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Abstract

In the Colonel Blotto game, two players with a fixed budget simultaneously allocate their resources
across n battlefields to maximize the aggregate value gained from the battlefields where they have the higher
allocation. Despite its long-standing history and important applicability, the Colonel Blotto game still lacks
a complete Nash equilibrium characterization in its most general form—the non-constant-sum version with
asymmetric players and heterogeneous battlefields. In this work, we propose a simply-constructed class of
strategies—the independently uniform strategies—and we prove them to be approximate equilibria of the
non-constant-sum Colonel Blotto game; moreover, we also characterize the approximation error according
to the game’s parameters. We also introduce an extension called the Lottery Blotto game, with stochastic
winner-determination rules allowing more flexibility in modeling practical contexts. We prove that the
proposed strategies are also approximate equilibria of the Lottery Blotto game.

Keywords: resource allocation games, epsilon-equilibrium, Colonel Blotto game, Lottery Blotto game,
contest success function

1. INTRODUCTION

The Colonel Blotto game (henceforth, CB game) is one of the most well-known resource allocation
games. Its description is very simple: two players, each having a fixed amount of resources (called budget),
compete over a finite number of battlefields. Each battlefield is evaluated by the players with a certain
value. Players simultaneously allocate their resources toward the battlefields and each player’s payoff is her
aggregate gains from all the battlefields. In each battlefield, the winner, who is simply the one that has the
higher allocation, gains the corresponding value and the loser gains zero—this is called the winner-takes-all
rule—; in battlefields with tie allocations, the value is shared between the players with a predetermined
tie-breaking rule, e.g., sharing equally between them. Throughout its long-standing history since its first
introduction by Borel (1921), the CB game has attracted interest from different research communities for its
potential to elegantly model a large range of practical situations. One of its original applications is military
logistics, see e.g., Gross (1950); Gross & Wagner (1950); but it is also used to model problems in politics
(where political parties distribute their budgets to compete over voters), see e.g., Myerson (1993); Kovenock
& Roberson (2012); Roberson (2006); in cybersecurity (where effort is distributed to attack/defend targets),
see e.g., Chia (2012); Schwartz et al. (2014); in online advertising (where marketing campaigns allocate the
time to broadcast ads to attract web users), see e.g., Masucci & Silva (2014, 2015); in telecommunication
(where network service providers distribute and lease their spectrum to the users), see e.g., Hajimirsaadeghi
& Mandayam (2017).
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In this paper, we consider the most general version of the non-constant-sum CB game, where the eval-
uations of the battlefields’ values can be heterogeneous across battlefields and different between the two
players; moreover, players’ budgets can be asymmetric. Despite the long-standing history of the CB game,
the characterization of the Nash equilibrium in this most general version remains an open question—even
the existence of an equilibrium has not been proved or disproved. Our study also examines the Nash equi-
librium but we take a different angle: instead of looking for an exact equilibrium, our first contribution is
to propose a class of approximate equilibria of the non-constant-sum CB game, called the IUγ∗

strategies.1

Importantly, we characterize the approximation error of this solution according to the games’ parameters
and show that it is negligible when the number of battlefields is sufficiently large (it quickly decreases as the

number of battlefields increases). Note also that it is simple and efficient to construct IUγ∗

strategies even
in large-scale problems. Our work extends the state-of-the-art where the only known results regarding the
equilibria of the non-constant-sum CB game2 are given by Kovenock & Roberson (2015). They provide a
set of univariate marginal distributions (one per battlefield) that are the equilibrium marginals if they can
be achieved with the budget constraints. They then indicate a sufficient condition for this to hold3—which
is identical to that of Schwartz et al. (2014) for the constant-sum case—, that only covers a restricted range
of games; and they also show a necessary condition where there is no equilibrium satisfying such a set
of marginals.

The constant-sum CB game, where both players assign the same value to each battlefield, has been
studied profoundly in the literature; however, even in this simpler version the equilibrium characterization is
still not completely solved. When players have symmetric budgets, the equilibria are constructed by Borel &
Ville (1991) in the game involving three battlefields and by Gross & Wagner (1950); Gross (1950) in the game
containing any number of battlefields (see also Laslier (2002); Thomas (2017) for a modern presentation of
this solution). For the constant-sum CB game with asymmetric budgets, equilibria characterization remains
an open question in general; the exceptions are the following restricted cases: the games with only two
battlefields (Macdonell & Mastronardi (2015)), the games with any number of battlefields but homogeneous
values (Roberson (2006)), and the games where there exists a sufficient number of battlefields of each possible
value (Schwartz et al. (2014)). In our model of the non-constant-sum CB game, we make no assumption
on the players’ symmetry nor on the battlefields homogeneity; therefore, our results for the non-constant-
sum CB game can be trivially adapted to the constant-sum game with the most general configuration of
parameters, i.e., the IUγ∗

strategy is also an approximate equilibrium. Moreover, we show an additional
result that the IUγ∗

strategy is also an approximate max-min strategy of the constant-sum CB game (with
the same approximation error). It is also worth mentioning that a few works have considered extensions to
non-constant-sum of the CB game, though with a significantly different flavor. In particular, Hortala-Vallve
& Llorente-Saguer (2012) consider the discrete CB game and identify conditions under which a pure Nash
equilibrium exists; and Kvasov (2007); Roberson & Kvasov (2012) consider the relaxation of the use-it-or-
lose-it rule that changes the payoffs.

In practice, there exists situations where the winner-takes-all rule of the CB game is too restrictive. In
order to model these situations with more flexibility, in this work, we introduce and study an extension
of the non-constant-sum CB game, called the Lottery Blotto game (henceforth, LB game),4 where each
player only gains a part of her value in each battlefield. Alternatively, one can interpret the LB game
as a version of the CB game in which each player wins a battlefields’ value with a certain probability
depending on players’ allocations on that battlefield and this probability can be non-zero even for the player
with smaller allocation. Some examples where the LB game model may prove to be useful are online
advertising competitions, political contests for voters’ attention, research and development activities, radio-
wave transmission with noises, etc. We formulate the LB game by presenting the players’ payoffs based

1We explain the name in Section 4.1.
2It is called the generalized Colonel Blotto game by Kovenock & Roberson (2015).
3The set of battlefields are partitioned such that two battlefields are in the same partition if they have the same (normalized)

values; the sufficient condition on the attainability of equilibria requires a sufficient number of battlefields in each partition.
4Note that the LB game is also a non-constant-sum game; however, to lighten the notation, hereinafter, we do not highlight

this and only call it the LB game in places with no ambiguity.
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on the concept of contest success function (henceforth, CSF). CSFs, studied profoundly in the rent-seeking
literature—see e.g., Skaperdas (1996); Corchón (2007)—, are functions that take the players’ allocations
as inputs and output the probability of winning a battlefield. The definition of CSF that we adopt (see
Section 2.2) also includes the winner-takes-all rule as a special case so that the CB game is a particular
case of the LB game. Similar to the non-constant-sum CB game, the equilibrium characterization of the LB
game is an open question, except for several particular instances. Our second main contribution is to prove
that the IUγ∗

strategy is also an approximate equilibrium of the LB game with an approximation error that
decreases quickly as the number of battlefields increases and the corresponding CSFs converge pointwise to
that of the CB game.

The LB game that we propose as an extension of the CB game with a general CSF, has not been
formally defined in previous works; but several particular instances have been considered. Friedman (1958)
investigated the pure equilibrium of the (constant-sum) LB game where players’ gains in each battlefield
follows the Tullock function (termed by Tullock (2001)).56 Osório (2013) studied an extension of this
model with a generalization of the Tullock function (coincidentally, it is also called there by the Lottery
Blotto game); however, only numerically computed approximate-results of the equilibrium are proposed and
no tractable close-form solution is provided in the general cases where battlefields’ values are asymmetric
across players. The CSFs considered in these works belong to one specific class that we call the ratio-form
CSFs (see Section 2.2 for a formal definition). Note that our result works for any LB game with any general
CSF; therefore, they can be applied to the LB game with ratio-form CSFs. As an illustration, we analyze
our IUγ∗

strategy in the LB games with two of the most well-known cases of ratio-form CSFs, the power
form and the logit form (see Section 2.2 for more details)—in this case we obtain more precise results on
the convergence of the error.

We note finally that a strategy construction similar to the IUγ∗

strategy can be found in Vu et al.
(2018) for the (constant-sum) discrete CB game (i.e., where the budgets and every allocation are required
to be integers) with asymmetric budgets and heterogeneous battlefields. Due to the discrete condition, their
analysis has essential differences to our work; particularly, their asymptotic results involve a double limits
of the number of battlefields and the ratio of players’ budgets; moreover, the convergence of the players’
payoffs in their work does not have the difficulties of continuous allocation encountered in our work. Finally,
they do not consider the non-constant-sum CB game and the extension to the LB game.

The remainder of this paper is organized as follows. Section 2 introduces the formulations of the non-
constant-sum CB game and the LB game. Although the LB game model is essentially more general; we first
focus on the CB game due to the fact that the CB game is a more classical game and our analysis for the
LB game also depends on our results for the CB game. After providing some preliminary results for the CB
game in Section 3, we propose the IUγ∗

strategy in Section 4 and state the result that any IUγ∗

strategy is
an approximate equilibrium of the non-constant-sum CB game. In Section 5, we claim the results that the
IUγ∗

strategy is also an approximate equilibrium of the LB game. Finally, the detailed proofs of all lemmas
and theorems are given in Appendix.

Throughout the paper, we use bold symbols (e.g., x) to denote vectors and subscript indices to denote its
elements (e.g., x = (x1, x2, . . . , xn)). The notation [n] denotes the set {1, 2, . . . , n}, for any n ∈ N\{0}. We
often use the letter p to denote a player and use −p to indicate her opponent in the games; Rn

≥0 denotes the

set of all n-tuples whose elements are non-negative (R≥0 := R1
≥0). We denote the Euler’s number by e. For

any random variable X , we use FX to denote its corresponding cumulative density function (abbreviated
by CDF). Finally, we use P(E) to denote the probability that an event E happens and EX to denote the
expectation of a random variable X . A table of notations that are used in this work (Table A.2) is given
in Appendix A.

5That is the LB game where two players, called A and B, commonly evaluate each battlefield i with a value wi; if players
allocates xA

i , xB
i to battlefield i then player A gains xA

i wi/(xA
i +xB

i ) and player B gains xB
i wi/(xA

i +xB
i ) from this battlefield.

6A similar function to define the winning probability is also used by Rinott et al. (2012) to study a variant of the CB game
involving sequential tournaments.
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2. GAMES FORMULATION

In this section, we define the two games that are our main focus: in Section 2.1, we introduce the non-
constant-sum Colonel Blotto game; in Section 2.2, we present the Lottery Blotto game, as an extension of
the Colonel Blotto game.

2.1. The Colonel Blotto game

We consider the following one-shot, complete information game between two players A and B. Each
player has a fixed amount of resources (called the budgets), denoted XA and XB, respectively. Without
loss of generality, we assume that 0 < XA ≤ XB. Players simultaneously allocate their resources across n
battlefields (n ≥ 3). Each battlefield i ∈ [n] is embedded with two parameters wA

i , w
B
i > 0, corresponding

to the values at which player A and player B respectively assess this battlefield. A pure strategy of player
p ∈ {A,B} is a vector x

p = (xp
i )i∈[n] ∈ R

n
≥0 that satisfies the budget constraint

∑n
i=1 x

p
i ≤ Xp. In each

battlefield i, when player p allocates strictly more than her opponent, she gains completely her embedded
values wp

i while the opponent gains 0. In case of a tie, i.e., if xA
i = xB

i , then player A receives αwA
i and

player B receives (1−α)wB
i , where α ∈ [0, 1] is a fixed parameter. Each player’s payoff is the summation of

values she gains from all battlefields; formally, for any pure strategy profile (xA,xB), the payoffs of players
A and B are ΠA(xA,xB) =

∑n
i=1 w

A
i · βA

(

xA
i , x

B
i

)

and ΠB(xA,xB) =
∑n

i=1 w
B
i · βB

(

xA
i , x

B
i

)

respectively;
here, βA and βB (henceforth, we called them the Blotto functions) are functions defined as follows:

βA (x, y) =







1 , if x > y
α , if x = y
0 , if x < y

and βB (x, y) =







1 , if y > x
1− α , if y = x
0 , if y < x

, for all x, y ∈ R≥0. (2.1)

Definition 2.1. A non-constant-sum Colonel Blotto game, denoted by CBn, is the game defined
above; in particular, the action set of player p ∈ {A,B} is {xp ∈ R

n
≥0 :

∑n
i=1 x

p
i ≤ Xp} and her payoff is

Πp(xA,xB) when players A and B play the pure strategies x
A and x

B respectively.

To lighten the notation, we only include the subscript n—the number of battlefields—in the notation CBn

and omit the other parameters; in particular the values XA, XB, α and wA
i , w

B
i for i ∈ [n]. Hereinafter,

in places with no ambiguity, we drop the term non-constant-sum and simply address the game CBn as
the Colonel Blotto game. In this game, a mixed strategy is a joint distribution on the allocations of all
battlefields, such that any drawn pure strategy of a player is an n-tuple that satisfies her budget constraint.
We reuse the notations ΠA (sA, sB) and ΠB (sA, sB) to denote the payoffs of players A and B when they
play the mixed strategies sA and sB, respectively. Note that the definition of CBn above allows asymmetry
in players’ budgets and heterogeneity in battlefields values; moreover, it allows battlefield values to differ
between the two players. Furthermore, the defined payoff functions can be understood as if we randomly
break the tie (if it happens) such that player A wins battlefield i with probability α while player B wins it
with probability (1 − α). This includes all the classical tie-breaking rules considered in the literature; for
instance, the rule of giving the whole value to player B used by Roberson (2006); Schwartz et al. (2014)
corresponds to α = 0; the 50-50 rule used by Kovenock & Roberson (2015); Ahmadinejad et al. (2016);
Behnezhad et al. (2017) corresponds to α = 1/2.

In this paper, we also often work with the normalized values of the battlefields defined as vAi := wA
i /WA

and vBi := wB
i /WB , where WA :=

∑n
j=1 w

A
j and WB :=

∑n
j=1 w

B
j for i ∈ [n]. We trivially observe that

vpi ∈ [0, 1] for all i and that
∑n

j=1 v
p
j = 1. Most of our analysis relies on an additional assumption that the

battlefields’ values are bounded away from zero and infinity (see the Assumption (A0) below). This is a
fairly mild assumption that is satisfied in most of (if not all) practical applications.

(A0) ∃
¯
w, w̄ > 0 :

¯
w ≤ wp

i ≤ w̄, ∀i ∈ [n], ∀p ∈ {A,B}

As a direct consequence, the normalized values satisfy

¯
w

nw̄
≤ vpi ≤

w̄

n
¯
w
, ∀i ∈ [n], ∀p ∈ {A,B}. (2.2)
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Finally, we note that most works in the literature (the only exception, in our knowledge, being the work
of Kovenock & Roberson (2015)) focus only on the constant-sum Colonel Blotto game where players have
the same evaluations on battlefields’ values. The non-constant-sum game CBn given in Definition 2.1 is more
general; hence all our results for CBn can be straightforwardly applied to this constant-sum version as well.
However, for the purpose of comparing with the literature and because we can show stronger results in this
special case, it is useful to also formally define the constant-sum game variant as follows.

Definition 2.2. A constant-sum Colonel Blotto game, denoted by CBc
n, is a game that has the same

formulation as the game CBn but with the additional condition that wA
i = wB

i , ∀i ∈ [n].

As a trivial corollary of this additional condition, in CBc
n, players also have common normalized valuation

on battlefields, i.e., vAi =vBi for all i ∈ [n] and the players’ maximum payoffs are equal, i.e., WA = WB.

2.2. The contest success functions and the Lottery Blotto game

In this section, we present a new game, the Lottery Blotto game, that extends the model of the Colonel
Blotto game. This new game is based on the notion of contest success functions (CSFs), that we introduce
below before defining the game model.

Contest success functions (CSFs) are functions that quantify the winning probability in contests (also
called rent-seeking competitions) where several players compete for a single prize by exerting resources/efforts.
CSFs can be defined for any number of players (see e.g., a general definition by Skaperdas (1996)), but in
this work, we focus only on the case of two players.

Definition 2.3. ζA : R2
≥0 → R and ζB : R2

≥0 → R is a pair of contest success functions (CSFs) if and only
if the following two conditions are satisfied:

(C1) ζA(x, y), ζB(x, y) ≥ 0 and ζA(x, y) + ζB(x, y) = 1, ∀x, y ≥ 0.

(C2) ζA(x, y) (resp. ζB(x, y)) is non-decreasing in x (resp. in y) and non-increasing in y (resp. in x).

Intuitively, the function ζA (resp. ζB) maps any pair of players’ invested resources to the probability that
player A (resp. player B) wins the prize. Condition (C1) indicates that the outputs of any pair of the CSFs
always satisfy the condition of a probability distribution. On the other hand, Condition (C2) states that a
player’s winning probability increases (or at least stays the same) when she increases her effort and decreases
(or at least stays the same) when her opponent increases her effort. We note that Definition 2.3 allows a
more general definitions of the CSFs (in two-player cases) compared to the definition given by Skaperdas
(1996); Hirshleifer (1989); Clark & Riis (1998) that contains other assumptions.7 While many of the CSFs
considered in the literature are continuous functions, we do not include continuity in Definition 2.3 to keep
the generality. Importantly, the Blotto functions βA, βB of the game CBn (i.e., the winner-takes-all rule)
satisfy Conditions (C1) and (C2), hence βA, βB are CSFs. Besides these functions, some examples of other
CSFs considered in the literature are:

(a) ζA(x, y) = x/(x+ y) and ζB(x, y) = y/(x+ y), proposed by Tullock (2001);
(b) ζA(x, y) = max

{

min
{

1
2+C(x−y), 1

}

, 0
}

and ζB(x, y) = 1− ζA(x, y), proposed by Che & Gale (2000),
where C > 0 is a fixed parameter;

(c) ζA(x, y) =
1
2 − y−x

2y if x ≤ y and ζA(x, y) =
1
2 + x−y

2x if x ≥ y; and ζB(x, y) = 1 − ζA(x, y), proposed by

Alcalde & Dahm (2007).

Building on the notion of CSFs and the Colonel Blotto game, we now define a new game model based
on the following idea: in a game CBn, we view each battlefield as a contest between players where the prize
is the battlefield’s value and players’ effort correspond to their allocations; by doing this, each pair of CSFs
defines an instance of a new game where the probability of winning a battlefield follows them accordingly.

7For example, Skaperdas (1996) defines ζA, ζB with an axiom of anonymity; they also require that any player who puts a
strictly positive amount of resources has a strictly positive probability of winning the prize; Clark & Riis (1998) considers the
CSFs additionally satisfying the Choice Axiom. These are technical conditions needed for proving their results and we omit
them here lest they unnecessarily limit our scope of study.
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Definition 2.4. Let ζ = (ζA, ζB) be a pair of CSFs. A Lottery Blotto game with n battlefields, denoted
LBn(ζ), is the game with the same players A and B and the same strategy sets as in CBn; but where payoffs
are given, for any pure strategy profile (xA,xB), by

ΠA
ζ (x

A,xB) =
∑n

i=1
wA

i · ζA
(

xA
i , x

B
i

)

and ΠB
ζ (x

A,xB) =
∑n

i=1
wB

i · ζB
(

xA
i , x

B
i

)

.

The Lottery Blotto game model is more flexible than that of the Colonel Blotto game, as it allows choosing
the CSFs that define the players’ payoffs for each specific practical situation. Intuitively, the players’ payoffs
in a Lottery Blotto game can be seen as the expected payoffs in the Colonel Blotto game with respect to
the following random process determining the winner in any battlefield i: player A wins with probability
ζA(x

A
i , x

B
i ) and player B wins with probability ζB(x

A
i , x

B
i ) if they allocate xA

i and xB
i respectively. Similar

to the game CBn, players’ payoffs in the LBn game are also monotonic with respect to the allocations in
a battlefield (due to Condition (C2)).

Besides the Lottery Blotto game with the generally defined CSFs, we additionally consider the games
corresponding to the CSFs that belong to a special class called the ratio-form CSFs. These are the CSFs
that are studied the most profoundly in the literature. We will use the games with these ratio-form CSFs
to illustrate the results obtained in the Lottery Blotto game.

Definition 2.5. CSFs ζA, ζB : R2
≥0 → R≥0 are called ratio-form CSFs if they have the form:

ζA(x, y) =
η(x)

η(x) + κ(y)
and ζB(x, y) =

κ(y)

η(x) + κ(y)
,

where η, κ : R≥0 → R are non-negative functions such that ζA and ζB satisfy Conditions (C1) and (C2).

Two classical ratio-formCSFs in the literature (see e.g., Hillman & Riley (1989); Corchón & Dahm (2010))
are the power form where η(z) = κ(z) = zR, ∀z ≥ 0 and the logit form where η(z) = κ(z) = eRz, ∀z ≥ 0,
where R > 0 is a parameter chosen a priori. These functions yield the sharing 50-50 tie-breaking rule,
i.e., ζA(x, y) = ζB(x, y) = 1/2 if x = y. We define in Table 1 the generalized versions of these ratio-form
CSFs using the parameter α ∈ (0, 1) that leads to the general tie-breaking rule as in the Colonel Blotto
game CBn.

8 Henceforth, we use the terms power and logit form to indicate the CSFs µR and νR with
this generalization. It is trivial to verify that both pairs (µR

A, µ
R
B) and (νRA , νRB ) satisfy the Conditions (C1)

and (C2). An important remark is that both the power and logit form CSFs converge pointwise toward
the Blotto functions βA, βB as R tends to infinity (see Section 5.2 for more details). This convergence can
be observed in Figure 1 that illustrates several instances of the ratio-form CSFs in comparison with the
Blotto functions.

