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Abstract 50 
 51 
Balancing access to antibiotics with control of antibiotic resistance is a global public health 52 
priority. Currently, antibiotic stewardship is informed by a ‘use it and lose it’ principle, in 53 
which population antibiotic use is linearly related to resistance rates. However, theoretical 54 
and mathematical models suggest use-resistance relationships are non-linear. One explanation 55 
is that resistance genes are commonly associated with ‘fitness costs’, impairing pathogen 56 
replication or transmissibility. Therefore, resistant genes and pathogens may only gain a 57 
survival advantage where antibiotic selection pressures exceed critical thresholds. These 58 
thresholds may provide quantitative targets for stewardship: optimising control of resistance 59 
while avoiding over-restriction of antibiotics. We evaluated the generalisability of a non-60 
linear time-series analysis approach for identifying thresholds using historical prescribing and 61 
microbiological data from five populations in Europe. We identified minimum thresholds in 62 
temporal relationships between use of selected antibiotics and rates of carbapenem-resistant 63 
Acinetobacter baumannii (in Hungary), extended spectrum β-lactamase producing 64 
Escherichia coli (Spain), cefepime-resistant Escherichia coli (Spain), gentamicin-resistant 65 
Pseudomonas aeruginosa (France), and methicillin-resistant Staphylococcus aureus 66 
(Northern Ireland) in different epidemiological phases. Using routinely generated data, our 67 
approach can identify context-specific quantitative targets for rationalising population 68 
antibiotic use and controlling resistance. Prospective intervention studies restricting antibiotic 69 
consumption are needed to validate thresholds. 70 
 71 
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Introduction 99 
Antimicrobials have facilitated improvements in health and food-security worldwide. 100 
However, excessive use has promoted antimicrobial resistance (AMR), undermining many 101 
aspects of healthcare and generating new disease burdens.1-4 While decisions around 102 
antimicrobial use are made by individual prescribers and patients, consequences of over-use 103 
are only fully apparent across populations.5 Competing needs and non-exclusivity lead to a 104 
‘tragedy of the commons’.1,2 The Global Action Plan on AMR therefore emphasises cross-105 
societal efforts to conserve the current stock of effective antimicrobials.6 Antimicrobial 106 
stewardship aims to control AMR by reducing inappropriate use, while ensuring access to 107 
effective therapy.2 There is growing evidence that reducing population use of antimicrobials 108 
selecting for resistance, can effectively reduce AMR.7 However, over-restriction may be 109 
counter-productive: use of alternative antimicrobials may increase in response, leading to 110 
new selection pressures or resistance problems.8 Balancing the benefits and risks of 111 
antimicrobials in healthcare requires understanding of their effects on AMR at population 112 
scales.9-11 113 
 114 
Most empirical evidence has considered linear use-resistance relationships.12-16 Although 115 
useful for identifying the most salient selection pressures in a population,12 theoretical and 116 
mathematical models suggest non-linear relationships are more likely.9-11,17 In particular, 117 
selection pressures may only impact on resistance rates, where volumes of antibiotic use in 118 
the population are above minimum thresholds. Potential explanations for minimum 119 
thresholds, include: antibiotic substitution with changes in use;8 associations between the 120 
strength of selection pressure and induction of co-resistance;18 differential effects on sub-121 
populations within bacterial species,19 or ecological niches;20 and the ‘total use thresholds’ 122 
hypothesis.9 The latter concept arises from the observation that resistance genes are 123 
commonly associated with fitness costs impairing pathogen replication or transmissibility.21 124 
Resistant pathogens may therefore only gain a survival advantage over susceptible organisms, 125 
where selection pressures from antibiotic use outweigh fitness costs.9 If identified, minimum 126 
thresholds may offer important targets for antibiotic stewardship, indicating an upper limit of 127 
safe population antibiotic use which does not increase resistance within populations. 128 
 129 
Non-linear relationships between fluoroquinolone use and resistant E.coli and Staphylococcus 130 
aureus have been reported.20,22 We have shown that reducing antibiotic use to below 131 
minimum thresholds predicted shifts in the molecular and clinical epidemiology of S. aureus 132 
