of predictor variables. We use the

standard assumptions of the fixed design case, that is: (i) y is the realization

of a random variable Y such that E[Y] = Xw∗, V[Y] = σ2In, and w∗ is the

vector of true parameters; (ii) the design is fixed and orthonormal, that is,

XTX = Ip. We also assume that the reference we use for L2-SP, i.e. w0, is

not far away from w∗, since it is the minimizer of the unregularized objective

function on a large data set: w0 = w∗ + ε, where ε, the difference between
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the two parameters, is supposed to be relatively small, i.e. ‖ε‖ � ‖w∗‖.

We consider the three estimates ŵ = argminwJ (w), ŵL2

= argminwJ (w)+

α
2
‖w‖2

2 and ŵSP = argminwJ (w) + α
2
‖w −w0‖2

2. Their closed-form formu-

lations are respectively:
ŵ = XTy

ŵL2

=
1

1 + α
XTy

ŵSP =
1

1 + α
XTy +

α

1 + α
w0

(9)

So that their expectations and variances are:

E[ŵ] = w∗

E[ŵL2

] =
1

1 + α
w∗

E[ŵSP] =
1

1 + α
w∗ +

α

1 + α
w0

= w∗ +
α

1 + α
ε

(10)



V[ŵ] = σ2Ip

V[ŵL2

] =

(
σ

1 + α

)2

Ip

V[ŵSP] =

(
σ

1 + α

)2

Ip

(11)

These expressions show that, without any regularization, the least squared

estimate ŵ is unbiased, but with the largest variance. With the L2 regular-

izer, the variance is decreased by a factor of 1/(1 + α)2 but the squared bias

is ‖w∗‖2α2/(1 + α)2. The L2-SP regularizer benefits from the same decrease

of variance and suffers from the smaller squared bias ‖ε‖2α2/(1 + α)2. It is

thus a better option than L2 (provided the assumption ‖ε‖ � ‖w∗‖ holds),
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it is also always better than the least squares estimate provided ‖ε‖ < pσ2

and otherwise better than this estimate for sufficiently small α, that is for

α < 2pσ2/(‖ε‖2 − pσ2).

5.5.3. Shrinkage Estimation

Using L2-SP instead of L2 can also be motivated by an analogy with

shrinkage estimation [see e.g. 25, chapter 5]. Although it is known that

shrinking toward any reference is better than raw fitting, it is also known

that shrinking towards a value that is close to the “true parameters” is more

effective. The notion of “true parameters” is not readily applicable to deep

networks, but the connection with Stein shrinking effect may be inspiring by

surveying the literature considering shrinkage towards other references, such

as linear subspaces. In particular, it is likely that manifolds of parameters

defined from the pre-trained network would provide a more relevant reference

than the single parameter value provided by the pre-trained network.

6. Conclusion

We described and tested simple regularization techniques for transfer

learning with convolutional networks. They all encode an explicit bias to-

wards the solution learned on the source task, resulting in a trade-off between

the solution to the target task and the pre-trained parameter that is coherent

with the original motivation for fine-tuning. All the regularizers evaluated

here have been already used for other purposes or in other contexts, but

we demonstrated their relevance for inductive transfer learning with deep

convolutional networks.

We show that a simple L2 penalty using the starting point as a reference,
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L2-SP, is useful, even if early stopping is used. This penalty is much more

effective than the standard L2 penalty that is commonly used in fine-tuning.

It is also more effective and simpler to implement than the strategy consisting

in freezing the first layers of a network. We provide theoretical hints and

strong experimental evidence showing that L2-SP retains the memory of the

features learned on the source database. We thus believe that this simple

L2-SP scheme should be considered as the standard baseline in inductive

transfer learning, and that future improvements of transfer learning should

rely on this baseline.

Besides, we tested the effect of more elaborate penalties, based on L1

norm, Group-L1 norm, or Fisher information. None of the L1 or Group-L1

options seem to be valuable in the context of inductive transfer learning that

we considered here, and using the Fisher information with L2-SP, though

being better at preserving the memory of the source task, does not improve

accuracy on the target task. Different approaches, which implement an im-

plicit bias at the functional level, alike [27, 32], remain to be tested: being

based on a different principle, their value should be assessed in the framework

of inductive transfer learning.
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