Table 1: Power and logit form CSFs with generalized tie-breaking rule (α ∈ (0, 1)).

Name Notation If x2 + y2 > 0 If x = y = 0

Power form µR :=(µR
A, µ

R
B) µR

A(x, y) =
αxR

αxR+(1−α)yR ; µR
B(x, y) =

(1−α)yR

αxR+(1−α)yR

µR
A(x, y) = α

µR
B(x, y) = 1− α

Logit form νR :=(νRA , νRB) νRA(x, y) =
αexR

αexR+(1−α)eyR ; νRB (x, y) = (1−α)eyR

αexR+(1−α)eyR
νRA(x, y) = α
νRB (x, y) = 1− α

Throughout the paper, to refer to a Colonel Blotto game CBn that has the same parameters n,XA, XB, w
A
i ,

wB
i , ∀i ∈ [n] as a Lottery Blotto game LBn, we call CBn the corresponding game of LBn and vice versa.

Note that, to derive our results for LBn, we will also use Assumption (A0) introduced above.

8When α = 1/2, the CSFs µR and νR match the classical power form and logit form CSFs. Note that we exclude the cases
where α = 0 or α = 1 since these are the trivial cases: in the corresponding Lottery Blotto game, a player, say p ∈ {A,B},
always has the payoff Wp while player −p’s payoff is always zero regardless how they allocate their resources.
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µ
R A
(x
,4
)

(a) Power form CSF, XA = 10, α = 0.6.

ν
R A
(x
,4
)

(b) Logit CSF, XA = 10, α = 0.6.

Figure 1: Examples of power form and logit form CSFs in comparison with the Blotto functions.

3. PRELIMINARIES

In this section, we briefly review some results from the literature that are useful for our analyses of the
Colonel Blotto games and the Lottery Blotto games; and we show new bounds on the involved parameters,
based on Assumption (A0), that are essential for the asymptotic analysis in the next sections.

The Nash equilibrium characterization of the non-constant-sum Colonel Blotto game still remains an
open question. However, under certain assumptions, the set of univariate marginal distributions of players
in an equilibrium of the game CBn is well-known. To see this, observe that we can break down the problem
of finding the best-response of a player against a fixed strategy of her opponent into solving n all-pay
auctions involving the Lagrange multipliers corresponding to the budget constraints (see e.g., Kovenock &
Roberson (2015); Roberson (2006); Schwartz et al. (2014)). The equilibrium of two-player all-pay auctions
is well-known and can be expressed as uniform-type distributions (see e.g., Hillman & Riley (1989); Baye
et al. (1996)). In other words, these uniform-type distributions are the set of Nash equilibrium univariate
marginals of the Colonel Blotto game. We have a Nash equilibrium if we can construct a joint distribution
with these univariate marginals such that its realizations always satisfy the budget constraints. However,
as mentioned in Section 1, the existence of such a construction is known only for some special cases and
remains unknown in the general setting of CBn. Note that if we consider a relaxation of the game that only
requires the budget constraints to be hold in expectation (this relaxation is called the General Lotto game
by Kovenock & Roberson (2015)), an equilibrium is to independently draw allocations from the uniform-
type distributions.

Although in this work we do not attempt to solve the open question of the equilibria characterization
of the non-constant-sum Colonel Blotto game, we still use several preliminary results from this approach to
construct an approximate equilibrium of the games. We present these results below, using a notation similar
to Kovenock & Roberson (2015).

For each instance of the game CBn (and of the game LBn), for any γ ∈ (0,∞), we define

ΩA(γ) :=
{

i ∈ [n] : vAi /v
B
i > γ

}

,

and consider the following equation with the variable γ (other coefficients are the parameters of CBn and LBn):

XBγ

XA
=

γ2
∑

i∈ΩA(γ)
(vB

i )2

vA
i

+
∑

i/∈ΩA(γ) v
A
i

∑

i∈ΩA(γ) v
B
i + 1

γ2

∑

i/∈ΩA(γ)
(vA

i )2

vB
i

. (3.1)

Let us denote by Sn the set containing all positive solutions of Equation (3.1) corresponding to the game
CBn (or LBn).

9 Based on Brouwer’s fixed-point theorem, the following lemma is proved by Kovenock &
Roberson (2015).

9Note that (3.1) and Sn also depend on other parameters of the game CBn but we use the notation with only the subscript
n and omit other parameters to lighten the notation.
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Lemma 3.1. For any game CBn (or LBn), Equation (3.1) has at least one positive solution; i.e., Sn 6= ∅.

Equation (3.1) may have more than one solution and it can be solved in O(n ln(n)) time.10 Now, corre-
sponding to each positive solution γ∗ ∈ Sn, we define two constants,11 namely λ∗

A and λ∗
B as follows:

λ∗
A :=

(γ∗)2

2XB

∑

i∈ΩA(γ∗)

(

vBi
)2

vAi
+

1

2XB

∑

i/∈ΩA(γ∗)

vAi , (3.2)

λ∗
B :=

1

2XA

∑

i∈ΩA(γ∗)

vBi +
1

2(γ∗)2XA

∑

i/∈ΩA(γ∗)

(

vAi
)2

vBi
. (3.3)

Note importantly that we have γ∗ = λ∗
A/λ

∗
B (see Lemma A1 in Appendix A for a proof). We now use these

constants λ∗
A and λ∗

B to define several important distributions.

Definition 3.2. Given a game CBn (or LBn), for any γ∗ ∈ Sn and the corresponding constants λ∗
A, λ

∗
B , we

define the following random variables and distributions,12 for each i ∈ [n]:

(a) If i ∈ ΩA(γ
∗) (i.e.,

vA
i

λ∗

A
>

vB
i

λ∗

B
), we define AS

γ∗,i and BW
γ∗,i as the random variables whose distributions are

FAS
γ∗,i

(x) :=
xλ∗

B

vBi
, ∀x ∈

[

0,
vBi
λ∗
B

]

, (3.4)

FBW
γ∗,i

(x) :=

vA
i

λ∗

A
− vB

i

λ∗

B

vA
i

λ∗

A

+
xλ∗

A

vAi
, ∀x ∈

[

0,
vBi
λ∗
B

]

. (3.5)

(b) If i /∈ ΩA(γ
∗) (i.e.,

vA
i

λ∗

A
≤ vB

i

λ∗

B
), we define AW

γ∗,i and BS
γ∗,i as the random variables whose distributions are

FAW
γ∗,i

(x) :=

vB
i

λ∗

B

− vA
i

λ∗

A

vB
i

λ∗

B

+
xλ∗

B

vBi
, ∀x ∈

[

0,
vAi
λ∗
A

]

, (3.6)

FBS
γ∗,i

(x) :=
xλ∗

A

vAi
, ∀x ∈

[

0,
vAi
λ∗
A

]

. (3.7)

To lighten the notation, hereinafter, we often commonly denote these random variables as follows (the
corresponding distributions are denoted by FA∗

i
and FB∗

i
):

A∗
i :=

{

AS
γ∗,i if i ∈ ΩA(γ

∗)
AW

γ∗,i if i /∈ ΩA(γ
∗)

and B∗
i :=

{

BS
γ∗,i if i /∈ ΩA(γ

∗)
BW

γ∗,i if i ∈ ΩA(γ
∗)

. (3.8)

We term these distributions the uniform-type distributions : FAS
γ∗,i

(x) is the continuous uniform distri-

bution on
[

0, vBi /λ∗
B

]

and FBW
γ∗,i

(x) is the distribution placing a positive mass
(

vA
i

λ∗

A

− vB
i

λ∗

B

)/

vA
i

λ∗

A

at 0 and

10To solve this equation, we first sort out all ratios vAi /vBi in a non-decreasing order (which can be done in O(n ln(n))), then

there are three possible cases: γ∗ < min{vAi /vBi , i ∈ [n]} or γ∗ ≥ max{vAi /vBi , i ∈ [n]} or ∃j : γ∗ ∈
[

vAj /vBj , vAj+1/v
B
j+1

)

. In

all of these cases, Equation (3.1) becomes a cubic equation; therefore, it can be solved algebraically.
11These constants are the Lagrange multipliers corresponding to the budget constraints in finding players’ best-response; see

Kovenock & Roberson (2015) for more details.
12Here, the superscripts S and W , standing for strong and weak, are used to emphasize the intuition on players’ incentive

to play according to these distributions in the CB games: if i ∈ ΩA(γ∗) :=
{

i : vAi /λ∗
A > vBi /λ∗

B

}

, player A has a “stronger”
incentive to win battlefield i and player B has a “weaker” incentive; if i /∈ ΩA(γ∗), the roles of players are exchanged.
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uniformly distributing the remaining mass on
(

0, vBi /λ∗
B

]

; similarly, FBS
γ∗,i

is the uniform distribution on

[0, vAi /λ
∗
A] and FBW

γ∗,i
is uniform on (0, vAi /λ

∗
A] with a positive mass at 0.

If player A can construct and plays a mixed strategy such that her sampled allocation to any battlefield
i ∈ [n] follows the distribution FA∗

i
, it is optimal for player B to play such that her allocation to i follows

FB∗

i
(if it is possible) and vice versa. We will revisit this result (with more details) in Section 4 and in

Lemma B3 in Appendix B. Therefore, under the condition that player A and player B can respectively
construct joint distributions of FA∗

i
, ∀i ∈ [n] and FB∗

i
, ∀i ∈ [n] such that their sampled allocations satisfy the

budget constraint, these mixed strategies yield an equilibrium of the game CBn. However, in general, that
condition does not always hold. For instance, although A∗

i and B∗
i have finite upper-bounds,13 we note that

among these random variables, some may (with strictly positive probability) exceed the budgets XA, XB

for certain parameters’ configuration of the game; therefore, allocating according to FA∗

i
, FB∗

i
may violate

the budget constraints and it is then trivial that there exists no equilibrium yielding FA∗

i
, FB∗

i
, ∀i ∈ [n] as

marginals. On the other hand, given fixed XA, XB, if n is large enough, we can guarantee that A∗
i , B

∗
i do not

exceed the budgets for each i; however, even in this case, we still do not have guarantees on the summation
of allocations sampled from all A∗

i , B
∗
i , i ∈ [n], i.e., it is still unknown if there exists an equilibrium yielding

FA∗

i
, FB∗

i
, i ∈ [n] as marginals. Note importantly that the budget-constraints violation of A∗

i , B
∗
i does not

affect our work and our results hold for any parameters’ configuration of the games.
Finally, under Assumption (A0), we obtain a novel result, presented below as Proposition 3.3, stating

that the parameters γ∗, λ∗
A and λ∗

B are all bounded. The main results of this work are based on asymptotic
analyses in terms of the number of battlefields of the games; therefore, it is noteworthy that the bounds of
these parameters do not depend on n. The proof of this proposition is given in Appendix A. From the proof
of Proposition 3.3, we observe that as the ratios w̄/

¯
w and (or) XB/XA increase, the ranges in which γ∗ and

λ∗
A, λ

∗
B belong to also become larger (i.e., the ratios γ̄/

¯
γ and λ̄/

¯
λ also increase).

Proposition 3.3. Under Assumption (A0), for any game CBn (or LBn), there exist constants
¯
γ, γ̄,

¯
λ, λ̄>0,

that do not depend on n, such that for any γ∗ ∈ Sn and its corresponding λ∗
A, λ

∗
B, we have

¯
γ≤γ∗≤ γ̄ and

¯
λ≤λ∗

A, λ
∗
B≤ λ̄.

4. APPROXIMATE EQUILIBRIA OF THE COLONEL BLOTTO GAME

In this section, we propose a class of strategies in the Colonel Blotto game CBn, called the independently
uniform strategies, and we show that it is an approximate Nash equilibrium (and an approximate min-max
strategy in the constant-sum case). Note that the independently uniform strategies are also approximate
equilibria of the Lottery Blotto game LBn, we analyze that in Section 5.

We begin by recalling the concept of approximate Nash equilibria (see e.g., Myerson (1991); Nisan et al.
(2007)) in the context of our games: for any ε ≥ 0, an ε-equilibrium of the game CBn is any strategy profile
(s∗, t∗) such that ΠA(s, t∗)≤ΠA(s∗, t∗)+ε and ΠB(s∗, t)≤ΠB(s∗, t∗)+ε for any strategy s and t of players
A and B. Replacing ΠA and ΠB by ΠA

ζ and ΠB
ζ , we have the definition of ε-equilibria of the Lottery Blotto

games LBn(ζ). Hereinafter, we use the generic term approximate equilibrium whenever the approximation
error ε need not be emphasized.

4.1. The Independently Uniform strategies

Given a game CBn (or LBn), consider the corresponding Equation (3.1) and set Sn. For any γ∗ ∈ Sn,
we define in Definition 4.1 a mixed strategy via an algorithm, called Algorithm 1. We term this strategy
as the independently uniform strategy (or IUγ∗

strategy), parameterized by γ∗. Intuitively, this strategy is
constructed by a simple procedure: players start by independently drawing n numbers from the uniform-type
distributions defined in Definition 3.2, then they re-scale these numbers to guarantee the budget constraints.

13Trivially from Proposition 3.3, the random variables A∗
i , B

∗
i ,∀n, ∀i ∈ [n] are upper-bounded by w̄/(

¯
wn

¯
λ). In the remainders

of the paper, we sometimes need an upper-bound of these random variables that does not depend on n: we can prove that they
are bounded by 2XB (see Lemma A1 in Appendix A).
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Definition 4.1 (The independently uniform strategy). For any γ∗ ∈ Sn and any player p ∈ {A,B},

IUγ∗

p is the mixed strategy of player p where her allocation x
p is randomly generated from Algorithm 1.

Algorithm 1: IUγ∗

strategy-generation algorithm.

Input: n ∈ N, wA
i , w

B
i ∈ [

¯
w, w̄], ∀i ∈ [n], budgets XA, XB, γ

∗ ∈ Sn

Output: x
A,xB ∈ R

n
≥0

1 Draw ai ∼ FA∗

i
, bi ∼ FB∗

i
, ∀i ∈ [n] independently

2 if
∑

j∈[n] aj = 0 then

3 xA
i := 0, ∀i ∈ [n]

4 else
5 xA

i := ai
∑

j∈[n] aj
XA, ∀i ∈ [n]

6 if
∑

j∈[n] bj = 0 then

7 xB
i := 0, ∀i ∈ [n]

8 else

9 xB
i := bi

∑

j∈[n] bj
XB, ∀i ∈ [n]

Henceforth, we use the term IUγ∗

strategy to denote the strategy profile (IUγ∗

A , IUγ∗

B ). We also simply

use the notation IUγ∗

in some places to commonly address either IUγ∗

A or IUγ∗

B strategy in case the name of
the player need not be specified. Observe that for any player p ∈ {A,B}, any output xp from Algorithm 1

is an n-tuple that satisfies her budget constraint. In other words, IUγ∗

p is a mixed strategy that is implicitly

defined by Algorithm 1 and each run of this algorithm outputs a feasible pure strategy sampled from IUγ∗

p .

Note that the marginals of the IUγ∗

strategy are not the uniform-type distributions FA∗

i
, FB∗

i
, i ∈ [n] defined

in Section 3. In terms of computational complexity, Algorithm 1 terminates in O(n) time. Below we discuss
the specificity of the outputs of Algorithm 1 in the cases where

∑

j∈[n] aj = 0 or
∑

j∈[n] bj = 0.

Remark 4.2. If
∑

j∈[n] aj = 0 or
∑

j∈[n] bj = 0, the IUγ∗

p strategy allocates zero resource to all battle-

fields for the corresponding player (line 3 and line 7 of Algorithm 1). It may seem more natural that, if
∑

j∈[n] aj = 0, player A allocates equally on all battlefields, i.e., set xA
i := XA/n, ∀i ∈ [n] in line 3 of Algo-

rithm 1 (and similarly for player B). In reality though, these assignments can be chosen to be any arbitrary
n-tuple x

p in R
n
≥0 as long as

∑

i∈[n] x
p
i ≤ Xp without affecting the results in our work. This comes from

the fact that in most cases, the conditions in line 2 and 6 hold with probability zero. They can happen with
a positive probability only when one player is the “weak player” and the other is the “strong player” on
all of the battlefields (i.e., either ΩA(γ

∗) = ∅ or ΩA(γ
∗) = [n]), e.g., in a constant-sum game CBc

n. Yet,
even in this case, this probability decreases exponentially as the number of battlefields increases (see (B.18)
in Appendix B). The asymptotic order of the approximation error in all of our results is larger than this
probability; therefore, it does not matter which assignment we choose in lines 3 and 7 of Algorithm 1. Here,
we choose to assign xA

i = 0, ∀i and xB
i = 0, ∀i to ease the notation in the proofs of the results in the following

sections; in particular, it avoids creating a discontinuity outside 0 in the CDF of the effective allocation in
each battlefield (see also Lemma B1 in Appendix B).

4.2. Approximate equilibria of the non-constant-sum Colonel Blotto game CBn

We now present our main result stating that the IUγ∗

strategy is an approximate equilibrium with
an error that is only a negligible fraction of the maximum payoffs that the players can achieve, quickly
decreasing as n increases. In the following results, note that since we focus on the setting of games with
a large number of battlefields, we now focus on characterizing the approximation error according to n and
treat other parameters of the CBn games, including XA, XB,

¯
w, w̄ and α, as constants (but not the values
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wp
i , v

p
i , ∀i ∈ [n], p ∈ {A,B}). Using the notation Õ—a variant of the big-O notation that ignores the

logarithmic factors—, we have the first result as follows.

Theorem 4.3.

(i) In any game CBn, there exists a positive number ε = Õ(n−1/2) such that for any γ∗ ∈ Sn, the following
inequalities hold for any pure strategy x

A and x
B of players A and B:

ΠA(xA, IUγ∗

B ) ≤ ΠA(IUγ∗

A , IUγ∗

B ) + εWA, (4.1)

ΠB(IUγ∗

A ,xB) ≤ ΠB(IUγ∗

A , IUγ∗

B ) + εWB. (4.2)

(ii) For any ε∈ (0, 1], there exists C∗ > 0 (that does not depend on ε) such that in any game CBn with

n≥ C∗ε−2 ln
(

1
min{ε,1/e}

)

, (4.1) and (4.2) hold for any γ∗ ∈ Sn, any pure strategy x
A, xB of players

A and B.

A proof of this theorem is presented in Appendix B. The two results stated in Theorem 4.3 are two
equivalent statements that can be interpreted from different perspectives as follows. Result (i) states that

given a priori a game CBn, there exists no unilateral deviation from the IUγ∗

strategy that can profit any
player p ∈ {A,B} more than a small portion of her maximum payoff Wp. As a trivial corollary, the IUγ∗

strategy is an approximate equilibrium of the game CBn with a bounded approximation error (depending
on n); this is formally stated as follows:

Corollary 4.4. In any game CBn, there exists a positive number ε = Õ
(

n−1/2
)

such that for any γ∗ ∈ Sn,

the IUγ∗

strategy is an εW -equilibrium where W := max{WA,WB}.

The bound Õ(n−1/2) tells us the order of and how fast the level of error ε decreases if we consider games
with larger and larger numbers of battlefields. Moreover, note that this upper-bound on ε also depends
on other parameters of the game CBn, including XA, XB,

¯
w, w̄ and α.14 We can extract from the proof of

Theorem 4.3 that as w̄/
¯
w and/orXB/XA increases, ε also increases, i.e., for games with higher heterogeneity

of the battlefields values and/or higher asymmetry in players’ budgets, the IUγ∗

strategy yields higher errors.
Additionally, we note that to keep the generality, Result (i) is presented such that the approximation error ε is

commonly addressed for any IUγ∗

strategy with any γ∗ ∈ Sn. For each specific solution γ∗ of Equation (3.1)

(implying λ∗
A and λ∗

B), the corresponding IUγ∗

strategy is an approximate equilibrium of CBn with an
approximation error that is at most (and it might be strictly smaller than) ε.

On the other hand, Result (ii) of Theorem 4.3 indicates the number of battlefields that a Colonel Blotto

game needs to contain in order to guarantee a desired level of the approximation error by using the IUγ∗

strategy as an approximate equilibrium. Hence, in practical situations involving large instances of the
Colonel Blotto game, the IUγ∗

strategy (simply and efficiently constructed by Algorithm 1) can be used as
a safe replacement for any Nash equilibrium whose construction may be unknown or too complicated. Now,
let us introduce an important notation:

Definition 4.5. Corresponding to the players’ allocations toward each battlefield i ∈ [n], let FAn
i
and FBn

i

denote the univariate marginal distributions of the IUγ∗

A and IUγ∗

B strategies (see (B.1) and (B.2) in Appendix
B for a more explicit formulation of FAn

i
and FBn

i
).