and Clostridium difficile.23-25 However, early findings suggest antibiotic use-resistance 133 
relationships are likely to depend upon the clinical population,9,23,25 pathogen genotypes,24 134 
intensity of infection control,23 and transmission dynamics.11 Moreover, fitness costs 135 
associated with different resistance genes are variable.21 If fitness costs are low, or attenuated 136 
through epistasis26 or compensatory mutations,27 resistance may persist despite removing 137 
previously important antibiotic selection pressures.28 A generalisable method for finding 138 
minimum thresholds should therefore provide context-specific results, have relatively low-139 
informational demands, and allow for iteration.  140 
 141 
Here, we examined the generalisability of a non-linear time-series analysis methodology for 142 
identifying minimum threshold in use-resistance associations. Using routinely generated data 143 
from five European centres, we show this pragmatic approach can provide population-144 
specific quantitative targets for antimicrobial stewardship for a variety of resistance 145 
outcomes, epidemiological phases, transmission dynamics, and clinical populations. 146 

 147 
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Results 148 
 149 
Identifying non-linear temporal relationships: from experiment to application 150 
In a Monte Carlo experiment we compared the ability of linear and non-linear time-series 151 
analysis (Multivariate Adaptive Regression Splines, MARS) to identify pre-defined 152 
relationships between simulated explanatory and outcome time-series (Supplementary Figure 153 
1). Non-linear time-series analysis (NL-TSA) accurately identified both truly linear and non-154 
linear associations. However, linear time-series analysis provided biased estimations and 155 
overall poorer data-fit if relationships were non-linear. 156 
 157 
NL-TSA models applied to retrospective time-series data from five European study 158 
populations (examples 1-5), frequently identified minimum thresholds in antibiotic use-159 
resistance relationships, (figures 1-5 and Supplementary Table 1). ‘Ceiling effects’, in which 160 
further increases in explanatory variables did not affect resistance rates, were found at high-161 
levels of use of some antibiotics and hand hygiene. Non-linearities in autoregression and 162 
population interaction terms further indicated the complexity of transmission dynamics 163 
within and between clinical populations.  164 
 165 
Example 1: Carbapenem-resistant Acinetobacter baumannii (Debrecen, Hungary) 166 
We examined ecological determinants of carbapenem-resistant A. baumannii (CRAb) in a 167 
tertiary hospital population in Debrecen, Hungary (figure 1). Between Oct 2004 and Aug 168 
2016 (n=143 months), incidence density of CRAb increased from a 12-month average of 0.14 169 
to 9.43 cases per 10 000 OBDs, while that of carbapenem-susceptible A. baumannii (CSAb) 170 
remained relatively constant. There were no planned antibiotic stewardship interventions in 171 
the study period. We observed increasing use of broad-spectrum antibiotics, including a 172 
tripling in carbapenem use, and more recent escalation in colistin use. 173 
 174 
Carbapenem resistance in this setting was conferred predominantly by blaOXA-23-like 175 
carbapenemases, while blaOXA-24-like genes occurred sporadically.29 CRAb were significantly 176 
more likely to be resistant to ciprofloxacin, gentamicin, amikacin, piperacillin-tazobactam 177 
and ceftazidime than CSAb (Supplementary Table 2), although susceptibility testing for the 178 
latter two agents was discontinued in 2013 as recommended by EUCAST. Vector 179 
autoregression models found that colistin use followed, rather than predicted, variation in 180 
CRAb incidence density. Use of carbapenems, fluoroquinolones, piperacillin-tazobactam, 181 
third generation cephalosporins (3GC), and aminoglycosides were considered potential 182 
explanatory variables. 183 
 184 
Previous CRAb incidence density and recent hospital use of carbapenems, piperacillin-185 
tazobactam, and fluoroquinolones were explanatory variables in the best-fit (R2=0.86) non-186 
linear TSA model (Supplementary Table 1). In an almost identical model with poorer trade-187 
off of data fit and model complexity (higher Modified Generalised Cross Validation statistic), 188 
fluoroquinolone use was replaced by the effect of 3GC use above a threshold of 36 (95% CI, 189 
30 to 41) DDDs per 1000 OBDs (coefficient, 95% CI: 0.111, 0.018 to 0.203; p=0.019; lag 3). 190 
 191 
In this setting increases in CRAb added to, rather than replaced, CSAb, suggesting CRAb 192 
occupied new ecological niches. Strong autoregression in the CRAb time-series was 193 
consistent with substantial within-hospital transmission.29 CRAb incidence density increased 194 
when population use of carbapenems, piperacillin-tazobactam, fluoroquinolones, and 3GC 195 
exceeded minimum thresholds. By the end of the study period, use of fluoroquinolones had 196 
reduced to below threshold. However, CRAb could be further controlled by reducing use of 197 
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carbapenems, 3GC, and piperacillin-tazobactam, from present levels to respective thresholds 198 
(table 1). 199 
Example 2: Extended spectrum β-lactamase producing E. coli (Orihuela, Spain) 200 
We examined variables temporal associated with the percentage of E. coli producing ESBL 201 
(%Ec-ESBL+) in connected district general hospital and community populations of Orihuela, 202 
Spain, between Jul 1991 and Oct 2016 (n=304 months, figure 2). Limited outbreaks of 203 
ESBL-producing E. coli were noted from 1998, but from 2002 the %Ec-ESBL+ increased 204 
rapidly alongside escalating use of fluoroquinolones and co-amoxiclav. While use of these 205 
agents later stabilised or declined, hospital use of third-generation cephalosporins continued 206 
to increase. 207 
 208 
Over the study period, blaCTX-M genes were common in E. coli across Spain, with 209 
dissemination of the CTX-M-15-producing O25b-ST131 clone and clonally unrelated CTX-210 
M-14-producing strains identified.30,31. Acquisition of fluoroquinolone resistance was a key 211 
step in the evolution of dominant blaCTX-M-15 containing sub-clones of O25b-ST131.32 212 
Consistent with this, 81% of ESBL-producing E. coli in Orihuela were non-susceptible to 213 
ciprofloxacin. They were also significantly more likely to be resistant to co-trimoxazole, co-214 
amoxiclav and aminoglycosides compared to non-ESBL E. coli (Supplemental Table 3). 215 
Vector autoregression models demonstrated bidirectional interactions between community 216 
and hospital %Ec-ESBL+ and that use of piperacillin-tazobactam and carbapenems followed, 217 
rather than predicted, changes in %Ec-ESBL+. In separate hospital and community models, 218 
%Ec-ESBL in the other population was considered as an explanatory variable. 219 
 220 
In the best-fit model (R2=0.62) hospital %Ec-ESBL+ was predicted by prior %EcESBL in 221 
hospital and community, and hospital use of 3GC, and fluoroquinolones exceeding minimum 222 
thresholds (Supplementary Table 1). A potential ‘ceiling’ effect was noted at high-levels of 223 
fluoroquinolone use, meaning that when use exceeded a second upper threshold, further 224 
increases in %Ec-ESBL+ were small. An initial decrease in %Ec-ESBL+ where 225 
fluoroquinolone use was between 151 and 161 DDDs per 1000 OBDs reflected uncertainty 226 
around this ceiling threshold, which may be resolvable with additional data. In the model for 227 
community %Ec-ESBL+ (R2 0.767), associations were identified with hospital %Ec-ESBL+, 228 
and community use of fluoroquinolones and co-amoxiclav above minimum thresholds. 229 
 230 
Autoregressive and population interaction effects suggested the importance of horizontal 231 
transmission of ESBLs, with predominant influence of community on hospital epidemiology. 232 
Population use of broad-spectrum beta-lactams and fluoroquinolones were important 233 
explanatory variables in both settings. In the community, use of fluoroquinolones had fallen 234 
below threshold levels and %Ec-ESBL+ had started to decrease by the end of the study. 235 
However, translating thresholds into antibiotic stewardship targets (table 1) suggested further 236 
restricting community co-amoxiclav use by 31% and hospital use of fluoroquinolones (-41%) 237 
and 3GC (-21%).  238 
 239 
From best-fit models, we created 24-month projections for %Ec-ESBL+ in the hospital and 240 
community under different antibiotic stewardship options, and compared these to expected 241 
%Ec-ESBL+ under a ‘business as usual’ scenario of antibiotic use (Supplementary Figure 2). 242 
Immediate restriction of hospital use of fluoroquinolones and 3GCs to thresholds was 243 
predicted to cause an abrupt and sustained reduction in hospital %Ec-ESBL+ from 9.89% to 244 
2.35% (p<0.0001) and, due to population interactions, a gradual reduction in community 245 
%Ec-ESBL+ from 7.11% to 3.69% (p<0.0001). Limiting community co-amoxiclav use to 246 
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threshold levels was predicted to cause a small reduction in community %Ec-ESBL+ but not 247 
to affect hospital epidemiology. 248 
 249 
 250 
Example 3: Cefepime-resistant Escherichia coli (Seville, Spain) 251 
We examined ecological variables explaining cefepime resistance among urinary or invasive 252 
E.coli infections (%Ec-FepR) in a tertiary hospital in Seville, Spain. Between March 2008 253 