Intuitively, Result (ii) can be proved by showing the two following results: (a) when player B’s allocation
to the battlefield i ∈ [n] follows FB∗

i
, the best response of player A is to play such that her allocation to i

follows the distribution FA∗

i
(and vice versa); (b) as n—the number of battlefields—increases, FAn

i
and FBn

i

uniformly converge toward the distributions FA∗

i
and FB∗

i
, i.e., the marginal distributions of the IUγ∗

strategy
approximate the distributions FA∗

i
and FB∗

i
. This convergence can be proved by applying concentration

14This dependency is implicitly presented in the asymptotic notation Õ in Result (i) and the constant C∗ in Result (ii).
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inequalities on the random variables
∑

j∈[n] A
∗
j and

∑

j∈[n] B
∗
j (see Lemma B4 in Appendix B); moreover,

the relation between ε and n in the results of Theorem 4.3 depends directly on the rate of this convergence.
In this work, we use the Hoeffding’s inequality (Hoeffding (1963)) that yields a better convergence rate
than working with other types of concentration inequalities (e.g., Chebyshev’s inequality). To complete the

proof of Result (ii), we finally show that as n increases, when player −p ∈ {A,B} plays the IUγ∗

−p strategy,

the IUγ∗

p ’s payoff of player p converges toward her best-response payoff. Note that these payoffs can be
written as expectations with respect to different measures (see (B.3), (B.4) and Lemma B2 in Appendix
B). To prove the convergence of payoffs, we use a variant of the portmanteau theorem (see Lemma B5 in
Appendix B) regarding the equivalent definitions of the weak convergence of a sequence of measures. Note
importantly that a direct application of the portmanteau theorem leads to a slow convergence rate (notably,
(4.1) and (4.2) only hold when n = Ω(ε−4)). This is due to the fact that the players’ payoffs involve the
bounded Lipschitz functions FA∗

i
and FB∗

i
and that these functions depend on n, particularly, their Lipschitz

constants (that are either λ∗
A/v

A
i or λ∗

B/v
B
i ) increase as n increases. In order to obtain the convergence rate

as indicated in Theorem 4.3, we exploit the special relation between FAn
i
and FA∗

i
, and between FBn

i
and

FB∗

i
; then we apply a telescoping-sum trick allowing us to avoid the need of using the Lipschitz properties

(for more details, see the proof of Lemma B5 in Appendix B.5).

4.3. Approximate equilibria of the constant-sum Colonel Blotto game CBc
n

In this section, we discuss the constant-sum variant CBc
n of the Colonel Blotto game, defined in Defini-

tion 2.2. As an instance of the non-constant-sum game CBn, the game CBc
n satisfies all results presented in

Sections 4.1 and 4.2. Additionally, we show that any IUγ∗

strategy is an approximate max-min strategy of
the game CBc

n.
In any game CBc

n, Equation (3.1) has a unique solution γ∗=XB/XA≥1; this γ∗ uniquely induces
λ∗
A=1/(2XB) and λ∗

B = XA/(2XB
2). Moreover, in CBc

n, v
A
i /v

B
i = 1 ≤ XB/XA = γ∗

A/γ
∗
B, ∀i ∈ [n]; therefore,

we have ΩA(γ
∗) = ∅; intuitively, player A is the “weak player” (and B the “strong player”) in all battle-

fields. Recall the notation W := max{WA,WB}, in the constant-sum game CBn
n, we have W = WA = WB .

Applying Theorem 4.3, we obtain the following result.

Corollary 4.6. In any game CBc
n, there exists a positive number ε ≤ Õ(n−1/2) such that the IUγ∗

strategy
is an εW -equilibrium with γ∗ ∈ Sn = {XB/XA}.

Note that if a Nash equilibrium exists in CBc
n, then the set of equilibrium univariate marginal distributions

is unique (see e.g., Corollary 1 of Kovenock & Roberson (2015)) and they correspond to the distributions
FAW

γ∗,i
and FBS

γ∗,i
, defined in (3.6) and (3.7), where λ∗

A and λ∗
B are respectively replaced by 1/(2XB)

and XA/(2XB
2). The marginals of the IUγ∗

strategy with γ∗ = XB/XA converge toward these unique
equilibrium marginals.

Finally, we also deduce that the IUγ∗

strategy is an approximate max-min strategy of the game CBc
n;

formally stated as follows.

Corollary 4.7. In any game CBc
n, there exists a positive number ε ≤ Õ(n−1/2) such that the following

inequalities hold for γ∗ ∈ Sn = {XB/XA} and any strategy s̃ and t̃ of players A and B:

min
t

ΠA(s̃, t) ≤ min
t

ΠA(IUγ∗

A , t) + εW, (4.3)

min
s

ΠB(s, t̃) ≤ min
s

ΠB(s, IUγ∗

B ) + εW. (4.4)

Intuitively, if player p ∈ {A,B} plays the IUγ∗

p strategy, she guarantees a near-optimal payoff even in the
worst-case scenario when her opponent −p plays strategies that minimize p’s payoff (no matters how it
affects −p’s payoff). The proofs of Corollary 4.6 and Corollary 4.7 can be trivially deduced by applying
specifically Theorem 4.3 to the constant-sum Colonel Blotto games and thus are omitted in this work.
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5. APPROXIMATE EQUILIBRIA OF THE LOTTERY BLOTTO GAME

In this section, we present the results regarding the IUγ∗

strategy in the Lottery Blotto games. In
Section 5.1, we analyze the game LBn(ζ) with an arbitrary pair of CSFs ζ = (ζA, ζB) and show that the

IUγ∗

strategy is an approximate equilibrium of LBn(ζ) with an error depending on the number of battlefields
as well as the dissimilarity between ζA and βA (and between ζB and βB). In Section 5.2, we illustrate this
result in two particular instances, the games LBn(µ

R) and LBn(ν
R), belonging to the class of ratio-form

Lottery Blotto games. We characterize the approximation error of the IUγ∗

strategy in these games according
to n and the parameter R of these CSFs.

5.1. Approximate equilibria of Lottery Blotto games LBn(ζ) with general CSFs

We start by defining a parameter that expresses the dissimilarity between a given pair of CSFs ζ = (ζA, ζB)
and the Blotto functions βA, βB (defined in (2.1)). First recall that for any n and i ∈ [n], the random variables
A∗

i , B
∗
i are upper-bounded by 2XB (see Lemma A1 in Appendix A) and by definition, the variables An

i , B
n
i

are trivially upper-bounded by XA, XB (and thus by 2XB). Then, given any ε > 0, for any x∗ ∈ [0, 2XB]
and y∗ ∈ [0, 2XB] (i.e., any number that can be sampled from FA∗

i
, FB∗

i
, FAn

i
or FBn

i
), we introduce the

following sets:

Xζ(y
∗, ε) := {x ∈ [0, 2XB] : |ζA(x, y

∗)− βA(x, y
∗)| ≥ ε} , (5.1)

Yζ(x
∗, ε) := {y ∈ [0, 2XB] : |ζB(x

∗, y)− βB(x
∗, y)| ≥ ε} . (5.2)

Definition 5.1. For any pair of CSFs ζ = (ζA, ζB), ε > 0 and γ∗ ∈ Sn, we define the following set15

∆γ∗(ζ, ε) :=

{

δ ∈ [0, 1] : max
i∈[n]

max
y∗∈[0,2XB ]

∫

Xζ(y∗,ε)

dFA∗

i
(x) ≤ δ, and max

i∈[n]
max

x∗∈[0,2XB ]

∫

Yζ(x∗,ε)

dFB∗

i
(y) ≤ δ

}

.

Intuitively, the set ∆γ∗(ζ, ε) contains all numbers δ ∈ [0, 1] such that for any allocation y∗ of player B toward
an arbitrary battlefield i, if player A draws an allocation x from the distribution FA∗

i
, it only happens with

probability at most δ that the value of the CSF ζA at (x, y∗) is significantly different (i.e., ε-away) from that
of the Blotto function βA; and we have a similar statement for the distribution FB∗

i
of player B and any

allocation x∗ of player A. Note that the set ∆γ∗(ζ, ε) depends on FA∗

i
and FB∗

i
, thus it depends on γ∗. We

can trivially see that ∆γ∗(ζ, ε) is an interval with the form [δ0, 1] since if δ0 ∈ ∆γ∗(ζ, ε) then δ ∈ ∆γ∗(ζ, ε)
for any δ ≥ δ0.

Based on the convergence of FAn
i
and FBn

i
toward FA∗

i
and FB∗

i
(see Lemma B4 in Appendix B), we can

prove the following lemma (a formal proof is given in Appendix C.1):

Lemma 5.2. For any ε ∈ (0, 1], there exists a constant L0 > 0 (that does not depend on ε), such that for

any n ≥ L0ε
−2 ln

(

1
min{ε,1/e}

)

, for any game LBn(ζ), γ
∗ ∈ Sn, δ ∈ ∆γ∗(ζ, ε) and i ∈ [n], we have:

max

{

sup
y∗∈[0,2XB ]

∫

Xζ(y∗,ε)

dFAn
i
(x), sup

x∗∈[0,2XB ]

∫

Yζ(x∗,ε)

dFBn
i
(y)

}

≤ δ + ε. (5.3)

Intuitively, this lemma provides an upper-bound for the probability of the value of the CSFs ζ being ε-away
from the Blotto functions when player A (resp. player B) plays such that her allocation to battlefields i

follows FAn
i
(resp. FBn

i
), i.e., when she plays the IUγ∗

strategy.
Based on the definition of ∆γ∗(ζ, ε) and Lemma 5.2, we can now show the following result regarding the

IUγ∗

strategy in Lottery Blotto games.

Theorem 5.3. (Approximate equilibria of the Lottery Blotto game).

15Note that FA∗

i
, FB∗

i
are continuous, bounded functions on [0, 2XB ]; therefore, they attain a maximum on this interval.
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(i) In any game LBn(ζ), there exists a positive number ε ≤ Õ(n−1/2) such that for any γ∗ ∈ Sn and
δ ∈ ∆γ∗(ζ, ε), the following inequalities hold for any pure strategy x

A and x
B of players A and B:

ΠA
ζ (x

A, IUγ∗

B ) ≤ ΠA
ζ (IU

γ∗

A , IUγ∗

B ) + (8δ + 13ε)WA, (5.4)

ΠB
ζ (IU

γ∗

A ,xB) ≤ ΠB
ζ (IU

γ∗

A , IUγ∗

B ) + (8δ + 13ε)WB. (5.5)

(ii) For any ε ∈ (0, 1], there exists a constant L∗ > 0 (that does not depend on ε) such that in any game

LBn(ζ) where n ≥ L∗ε−2 ln
(

1
min{ε,1/e}

)

, (5.4) and (5.5) hold for any γ∗ ∈ Sn, δ ∈ ∆γ∗(ζ, ε) and any

pure strategy x
A,xB of players A and B.

The proof of this theorem is given in Appendix C.2. The main idea to prove these results is that we
can approximate the players’ payoffs in the game LBn(ζ) when they play the IUγ∗

strategies by that in the
corresponding game CBn (the difference between these payoffs is controlled by the parameter δ ∈ ∆γ∗(ζ, ε));
and then use the results from Section 4 for the game CBn (involving the error ε) to prove (5.4) and (5.5).
The coefficients (8 and 13) in front of the parameters δ and ε come from the application of several triangle
inequalities to connect these approximate results. Note that if the CSFs ζA and ζB are Lipschitz continuous
on [0, 2XB]× [0, 2XB], we can avoid the need to approximate several terms involved in the analysis of using

the IUγ∗

strategy in the game LBn(ζ) via the corresponding terms in the game CBn; thus, we can improve
the results in Theorem 5.3 to obtain an approximation error of 2δ + 5ε instead of 8δ + 13ε (see Remark C3
in Appendix C.5 for more details). Here, to keep the generality, we do not include the continuity assumption
of the CSFs in Theorem 5.3 (recall that our definition of a CSF allows for discontinuity).

Intuitively, Result (i) of Theorem 5.3 determines the order of the approximattion error while using IUγ∗

in any given game LBn(ζ). Straightforwardly, we can deduce that the IUγ∗

strategy is an approximate
equilibrium of the game LBn(ζ), formally stated as follows.

Corollary 5.4. In any game LBn(ζ), there exists a positive number ε ≤ Õ(n−1/2) such that for any γ∗ ∈ Sn

and δ ∈ ∆γ∗(ζ, ε), the IUγ∗

strategy is an (8δ + 13ε)W -equilibrium where W := max{WA,WB}.

We observe that the error bound in Theorem 5.3 (and in Corollary 5.4) is valid for any δ of the set ∆γ∗(ζ, ε).
Naturally, it is the tightest for δ0 = min{δ : δ ∈ ∆γ∗(ζ, ε)}; but this quantity is not always easy to compute;
for instances, in the Lottery Blotto games with the power and logit form CSFs (i.e., µR and νR). Still,
in Section 5.2, we show that there exists an element of ∆γ∗(µR, ε) and ∆γ∗(νR, ε) that is negligibly small,
given appropriate parameter’s configurations of the games; in other words, we can still obtain a good error’s
upper-bound for the IUγ∗

strategy in these games. Note that, on the other hand, the Colonel Blotto game
CBn can be considered as an instance of the game LBn(ζ) where the CSFs are ζA = βA and ζB = βB;
therefore, it also satisfies Theorem 5.3. In CBn, we trivially have Xζ(y

∗, ε) = Yζ(x
∗, ε) = ∅ for any x∗, y∗;

thus ∆γ∗(ζ, ε) = [0, 1] for any ε > 0 and min{δ : δ ∈ ∆γ∗(ζ, ε)} = 0.16 This is consistent with results
obtained in Theorem 4.3 in Section 4.

In Theorem 5.3, Result (ii) is an equivalent statement of Result (i). It indicates the number of battlefields

needed to guarantee a certain level of approximation error when using the IUγ∗

strategy in the game LBn(ζ).
For instance, to obtain an approximate equilibrium of the game LBn(ζ) where the level of error is less than
a certain number ε̄, one needs ε ≤ ε̄ such that we can find a δ ∈ ∆γ∗(ζ, ε) satisfying 8δ+13ε ≤ ε̄; from these
parameters, by Result (ii), one can deduce the sufficient number of battlefields needed for an LBn game to
yield that desired level of error.

Finally, in the constant-sum variant of the Lottery Blotto game denoted by LBc
n(ζ) (i.e., when wA

i = wB
i ,

∀i ∈ [n]), we can easily deduce from Theorem 5.3 that the IUγ∗

strategy is also an approximate max-
min strategy:

16Note also that for the case of the game CBn, the left-hand side in (5.3) equals zero for any n and i ∈ [n].
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Corollary 5.5. In any game LBc
n(ζ), there exists ε ≤ Õ(n−1/2) such that for any γ∗ ∈ Sn = {XB/XA} and

δ ∈ ∆γ∗(ζ, ε), the following inequalities hold for any strategy s̃ and t̃ of players A and B:17

min
t

ΠA
ζ (s̃, t) ≤ min

t
ΠA

ζ (IU
γ∗

A , t) + (8δ + 13ε)W,

min
s

ΠB
ζ (s, t̃) ≤ min

s
ΠB

ζ (s, IU
γ∗

B ) + (8δ + 13ε)W.

5.2. Approximate equilibria of the ratio-form Lottery Blotto games LBn(µ
R) and LBn(ν

R)

We now consider the ratio-form Lottery Blotto games LBn(µ
R) and LBn(ν

R). Recall that the corre-
sponding CSFs are defined in Table 1 and that for those CSFs, we do not consider the degenerate cases
where α = 0 or α = 1 in which trivial equilibria exist. The games LBn(µ

R) and LBn(ν
R) are instances of

the game LBn(ζ) studied in Section 5.1; therefore, by Theorem 5.3 (and Corollary 5.4), the IUγ∗

strategy is
also an approximate equilibrium of them. In this section, we focus on characterizing the approximation error
of the IUγ∗

strategy in these games according to n (the number of battlefields) and R (the corresponding
parameter of the CSFs). We will show that this error quickly tends to zero as n and R increase under
appropriate conditions. To do this, we first notice that although it is non-trivial to analyze the closed form
of the sets ∆γ∗(µR, ε) and ∆γ∗(νR, ε) and find their minimum, we can find small elements of theses sets.

Lemma 5.6. Fix n ≥ 2, R > 0 and α ∈ (0, 1), for any ε < min{α, 1− α}, we have:18

(i) In any game LBn(µ
R) with α as the tie-breaking parameter, there exists δµ=min{1,O

(

n(ε−1/R−1)
)

}
such that δµ ∈ ∆γ∗(µR, ε) for any γ∗ ∈ Sn.

(ii) In any game LBn(ν
R) with α as the tie-breaking parameter, there exists δν =min{1,O

(

nR−1 ln(ε−1)
)

}
such that δν ∈ ∆γ∗(νR, ε) for any γ∗ ∈ Sn.

The proof of Lemma 5.6 is given in Appendix D.1. Note that for the sake of generality, the parameters
δµ and δν are indicated in this lemma in such a way that they do not depend on γ∗, but for each γ∗ ∈ Sn,
we can find smaller elements of the corresponding sets ∆γ∗(µR, ε) and ∆γ∗(νR, ε). More importantly, for
a fixed n, the numbers δµ and δν decrease as R increases; but δµ and δν increase as ε decreases. While
the lemma is valid for any parameter values, since 1 is a trivial element of ∆γ∗(µR, ε) and ∆γ∗(νR, ε), it
is useful only if δµ, δν < 1; this is guaranteed whenever R ≥ O

(

n ln(ε−1)
)

. Note finally that the condition
ε < min{α, 1−α} in the statement of Lemma 5.6 does not limit its use since our goal is to obtain asymptotic

results on the IUγ∗

strategy when ε tends to 0. Moreover, in the games LBn(µ
R) and LBn(ν

R) where α
is either very close to 0 or 1, one player has a very high advantage and always obtains large gains from all
battlefields (where her allocation is strictly positive) while her opponent gains very little regardless of her
allocations; therefore, there exists (many) trivial approximate equilibria with small errors.

Combining the results of Corollary 5.4 and Lemma 5.6, we can deduce directly that in any game LBn(µ
R)

(resp. LBn(ν
R)), there exists ε ≤ Õ(n−1/2) such that for any γ∗ ∈ Sn, the IU

γ∗

strategy is an (8ε+13δµ)W -
equilibrium (resp. (8ε+13δν)W -equilibrium). Next, we look for the asymptotic relation between these error
terms and the parameters n,R of the games. First, as n increases, the error level ε decreases; on the other
hand, from Lemma 5.6, the number δµ (and δν) decreases if R increases with a faster rate than Õ(n).
However, there is a trade-off between ε and δµ (or δν): as ε decreases, δµ (and δν) increases and vice versa.
To handle this trade-off between δµ and ε (resp. δν and ε), we can first find a condition on n that generates
a small error ε, and then find a condition on R (with respect to n) such that the error δµ (resp. δν) is of

the same order as ε. Formally, we state the result that the IUγ∗

strategy yields an approximate equilibrium
of the games LBn(µ

R) and LBn(ν
R) with any arbitrary small error in the next theorem.

17Recall that in the constant-sum variant, W := max{WA,WB} = WA = WB.
18The asymptotic notations are taken w.r.t. when ε → 0.
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Theorem 5.7. (Approximate equilibria of the ratio-form Lottery Blotto games) For any ε̄ > 0

and α ∈ (0, 1) such that ε̄ < min{α, 1 − α}, there exists L̃ > 0 such that for any n ≥ L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

,

R ≥ O
(

n
ε̄ ln

(

1
ε̄

))

and γ∗ ∈ Sn, the IUγ∗

strategy is an ε̄W -equilibrium of any game LBn(µ
R) and LBn(ν

R)
having α as the tie-breaking-rule parameter.

The proof of this theorem is based on Theorem 5.3 and Lemma 5.6 (see Appendix D.2 for more details).
Theorem 5.7 involves a double limit in R and n. Intuitively, if n and R increase but R increases with a
slower rate, then ε decreases but the corresponding δµ and δν do not decrease; thus, the total error is not
guaranteed to decrease.

6. CONCLUSION

In this work, we consider the most general variant of the Colonel Blotto game—the non-constant-sum
variant with heterogeneous battlefields and asymmetric players. While most of (if not all) works in the
literature attempt (but do not completely succeed) to construct an exact equilibrium of the CB game by
looking for a joint distribution with the uniform-type marginals that satisfies the budget constraints, we
take a different angle. We propose a class of strategies called the IUγ∗

strategies that is simply constructed
by an efficient algorithm; the IUγ∗

strategies guarantee the budget constraints but their marginals are not
the uniform-type distributions. Yet, we prove the IUγ∗

strategy to be an approximate equilibrium of the
CB games. We also define an extended game called the Lottery Blotto game and obtain similar results. We
characterize the approximate error in our results in terms of the number of battlefields of the games. Our
work extends the scope of applications of the CB games and its variants.

Throughout the paper, we emphasized the dependence of the approximation error on the number of
battlefields n. Yet, although the dependence on other parameters of the games is not explicitly emphasized,
it can be extracted from our analysis and the proofs of the stated results. It is also interesting to note that
although the notion of approximate equilibrium is defined in terms of payoffs (the payoffs when players play

the IUγ∗

strategy are close to optimal), the IUγ∗

strategy also approximates the equilibrium marginals (if
an equilibrium exists)—that is, it is also an approximate equilibrium in terms of strategies.

Our approximation results are valid even in the case where no equilibrium exists (and we do not include
the assumption that requires the existence of the equilibrium). Particularly in the cases of the CB game

where it is known that there exists no equilibrium yielding the uniform-type marginals, the IUγ∗

strategy is
still an approximate equilibrium, yet we suspect that in those cases the approximation error might be large.
On the other hand, our work does not solve the question of the existence of an exact Nash equilibrium. In
particular, we leave as future work the investigation of possible conditions under which a Nash equilibrium
exists, for instance for a large-enough number of battlefields. We also finally note that, in the non-constant-
sum version, the existence of multiple solutions γ∗ of Equation (3.1) leads to problems of equilibrium

selection (in practical contexts involving a social welfare measurement) among the IUγ∗

strategies with
different γ∗ ∈ Sn, which we also leave as future work.
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Appendix A. NOMENCLATURES AND PRELIMINARIES

Table A.2: Table of Notation

Abbreviation

CB (CBn) , non-constant-sum Colonel Blotto game (with n battlefields)

LB (LBn) , non-constant-sum Lottery Blotto game (with n battlefields)

CBc
n,LB

c
n , the constant-sum versions of CBn and LBn games

CSF , contest success function.