and December 2016 (n=108 months) %Ec-FepR fell from 12.6% to 7.9% (figure 3). 254 
Cefepime use was low, declining from 4.4 to 1.6 DDDs per 1000 OBDs with thrice-weekly 255 
(Jan 2012, audit1) and daily (Jan 2014, audit2) prescription audits. By contrast, previously 256 
declining use of 3GC increased from January 2013 when they replaced co-amoxiclav and 257 
ciprofloxacin as first-line empirical therapy for intra-abdominal or urinary infections.  258 
 259 
Resistance to cefepime in E. coli is mostly conferred by ESBLs with high affinity for 260 
cefepime (TEM-, SHV- and CTX-M-types). In addition to those agents hypothesised to 261 
predict ESBL-producing E. coli (see example 2), we considered the role of piperacillin-262 
tazobactam.13 Due to low rates of cefepime prescribing, we grouped this with 3GC use. We 263 
introduced variables for antibiotic auditing interventions and for revised susceptibility 264 
breakpoints (Oct 2014).33 265 
 266 
The final non-linear model (R2 0.30) identified associations with %Ec-FepR 12 months prior 267 
(seasonal effect) and use of third- or fourth-generation cephalosporins and fluoroquinolones 268 
above minimum thresholds (Supplementary Table 1). A significant interaction term between 269 
%Ec-FepR in the previous month (autoregression, lag 1) and the second antibiotic auditing 270 
intervention suggested a gradual effect of the audit in reducing %Ec-FepR. 271 
 272 
Reductions in third- and fourth-generation cephalosporins and fluoroquinolone use to below 273 
minimum thresholds explained modest declines in %Ec-FepR between 2008 and 2012. Partial 274 
reversal in this trend was consistent with increasing use of 3GC towards the end of the study 275 
period. %Ec-FepR could be controlled further by reducing third- and fourth-generation 276 
cephalosporin use by 41% (table 1).  277 
 278 
Example 4: Gentamicin-resistant Pseudomonas aeruginosa (Besançon, France) 279 
We examined ecological variables explaining rates of gentamicin-resistant P. aeruginosa 280 
(GRPa) among adult and paediatric admissions to a tertiary hospital in Besançon, France 281 
(figure 4). Between Jan 1999 and Dec 2014 (n=192 months), incidence density of GRPa 282 
decreased from 14.0 to 3.4 cases per 1000 OBDs, and the proportion of P. aeruginosa 283 
isolates resistant to gentamicin declined from 63% to 16%.  284 
 285 
Aminoglycoside modifying enzymes (AMEs) are the most common mediators of 286 
aminoglycoside resistance in P. aeruginosa; with acetyltransferases (e.g. aac(6’)-Ib) and 287 
nucleotidyltransferases (e.g ant(2”)-Ia) most frequent in Europe.34 Since related genes in 288 
mobile genetic elements encode AMEs and β-lactamases,  β-lactam use may also predict 289 
aminoglycoside resistance.35 In previous analyses from Besançon, aminoglycosides, cefepime 290 
and fluoroquinolones were predictors of MexXY-OprM overproduction in P. aeruginosa.36 291 
GRPa isolates were also more likely to overproduce the chromosomally-encoded AmpC 292 
cephalosporinase (56% vs. 20%; p<0.001) and be multi-drug resistant (65% vs. 13%; 293 
p<0.001). We hypothesized that GRPa incidence density may be predicted by use of 294 
aminoglycosides, fluoroquinolones, extended-spectrum penicillins with β-lactamase 295 
inhibitors, carbapenems, monobactams, and third- and fourth-generation cephalosporins. 296 
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Given potential intra-class differences in promoting resistance, we grouped use of gentamicin 297 
and tobramycin separately from that of amikacin. 298 
 299 
In the best-fit model (R2=0.86), GRPa incidence density was strongly predicted by incidence 300 
density in the previous month, and hospital use of gentamicin/tobramycin and 301 
fluoroquinolones above minimum thresholds (Supplementary Table 1). No independent 302 
association with Amikacin use was identified. 303 
 304 
Declining GRPa was largely explained by falling inpatient use of gentamicin/tobramycin, 305 
and, to a lesser extent, fluoroquinolones. Use of both drug groups was maintained below 306 
minimum thresholds from around 2007. Continuing decreases in GRPa incidence density 307 
were at least partially explained by autocorrelation at lower incidence densities. Reciprocal 308 
increases in gentamicin-susceptible P. aeruginosa over the same period, and moderate 309 
inverse correlation (r=-0.55), suggest competition for the same niche as GRPa. 310 
Gentamicin/tobramycin and fluoroquinolone use should be maintained below thresholds to 311 
control GRPa. 312 
 313 
Example 5: Methicillin-resistant Staphylococcus aureus (Antrim, Northern Ireland) 314 
We evaluated ecological variables explaining incidence density of MRSA clinical isolates in 315 
adult admissions to a district general hospital in Antrim (Jan 2005 to Sep 2013, n=105 316 
months). Between 2005 and mid-2008, incidence density of MRSA clinical isolates remained 317 
stable at c.3.0 per 1000 OBDs (figure 5). Following restrictiong fluoroquinolones (January 318 
2008) and intensification of hand-hygiene, burdens fell to 1.64 cases per 1000 OBDs by 319 
2013.  320 
 321 
The epidemic hospital MRSA clonal complex CC22, predominated in Northern Ireland 322 
during the study period: its success attributed to an ability to acquire mobile genetic elements 323 
carrying multiple resistance genes, with limited fitness costs.37 Following prior linear time-324 
series analyses from the region,14 we hypothesised use of fluoroquinolones, 3GC, co-325 
amoxiclav, and macrolides could be important predictors of MRSA epidemiology. 326 
 327 
In the best-fit model (R2=0.53), MRSA incidence density was positively associated with rates 328 
of MRSA in the previous month and use of fluoroquinolones, 3GC, and co-amoxiclav 329 
exceeding minimum thresholds (Supplementary Table 1). An inverse relationship was seen 330 
with increased hospital use of alcohol-based hand rub (ABHR) up to 6.9 Litres per 1000 331 
OBDs, above which further increases in ABHR use was not associated with further declines 332 
in MRSA. 333 
 334 
Declining MRSA incidence density was partly explained by deliberate restriction of 335 
fluoroquinolone use, and concurrent declines in co-amoxiclav and 3GC. Strong 336 
autoregression, and inverse association with ABHR use, were consistent with importance of 337 
infection control measures in interrupting horizontal transmission. Reversal of previous 338 
declines in fluoroquinolone use were seen by the last year of study. Findings suggested 339 
maintaining use of co-amoxiclav and 3GC under thresholds, use of ABHR at threshold levels, 340 
and further restriction of fluoroquinolones (table 1). 341 
 342 
 343 
 344 
 345 
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Discussion 346 
Using a non-linear time-series analysis (NL-TSA) approach, we found empirical evidence of 347 
non-linear relationships between population antibiotic use and resistance rates in five 348 
European settings. The method was generalisable to different clinical populations, resistant 349 
pathogens, definitions of resistance burdens, and epidemiological phases. We demonstrated 350 
that identification of minimum thresholds, and associated confidence intervals, could provide 351 
population-specific quantitative targets for antibiotic stewardship.  352 
 353 
Our approach builds upon earlier work using linear time-series analysis to explain temporal 354 
relationships between antibiotic use and resistance.12-16 NL-TSA shares a number of 355 
strengths, including: low-informational demands; ease of reiteration as new data becomes 356 
available; adjustment for the non-independence of serial observations and stochasticity 357 
inherent to time-series of communicable diseases; identification of temporality in associations 358 
and ‘lagged’ effects; and integration of impacts of multiple exposures.12 Additionally, NL-359 
TSA reveals non-linear relationships, providing more accurate understanding of how 360 
modifying antibiotic use, infection control or other exposures is likely to affect resistance. 361 
Limitations of NL-TSA include: the need for longer time-series than linear TSA; the potential 362 
for spurious thresholds in areas of limited data or extremes of the exposure variable range; 363 
and difficulty in identifying thresholds in situations of stable resistance and prescribing. We 364 
note the poorer predictive performance of some models (e.g. example 3), may be explained 365 
by absence of data on infection prevention and control activities, and resistance levels in 366 
interacting populations. 367 
 368 
Our findings may have important implications for antibiotic stewardship. In general, impacts 369 
of changes in antibiotic use on resistance vary dependent upon the antibiotic use level. More 370 
specifically, minimum thresholds may be interpreted as an upper limit for ‘safe’ population 371 
antibiotic use which does not appear to substantially increase resistance rates at the 372 
population level. Alternative theories may suggest the threshold indicates: a maximum level 373 
of selection pressure not conferring a survival advantage to resistant pathogens to spread 374 
within populations or ecological niches,8,12  or strong enough to induce resistance;18 or a 375 
minimum level of use, below which antibiotic substitution creates equivalent or greater 376 
selection pressure.8 Crucially, they may provide quantitative targets for balancing the need to 377 