IUγ∗

(= (IUγ∗

A , IUγ∗

B )) , independent uniform strategy (corresponding to γ∗)
Games’ Parameters

XA, XB , budgets of player A and B respectively

n , number of battlefields

wA
i , w

B
i , values of battlefield i assessed by player A and B respectively

¯
w, w̄ , lower and upper bounds of battlefields’ values

WA,WB , sums of battlefields’ values, WA :=
∑n

i=1 w
A
i , WB :=

∑n
i=1 w

B
i

W , max{WA,WB}
vAi , v

B
i , normalized values of battlefield i assessed by player A and B

xA
i , x

B
i , the allocation to battlefield i of player A and B respectively

ΠA(s, t),ΠB(s, t) , players’ payoffs in CB games when playing the strategies s and t

α , the tie-breaking parameter

βA, βB , Blotto functions (see (2.1))

ζ , (ζA, ζB)—the generic CSFs

LBn(ζ) , the LB game with CSFs ζA, ζB
µR , (µR

A, µ
R
B)—the power form CSFs with parameter R (see Table 1)

νR , (νRA , νRB )—the logit form CSFs with parameter R (see Table 1)

ΠA
ζ (s, t),Π

B
ζ (s, t) , players’ payoffs in LBn(ζ) games when playing the strategies s, t

Xζ(y
∗, ε),Yζ(x

∗, ε) , the sets characterizing the dissimilarity between (βA, βB) and
(ζA, ζB) (see (5.1), (5.2))

∆γ∗(ζ, ε) , see Definition 5.1

IUγ∗

Strategies

γ∗ , a positive solution of Equation (3.1)

Sn , the set of positive solutions of Equation (3.1) w.r.t. CBn (or LBn)

¯
γ, γ̄ , lower and upper bounds of any γ∗ ∈ Sn (see Proposition 3.3)

ΩA(γ
∗) ,

{

i ∈ [n] : vAi /v
B
i > γ∗

}

λ∗
A, λ

∗
B , Lagrange multipliers corresponding to γ∗ (see (3.2), (3.3))

¯
λ, λ̄ , lower and upper bounds of λ∗

A, λ
∗
B (see Proposition 3.3)

FA∗

i
, FB∗

i
, uniform-type distributions (see (3.4)-(3.8)

AS
γ∗,i, A

W
γ∗,i, A

n
i , random variables defined in (3.4)-(3.8)

BS
γ∗,i, B

W
γ∗,i, B

n
i

FAn
i
, FBn

i
, the marginals corresponding to battlefield i of the IUγ∗

strategy

A=0, A>0 , the events {
∑

i∈[n] A
∗
i = 0} and {

∑

i∈[n] A
∗
i > 0}, respectively

B=0, B>0 , the events {
∑

i∈[n] B
∗
i = 0} and {

∑

i∈[n] B
∗
i > 0}, respectively

Lemma A1. Given a game CBn (or LBn), for any γ∗ ∈ Sn, we have:

(i) λ∗
A, λ

∗
B > 0 and γ∗ = λ∗

A/λ
∗
B.

(ii) For any i ∈ [n], E[AS
γ∗,i] =

1
2
vB
i

λ∗

B

, E[AW
γ∗,i] =

(

vA
i

λ∗

A

)2
λ∗

B

2vB
i

, E[BS
γ∗,i] =

1
2
vA
i

λ∗

A

and E[BW
γ∗,i] =

(

vB
i

λ∗

B

)2
λ∗

A

2vA
i

.
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(iii) XA =
∑

i∈[n] E[A
∗
i ] and XB =

∑

i∈[n] E[B
∗
i ].

(iv) For any i ∈ [n], A∗
i and B∗

i have a constant upper-bound; particularly, P (A∗
i ≤2XB)=P (B∗

i ≤2XB)=1.

Proof.

(i) The positivity of λ∗
A and λ∗

B follows from the positivity of γ∗ and the definitions of λ∗
A and λ∗

B in (3.2)
and (3.3). By dividing (3.2) by (3.3) and combining with (3.1), we trivially have that γ∗ = λ∗

A/λ
∗
B.

(ii) These results come directly from the definitions of the distributions FAS
γ∗,i

, FAW
γ∗,i

FBS
γ∗,i

and FBW
γ∗,i

.

(iii) We multiply both sides of (3.3) by XA/λ
∗
B and both sides of (3.2) by XB/λ

∗
A then using the fact that

γ∗ = λ∗
A/λ

∗
B to obtain the following:

XA =
∑

j∈ΩA(γ∗)

1

2

vBj
λ∗
B

+
∑

j /∈ΩA(γ∗)

(

vAj
λ∗
A

)2
λ∗
B

2vBj
, (A.1)

XB =
∑

j∈ΩA(γ∗)

(

vBj
λ∗
B

)2
λ∗
A

2vAj
+

∑

j /∈ΩA(γ∗)

1

2

vAj
λ∗
A

. (A.2)

Combining with (ii), we deduce that XA =
∑

i∈[n] E[A
∗
i ] and XB =

∑

i∈[n] E[B
∗
i ].

(iv) If i ∈ ΩA(γ
∗), we have A∗

i = AS
γ∗,i and B∗

i = BW
γ∗,i. Recalling Definition 3.2, we have that

P
(

AS
i ≤ vBi /λ∗

B

)

= 1 and P
(

BW
i ≤ vBi /λ∗

B

)

= 1. On the other hand, from (A.1), we deduce

XB ≥ XA ≥
∑

j∈ΩA(γ∗)

vBj
2λ∗

B

≥
vBi
2λ∗

B

.

Therefore, P(AS
i ≤ 2XB) ≥ P

(

AS
i ≤vBi /λ∗

B

)

= 1 and P(BW
i ≤ 2XB) ≥ P(BW

i ≤ vBi /λ∗
B) = 1. We

conclude that for any i ∈ ΩA(γ
∗), A∗

i , B
∗
i are bounded by 2XB.

If i /∈ ΩA(γ
∗), we have A∗

i = AW
γ∗,i and B∗

i = BS
γ∗,i. Recalling Definition 3.2, we have that

P
(

AW
i ≤ vAi /λ

∗
A

)

= 1 and P
(

BS
i ≤ vAi /λ

∗
A

)

= 1. On the other hand, from (A.2), we deduce

XB ≥
∑

j /∈ΩA(γ∗)

vAj
2λ∗

A

≥
vAi
2λ∗

A

.

Therefore, P(AW
i ≤ 2XB) ≥ P

(

AW
i ≤ vAi /λ

∗
A

)

= 1 and P(BS
i ≤ 2XB) ≥ P(BS

i ≤ vAi /λ
∗
A) = 1. We

conclude that for i /∈ ΩA(γ
∗), A∗

i , B
∗
i are also bounded by 2XB.

Proposition 3.3. Under Assumption (A0), for any game CBn (or LBn), there exist constants
¯
γ, γ̄,

¯
λ, λ̄>0,

that do not depend on n, such that for any γ∗ ∈ Sn and its corresponding λ∗
A, λ

∗
B, we have

¯
γ≤γ∗≤ γ̄ and

¯
λ≤λ∗

A, λ
∗
B≤ λ̄.

Proof. Let γ∗ ∈ Sn, we consider the following cases:

Case 1: If 0 < γ∗ < min
i∈[n]

{

vA
i

vB
i

}

. In this case, ΩA(γ
∗) = [n], and since γ∗ is a solution of (3.1), we deduce:

γ∗ =
XB

XA

∑n
i=1 v

B
i

∑n
i=1

(vB
i )2

vA
i

≥
XB

XA

n ¯
w
nw̄

n

(

w̄
n
¯
w

)2

¯
w

nw̄

=
XB

XA

(

¯
w

w̄

)4

.

Here, the inequality comes directly from (2.2).
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Case 2: If γ∗ ≥ max
i∈[n]

{

vA
i

vB
i

}

. In this case, ΩA(γ
∗) = ∅, and since γ∗ is a solution of (3.1), we deduce:

γ∗ =
XB

XA

∑n
i=1

(vA
i )2

vB
i

∑n
i=1 v

A
i

≤
XB

XA

(

w̄

¯
w

)4

.

Case 3: If ∃i, j :
vA
i

vB
i

≤ γ∗ <
vA
j

vB
j

. In this case, trivially from (2.2), we have γ∗ ∈

[

(

¯
w
w̄

)2
,
(

w̄

¯
w

)2
]

.

In conclusion, by denoting
¯
γ := min

{

XB

XA

(

¯
w
w̄

)4
,
(

¯
w
w̄

)2
}

and γ̄ := max

{

XB

XA

(

w̄

¯
w

)4

,
(

w̄

¯
w

)2
}

= XB

XA

(

w̄

¯
w

)4

,

we have the conclusion on the bounds of γ∗.
On the other hand, from the definition of λ∗

A in (3.2), we deduce

λ∗
A ≥

(γ∗)2

2XB

∑

i∈ΩA(γ∗)

(

¯
w

nw̄

)2 1
w̄
n
¯
w

+
1

2XB

∑

i/∈ΩA(γ∗)
¯
w

nw̄

≥ min

{

(γ∗)2

2XB
,

1

2XB

}

·
∑

i∈[n]

1

n

(

¯
w

w̄

)3

≥ min

{

(γ∗)2

2XB
,

1

2XB

}

·
(

¯
w

w̄

)3

.

Similarly, we have the upper-bound

λ∗
A ≤ max

{

(γ∗)2

2XB
,

1

2XB

}

·





∑

i∈ΩA(γ∗)

1

n

(

w̄

¯
w

)3

+
∑

i/∈ΩA(γ∗)

1

n

(

w̄

¯
w

)3


 = max

{

(γ∗)2

2XB
,

1

2XB

}

·

(

w̄

¯
w

)3

.

Similarly, we can prove that min
{

1
2XA

, 1
2γ∗2XA

}

(

¯
w
w̄

)3
≤λ∗

B ≤ max
{

1
2XA

, 1
2γ∗2XA

}(

w̄

¯
w

)3

; therefore,

min

{

γ∗2

2XB
,

1

2XB
,

1

2XA
,

1

2(γ∗)2XA

}

(

¯
w

w̄

)3

≤ λ∗
A, λ

∗
B ≤ max

{

γ∗2

2XB
,

1

2XB
,

1

2XA
,

1

2(γ∗)2XA

}(

w̄

¯
w

)3

.

Since γ∗ ∈ [
¯
γ, γ̄], λ∗

A and λ∗
B are bounded in [

¯
λ, λ̄], where

¯
λ := min

{

¯
γ2

2XB
,

1

2XB
,

1

2XA
,

1

2γ̄2XA

}

(

¯
w

w̄

)3

,

λ̄ := max

{

γ̄2

2XB
,

1

2XB
,

1

2XA
,

1

2
¯
γ2XA

}(

w̄

¯
w

)3

.

�

Finally, we prove a trivial result that will be used quite often in the remainder of this work.

Lemma A2. For any ε̂ > 0 and Ĉ ≥ 1, we have that (ln(Ĉ) + 1) ln
(

1
min{ε̂,1/e}

)

≥ ln
(

Ĉ
ε̂

)

.

Proof. Case 1: If ε̂ < 1/e. In this case, we have ln(1/ε̂) > 1; therefore,

(ln(Ĉ)+1) ln

(

1

min{ε̂, 1/e}

)

= (ln(Ĉ)+1) ln

(

1

ε̂

)

= ln(Ĉ) ln

(

1

ε̂

)

+ln

(

1

ε̂

)

> ln(Ĉ)+ ln

(

1

ε̂

)

= ln

(

Ĉ

ε̂

)

.

Case 2: If ε̂ ≥ 1/e. We have ln(1/ε̂) ≤ 1; therefore,

(ln(Ĉ) + 1) ln

(

1

min{ε̂, 1/e}

)

= (ln(Ĉ) + 1) ln

(

1

1/e

)

= ln(Ĉ) + 1 ≥ ln(Ĉ) + ln

(

1

ε̂

)

= ln

(

Ĉ

ε̂

)

.

�
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Appendix B. PROOF OF THEOREM 4.3

First note that in the remainders of the paper, for any bounded, non-negative random variable Z
(i.e., ∃C > 0 : P(Z ∈ [0, C]) = 1), any measurable function g on R, we write

∫∞

0 g(x)dFZ(x) instead of
∫ C

0
g(x)dFZ(x) if there is no need to emphasize the bounds of Z. For the sake of notation, we also denote

by A=0 the event
{

∑

j∈[n] A
∗
j = 0

}

and by A>0 its complement event, that is
{

∑

j∈[n] A
∗
j > 0

}

. Similarly,

we denote by B=0 the event
{

∑

j∈[n] B
∗
j = 0

}

and by B>0 the event
{

∑

j∈[n] B
∗
j > 0

}

.

Recall the notation FAn
i
and FBn

i
as the univariate marginal distributions corresponding to battlefield

i ∈ [n] of the IUγ∗

A and IUγ∗

B strategies (the corresponding random variables are denoted An
i and Bn

i ). Due

to the definition of the IUγ∗

strategy (via Algorithm 1), for any x ≥ 0 and i ∈ [n], we have:

FAn
i
(x) = P

(

{An
i ≤ x}

⋂

A=0

)

+ P

(

{An
i ≤ x}

⋂

A>0

)

= P (A=0) +P

({

A∗
i ·XA

∑

j∈[n] A
∗
j

≤x

}

⋂

A>0

)

. (B.1)

Here, we have used the fact that if
∑

j∈[n] A
∗
j = 0 (i.e., when A=0 happens), then An

i = 0 by definition and

thus, P(An
i ≤ x) = 1 and P ({An

i ≤ x}
⋂

A=0) = P(A=0). Similarly to (B.1), for any x ≥ 0 and i ∈ [n],

FBn
i
(x) = P (B=0) +P

({

B∗
i ·XB

∑

j∈[n] B
∗
j

≤x

}

⋂

B>0

)

. (B.2)

Regarding the random variables An
i and Bn

i (i ∈ [n]), we prepare a lemma stating several useful results as
follows (its proof is given in Appendix B.1).

Lemma B1. For any n and i ∈ [n], we have

(i) P(An
i = 0) = P(A∗

i = 0) and P(Bn
i = 0) = P(B∗

i = 0).

(ii) P(An
i = x) = P(Bn

i = y) = 0 for any x ∈ (0,∞)\{XA} and y ∈ (0,∞)\{XB}.

(iii) P(An
i = XA) ≤

(

1− ¯
λ

λ̄
¯
w2

w̄2

)n−1

and P(Bn
i = XB) ≤

(

1− ¯
λ

λ̄
¯
w2

w̄2

)n−1

.

Intuitively, Result (ii) states that the function FAn
i
(resp. FBn

i
) is continuous on (0, XA) (resp. (0, XB)).

The discontinuity of FAn
i
(resp. FBn

i
) at XA (resp. at XB) is due to the normalization step involved in

the definition of the IUγ∗

strategy; note that the probability that An
i = XA (resp. Bn

i = XB) quickly
tends to zero when n increases as has been shown in Result (iii). Finally, Result (i) shows that in some
cases, FAn

i
and FBn

i
may be discontinuous at 0. This is due to the fact that the functions FA∗

i
and FB∗

i

may be discontinuous at 0. Moreover, recall that we chose the assignments of the outputs in line 3 and
7 of Algorithm 1 to be allocating zero to every battlefield, i.e., the mass at 0 of FAn

i
and FBn

i
is added

by a (negligibly small) positive probability. While other assignments do not affect our results, they make
FAn

i
(resp. FBn

i
) be discontinuous at some points differing from 0 and XA (resp. XB), e.g., if in line

3 of Algorithm 1, we assign xA
i = XA/n, the distribution FAn

i
would also be discontinuous at the point

XA/n. Our choice of assignments provides more convenience in our analysis since we have to consider their
discontinuity at 0 in any case.

Finally, with all the preparation steps mentioned above, we are ready to prove Theorem 4.3.

Theorem 4.3.

(i) In any game CBn, there exists a positive number ε = Õ(n−1/2) such that for any γ∗ ∈ Sn, the following
inequalities hold for any pure strategy x

A and x
B of players A and B:

ΠA(xA, IUγ∗

B ) ≤ ΠA(IUγ∗

A , IUγ∗

B ) + εWA, (4.1)

ΠB(IUγ∗

A ,xB) ≤ ΠB(IUγ∗

A , IUγ∗

B ) + εWB. (4.2)
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(ii) For any ε∈ (0, 1], there exists C∗ > 0 (that does not depend on ε) such that in any game CBn with

n≥ C∗ε−2 ln
(

1
min{ε,1/e}

)

, (4.1) and (4.2) hold for any γ∗ ∈ Sn, any pure strategy x
A, xB of players

A and B.

Proof. In this section, we first give a proof of Result (ii) of Theorem 4.3. Result (i) will be deduced
from (ii). We first look for the condition on n such that (4.1) holds for any pure strategy x

A of player A.
The proof that (4.2) holds for any pure strategy of player B under the same condition can be done similarly
and thus is omitted.

First, we write explicitly the payoffs of player A when player B plays the IUγ∗

B strategy and player A

plays either the pure strategy x
A or the IUγ∗

A strategy:

ΠA(xA, IUγ∗

B ) = α

n
∑

i=1

wA
i P(B

n
i = xA

i ) +

n
∑

i=1

wA
i P(B

n
i < xA

i ), (B.3)

ΠA(IUγ∗

A , IUγ∗

B ) = α

n
∑

i=1

wA
i P(B

n
i = An

i ) +

n
∑

i=1

wA
i P(B

n
i < An

i )

= α
n
∑

i=1

∫ ∞

0

wA
i P(B

n
i = x)dFAn

i
(x) +

n
∑

i=1

∫ ∞

0

wA
i P(B

n
i < x)dFAn

i
(x). (B.4)

We then prepare a useful lemma, its proof is given in Appendix B.2. Intuitively, this lemma shows that as
n is large enough, we can prove (4.1) without the need of analyzing separately the case where players get
tie allocations (that is our results hold regardless of the tie-breaking-rule parameter α).

Lemma B2. Given ε ∈ (0, 1], there exists a constant C∗
0 > 0 (that does not depend on ε) such that for

any n ≥ C∗
0 ln

(

1
min{ε,1/e}

)

, for any game CBn and γ∗ ∈ Sn the following inequality is a sufficient condition

of (4.1):
n
∑

i=1

vAi FBn
i

(

xA
i

)

≤
n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x) +

ε

2
. (B.5)

In the remainders of the proof, we focus on (B.5) and look for the condition of n such that it holds; this
will be done in the following five steps. After that, from Lemma B2, we can conclude that (4.1) also holds
with the corresponding condition on n.

Step 1: Prove that {FA∗

i
}i is optimal against {FB∗

i
}i.

Lemma B3. In any game CBn, for any pure strategy x
A of player A and γ∗ ∈ Sn, we have

n
∑

i=1

vAi FB∗

i

(

xA
i

)

≤
n
∑

i=1

∫ ∞

0

vAi FB∗

i
(x)dFA∗

i
(x). (B.6)

The proof of Lemma B3 is given in Appendix B.3. This lemma can be interpreted as follows: if the allocation
of player B to battlefield i follows the distribution FB∗

i
, then it is optimal for player A to play such that her

allocation at this battlefield follows FA∗

i
(we do not know if it is possible to construct a mixed strategy such

that player A’s allocation at battlefield i follows FA∗

i
for all i ∈ [n]; however, this does not affect our results

in this work). Using this lemma, we will analyze the validity of (B.5) by proving that, as n → ∞, the terms
in (B.5) respectively converge toward the terms in (B.6). To do this, we consider the next step.

Step 2: Prove that FAn
i
and FBn

i
uniformly converge toward FA∗

i
and FB∗

i
as n increases.

Lemma B4. For any ε1 ∈ (0, 1], there exists C1 > 0 (that does not depend on ε1) such that for any

n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

and i ∈ [n],

sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣ ≤ ε1 and sup
x∈[0,∞)

∣

∣FBn
i
(x)− FB∗

i
(x)
∣

∣ ≤ ε1. (B.7)
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A proof of this lemma is given in Appendix B.4. The main intuition of this result comes from the fact
that An

i (resp. Bn
i ) is the normalization of A∗

i , i ∈ [n] (except for the special cases of the events A=0 and
B=0) and the use of concentration inequalities on the random variables

∑

j∈[n] A
∗
j (and

∑

j∈[n] B
∗
j ). In this

work, we apply the Hoeffding’s inequality (Theorem 2, Hoeffding (1963)) to obtain the rate of convergence
indicated here in Lemma B4.

Step 3: Prove that the left-hand-side of (B.5) converges toward the left-hand-side of (B.6). Take C1 as indi-

cated in Lemma B4, we define C∗
1 :=16C1(ln(4)+1) and deduce that

C∗

1

ε2 ln
(

1
min{ε,1/e}

)

≥C1

(

4
ε

)2
ln
(

1
min{ ε

4 ,
1
e
}

)

.19

Therefore, take ε1 := ε/4, for any n ≥ C∗
1 ε

−2 ln
(

1
min{ε,1/e}

)

, we have n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

; apply

Lemma B4, for any pure strategy x
A of player A, we have

∣

∣

∣

∣

∣

n
∑

i=1

vAi FBn
i

(

xA
i

)

−
n
∑

i=1

vAi FB∗

i

(

xA
i

)

∣

∣

∣

∣

∣

≤
n
∑

i=1

vAi sup
x∈[0,∞)

∣

∣FBn
i
(x)− FB∗

i
(x)
∣

∣

≤
n
∑

i=1

vAi
ε

4
=

ε

4
. (B.8)

Step 4: Prove that the right-hand-side of (B.5) converges toward the right-hand-side of (B.6). We consider
the difference of the involved terms as follows.

∣

∣

∣

∣

∣

n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x)−

n
∑

i=1

∫ ∞

0

vAi FB∗

i
(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

≤
n
∑

i=1

vAi

∫ ∞

0

∣

∣FBn
i
(x) − FB∗

i
(x)
∣

∣ dFAn
i
(x) +

n
∑

i=1

vAi

∣

∣

∣

∣

∫ ∞

0

FB∗

i
(x)dFAn

i
(x)−

∫ ∞

0

FB∗

i
(x)dFA∗

i
(x)

∣

∣

∣

∣

. (B.9)

Let us define C∗
2 := C1 · 64(ln(8) + 1) (again, C1 is the constant indicated in Lemma B4), we have that

C∗
2ε

−2 ln
(

1
min{ε,1/e}

)

≥ C1

(

8
ε

)2
ln
(

1
min{ ε

8 ,
1
e
}

)

.20 Therefore, take ε1 := ε/8, for any n ≥ C∗
2ε

−2 ln
(

1
min{ε,1/e}

)

,

we have n ≥ ε−2
1 ln

(

1
min{ε1,1/e}

)

and by Lemma B4, we have

n
∑

i=1

vAi

∫ ∞

0

∣

∣FBn
i
(x) − FB∗

i
(x)
∣

∣dFAn
i
(x) ≤

n
∑

i=1

vAi

∫ ∞

0

ε

8
dFAn

i
(x) =

n
∑

i=1

vAi
ε

8
. (B.10)

Now, we need to find an upper-bound of the second term in the right-hand-side of(B.9). To do this, we
present a lemma, called Lemma B5 (stated below), that is based on the portmanteau lemma (see, e.g.,
Van der Vaart (2000)) regarding the weak convergence of a sequence of measures. Note importantly that by
a direct application of the portmanteau lemma (since FB∗

i
is Lipschitz continuous and from Lemma B4, FAn

i

uniformly converges to FA∗

i
), we can prove that

∫∞

0
FB∗

i
(x)dFAn

i
(x) converges toward

∫∞

0
FB∗

i
(x)dFA∗

i
(x)

as n → ∞; however, note that the convergence rate obtained by doing this is large due to the fact that
the Lipschitz constant of FB∗

i
(that is λ∗

A/v
A
i ) increases as n increases. To obtain a better convergence

rate as indicated in Lemma B5, we exploit the properties of the involved functions that allow us to use the
telescoping sum trick (see Appendix B.5 for more details).

19This is due to C∗
1 · ε−2 ln

(

1
min{ε,1/e}

)

= C1

(

4
ε

)2
· (ln(4) + 1) ln

(

1
min{ε,1/e}

)

≥ C1 ·
(

4
ε

)2
ln

(

4
ε

)

; here, we have applied

Lemma A2 with ε̂ := ε and Ĉ := 4; moreover, ε
4
= min{ ε

4
, 1
e
} since ε ≤ 1; thus, we can rewrite ln

(

4
ε

)

= ln
(

1
min{ε/4,1/e}

)

.

20This is due to C∗
2 · ε−2 ln

(

1
min{ε,1/e}

)

= C1
(

8
ε

)2
· (ln(8) + 1) ln

(

1
min{ε,1/e}

)

≥ C1 ·
(

8
ε

)2
ln

(

8
ε

)

; here, we have applied

Lemma A2 with ε̂ := ε and Ĉ := 8; moreover, ε
8
= min{ ε

8
, 1
e
} since ε ≤ 1; thus, we can rewrite ln

(

8
ε

)

= ln
(

1
min{ε/8,1/e}

)

.
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Lemma B5. For any ε2 ∈ (0, 1], there exists a constant C2 > 0 (that does not depend on ε2) such that for

any n ≥ C2 · ε
−2
2 ln

(

1
min{ε2,1/e}

)

and i ∈ [n], we have

∣

∣

∣

∣

∫ ∞

0

FB∗

i
(x)dFAn

i
(x)−

∫ ∞

0

FB∗

i
(x)dFA∗

i
(x)

∣

∣

∣

∣

≤ ε2. (B.11)

The proof of Lemma B5 is given in Appendix B.5. Based on this constant C2, we define C
∗
3 := 82C2(ln 8+1).

Now, take ε2 := ε/8, we have that C∗
3 ε

−2 ln
(

1
min{ε,1/e}

)

≥ C2ε
−2
2 ln

(

1
min{ε2,1/e}

)

;21 therefore, for any

n ≥ C∗
3 ε

−2 ln
(

1
min{ε,1/e}

)

, we have n ≥ C2ε
−2
2 ln

(

1
min{ε2,1/e}

)

and by Lemma B5, we deduce

∣

∣

∣

∣

∫ ∞

0

FB∗

i
(x)dFAn

i
(x)−

∫ ∞

0

FB∗

i
(x)dFA∗

i
(x)

∣

∣

∣

∣

≤ ε/8.

Combine this with (B.9) and (B.10), for any n = max{C∗
2 , C

∗
3}ε

−2 ln
(

1
min{ε,1/e}

)

, we have

∣

∣

∣

∣

∣

n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x) −

n
∑

i=1

∫ ∞

0

vAi FB∗

i
(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

≤
n
∑

i=1

vAi ε/8 +

n
∑

i=1

vAi ε/8 =
ε

4
. (B.12)

Step 5: Conclusion. For any n ≥ max{C∗
1 , C

∗
2 , C

∗
3}ε

−2 ln
(

1
min{ε,1/e}

)

and any pure strategy x
A of player A,

we conclude that

n
∑

i=1

vAi FBn
i

(

xA
i

)

≤
n
∑

i=1

vAi FB∗

i

(

xA
i

)

+
ε

4
(from (B.8))

≤
n
∑

i=1

∫ ∞

0

vAi FB∗

i
(x)dFA∗

i
(x) +

ε

4
(from (B.6))

≤
n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x) +

ε

4
+

ε

4
(from (B.12))

=

n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x) +

ε

2
.

This is exactly (B.5); therefore, applying Lemma B2 (involving C∗
0 ), denote C∗

(4.1) := max{C∗
0 , C

∗
1 , C

∗
2 , C

∗
3},

we have proved that (4.1) holds for any n ≥ C∗
(4.1)ε

−2 ln
(

1
min{ε,1/e}

)

. Similarly, we can prove that

there exists a constant C∗
(4.2) such that (4.2) holds for any n ≥ C∗

(4.2)ε
−2 ln

(

1
min{ε,1/e}

)

. Finally, define

C∗ := max{C∗
(4.1), C

∗
(4.2)}, we conclude the proof for Result (ii).

Now, to obtain Result (i), we prove that Result (ii) implies Result (i). Note that the constant C∗ found
in the Result (ii) does not depend on neither n nor ε. Moreover, the function

ξ : (0,∞) → (0,∞)

ε̃ 7→ C∗ε̃−2 ln

(

1

min{ε̃, 1/e}

)

.

21Once again, apply Lemma A2, C∗
3 ε

−2 ln
(

1
min{ε,1/e}

)

=C2
(

8
ε

)2
(ln(8)+1) ln

(

1
min{ε,1/e}

)

≥ C2
(

8
ε

)2
ln

(

8
ε

)

; moreover, we

have ε2 :=
ε
8
=min

{

ε
8
, 1
e

}

.
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is continuous and increases to infinity when ε tends to zero. Therefore, for any n ≥ 1, there exists an

ε > 0 such that n = C∗ε−2 ln
(

1
min{ε,1/e}

)

. Now, apply Result (ii), (4.1) and (4.2) hold in the game CBn

for any γ∗ ∈ Sn and pure strategies x
A,xB. We conclude the proof by notice that if ε ≥ 1/e, we have

n = C∗ε−2 and thus ε =
√

n/C∗ = O(n−1/2); on the other hand, if ε < 1
e , we have ln

(

1
ε

)

> 1 that induces

n = C∗ε−2 ln
(

1
ε

)

≥ C∗ε−2 ≥ C∗

ε , thus, 1
ε ≤ n

C∗ . We deduce that ε =
√

C∗

n ln
(

1
ε

)

≤
√

C∗

n ln
(

n
C∗

)

= Õ(n−1/2).

�

Appendix B.1. Proof of Lemma B1

(i) Assuming A∗
i = 0, if

∑

j 6=i A
∗
j = 0 then An

i = 0 (due to line 3 of Algorithm 1) and if
∑

j 6=i A
∗
j > 0

then An
i = A∗

i

/
∑

j∈[n] A
∗
j = 0. Reversely, assuming An

i = 0, then regardless whether
∑

j∈[n] A
∗
j = 0

or
∑

j∈[n] A
∗
j > 0, we have A∗

i = 0. Therefore, An
i = 0 ⇔ A∗

i = 0 for any n and i ∈ [n]. Similarly, we
can prove that Bn

i = 0 ⇔ B∗
i = 0.

(ii) The results are trivial in cases where x > XA and y > XB due to the definition of An
i and Bn

i (that
guarantees that with probability 1, An

i ≤ XA and Bn
i ≤ XB). In the following, we consider the case

where x ∈ (0, XA). For any n, i ∈ [n], we denote Zi :=
∑

j 6=i A
∗
j and obtain:

P(An
i = x)

=P

(

{An
i = x}

⋂

A>0

)

(since x > 0)

=P

({

A∗
i =

x

XA

∑

j∈[n]
A∗

j

}

⋂

A>0

)

=P

({

A∗
i

(

1−
x

XA

)

=
x

XA

∑

j 6=i
A∗

j

}

⋂

A>0

)

=P

({

A∗
i =

Zi · x

XA − x

}

⋂

A>0

)

(note that XA − x > 0)

≤P({A∗
i = Zi = 0} ∩ A>0) +

∫

z>0

P

(

A∗
i =

z · x

XA − x

)

dFZi
(z)

≤P(A=0 ∩ A>0) +

∫

z>0

0 dFZi
(z)

=0.

Here, the second-to-last inequality comes from the fact that zx
XA−x > 0, ∀z > 0, ∀x ∈ (0, XA) and

P(A∗
i = a) = 0 for any a > 0. Similarly, we can prove that P(Bn

i = y) = 0 for any y ∈ (0, XB).

(iii) We have

P(An
i = XA) = P











A∗
i =

∑

j∈[n]

A∗
j







⋂

A>0





≤ P





∑

j 6=i

A∗
j = 0





=
∏

j 6=i

P
(

A∗
j = 0

)

(since A∗
j , j ∈ [n] are non-negative and independent).

Now, if there exists j 6= i such that j ∈ ΩA(γ
∗), then P(A∗

j = 0) = 0 due to the fact that A∗
j = AS

γ∗,j

and the definition of AS
γ∗,j (see (3.4)). In this case,

∏

j 6=i P
(

A∗
j = 0

)

= 0. On the other hand, if
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j /∈ ΩA(γ
∗) for any j 6= i, then A∗

j = AW
γ∗,j for j 6= i; therefore,

∏

j 6=i

P
(

A∗
j = 0

)

=
∏

j 6=i

[(

vBj
λ∗
B

−
vAj
λ∗
A

)/

vBj
λ∗
B

]

=
∏

j 6=i

(

1−
vAj
vBj

λ∗
B

λ∗
A

)

≤

(

1− ¯
λ

λ̄

¯
w
nw̄
w̄
n
¯
w

)n−1

=

(

1− ¯
λ

λ̄
¯
w2

w̄2

)n−1

.

Here, to obtain the last equality, we use (2.2) for the bounds of vAj , v
B
j and Proposition 3.3 for the

bounds of λ∗
A, λ

∗
B.

Similarly, we can obtain P(Bn
i = XB) ≤

(

1− ¯
λ

λ̄
¯
w2

w̄2

)n−1

.

Appendix B.2. Proof of Lemma B2

Fix ε ∈ (0, 1] and assume that (B.5) is satisfied, we prove that (4.1) also holds by comparing the terms
in (B.5) with the terms in (4.1). First, due to the fact that α ≤ 1, we can find a lower bound of the left-hand
side of (B.5) as follows:

n
∑

i=1

vAi FBn
i

(

xA
i

)

=

n
∑

i=1

vAi P(B
n
i = xA

i ) +

n
∑

i=1

vAi P(B
n
i < xA

i )

≥ α
n
∑

i=1

vAi P(B
n
i = xA

i ) +
n
∑

i=1

vAi P(B
n
i < xA

i )

= ΠA(xA, IUγ∗

B )/WA. (B.13)

Now, we turn our focus to the right-hand-side of (B.5), we can rewrite the involved term as follows.

n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x) =

n
∑

i=1

∫ ∞

0

vAi P(B
n
i = x)dFAn

i
(x) +

n
∑

i=1

∫ ∞

0

vAi P(B
n
i < x)dFAn

i
(x).

We observe that
n
∑

i=1

∫∞

0 vAi FBn
i
(x)dFAn

i
(x) is very similar to the expression of ΠA(xA, IUγ∗

B ) stated in (B.4).

The main difference lies at the coefficient of the term related to the tie cases that is the tie-breaking
parameter α. Therefore, we consider the following two cases of α:

Case 1: α = 1. For any n, divide two sides of (B.4) (with α = 1) byWA and recall that vAi := wA
i /WA, ∀i,

we trivially have
n
∑

i=1

∫∞

0
vAi FBn

i
(x)dFAn

i
(x) = ΠA(IUγ∗

A , IUγ∗

B )/WA .

Case 2: α < 1. Due to Results (ii) and (iii) of Lemma B1, for any x > 0, we have P(Bn
i = x) ≤ Dn−1

where we define D :=
(

1− ¯
λ

λ̄
¯
w2

w̄2

)

< 1. We consider two cases of α as follows.

• If 2(1−α) ≤ 1, define Ĉ1 := 1
ln(1/D) +1 > 0, we have that22 Ĉ1 ln

(

1
min{ε,1/e}

)

≥ logD ε+ 1; therefore,

for any n ≥ Ĉ1 ln
(

1
min{ε,1/e}

)

, we obtain n− 1 ≥ logD ε and

Dn−1 ≤ DlogD ε = ε ≤
ε

2(1− α)
(note that D < 1 and in this case 2(1− α) ≤ 1).

22If ε < 1/e, then ln(1/ε) > 1 and Ĉ1 ln
(

1
min{ε,1/e}

)

=
ln(1/ε)
ln(1/D)

+ ln(1/ε) > logD ε + 1; otherwise, if ε ≥ 1/e, we have

ln(1/ε) ≤ 1 and Ĉ1 ln
(

1
min{ε,1/e}

)

= 1
ln(1/D)

+ 1 ≥ ln(1/ε)
ln(1/D)

+ 1 = logD ε+ 1 (note that ln(1/D) > 0 since D < 1).
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• If 2(1−α)> 1, define Ĉ2 :=
1

ln(1/D) +
ln(2−2α)
ln(1/D) +1> 0; we have Ĉ2 ln

(

1
min{ε,1/e}

)

≥ logD
ε

2(1−α) + 1.23

We conclude that for any n ≥ Ĉ2 ln
(

1
min{ε,1/e}

)

, we obtain n− 1 ≥ logD

(

ε
2(1−α)

)

and

Dn−1 ≤ DlogD
ε

2(1−α) =
ε

2(1− α)
.

Let us define C∗
0 = max{Ĉ1, Ĉ2} > 0, we conclude that for any α < 1, n ≥ C∗

0 ln
(

1
min{ε,1/e}

)

, i ∈ [n] and

x > 0, we have

P(Bn
i = x) ≤ Dn−1 ≤

ε

2(1− α)
. (B.14)

Note also that P(An
i = Bn

i = 0) = P(An
i = 0)P(Bn

i = 0) = P(A∗
i = 0)P(B∗

i = 0) = 0, ∀i,24 we conclude

that when α < 1, for any n ≥ C∗
0 ln

(

1
min{ε,1/e}

)

, we have

n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x)

=

[

n
∑

i=1

∫ ∞

0

vAi P(B
n
i < x)dFAn

i
(x) + α

n
∑

i=1

∫ ∞

0

vAi P(B
n
i = x)dFAn

i
(x)

]

+ (1− α)

n
∑

i=1

∫ ∞

0

vAi P(B
n
i = x)dFAn

i
(x)

=ΠA(IUγ∗

A , IUγ∗

B )/WA + (1− α)

n
∑

i=1

vAi

∫

(0,∞)

ε

2(1− α)
dFAn

i
(x) + (1− α)

n
∑

i=1

vAi P(A
n
i = Bn

i = 0)

=ΠA(IUγ∗

A , IUγ∗

B )/WA + (1− α)
n
∑

i=1

vAi

∫

(0,∞)

ε

2(1− α)
dFAn

i
(x) + 0

≤ΠA(IUγ∗

A , IUγ∗

B )/WA + (1− α)
ε

2(1− α)

=ΠA(IUγ∗

A , IUγ∗

B )/WA + ε/2.

In conclusion, regardless of the value of α, for any n ≥ C∗
0 ln

(

1
min{ε,1/e}

)

, we have

n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x) ≤ ΠA(IUγ∗

A , IUγ∗

B )/WA + ε/2. (B.15)

Combine (B.13), (B.15) and the assumption that (B.5) holds, for any n ≥ C∗
0 ln

(

1
min{ε,1/e}

)

, we have

ΠA(xA, IUγ∗

B )

WA

(B.13)

≤
n
∑

i=1

vAi FBn
i

(

xA
i

)
(B.5)

≤
n
∑

i=1

∫ ∞

0

vAi FBn
i
(x)dFAn

i
(x)+ε/2

(B.15)

≤
ΠA(IUγ∗

A , IUγ∗

B )

WA
+ε.

By multiplying both sides of this inequality by WA, we obtain (4.1). �

23If ε < 1/e, we have Ĉ2 ln
(

1
min{ε,1/e}

)

= logD ε+
(

log1/D (2− 2α) + 1
)

ln
(

1
ε

)

> logD ε−logD (2 − 2α)+1; otherwise, if

ε≥1/e, we have Ĉ2 ln
(

1
min{ε,1/e}

)

= Ĉ2 ≥ ln(1/ε)
ln(1/D)

+ ln(2−2α)
ln(1/D)

+1 ≥ logD ε−logD (2−2α)+1 (since 1 ≥ ln
(

1
ε

)

).
24Note that if i ∈ ΩA(γ∗) then P(A∗

i = 0) = 0, if i /∈ ΩA(γ∗) then P(B∗
i = 0) = 0 (see (3.4)-(3.8)); therefore,

P(A∗
i =0)P(A∗

i =0)=0, ∀i.
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Appendix B.3. Proof of Lemma B3

We compute the right-hand-side of (B.6) based on the definition of FA∗

i
and FB∗

i
(see Definition 3.2).

n
∑

i=1

∫ ∞

0

vAi FB∗

i
(x)dFA∗

i
(x) =

∑

i∈ΩA(γ∗)

∫ ∞

0

vAi FBW
γ∗,i

(x)dFAS
γ∗,i

(x) +
∑

i/∈ΩA(γ∗)

∫ ∞

0

vAi FBS
γ∗,i

(x)dFAW
γ∗,i

(x)

=
∑

i∈ΩA(γ∗)

∫

vBi
λ∗
B

0

vAi





vA
i

λ∗

A
−

vB
i

λ∗

B

vA
i

λ∗

A

+
x
vA
i

λ∗

A





1
vB
i

λ∗

B

dx+
∑

i/∈ΩA(γ∗)

∫

vAi
λ∗
A

0

vAi
x
vA
i

λ∗

A

1
vB
i

λ∗

B

dx

=
∑

i∈ΩA(γ∗)

vAi

(

1−
vBi γ∗

2vAi

)

+
∑

i/∈ΩA(γ∗)

(vAi )
2 1

2γ∗vBi
. (B.16)

On the other hand, for any pure strategy x
A of player A, we have:

n
∑

i=1

vAi FB∗

i

(

xA
i

)

=
∑

i∈ΩA(γ∗)

vAi FBW
γ∗,i

(

xA
i

)

+
∑

i/∈ΩA(γ∗)

vAi FBS
γ∗,i

(

xA
i

)

≤
∑

i∈ΩA(γ∗)

vAi





vA
i

λ∗

A

− vB
i

λ∗

B

vA
i

λ∗

A

+
xA
i λ

∗
A

vAi



 +
∑

i/∈ΩA(γ∗)

vAi

(

xA
i λ

∗
A

vAi

)

≤
∑

i∈ΩA(γ∗)

(

vAi
λ∗
A

−
vBi
λ∗
B

)

λ∗
A + λ∗

AXA (since
∑n

i=1
xA
i ≤ XA)

=
∑

i∈ΩA(γ∗)

vAi

(

1−
vBi γ∗

2vAi

)

+
∑

i/∈ΩA(γ∗)

(vAi )
2 1

2γ∗vBi
. (B.17)

Here, to obtain the last equality, we use (A.1) to rewrite XA. Finally, from (B.16) and (B.17), we conclude
that (B.6) holds for any x

A and γ∗. �

Appendix B.4. Proof of Lemma B4

Since the definition of FAn
i
involves P(A=0) (see (B.1)), we first look for an upper-bound of P(A=0).