access therapies with control of resistance, analogous to ‘quotas’ applied to other natural 378 
resources which seek to maximize extracted value while maintain a non-declining stock.1,2,38 379 
Moving from qualitative targets of reducing use, to quantitative targets may also aid 380 
operational effectiveness. Targets appear to work best if pragmatic, collaborative and 381 
iterative.39 Complete restriction of use of agents is rarely feasible: in balancing access to 382 
effective therapies with control of resistance, quantitative targets could align interests of 383 
clinicians and antimicrobial management team.40  384 
 385 
We emphasise the need for caution with interpretations of thresholds. Firstly, thresholds 386 
should offer guidance rather than strict limits. Uncertainty around thresholds is variable, as 387 
reflected in width of associated confidence intervals. Narrower confidence intervals around 388 
threshold locate with reasonable precision the level of antibiotic use at which effects on 389 
resistance are substantially altered. Wider intervals may indicate insufficient data, or the 390 
influence of additional explanatory variables. In rare instances of multiple closely occurring 391 
thresholds in a single functional relationship, the width of confidence intervals may be under-392 
estimated and should be interpreted with particular caution. We suggest a pragmatic 393 
approach, of interpreting thresholds depending upon the policy scenario. Where the priority is 394 
strict control of resistance a conservative approach of limiting use to the lower limit of the 395 
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threshold confidence interval is advisable. Where excessive restriction is a concern, the 396 
standard approach of limiting use to the point estimate of the threshold is likely to offer the 397 
best balance between restriction and control of resistance. Secondly, changes in molecular 398 
epidemiology under sustained antibiotic selection pressures, such as compensatory mutations 399 
minimising fitness costs,26,27 or strain replacement,24,25 may mean thresholds vary by 400 
epidemiological phase and time. Variation in thresholds across populations can be 401 
anticipated, reflecting host, environment, and organism factors.23-25 Therefore, models based 402 
on local data and iterative analysis is necessary to ensure time and context-specific guidance. 403 
Thirdly, it is important not to assume that all antibiotic use below thresholds is safe, since 404 
antibiotic exposures may be important for individual patients, or cause unseen change in 405 
reservoirs of resistant pathogens in environment or hosts.  406 
 407 
Potential foci for further research include: evaluating the consistency of thresholds for 408 
specific antibiotic use-resistance combinations across different settings and identifying 409 
factors affecting thresholds; applying NL-TSA to composite indices of resistance;41,42 use of 410 
Bayesian approaches in selection of explanatory variables and analysis with short time-series 411 
or rare resistance outcomes;43and prospective studies to validate the effectiveness of 412 
quantitative targets in antibiotic stewardship. 413 
 414 
We have illustrated how non-parametric time-series models based on empirical data can 415 
identify non-linear relationships between population antibiotic use and resistance burdens. 416 
Further we have shown how identification of population-specific minimum thresholds may 417 
guide rational compromises between control of resistance and access to therapeutics. With 418 
the increasing availability of electronic surveillance and healthcare systems, this approach 419 
offers a useful tool for sustaining the effectiveness of current antimicrobials in many areas of 420 
the world. 421 
 422 
 423 
 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 
 438 
 439 
 440 
 441 
 442 
 443 
 444 
 445 
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Methods 446 
 447 
Design and study populations 448 
This was a multi-centre time-series study. We used multivariable non-linear time-series 449 
analysis to quantify associations between ecological exposures, including population use of 450 
antibiotic groups, and rates of antibiotic-resistant infections in five populations from France, 451 
Hungary, Northern Ireland (UK), and Spain (Supplementary Table 5). 452 
 453 
The populations and resistance outcomes were a purposive sample, chosen to reflect varying 454 
epidemiological scenarios, clinical settings, and resistant infections in European centres 455 
participating in the THRESHOLDS (THReshold EStimation to Help Optimise Local 456 
Decisions on antibiotic Stewardship) study group. This collaborative aims to further the 457 