For any n and γ∗ ∈ Sn, if ΩA(γ
∗) 6= ∅, i.e., there exists i such that A∗

i = AS
γ∗,i, then P(A∗

i = 0) = 0 due

to the definition of AS
γ∗,i (see (3.4)); in this case, P(A=0) =

∏

j∈[n] P
(

A∗
j = 0

)

= 0. On the other hand, if

ΩA(γ
∗) = ∅, then A∗

j = AW
γ∗,j for any j ∈ [n]; therefore,

P(A=0) =
∏

j∈[n]

P
(

A∗
j = 0

)

=
∏

j∈[n]

[(

vBj
λ∗
B

−
vAj
λ∗
A

)/

vBj
λ∗
B

]

=
∏

j∈[n]

(

1−
vAj
vBj

λ∗
B

λ∗
A

)

≤

(

1− ¯
λ

λ̄
¯
w2

w̄2

)n

. (B.18)

Here, the last inequality comes directly from (2.2) and Proposition 3.3. Recall the notation D :=
(

1− ¯
λ

λ̄
¯
w2

w̄2

)

and define C̃0 :=
ln(4)+1
ln(1/D) >0, we have C̃0 ln

(

1
min{ε1,1/e}

)

≥ logD
(

ε1
4

)

.25 Therefore, for any n≥ C̃0 ln
(

1
min{ε1,1/e}

)

we have n ≥ logD (ε1/4) and since D < 1 we have:

P(A=0) ≤ Dn ≤ DlogD(ε1/4) = ε1/4. (B.19)

25This is due to the fact that C̃0 · ln
(

1
min{ε1,1/e}

)

= 1
ln(1/D)

(ln(4) + 1) ln
(

1
min{ε1,1/e}

)

≥
ln(4/ε1)
ln(1/D)

= logD
( ε1

4

)

; here, we

have applied Lemma A2 (see Appendix A) for ε̂ := ε1 and Ĉ := 4.
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Now, we look for an upper-bound of P(A>0). For any n, define the constants ǫn := ε1
4 ¯

w

nw̄λ̄
and

τ := 1
XA

(

w̄
n
¯
w
¯
λ

1
ǫn

+ 1
)

= 1
XA

[

4λ̄
ε1

¯
λ

(

w̄

¯
w

)2

+ 1

]

, we consider the following term for any i ∈ [n]:

P

({

A∗
i −

A∗
i

∑

j∈[n] A
∗
j

XA > ǫn

}

⋂

A>0

)

≤ P

({∣

∣

∣

∣

∣

A∗
i −

A∗
i

∑

j∈[n] A
∗
j

XA

∣

∣

∣

∣

∣

> ǫn

}

⋂

A>0

)

≤ P

(

A∗
i

∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

>ǫn
∑

j∈[n]
A∗

j

)

= P

(

A∗
i

∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

>ǫnXA−ǫn

(

XA−
∑

j∈[n]
A∗

j

))

≤ P

(

A∗
i

∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

>ǫnXA−ǫn

∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

)

= P

(∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

>
ǫnXA

A∗
i +ǫn

)

≤ P

(

∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

>
ǫnXA
w̄

n
¯
w
¯
λ + ǫn

)

= P

(∣

∣

∣

∣

∑

j∈[n]
A∗

j −XA

∣

∣

∣

∣

>
1

τ

)

. (B.20)

Here, the second-to-last inequality comes from the fact that for any i ∈ [n], A∗
i is upper-bounded by either

vAi /λ
∗
A or vBi /λ∗

B (see (3.4) and (3.6)), thus, it is bounded by w̄/(n
¯
w
¯
λ) (due to (2.2) and Proposition 3.3).

Recall that XA = E

[

n
∑

j=1

A∗
j

]

(see Lemma A1-(iii)), we use the Hoeffding’s inequality (see e.g., Theorem

2, Hoeffding (1963)) on the random variables A∗
i , i ∈ [n] (bounded in [0, w̄/(n

¯
w
¯
λ)]) to obtain

P





∣

∣

∣

∣

∣

∣

∑

j∈[n]

A∗
j −XA

∣

∣

∣

∣

∣

∣

>
1

τ



 ≤2 exp











−2 1
τ2

∑

j∈[n]

(

w̄
n
¯
w
¯
λ

)2











=2 exp

[

−2n

τ2

(

¯
λ
¯
w

w̄

)2
]

. (B.21)

Now, we define C̃1 := 1
2

(

4
XA

λ̄

¯
λ

w̄2

¯
w2 + 1

XA

)2

(ln 8 + 1)
(

w̄

¯
w
¯
λ

)2

; due to the definition of τ , we have that26

C̃1 ·
1
ε21

ln
(

1
min{ε1,1/e}

)

≥ τ2

2 ln
(

8
ε1

)(

w̄

¯
w
¯
λ

)2

; therefore, for any n ≥ C̃1ε
−2
1 ln

(

1
min{ε1,1/e}

)

, we can deduce

that 2n
τ2

(

¯
w
¯
λ

w̄

)2

≥ ln
(

8
ε1

)

and thus,

2 exp

[

−2n

τ2

(

¯
λ
¯
w

w̄

)2
]

≤ 2 exp

[

− ln

(

8

ε1

)]

=
ε1
4
. (B.22)

26This is due to C̃1 ·
1
ε21

ln
(

1
min{ε1,1/e}

)

= 1
2

[

1
XA

(

4
ε1

λ̄

¯
λ

w̄2

¯
w2 + 1

ε1

)]2
· (ln(8)+1) ln

(

1
min{ε1,1/e}

)

·
(

w̄

¯
w
¯
λ

)2
≥ τ2

2
· ln

(

8
ε1

)

·
(

w̄

¯
w
¯
λ

)2
;

here, we have used Lemma A2 with ε̂ := ε1 and Ĉ := 8 and the fact that 1/ε ≥ 1.
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Combining (B.20), (B.21) and (B.22), we deduce that

P

({

A∗
i −

A∗
i

∑

j∈[n] A
∗
j

XA > ǫn

}

⋂

A>0

)

≤
ε1
4
, ∀n ≥ C̃1ε

−2
1 ln

(

1

min{ε1, 1/e}

)

. (B.23)

Finally, note that for any n, i ∈ [n] and x ≥ 0, we also have

P

({

A∗
i ·XA

∑

j∈[n] A
∗
j

≤ x

}

⋂

A>0

)

=P

















A∗
iXA
∑

j∈[n]

A∗
j

≤x











⋂











A∗
i −

A∗
iXA
∑

j∈[n]

A∗
j

≤ǫn











⋂

A>0






+P

















A∗
i ·XA
∑

j∈[n]

A∗
j

≤ x











⋂











A∗
i −

A∗
iXA
∑

j∈[n]

A∗
j

>ǫn











⋂

A>0







≤P ({A∗
i ≤ x+ǫn}) + P

















A∗
i −

A∗
iXA
∑

j∈[n]

A∗
j

>ǫn











⋂

A>0






. (B.24)

Therefore, define C1 := max{C̃0, C̃1}, for any n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

, from (B.1), we have

FAn
i
(x)− FA∗

i
(x)

=P (A=0) + P

({

A∗
i ·XA

∑

j∈[n] A
∗
j

≤ x

}

⋂

A>0

)

− FA∗

i
(x)

≤
ε1
4

+ P ({A∗
i ≤ x+ǫn}) + P

















A∗
i −

A∗
iXA
∑

j∈[n]

A∗
j

>ǫn











⋂

A>0






− FA∗

i
(x) (due to (B.19) and (B.24))

≤
ε1
4

+ FA∗

i
(x + ǫn) +

ε1
4

− FA∗

i
(x) (due to (B.23)). (B.25)

The final step is to bound the term FA∗

i
(x+ ǫn)− FA∗

i
(x); we present this as the following lemma.

Lemma B6. For any ǫ > 0, n > 0, i ∈ [n] and x ∈ [0,∞), we have FA∗

i
(x+ ǫ)− FA∗

i
(x) ≤

ǫλ∗

B

vB
i

.

Proof. If i ∈ ΩA(γ
∗), then A∗

i = AS
γ∗,i and

FAS
γ∗,i

(x+ ǫ)− FAS
γ∗,i

(x) =















(x+ǫ)λ∗

B

vB
i

− xλ∗

B

vB
i

=
ǫλ∗

B

vB
i

, if 0 ≤ x <
vB
i

λ∗

B

− ǫ

1−
xλ∗

B

vB
i

≤
ǫλ∗

B

vB
i

, if
vB
i

λ∗

B
− ǫ ≤ x ≤

vB
i

λ∗

B

1− 1 ≤ ǫvB
i

λ∗

B
, if x >

vB
i

λ∗

B

. (B.26)

On the other hand, if i /∈ ΩA(γ
∗), then A∗

i = AW
γ∗,i and we have

FAW
γ∗,i

(x + ǫ)− FAW
γ∗,i

(x) =



























(x+ǫ)λ∗

B

vB
i

− xλ∗

B

vB
i

=
ǫλ∗

B

vB
i

, if 0 ≤ x <
vA
i

λ∗

A

− ǫ

1−

vBi
λ∗
B

−
vAi
λ∗
A

vB
i

λ∗
B

− xλ∗

B

vB
i

≤ ǫλ∗

B

vB
i

, if
vA
i

λ∗

A
− ǫ ≤ x ≤ vA

i

λ∗

A

1− 1 ≤ ǫvB
i

λ∗

B
, if x >

vA
i

λ∗

A

. (B.27)

�
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Combine this lemma with (B.25) and recall the definition of ǫn (which induces that ǫnλ
∗
B/v

B
i ≤ ε1/2), we

conclude that FAn
i
(x)−FA∗

i
(x) ≤ ε1 for any n ≥ C1ε

−2
1 ln

(

1
min{ε1,1/e}

)

. Similarly, for n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

and i ∈ [n], we can deduce that FAn
i
(x)−FA∗

i
(x)≥−ε1 for any x ∈ [0,∞). We conclude that for any

n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

, sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣ ≤ ε1. The inequality sup
x∈[0,∞)

∣

∣FBn
i
(x)−FB∗

i
(x)
∣

∣ ≤ ε1

can be proved in a similar way. �

Appendix B.5. Proof of Lemma B5

In this proof, we will use the notation Ef(X) :=
∫∞

0
f(z)dFZ(x) and EIf(X) :=

∫

I
f(z)dFZ(x) for any

function f , random variable Z and interval I. To simplify the notation, let us define M := λ̄

¯
λ

w̄2

¯
w2 and we

denote by Ii the interval
[

0, vBi /λ∗
B

]

. For any ε2 ∈ (0, 1], we define δ2 := ε2
6+2M . We first consider the case

where i ∈ ΩA(γ
∗), i.e., B∗

i = BW
γ∗,i. Note that FAn

i
(x) = FA∗

i
(x) = 1 for any x ≥ 2XB (see Lemma A1-(iv));

the left-hand-side of (B.11) can be rewritten as follows.

∣

∣EFB∗

i
(An

i )− EFB∗

i
(A∗

i )
∣

∣

=

∣

∣

∣

∣

∣

∫

[0,2XB ]

FB∗

i
(x)dFAn

i
(x) −

∫

[0,2XB ]

FB∗

i
(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

≤
∣

∣

∣E[0,vB
i /λ∗

B ]FBW
γ∗,i

(An
i )− E[0,vB

i /λ∗

B ]FBW
γ∗,i

(A∗
i )
∣

∣

∣+

∣

∣

∣

∣

∣

∣

∣

∣

∫

(vB
i /λ∗

B
,2XB]

dFAn
i
(x)−

∫

(vB
i /λ∗

B
,2XB ]

dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

∣

∣

=
∣

∣

∣EIi
FBW

γ∗,i
(An

i )− EIi
FBW

γ∗,i
(A∗

i )
∣

∣

∣+
∣

∣FAn
i
(2XB)− FAn

i
(vBi /λ∗

B)− FA∗

i
(2XB) + FA∗

i
(vBi /λ∗

B)
∣

∣

≤
∣

∣

∣EIi
FBW

γ∗,i
(An

i )− EIi
FBW

γ∗,i
(A∗

i )
∣

∣

∣+ 2 sup
x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣ . (B.28)

We now focus on bounding the first term in (B.28). Let us define K :=
⌈

M
δ2

⌉

and K + 1 points xj such

that x0 := 0 and xj := xj−1 +
vB
i

λ∗

B
K , ∀j ∈ [K]. In other words, we have the partitions Ii =

⋃K
j=1 Pj

where we denote by P1 the interval [x0, x1] and by Pj the interval (xj−1, xj ] for j = 2, . . . ,K. For any
x, x′ ∈ Pj , ∀j ∈ [K], from the definition of BW

γ∗,i, we have

|FBW
γ∗,i

(x)− FBW
γ∗,i

(x′)| =
λ∗
A

vAi
|x− x′| ≤

λ∗
A

vAi
·
vBi
λ∗
B

·
1

K
≤

λ̄nw̄

¯
w

·
w̄

n
¯
w
¯
λ
·
1

K
=

M

K
≤ δ2. (B.29)

Now, we define the function g(x) :=
K
∑

j=1

FBW
γ∗,i

(xj)1Pj
(x). Here, 1Pj

is the indicator function of the set Pj .

From this definition and Inequality (B.29), we trivially have |FBW
γ∗,i

(x)− g(x)| ≤ δ2, ∀x ∈ Ii. Therefore,

∣

∣

∣EIi
FBW

γ∗,i
(An

i )− EIi
g(An

i )
∣

∣

∣ ≤

∫

Ii

∣

∣

∣FBW
γ∗,i

(x)− g(x)
∣

∣

∣ dFAn
i
(x) ≤

∫

Ii

δ2dFAn
i
(x) ≤ δ2, (B.30)

∣

∣

∣EIi
FBW

γ∗,i
(A∗

i )− EIi
g(A∗

i )
∣

∣

∣ ≤

∫

Ii

∣

∣

∣FBW
γ∗,i

(x)− g(x)
∣

∣

∣ dFA∗

i
(x) ≤

∫

Ii

δ2dFA∗

i
(x) ≤ δ2. (B.31)

Now, we note that for any j ∈ [K], FBW
γ∗,i

(xj) =
j
∑

m=0

[

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
]

; here, for the sake of

notation, we denote by x−1 an arbitrary negative number (that is FBW
γ∗,i

(x−1) = 0). Using this, we have:

|EIi
g (An

i )− EIi
g (A∗

i )|
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=

∣

∣

∣

∣

∣

∣

K
∑

j=1

FBW
γ∗,i

(xj)
[

EIi
1Pj

(An
i )− EIi

1Pj
(A∗

i )
]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

j=1

FBW
γ∗,i

(xj) [P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

j=1

(

j
∑

m=0

[

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
]

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

[

FBW
γ∗,i

(x0)− FBW
γ∗,i

(x−1)
]

K
∑

j=1

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

K
∑

m=1





[

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
]

K
∑

j=m

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]





∣

∣

∣

∣

∣

∣

. (B.32)

Note that P (An
i ∈ Pj)−P (A∗

i ∈ Pj)=FAn
i
(xj)−FAn

i
(xj−1)−FA∗

i
(xj)+FA∗

i
(xj−1).

27 Moreover, due to the
fact that x0 = 0 and FBW

γ∗,i
(x−1) = 0, we can rewrite the first term in (B.32) as follows:

∣

∣

∣

∣

∣

∣

[

FBW
γ∗,i

(x0)− FBW
γ∗,i

(x−1)
]

K
∑

j=1

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

FBW
γ∗,i

(0) ·





K
∑

j=1

(

FAn
i
(xj)− FAn

i
(xj−1)− FA∗

i
(xj) + FA∗

i
(xj−1)

)





∣

∣

∣

∣

∣

∣

=
∣

∣

∣FBW
γ∗,i

(0) ·
[

FAn
i
(xK)− FAn

i
(x0)− FA∗

i
(xK) + FA∗

i
(x0)

]

∣

∣

∣

≤FBW
γ∗,i

(0) · 2 sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣

≤2 sup
x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣. (B.33)

Now, recall that xm = xm−1 + vBi /(λ∗
B ·K), ∀m ∈ [K], by the definition of FBW

γ∗,i
, we deduce that

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1) =
vB
i

λ∗

B
K

λ∗

A

vA
i

≤ λ̄

¯
λ

w̄2

¯
w2

1
K = M

K , ∀m ∈ [K]. Therefore, the second term in (B.32) is

∣

∣

∣

∣

∣

∣

K
∑

m=1





[

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
]

K
∑

j=m

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

m=1





[

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
]

K
∑

j=m

[

FAn
i
(xj)− FAn

i
(xj−1)− FA∗

i
(xj) + FA∗

i
(xj−1)

]





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

m=1

([

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
]

[

FAn
i
(xK)− FAn

i
(xm−1)− FA∗

i
(xK) + FA∗

i
(xm−1)

]

)

∣

∣

∣

∣

∣

≤
K
∑

m=1

(

FBW
γ∗,i

(xm)− FBW
γ∗,i

(xm−1)
)

· 2 sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣

27For any j ≥ 2, this is trivially since Pj := (xj−1, xj ]. For P1 = [0, x1], we have that
P
(

An
i ∈ P1

)

−P
(

A∗
i ∈ P1

)

= P(An
i ∈ (0, x1])−P(A∗

i ∈ (0, x1])+P(An
i = 0)−P(A∗

i = 0); moreover, due to Lemma B1-(i), we
also note that P(An

i =0)=P(A∗
i =0).
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≤
K
∑

m=1

M

K
· 2 sup

x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣

=2M sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣. (B.34)

Inject (B.33) and (B.34) into (B.32), we obtain that

|EIi
g (An

i )− EIi
g (A∗

i )| ≤ (2 + 2M) sup
x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣. (B.35)

Apply the triangle inequality and combine (B.30), (B.31), (B.35), we have that:
∣

∣

∣EIi
FBW

γ∗,i
(An

i )− EIi
FBW

γ∗,i
(A∗

i )
∣

∣

∣ ≤ 2δ2 + (2 + 2M) sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣.

From this and (B.28), we obtain that

|EFB∗

i
(An

i )− EFB∗

i
(A∗

i )| ≤ 2δ2 + (4 + 2M) sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣. (B.36)

Recall the constant C1 indicated in Lemma B4, we define C2 := C1 · (6 + 2M)
2
[ln(6 + 2M) + 1] (note that

C2 does not depend on n nor ε2) and deduce that C2ε
−2
2 ln

(

1
min{ε2,1/e}

)

≥ C1δ
−2
2 ln

(

1
min{δ2,1/e}

)

.28 Take

ε1 := δ2, for any n ≥ C2ε
−2
2 ln

(

1
min{ε2,1/e}

)

, we have n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

and by applying Lemma B4,

we obtain that sup
x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣ ≤ ε1 = δ2 and thus by (B.36), we have:

|EFB∗

i
(An

i )− EFB∗

i
(A∗

i )| ≤ 2δ2 + (4 + 2M) δ2 = (6 + 2M)δ2 = ε2.

This is exactly (B.11). We can have a similar result in the case where i /∈ ΩA(γ
∗) (its proof is omitted here)

and we conclude the proof of this lemma. �

Appendix C. PROOF OF RESULTS IN SECTION 5

Appendix C.1. Proof of Lemma 5.2

Lemma 5.2. For any ε ∈ (0, 1], there exists a constant L0 > 0 (that does not depend on ε), such that for

any n ≥ L0ε
−2 ln

(

1
min{ε,1/e}

)

, for any game LBn(ζ), γ
∗ ∈ Sn, δ ∈ ∆γ∗(ζ, ε) and i ∈ [n], we have:

max

{

sup
y∗∈[0,2XB ]

∫

Xζ(y∗,ε)

dFAn
i
(x), sup

x∗∈[0,2XB ]

∫

Yζ(x∗,ε)

dFBn
i
(y)

}

≤ δ + ε. (5.3)

Fix y∗ ∈ [0, 2XB], we look for the condition on n such that
∫

Xζ(y∗,ε) dFAn
i
(x) ≤ δ+ε holds. The condition

corresponding to the inequality
∫

Yζ(x∗,ε)
dFBn

i
(x) ≤ ε + δ with x∗ ∈ [0, 2XB] can be proved similarly and

thus is omitted in this section.
First, we note that if Xζ(y

∗, ε) is empty,
∫

Xζ(y∗,ε)
dFAn

i
(x) = 0 and the result trivially holds. Now, let

us assume that Xζ(y
∗, ε) 6= ∅, we can write Xζ(y

∗, ε) = I1
⋃

I2
⋃

I3 with29

I1 := {x ∈ [0, 2XB] : x = y∗, |ζA(x, y
∗)− α| ≥ ε},

28Apply Lemma A2, we have C2ε
−2
2 ln

(

1
min{ε2,1/e}

)

=C1

(

6+2M
ε2

)2
[ln(6+2M)+1] ln

(

1
min{ε2,1/e}

)

≥C1

(

6+2M
ε2

)2
ln

(

6+2M
ε2

)

.

Moreover, since ε2
6+2M

= min
{

ε2
6+2M

, 1
e

}

= min
{

δ2,
1
e

}

(due to the fact that δ2 = ε2/(6 + 2M) < 1/e). Therefore, we have

C2ε
−2
2 ln

(

1
min{ε2,1/e}

)

≥ C1δ
−2
2 ln

(

1
min{δ2,1/e}

)

.
29Recall that by definition, βA(x, y∗) = α if x = y∗, βA(x, y∗) = 0 if x < y∗ and βA(x, y∗) = 1 if x > y∗
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I2 := {x ∈ [0, 2XB] : x < y∗, ζA(x, y
∗) ≥ ε},

I3 := {x ∈ [0, 2XB] : x > y∗, 1− ζA(x, y
∗) ≥ ε}.

It is trivial that I1 is either an empty set or a singleton; on the other hand, due to the monotonicity of
the CSF ζA (see (C2), Definition 2.3), I2 and I3 are either empty sets or half intervals. Moreover, for any
arbitrary distribution F , we have that

∫

x∈I′

dF (x) =







0 , if I ′ = ∅,
F (a) , if I ′ = {a}, i.e., I ′ is a singleton,
F (b)− F (a) , if I ′ = (a, b], i.e., I ′ is a half interval.

Therefore, we can deduce that

∫

Xζ(y∗,ε)

dFAn
i
(x)−

∫

Xζ(y∗,ε)

dFA∗

i
(x) =

3
∑

j=1

(

∫

Ij

dFAn
i
(x)−

∫

Ij

dFA∗

i
(x)

)

≤ 5 sup
x∈[0,∞)

|FAn
i
(x) − FA∗

i
(x)|

Recall the constant C1 indicated in Lemma B4, we define L0 := C15
2(ln(5) + 1). Note that L0 does not de-

pend on the choice of y∗. Take ε1 := ε/5, we can deduce that L0ε
−2 ln

(

1
min{ε,1/e}

)

≥ C1ε
2
1 ln

(

1
min{ε1,1/e}

)

.30

Therefore, for any n ≥ L0ε
−2 ln

(

1
min{ε,1/e}

)

, we have n ≥ C1ε
2
1 ln

(

1
min{ε1,1/e}

)

and by Lemma B4,

sup
x∈[0,∞)

|FAn
i
(x)− FA∗

i
(x)| ≤ ε1 = ε/5. Hence, for any n ≥ L0ε

−2 ln
(

1
min{ε,1/e}

)

and δ ∈ ∆γ∗(ζ, ε),

∫

Xζ(y∗,ε)

dFAn
i
(x) ≤

∫

Xζ(y∗,ε)

dFA∗

i
(x) + 5 · ε/5 ≤ δ + ε.

�

Appendix C.2. Proof of Theorem 5.3

Theorem 5.3. (Approximate equilibria of the Lottery Blotto game).

(i) In any game LBn(ζ), there exists a positive number ε ≤ Õ(n−1/2) such that for any γ∗ ∈ Sn and
δ ∈ ∆γ∗(ζ, ε), the following inequalities hold for any pure strategy x

A and x
B of players A and B:

ΠA
ζ (x

A, IUγ∗

B ) ≤ ΠA
ζ (IU

γ∗

A , IUγ∗

B ) + (8δ + 13ε)WA, (5.4)

ΠB
ζ (IU

γ∗

A ,xB) ≤ ΠB
ζ (IU

γ∗

A , IUγ∗

B ) + (8δ + 13ε)WB. (5.5)

(ii) For any ε ∈ (0, 1], there exists a constant L∗ > 0 (that does not depend on ε) such that in any game

LBn(ζ) where n ≥ L∗ε−2 ln
(

1
min{ε,1/e}

)

, (5.4) and (5.5) hold for any γ∗ ∈ Sn, δ ∈ ∆γ∗(ζ, ε) and any

pure strategy x
A,xB of players A and B.

Proof. We first give the proof of Result (ii). For the sake of brevity, we only focus on (5.4). The proof
that (5.5) holds under the same condition can be done similarly and thus is omitted. Note that in this proof,
we often use the Fubini’s Theorem to exchange the order of the double integrals.

30Note that ε1 = ε
5
and apply Lemma A2, L0 · ε−2 ln

(

1
min{ε,1/e}

)

= C1
(

5
ε

)2
· (ln(5)+1) ln

(

1
min{ε,1/e}

)

≥ C1 ·
(

5
ε

)2
ln

(

5
ε

)

;

moreover, ε
5
= min{ ε

5
, 1
e
} since ε ≤ 1; thus, we can rewrite ln

(

5
ε

)

= ln
(

1
min{ε/5,1/e}

)

= ln
(

1
min{ε1,1/e}

)

.
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Recall that xA = (xA
i )i∈[n], by the definition of the payoff functions in LBn(ζ), (5.4) can be rewritten as

n
∑

i=1



vAi

∞
∫

0

ζA
(

xA
i , y

)

dFBn
i
(y)



 −
n
∑

i=1



vAi

∞
∫

0

∞
∫

0

ζA (x, y) dFAn
i
(x) dFBn

i
(y)



 ≤ 8δ + 13ε. (C.1)

We now prove that (C.1) holds under appropriate parameters values. To do this, we prepare two useful
lemmas as follows.

Lemma C1. For any pair of CSFs ζ = (ζA, ζB), any ε ∈ (0, 1] and x∗ ∈ [0, 2XB], the following results hold:

(i) For any n, i ∈ [n] and δ ∈ ∆γ∗(ζ, ε),

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x∗, y) dFB∗

i
(y)−

∞
∫

0

βA (x∗, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤ δ + ε. (C.2)

(ii) There exists a constant L1 > 0 such that for any n ≥ L1ε
−2 ln

(

1
min{ε,1/e}

)

, i ∈ [n] and δ ∈ ∆γ∗(ζ, ε),

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x∗, y) dFBn
i
(y)−

∞
∫

0

βA (x∗, y) dFBn
i
(y)

∣

∣

∣

∣

∣

∣

≤ δ + 2ε. (C.3)

Lemma C2. For any ε ∈ (0, 1], there exists a constant L2 > 0 such that for any n ≥ L2ε
−2 ln

(

1
min{ε,1/e}

)

,

any game LBn(ζ), any δ ∈ ∆γ∗(ζ, ε) and i ∈ [n], we have:

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y) dFBn
i
(y)−

∞
∫

0

ζA (x, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤ 2δ + 4ε, ∀x ≥ 0, (C.4)

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

ζA (x, y) dFA∗

i
(x)dFB∗

i
(y)−

∞
∫

0

∞
∫

0

ζA (x, y) dFA∗

i
(x)dFBn

i
(y)

∣

∣

∣

∣

∣

∣

≤ 2δ + 3ε, (C.5)

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

ζA (x, y) dFBn
i
(y)dFA∗

i
(x)−

∞
∫

0

∞
∫

0

ζA (x, y) dFBn
i
(y)dFAn

i
(x)

∣

∣

∣

∣

∣

∣

≤ 2δ + 4ε. (C.6)

Lemma C1 states the relation between the first term appearing in the left-hand-side of (C.1) and the
corresponding terms when we replace the CSF ζ by the Blotto functions β and replace FBn

i
by FB∗

i
. These

relations are useful to connect the statement we want to prove and the results obtained in Section 4. A proof
of Lemma C1 is given in Appendix C.3. On the other hand, Lemma C2 indicates several useful inequalities
involving the players’ payoffs in the game LBn (when they play according to the IUγ∗

strategy or playing
such that the marginals are FA∗

i
, FB∗

i
). Its proof is given in Appendix C.4 that is based on Lemma C1 and

the convergence of the distributions FAn
i
, FBn

i
toward FA∗

i
, FB∗

i
(i.e., Lemma B4).

We have another remark: for any n and i ∈ [n],

P(A∗
i = B∗

i = x) = 0, ∀x ≥ 0. (C.7)

This can be trivially proved as follows: first, P(A∗
i = B∗

i = x) = P(A∗
i = x)P(B∗

i = x) since they are
independent; now, if x > 0, both FA∗

i
and FB∗

i
are continuous at x and thus P(A∗

i = x) = P(B∗
i = x) = 0;

on the other hand, if x = 0, in the case where i ∈ ΩA(γ
∗), since A∗

i = AS
γ∗,i, we have P(A∗

i = x) = 0, in the

case where i /∈ ΩA(γ
∗), since B∗

i = BS
γ∗,i, we have P(B∗

i = x) = 0.
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Finally, use Lemma C1 and C2 and take L∗ = max{L1, L2}, for any n ≥ L∗ε−2 ln
(

1
min{ε,1/e}

)

,

δ ∈ ∆γ∗(ζ, ε) and any pure strategy x
A of player A, we have:

n
∑

i=1



vAi

∞
∫

0

ζA
(

xA
i , y

)

dFBn
i
(y)





≤
n
∑

i=1



vAi

∞
∫

0

ζA
(

xA
i , y

)

dFB∗

i
(y)



+

n
∑

i=1

vAi (2δ + 4ε) (due to (C.4))

=

n
∑

i=1



vAi

∞
∫

0

ζA
(

xA
i , y

)

dFB∗

i
(y)



+ 2δ + 4ε (note that
∑n

i=1
vAi = 1)

≤
n
∑

i=1



vAi

∞
∫

0

βA

(

xA
i , y

)

dFB∗

i
(y)



+ 3δ + 5ε (due to (C.2))

=

n
∑

i=1

[

vAi
(

αP(B∗
i = xA

i ) + P(B∗
i < xA

i )
)]

+ 3δ + 5ε

≤
n
∑

i=1

vAi FB∗

i

(

xA
i

)

+ 3δ + 5ε (since α ≤ 1)

≤
n
∑

i=1



vAi

∞
∫

0

FB∗

i
(x)dFA∗

i
(x)



+ 3δ + 5ε (due to Lemma B3)

=
n
∑

i=1



vAi

∞
∫

0

P(B∗
i < x)dFA∗

i
(x)



 + 3δ + 5ε (due to (C.7))

≤
n
∑

i=1



vAi

∞
∫

0

∞
∫

0

βA (x, y) dFB∗

i
(y) dFA∗

i
(x)



+ 3δ + 5ε

≤
n
∑

i=1



vAi

∞
∫

0

∞
∫

0

ζA (x, y) dFB∗

i
(y) dFA∗

i
(x)



+ 4δ + 6ε (due to (C.2))

≤
n
∑

i=1



vAi

∞
∫

0

∞
∫

0

ζA (x, y) dFA∗

i
(x)dFBn

i
(y)



+ 6δ + 9ε (due to (C.5))

≤
n
∑

i=1



vAi

∞
∫

0

∞
∫

0

ζA (x, y) dFBn
i
(y)dFAn

i
(x)



+ 8δ + 13ε (due to (C.6)).

Hence, we conclude that for n ≥ L∗ε−2 ln
(

1
min{ε,1/e}

)

(C.1) holds and thus, (5.4) also holds.

To prove that Result (ii) implies Result (i), we can proceed similarly to the proof that Theorem 4.3-(ii)
implies Theorem 4.3-(i) (see Appendix B). We conclude this proof.

�
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Appendix C.3. Proof of Lemma C1

First, we prove (C.2). Note that FB∗

i
(y) = 1, ∀y > 2XB (see Lemma A1-(iv)), for any n, i ∈ [n] and

δ ∈ ∆γ∗(ζ, ε), we have

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x∗, y) dFB∗

i
(y)−

∞
∫

0

βA (x∗, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤

∫

Yζ(x∗,ε)

|ζA(x
∗, y)− βA(x

∗, y)|dFB∗

i
(y) +

∫

[0,∞)\Yζ(x∗,ε)

|ζA(x
∗, y)− βA(x

∗, y)|dFB∗

i
(y)

=

∫

Yζ(x∗,ε)

|1− ζB(x
∗, y)− 1 + βB(x

∗, y)|dFB∗

i
(y) +

∫

[0,2XB ]\Yζ(x∗,ε)

|1− ζB(x
∗, y)− 1 + βB(x

∗, y)| dFB∗

i
(y)

=

∫

Yζ(x∗,ε)

|ζB(x
∗, y)− βB(x

∗, y)|dFB∗

i
(y) +

∫

[0,2XB ]\Yζ(x∗,ε)

|ζB(x
∗, y)− βB(x

∗, y)| dFB∗

i
(y)

≤

∫

Yζ(x∗,ε)

dFB∗

i
(y) +

∫

[0,2XB ]\Yζ(x∗,ε)

εdFB∗

i
(y)

≤δ + ε. (C.8)

Here, the second-to-last inequality comes from the fact that 0 ≤ ζB(x, y), βB(x, y) ≤ 1 for any x, y and the
definition of Yζ(x

∗, ε) while the last inequality is due to the definition of ∆γ∗(ζ, ε).
Now, in order to prove (C.3), we proceed similarly as in (C.8) to show that

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x∗, y) dFBn
i
(y)−

∞
∫

0

βA (x∗, y) dFBn
i
(y)

∣

∣

∣

∣

∣

∣

≤

∫

Yζ(x∗,ε)

dFBn
i
(y) +

∫

[0,2XB ]\Yζ(x∗,ε)

εdFBn
i
(y)

≤

∫

Yζ(x∗,ε)

dFBn
i
(y) + ε. (C.9)

Finally, by Lemma 5.2, for any n ≥ L0ε
−2 ln

(

1
min{ε,1/e}

)

and δ∈∆γ∗(ζ, ε), we have
∫

Yζ(x∗,ε)
dFBn

i
(y)≤ε+δ.

Combine this with (C.9), we conclude that (C.3) holds for any n ≥ L0ε
−2 ln

(

1
min{ε,1/e}

)

and δ ∈ ∆γ∗(ζ, ε).

Take L1 := L0, we conclude the proof.

�

Appendix C.4. Proof of Lemma C2

In this proof, we use the notation Eh(X, y) :=
∫∞

0 h(x, y)dFX(x) and Eh(x, Y ) :=
∫∞

0 h(x, y)dFY (y)
where X,Y are arbitrary non-negative random variables and h is any function.

Proof of (C.4): For any i ∈ [n] and x ≥ 0, we have

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y) dFBn
i
(y)−

∞
∫

0

ζA (x, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤ |EζA(x,B
n
i )−EβA(x,B

n
i )|+|EβA(x,B

n
i )−EβA(x,B

∗
i )|+|EβA(x,B

∗
i )−EζA(x,B

∗
i )| . (C.10)

We notice that upper-bounds of the first and third terms in the right-hand-side of (C.10) are given by (C.3)
and (C.2) from Lemma C1. We focus on finding an upper-bound of the second term of (C.10); to do this,
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we rewrite this term as follows.

EβA(x,B
n
i ) =

∫

y<x

dFBn
i
(y) + αP(Bn

i = x) = FBn
i
(x) − (1− α)P(Bn

i = x), (C.11)

and EβA(x,B
∗
i ) =

∫

y<x

dFB∗

i
(y) + αP(B∗

i = x) = FB∗

i
(x) − (1− α)P(B∗

i = x). (C.12)

If α = 1, we trivially have |EβA(x,B
n
i )− EβA(x,B

∗
i )| =

∣

∣FBn
i
(x)− FB∗

i
(x)
∣

∣. In the following, we assume
that α < 1 and consider three cases:

Case 1: If x = 0. From Lemma B1-(i), we have P(Bn
i = 0) = P(B∗

i = 0) and thus

|EβA(0, B
n
i )− EβA(0, B

∗
i )| =

∣

∣

∣

∣

∫

y<0

dFBn
i
(y)−

∫

y<0

dFB∗

i
(y) + αP(Bn

i = 0)− αP(B∗
i = 0)

∣

∣

∣

∣

= 0.

Case 2: If x > 0, P(B∗
i = x) = 0 by definition. On the other hand, from Results (ii) and (iii) of

Lemma B1, we have P(Bn
i = x) ≤ Dn−1 where we define D :=

(

1− ¯
λ

λ̄
¯
w2

w̄2

)

. Following (B.14), for any

n ≥ C0 ln
(

1
min{ε,1/e}

)

(here, C0 is defined as in Appendix B.2), we have Dn−1 ≤ ε
2(1−α) . Therefore, for any

n ≥ C0 ln
(

1
min{ε,1/e}

)

, we have

|EβA(x,B
n
i )− EβA(x,B

∗
i )|

≤|FBn
i
(x) − FB∗

i
(x)|+ (1 − α) |P(Bn

i = x)| (due to (C.11)− (C.12))

≤ sup
x∈[0,∞)

|FBn
i
(x)− FB∗

i
(x)|+ (1− α)

ε

2(1 − α)

= sup
x∈[0,∞)

|FBn
i
(x)− FB∗

i
(x)|+

ε

2
.

In conclusion, |EβA(x,B
n
i )− EβA(x,B

∗
i )| ≤ sup

x∈[0,∞)

|FBn
i
(x)− FB∗

i
(x)|+ ε/2 for any x ≥ 0, α ∈ [0, 1] and

n ≥ C0 ln
(

1
min{ε,1/e}

)

. Now, let us define C′
1 = C1 · 4(ln(2)+ 1) (where C1 is indicated in Lemma B4); take

ε1 := ε/2, we have C′
1ε

−2 ln
(

1
min{ε,1/e}

)

≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

. Therefore, for any n ≥ C′
1ε

−2 ln
(

1
min{ε,1/e}

)

,

we have n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

and apply Lemma B4, we have sup
x∈[0,∞)

|FBn
i
(x)− FB∗

i
(x)| ≤ ε1 = ε/2.

We deduce that for any x ≥ 0, for any n ≥ max{C0, C
′
1}ε

−2 ln
(

1
min{ε,1/e}

)

and i ∈ [n], we have:

|EβA(x,B
n
i )− EβA(x,B

∗
i )| ≤ ε/2 + ε/2 = ε. (C.13)

Finally, apply Lemma C1 to (C.10) to bounds the first and third term of its right-hand-side, use (C.13) to

bound its second-term and take L(C.4) = max{L1, C0, C
′
1}, we deduce that for any n ≥ L(C.4)ε

−2 ln
(

1
min{ε,1/e}

)

and δ ∈ ∆γ∗(ζ, ε),
∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y) dFBn
i
(y)−

∞
∫

0

ζA (x, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤ (δ + 2ε) + ε+ (δ + ε) = 2δ + 4ε.

Proof of (C.5): To prove this inequality, we note that similar to the proof of (C.2) in Lemma C1 (by replacing
FB∗

i
by FA∗

i
and replacing ζA(x

∗, y), βA(x
∗, y) by ζA(x, y

∗), βA(x, y
∗)), we can prove that for any n, i ∈ [n],

δ ∈ ∆γ∗(ζ, ε) and y∗ ∈ [0, 2XB], the following inequality holds
∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y∗) dFA∗

i
(x)−

∞
∫

0

βA (x, y∗) dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

≤ δ + ε. (C.14)
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Using this, we have

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

ζA (x, y) dFA∗

i
(x)dFB∗

i
(y)−

∞
∫

0

∞
∫

0

ζA (x, y) dFA∗

i
(x)dFBn

i
(y)

∣

∣

∣

∣

∣

∣

≤

∞
∫

0

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA(x, y)dFA∗

i
(x)−

∞
∫

0

βA(x, y)dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

dFB∗

i
(y)

+

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

βA(x, y)dFA∗

i
(x)dFB∗

i
(y)−

∞
∫

0

∞
∫

0

βA(x, y)dFA∗

i
(x)dFBn

i
(y)

∣

∣

∣

∣

∣

∣

+

∞
∫

0

∣

∣

∣

∣

∣

∣

∞
∫

0

βA(x, y)dFA∗

i
(x)−

∞
∫

0

ζA(x, y)dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

dFBn
i
(y)

≤

∫ ∞

0

(δ+ε)dFB∗

i
(y)+

∣

∣

∣

∣

∫ ∞

0

EβA(x,B
∗
i )dFA∗

i
(x)−

∫ ∞

0

EβA(x,B
n
i )dFA∗

i
(x)

∣

∣

∣

∣

+

∫ ∞

0

(δ+ε)dFBn
i
(y)

≤2δ+2ε+

∫ ∞

0

|EβA(x,B
n
i )− EβA(x,B

∗
i )| dFA∗

i
(x).

Finally, take L(C.5) = max{C0, C
′
1} and apply (C.13), we deduce that for any n ≥ L(C.5)ε

−2 ln
(

1
min{ε,1/e}

)

,

(C.5) holds.
Proof of (C.6) To prove this inequality, we note that similar to the proof of (C.3) in Lemma C1 (by

replacing FBn
i

by FAn
i

and replacing ζA(x
∗, y), βA(x

∗, y) by ζA(x, y
∗), βA(x, y

∗)), we can prove that for

n ≥ L1ε
−2 ln

(

1
min{ε,1/e}

)

, i ∈ [n] and δ ∈ ∆γ∗(ζ, ε),

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y∗) dFAn
i
(x)−

∞
∫

0

βA (x, y∗) dFAn
i
(x)

∣

∣

∣

∣

∣

∣

≤ δ + 2ε. (C.15)

Now, similar to the proof leading to (C.13), we can prove that for any n ≥ max{C0, C
′
1}ε

−2 ln
(

1
min{ε,1/e}

)

,

i ∈ [n] and y ≥ 0, we have
|EβA(A

∗
i , y)− EβA(A

n
i , y)| ≤ ε. (C.16)

Finally, take L(C.6) = max{L1, C0, C
′
1}, for any n ≥ L(C.6)ε

−2 ln
(

1
min{ε,1/e}

)

, i ∈ [n] and δ ∈ ∆γ∗(ζ, ε),

we have
∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

ζA (x, y) dFBn
i
(y)dFA∗

i
(x)−

∞
∫

0

∞
∫

0

ζA (x, y) dFBn
i
(y)dFAn

i
(x)

∣

∣

∣

∣

∣

∣

≤

∞
∫

0

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA(x, y)dFA∗

i
(x)−

∞
∫

0

βA(x, y)dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

dFBn
i
(y)

+

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

βA(x, y)dFA∗

i
(x)dFBn

i
(y)−

∞
∫

0

∞
∫

0

βA(x, y)dFAn
i
(x)dFBn

i
(y)

∣

∣

∣

∣

∣

∣

+

∞
∫

0

∣

∣

∣

∣

∣

∣

∞
∫

0

βA(x, y)dFAn
i
(x) −

∞
∫

0

ζA(x, y)dFAn
i
(x)

∣

∣

∣

∣

∣

∣

dFBn
i
(y)
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≤

∞
∫

0

(δ + ε)dFA∗

i
(x) +

∞
∫

0

|EβA(A
∗
i , y)− EβA(A

n
i , y)| dFBn

i
(y)+

∞
∫

0

(δ + 2ε)dFAn
i
(x) (due to (C.14) and (C.15))

≤2δ + 4ε (due to (C.16)).

In conclusion, take L2 := max{L(C.4), L(C.5), L(C.6)}, we conclude the proof of this lemma. �

Appendix C.5. Remark on the Lottery Blotto games with continuous CSFs

In this section, we present and prove the remark stating that under the additional assumption that the
CSFs ζA and ζB are Lipschitz continuous on [0, 2XB] × [0, 2XB], the statements in Theorem 5.3 also hold
with (C.17) and (C.18) (see below) in places of (5.4) and (5.5). For the sake of completeness, we formally
state this result as follows.

Remark C3. For any CSF ζA and ζB that are Lipschitz continuous on [0, 2XB] × [0, 2XB], the following
results hold (here, we denote ζ := (ζA, ζB)):

(i) In any game LBn(ζ), there exists a positive number ε ≤ Õ(n−1/2) such that for any γ∗ ∈ Sn and
δ ∈ ∆γ∗(ζ, ε), the following inequalities hold for any pure strategy x

A and x
B of players A and B:

ΠA
ζ (x

A, IUγ∗

B ) ≤ ΠA
ζ (IU

γ∗

A , IUγ∗

B ) + (2δ + 5ε)WA, (C.17)

ΠB
ζ (IU

γ∗

A ,xB) ≤ ΠB
ζ (IU

γ∗

A , IUγ∗

B ) + (2δ + 5ε)WB. (C.18)

(ii) For any ε ∈ (0, 1], there exists a constant Lζ > 0 (that depends on ζ but does not depend on ε) such

that in any game LBn(ζ) where n ≥ Lζε
−2 ln

(

1
min{ε,1/e}

)

, (C.17) and (C.18) hold for any γ∗ ∈ Sn,

δ ∈ ∆γ∗(ζ, ε) and any pure strategy x
A,xB of players A and B.