development of time-series analysis for understanding antibiotic resistance and planning 458 
antibiotic stewardship. Members included centres with prior experience in applying linear 459 
time-series approaches. Investigators were asked to identify an important resistance problem 460 
in a defined clinical population from their region. Minimum data requirements were 461 
consistent microbiological and prescribing data across a minimum of 60 monthly 462 
observations (5 years). Duration of time-series was defined by the longest period of 463 
consistent data for a minimum data set of the outcome and candidate explanatory variables. 464 
 465 
For each population we described the regional scenario for the chosen outcomes, the 466 
theoretical basis for inclusion of candidate explanatory variables, findings from the non-linear 467 
time-series analysis, and how these could inform local antibiotic stewardship policy. 468 
 469 
Outcome and explanatory time series 470 
The outcome time-series for each population were: carbapenem-resistant Acinetobacter 471 
baumannii (Debrecen, Hungary); extended spectrum β-lactamase producing Escherichia coli 472 
in hospital and community (Orihuela, Spain); cefepime-resistant Escherichia coli (Seville, 473 
Spain); gentamicin-resistant Pseudomonas aeruginosa (Besançon, France); and methicillin-474 
resistant Staphylococcus aureus – MRSA (Antrim, Northern Ireland). Cases were defined 475 
microbiologically as isolates from all relevant body sites not identified as infection control 476 
specimens and meeting consistent criteria for resistance or resistance mechanism (see 477 
supplemental file for details). Isolates from the same patient identified within 30 days of a 478 
prior isolate with the same organism were considered part of the same infectious episode and 479 
de-duplicated. Outcomes were expressed, where possible, as monthly incidence density of 480 
resistant infections (cases per 1000 or 10,000 occupied bed days, OBDs). Where there were 481 
large changes in testing frequency or organism identification over time, we defined resistance 482 
as a percentage of clinical isolates from the same organism with any susceptibility pattern.  483 
 484 
The primary explanatory variables were monthly population use of antibiotic agents 485 
classified by pharmacological sub-group of antibacterials for systemic use (J01) in the 2016 486 
WHO/ATC index, and expressed as defined daily doses (DDDs) per 1000 OBDs (hospital) or 487 
1000 inhabitant-days (community). Candidate antibiotic sub-groups were identified a priori, 488 
on the basis of regional co-resistance profiles, molecular epidemiology in the region, reviews 489 
and prior evidence on individual or population level risk factors for acquisition of the 490 
resistant infection. We included separate time-series for individual antibiotic agents or 491 
chemical sub-groups only where there were strong theoretical grounds for investigating 492 
independent associations, such as prior evidence of variable within-class actions or targeting 493 
within antibiotic stewardship interventions.  494 
 495 
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In addition, we incorporated autoregressive terms capturing association between current 496 
incidence density and incidence density in recent months. Where available, we incorporated 497 
infection prevention and control (IPC) variables such as use of alcohol-based hand-rub. 498 
Dummy variables were added to capture immediate and gradual impacts of changes in 499 
laboratory methods or other planned interventions. We considered lags in association of up to 500 
6 months and seasonal autoregressive terms (lag 12). 501 
 502 
Data collection and laboratory procedures 503 
In all centres, microbiological and prescribing and IPC data were extracted from electronic 504 
databases maintained for routine healthcare activities. Data were anonymised and aggregated 505 
before electronic submission to the THRESHOLDS study group. Meta-data on population 506 
characteristics, IPC activities, antibiotic stewardship interventions and resources for control 507 
of antibiotic resistance were captured using a standardised questionnaire. 508 
 509 
Pathogens were identified using standard laboratory methods. Susceptibility testing was by 510 
disc-diffusion (Besançon, Debrecen, Antrim) or broth microdilution (Seville, Orihuela). 511 
Isolates were defined as resistant if not susceptible to an antibiotic agent according to zone 512 
diameter (for disc-diffusion) or minimum inhibitory concentration (MIC, for broth 513 
microdilution) breakpoints as recommended by the European Committee on Antimicrobial 514 
Susceptibility Testing (EUCAST) or Clinical & Laboratory Standards Institute (CLSI). 515 