Proof. We define the Lipschitz constant of ζA, ζB respectively by LζA ,LζB and let Lζ := max{LζA ,LζB}.
We focus on proving Result (ii) of this Remark; Result (i) can be deduced from Result (ii) and thus
is omitted.

Step 1 : We prove that for any x∗, y∗ ∈ [0, 2XB], there exists a constant Cζ (that does not depend on ε

nor x∗, y∗) such that for any n ≥ Cζε
−2 ln

(

1
min{ε,1/e}

)

, the following inequalities hold:

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y∗) dFAn
i
(x)−

∞
∫

0

ζA (x, y∗) dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

≤ ε, (C.19)

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x∗, y) dFBn
i
(y)−

∞
∫

0

ζA (x∗, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤ ε. (C.20)

The proof of this statement is quite similar to the proof of Lemma B5 (see Appendix B.5). We present
here the proof of (C.19); the proof of (C.20) can be done similarly.

Fix y∗ ∈ [0, 2XB]; to simplify the notation, we define f(x) := ζA(x, y
∗) and ε̃1 := ε

4+4XBLζ
. From Lemma A1,

FAn
i
(x) = FA∗

i
(x) = 1, ∀x > 2XB; therefore, the left-hand-side of (C.19) can be rewritten as follows.

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y∗) dFAn
i
(x)−

∞
∫

0

ζA (x, y∗) dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ 2XB

0

f(x)dFAn
i
(x)−

∫ 2XB

0

f(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

. (C.21)
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Let us define K :=
⌈2XBLζ

ε̃1

⌉

and K+1 points xj such that x0 := 0 and xj := xj−1+
2XB

K , ∀j ∈ [K]. In other

words, we have the partitions [0, 2XB] =
⋃K

j=1 Pj where we denote by P1 the interval [x0, x1] and by Pj the
interval (xj−1, xj ] for j = 2, . . . ,K. For any x, x′ ∈ Pj , ∀j ∈ [K], since f is Lipschitz continuous, we have

|f(x)− f(x′)| ≤ Lζ |x− x′| ≤ Lζ
2XB

K
≤ ε̃1. (C.22)

Now, we define the function g(x) :=
K
∑

j=1

f(xj)1Pj
(x). Here, 1Pj

is the indicator function of the set Pj . From

this definition and Inequality (C.22), we have |f(x)− g(x)| ≤ ε̃1, ∀x ∈ [0, 2XB]. Therefore,
∣

∣

∣

∣

∣

∫ 2XB

0

f(x)dFAn
i
(x)−

∫ 2XB

0

g(x)dFAn
i
(x)

∣

∣

∣

∣

∣

≤

∫ 2XB

0

ε̃1dFAn
i
(x) ≤ ε̃1, (C.23)

∣

∣

∣

∣

∣

∫ 2XB

0

f(x)dFA∗

i
(x)−

∫ 2XB

0

g(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

≤

∫ 2XB

0

ε̃1dFA∗

i
(x) ≤ ε̃1. (C.24)

Now, we note that for any j ∈ [K], f(xj) =
j
∑

m=0
[f(xm)− f(xm−1)]; here, by convention, we denote by x−1

an arbitrary negative number and set f(x−1) = 0. Using this, we have:
∣

∣

∣

∣

∣

∫ 2XB

0

g(x)dFAn
i
(x)−

∫ 2XB

0

g(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

j=1

f(xj)

[

∫ 2XB

0

1Pj
(x)dFAn

i
(x)−

∫ 2XB

0

1Pj
(x) dFA∗

i
(x)

]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

j=1

f(xj) [P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

j=1

(

j
∑

m=0

[f(xm)− f(xm−1)] [P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

[f(x0)− f(x−1)]

K
∑

j=1

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

K
∑

m=1



[f(xm)− f(xm−1)]

K
∑

j=m

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]





∣

∣

∣

∣

∣

∣

. (C.25)

Note that P (An
i ∈ Pj)−P (A∗

i ∈ Pj)=FAn
i
(xj)−FAn

i
(xj−1)−FA∗

i
(xj)+FA∗

i
(xj−1).

31 Now, we can rewrite
the first term in (C.25) as follows.

∣

∣

∣

∣

∣

∣

[f(x0)− f(x−1)]

K
∑

j=1

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

f(0) ·





K
∑

j=1

(

FAn
i
(xj)− FAn

i
(xj−1)− FA∗

i
(xj) + FA∗

i
(xj−1)

)





∣

∣

∣

∣

∣

∣

31For any j ≥ 2, this is trivially since Pj := (xj−1, xj ]. For P1 = [0, x1], we have that
P
(

An
i ∈ P1

)

−P
(

A∗
i ∈ P1

)

= P(An
i ∈ (0, x1])−P(A∗

i ∈ (0, x1])+P(An
i = 0)−P(A∗

i = 0); moreover, due to Lemma B1-(i), we
also note that P(An

i =0)=P(A∗
i =0).
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=
∣

∣f(0) ·
[

FAn
i
(xK)− FAn

i
(x0)− FA∗

i
(xK) + FA∗

i
(x0)

]∣

∣

≤2 sup
x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣. (C.26)

Here, the last inequality comes from the fact that f(x) ≤ 1, ∀x ∈ [0, 2XB] (since it is a CSF).

Now, we recall that for any m ∈ [K], f(xm)− f(xm−1) ≤
2XBLζ

K . Therefore, the second term in (C.25) is
∣

∣

∣

∣

∣

∣

K
∑

m=1



[f(xm)− f(xm−1)]

K
∑

j=m

[P (An
i ∈ Pj)−P (A∗

i ∈ Pj)]





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

K
∑

m=1



[f(xm)− f(xm−1)]

K
∑

j=m

[

FAn
i
(xj)− FAn

i
(xj−1)− FA∗

i
(xj) + FA∗

i
(xj−1)

]





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

K
∑

m=1

(

[f(xm)− f(xm−1)]
[

FAn
i
(xK)− FAn

i
(xm−1)− FA∗

i
(xK) + FA∗

i
(xm−1)

])

∣

∣

∣

∣

∣

≤
K
∑

m=1

2XBLζ

K
· 2 sup

x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣

=4XBLζ sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣. (C.27)

Inject (C.26) and (C.27) into (C.25), we obtain that
∣

∣

∣

∣

∣

∫ 2XB

0

g(x)dFAn
i
(x)−

∫ 2XB

0

g(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

≤ (2 + 4XBLζ) sup
x∈[0,∞)

∣

∣FAn
i
(x)− FA∗

i
(x)
∣

∣. (C.28)

Apply the triangle inequality and combine (C.23), (C.24), (C.28), we have that:
∣

∣

∣

∣

∣

∫ 2XB

0

f(x)dFAn
i
(x) −

∫ 2XB

0

f(x)dFA∗

i
(x)

∣

∣

∣

∣

∣

≤ 2ε̃1 + (2 + 4XBLζ) sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣. (C.29)

Recall the constant C1 indicated in Lemma B4, we define Cζ := C1 · (4 + 4XBLζ)
2
[ln(4 + 4XBLζ) + 1]

(note that Cζ does not depend on n nor ε) and deduce that Cζε
−2 ln

(

1
min{ε,1/e}

)

≥ C1ε̃
−2
1 ln

(

1
min{ε̃1,1/e}

)

.32

Take ε1 := ε̃1, for any n ≥ Cζε
−2 ln

(

1
min{ε,1/e}

)

, we have n ≥ C1ε
−2
1 ln

(

1
min{ε1,1/e}

)

and by applying

Lemma B4, we obtain that sup
x∈[0,∞)

∣

∣FAn
i
(x) − FA∗

i
(x)
∣

∣ ≤ ε1 = ε̃1 and thus by (C.21) and (C.29), we have:

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y∗) dFAn
i
(x)−

∞
∫

0

ζA (x, y∗) dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

≤ 2ε̃1 + (2 + 4XBLζ) ε̃1 = (4 + 4XBLζ)ε̃1 = ε.

This is exactly (C.19).
Step 2 : Based on (C.19) and (C.20), we can trivially deduce that the following inequalities hold for any

n ≥ Cζε
−2 ln

(

1
min{ε,1/e}

)

and i ∈ [n]:

∣

∣

∣

∣

∣

∣

∞
∫

0

ζA (x, y) dFBn
i
(y)−

∞
∫

0

ζA (x, y) dFB∗

i
(y)

∣

∣

∣

∣

∣

∣

≤ ε, ∀x ≥ 0, (C.30)

32Apply Lemma A2, Cζε
−2 ln

(

1
min{ε,1/e}

)

=C1

(

4+4XBLζ

ε

)2 [
ln(4+4XBLζ)+1

]

ln
(

1
min{ε,1/e}

)

≥C1

(

4+4XBLζ

ε

)2
ln

(

4+4XBLζ

ε

)

.

Moreover, since ε
4+4XBLζ

= min
{

ε
4+4XBLζ

, 1
e

}

= min
{

ε̃1,
1
e

}

(due to the fact that ε̃1 = ε
4+4XBLζ

< 1
e
).
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∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

ζA (x, y) dFB∗

i
(y) dFA∗

i
(x)−

∞
∫

0

∞
∫

0

ζA (x, y) dFBn
i
(y) dFA∗

i
(x)

∣

∣

∣

∣

∣

∣

≤ ε, (C.31)

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∫

0

ζA (x, y) dFA∗

i
(x) dFBn

i
(y)−

∞
∫

0

∞
∫

0

ζA (x, y) dFAn
i
(x) dFBn

i
(y)

∣

∣

∣

∣

∣

∣

≤ ε. (C.32)

We notice that the left-hand-sides of these inequalities are exactly the terms considered in Lemma C2;
moreover, the upper-bounds given in(C.30), (C.31) and (C.32) are smaller than that in (C.4), (C.5) and
(C.6) of Lemma C2.

Step 3 : To complete the proof of Remark C3, we follow the proof of Theorem 5.3 where we use (C.30),
(C.31) and (C.32) instead of (C.4), (C.5) and (C.6). By doing this, we obtain (C.17) and (C.18). �

Appendix D. PROOF OF LEMMA 5.6 AND THEOREM 5.7

Appendix D.1. Proof of Lemma 5.6

(i) We first consider the games LBn(µ
R).

Step 1: We want to prove that there exists δ0 = O(ε−1/R − 1) such that XµR(y∗, ε) ⊂ [y∗ − δ0, y
∗ + δ0]

for any y∗ ∈ [0, 2XB]. Note that this is trivial if XµR(y∗, ε) = ∅. In the following, we consider the case where
XµR(y∗, ε) 6= ∅. We denote by f : [0, 2XB]× [0, 2XB] → [0, 1] the function:

f(x, y∗) := |µR
A(x, y

∗)− βA(x, y
∗)| =











αxR

αxR+(1−α)(y∗)R , if x < y∗

0, if x = y∗

1− αxR

αxR+(1−α)(y∗)R , if x > y∗
.

Trivially, y∗ /∈ XµR(y∗, ε). Take an arbitrary x ∈ XµR(y∗, ε). If x < y∗, we have

f(x, y∗) ≥ ε ⇒
αxR

αxR + (1 − α)(y∗)R
≥ ε ⇒

x

y∗
≥

(

ε

1− ε

1− α

α

)1/R

.

Therefore, 0 < y∗ − x ≤ y∗
[

1−
(

ε
1−ε

1−α
α

)1/R
]

. Here, we note that the right-hand side is positive (due to

the condition ε < α); moreover, it is upper-bounded by O(1 − ε1/R) ≤ O(ε−1/R − 1).
On the other hand, if x > y∗, we have:

f(x, y∗) ≥ ε ⇒ 1−
αxR

αxR + (1− α)(y∗)R
≥ ε ⇒

x

y∗
≤

(

1− ε

ε

1− α

α

)1/R

.

Therefore we have 0 < x − y∗ ≤ y∗
[

(

1−ε
ε

1−α
α

)1/R
− 1
]

. Here the right-hand side is positive (due to the

condition α+ ε < 1) and is upper-bounded by O(ε−1/R − 1).
In conclusion, for any ε < min{α, 1−α}, there exists δ0=O(ε−1/R−1) such that XµR(y∗, ε) ⊂ [y∗−δ0, y

∗+δ0].

Note that a similar proof can be done to prove that there exists δ̂0 = O(ε−1/R − 1) such that for any

x∗ ∈ [0, 2XB], YµR(x∗, ε) ⊂ [x∗ − δ̂0, x
∗ + δ̂0].

Step 2: For any y∗ ∈ [0, 2XB] and δ0 ≥ 0, let us define the set I0(y
∗) := [y∗− δ0, y

∗+ δ0]
⋂

[0, 2XB]; we want

to show that
∫

x∈I0(y∗)
dFA∗

i
(x) ≤ 2nλ̄δ0w̄

¯
w , ∀i ∈ [n].

Case 1: For i ∈ ΩA(γ
∗), then A∗

iA
S
γ∗,i, we have that

∫

x∈I0(y∗)

dFA∗

i
(x) ≤FAS

γ∗,i
(y∗ + δ0)− FAS

γ∗,i
(y∗ − δ0)
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=























(y∗+δ0)λ
∗

B

vB
i

≤
2δ0λ

∗

B

vB
i

, if 0 ≤ y∗ ≤ δ0
(y∗+δ0)λ

∗

B

vB
i

− (y∗−δ0)λ
∗

B

vB
i

=
2δ0λ

∗

B

vB
i

, if δ0 ≤ y∗ <
vB
i

λ∗

B
− δ0

1− (y∗−δ0)λ
∗

B

vB
i

=
vB
i −y∗λ∗

B+δ0λ
∗

B

vB
i

≤ 2δ0λ
∗

B

vB
i

, if
vB
i

λ∗

B
− δ0 ≤ y∗ ≤ vB

i

λ∗

B
+ δ0

1− 1 = 0, otherwise

≤
2nλ̄δ0w̄

¯
w

.

Case 2: For i /∈ ΩA(γ
∗), then A∗

i = AW
γ∗,i. We have

∫

x∈I0(y∗)

dFA∗

i
(x) ≤FAW

γ∗,i
(y∗ + δ0)− FAW

γ∗,i
(y∗ − δ0)

=



































(y∗+δ0)λ
∗

B

vB
i

≤ 2nλ̄δ0w̄

¯
w , if 0 ≤ y∗ ≤ δ0

(y∗+δ0)λ
∗

B

vB
i

−
(y∗−δ0)λ

∗

B

vB
i

=
2δ0λ

∗

B

vB
i

, if δ0 < y∗ <
vA
i

λ∗

A
− δ0

1−

vBi
λ∗

B
−

vAi
λ∗

A

vB
i

λ∗
B

− (y∗−δ0)λ
∗

B

vB
i

=
vA
i

λ∗
B

λ∗

A
−y∗λ∗

B+δ0λ
∗

B

vB
i

≤ 2δ0λ
∗

B

vB
i

, if
vA
i

λ∗

A

− δ0 ≤ y∗ ≤ vA
i

λ∗

A

+ δ0

1− 1 = 0, otherwise

≤
2nλ̄δ0w̄

¯
w

.

Note that we also can similarly prove that for any x∗ ∈ [0, 2XB] and δ0 ≥ 0, for any i ∈ [n], we also have
∫

y∈I0(x∗)
dFB∗

i
(y) ≤ 2nλ̄δ0w̄

¯
w .

Step 3: Conclusion. We note that all random variable A∗
i , B

∗
i , i ∈ [n] are bounded in [0, 2XB]; therefore, for

any x∗, y∗ ∈ [0, 2XB] and δ0 ≥ 0, we have:

∫

x∈[y∗−δ,y∗+δ0]

dFA∗

i
(x) =

∫

x∈I0(y∗)

dFA∗

i
(x) and

∫

y∈[x∗−δ,x∗+δ0]

dFB∗

i
(y) =

∫

y∈I0(x∗)

dFB∗

i
(x).

Let us define δµ := min{1, 2nλ̄δ0w̄
¯
w } = O

(

n(ε−1/R − 1)
)

and we conclude that:

max

{

max
y∗∈[0,2XB ]

∫

X
µR (y∗,ε)

dFA∗

i
(x), max

x∗∈[0,2XB ]

∫

Y
µR (x∗,ε)

dFB∗

i
(y)

}

≤ δµ.

This implies that δµ ∈ ∆γ∗(µR, ε).

(ii) We now turn our focus on the games LBn(ν
R). We first prove the existence of δ1 > 0 such that

XνR(y∗, ε) ⊂ [y∗ − δ1, y
∗ + δ1] for any y∗ ∈ [0, 2XB]. Similar to step 1 in the above analysis for the game

LBn(µ
R), we denote by g : [0, 2XB]× [0, 2XB] → [0, 1] the function:

g(x, y∗) := |νRA(x, y
∗)− βA(x, y

∗)| =











αexR

αexR+(1−α)ey∗R , if x < y∗,

0 , if x = y∗,

1− αexR

αexR+(1−α)ey∗R , if x > y∗.

Trivially, y∗ /∈ XνR(y∗, ε). Take an arbitrary x ∈ XµR(y∗, ε). If x < y∗, we have

g(x, y∗) ≥ ε ⇒
αexR

αexR + (1− α)ey∗R
≥ ε.
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Therefore, 0 < y∗ − x ≤ 1
R ln

(

1−ε
ε

α
1−α

)

. Here, we note that the right-hand side is positive (due to the

condition ε < α).
On the other hand, if x > y∗, we have:

g(x, y∗) ≥ ε ⇒ 1−
αexR

αexR + (1− α)ey∗R
≥ ε.

Therefore, 0 < x−y∗ ≤ 1
R ln

(

1−ε
ε

1−α
α

)

. Here, the right-hand side is positive (due to the condition α+ε < 1).
In conclusion, let us denote δ1 = O(R−1 ln(ε−1)), we have proved that XνR(y∗, ε) ⊂ [y∗ − δ1, y

∗ + δ1]
for any y∗ ∈ [0, 2XB]. Now, we define I1(y

∗) := [y∗ − δ1, y
∗ + δ1]

⋂

[0, 2XB]. Similar to step 2 of the
above analysis regarding the game LBn(µ

R), we can prove that
∫

I1(y∗)
dFA∗

i
(x) ≤ 2nλ̄δ1w̄/

¯
w for any y∗ ∈

[0, 2XB]. Therefore,

max

{

max
y∗∈[0,2XB ]

∫

X
νR(y∗,ε)

dFA∗

i
(x), max

x∗∈[0,2XB ]

∫

Y
νR (x∗,ε)

dFB∗

i
(y)

}

≤ δν ,

where δν := min{1, 2nλ̄δ1w̄
¯
w } = O

(

nR−1 ln(ε−1)
)

and δν ∈ ∆γ∗(νR, ε).

Appendix D.2. Proof of Theorem 5.7

Theorem 5.7. (Approximate equilibria of the ratio-form Lottery Blotto games) For any ε̄ > 0

and α ∈ (0, 1) such that ε̄ < min{α, 1 − α}, there exists L̃ > 0 such that for any n ≥ L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

,

R ≥ O
(

n
ε̄ ln

(

1
ε̄

))

and γ∗ ∈ Sn, the IUγ∗

strategy is an ε̄W -equilibrium of any game LBn(µ
R) and LBn(ν

R)
having α as the tie-breaking-rule parameter.

Proof. Take ε = ε̄/21 and L̃ = L∗212(ln(21) + 1) (where L∗ is indicated in Theorem 5.3). We note

that L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

≥ L∗ε ln
(

1
min{ε,1/e}

)

;33 therefore, for any n ≥ L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

, we have

n ≥ L∗ε ln
(

1
min{ε,1/e}

)

and thus, apply Theorem 5.3-(ii), for anyR > 0, the IUγ∗

strategy is an (8δµ + 13ε)W -

equilibrium of the game LBn(µ
R) (recall that W := max{WA,WB}). Similarly, the IUγ∗

strategy is an
(8δν + 13ε)W -equilibrium of the game LBn(ν

R)).
We first consider the game LBn(µ

R). Apply Lemma 5.6, for anyR ≥ O
(

ln
(

1
ε

)

ln
(

ε
n + 1

))

= O
(

ln
(

1
ε

)

n
ε

)

and γ∗ ∈ Sn, we have δµ ≤ ε. Therefore, for any n ≥ L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

, R ≥ O
(

n
ε̄ ln

(

1
ε̄

))

, the IUγ∗

strategy is an 21εW -equilibrium (i.e., ε̄W -equilibrium) of the game LB(µR).
Similarly, apply Lemma 5.6, for any γ∗ ∈ Sn and R ≥ O

(

n
ε̄ ln

(

1
ε̄

))

, we have δν ≤ ε. Therefore, for any

n ≥ L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

, R ≥ O
(

n
ε̄ ln

(

1
ε̄

))

, the IUγ∗

strategy is an 21εW -equilibrium (i.e., ε̄W -equilibrium)

of the game LB(νR).

33Note that ε = ε̄/21 and apply Lemma A2 to have that L̃ε̄−2 ln
(

1
min{ε̄,1/e}

)

≥ L∗
(

21
ε̄

)2
ln

(

21
ε̄

)

; moreover, we recall that

ε̄
21

< 1
e
; therefore, ln

(

21
ε̄

)

= ln
(

1
min{ε̄/21,1/e}

)

= ln
(

1
min{ε,1/e}

)

.
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