Details of standards used, and deviations from EUCAST or CLSI criteria are detailed in table 516 
i. Known changes in breakpoints and laboratory methods were adjusted for in time-series 517 
analysis.  518 
 519 
Statistical methods 520 
In the following sections we provide a technical exposition of the statistical methods used. 521 
We offer here, a brief description for the general reader.  522 
 523 
Before applying non-linear time-series analysis (NL-TSA) to real-world datasets from study 524 
populations, we performed a statistical, Monte-Carlo, experiment to illustrate its advantages 525 
over, more familiar, linear TSA. We applied both linear and non-linear TSA to computer-526 
simulated time-series, where the relationship between the outcome and explanatory time-527 
series was known. Three types of relationship were explored: a linear relationship; a non-528 
linear relationship without correlations between successive data points in time-series 529 
(autoregression), and a non-linear relationship with autoregression; By running this 530 
experiment over 10,000 simulated datasets for each type of relationship we evaluated the 531 
typical ability of linear and non-linear TSA to describe the relationships accurately. 532 
 533 
We next applied a seven-step non-linear time-series analysis approach to resistance problems 534 
in study populations (figure 6).   535 
 536 
Mirroring more familiar regression techniques, we started by defining a set of explanatory 537 
variables including antibiotic use, infection control, population interactions, alongside terms 538 
for autoregression. This set was defined by (a) expert opinion informed by prior risk-factor 539 
studies, molecular epidemiology in the region; and (b) inspection of resistance profiles of the 540 
pathogen of interest. We consider delays between changes in explanatory time-series and 541 
associated change in outcome time-series (lags) of up to 6 months. Before analysis we 542 
checked time-series and make adjustments for extreme values (outliers) or unexpected shifts 543 
in mean (structural changes). We also used vector autoregression (VAR) models to help 544 
distinguish any reverse causality in relationships between explanatory and outcome series: 545 
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this might occur, for example, if prescribing behaviour was altered by resistance rates in the 546 
population in previous months. Next we restrict the set of explanatory variables, and lags, to 547 
be put into final multivariable models. We use a procedure that fits smooth functions to 548 
relationships between explanatory and outcome time-series, and allows visual inspection of 549 
likely significant associations. After identifying the most promising explanatory variables 550 
(and lags) we enter these into a Multivariate Adaptive Regression Splines (MARS) model 551 
which both identifies significant predictors, and defines any non-linear relations as a series of 552 
linear relationships connected by ‘knots’ or thresholds. Model fit for MARS is checked by 553 
ensuring residuals were normally distributed without unexplained non-linearities. Confidence 554 
intervals around each threshold were fit by a conditional conservative inverted likelihood 555 
ratio (CCILR) method, using partial residuals. Finally, we converted thresholds from models 556 
into suggested maximum total treatment courses per month in the population by multiplying 557 
model thresholds by the size of the population and dividing by an average treatment course. 558 
 559 
Figure 6: Summary of the 7-step non-linear time-series methodology and potential 560 
pitfalls 561 
Step 1: Theoretical foundation
Identification of antibiotic sub-groups or agents, infection control interventions, and other
ecological variables hypothesised to predict the outcome:
• Prior evidence on risk-factors
• Regional molecular epidemiology
• Most frequent co-resistances in antibiograms of resistant pathogen

Step 2: Data validation
Review of time-series to identifiy unanticipated step-wise changes in time-series (Chow’s test), 
or outliers (Cooks distances) and to make appropriate adjustment or replacements

Step 3: Identifying the most likely predictors and their lags
• Direction of temporal association explored by vector autoregression (VAR) analyses
• Significant associations (and lags) identified by inspection of plots from multivariable General 

Additive Model (GAM) plots.

Step 4. Multivariable model estimation
• Multivariate Adaptive Regression Splines (MARS) procedure to select and estimated final 

multivariable models, and describe associations in terms of one or more stable linear functions 
linked by thresholds or ‘knots’.

Step 5: Diagnostic checks of model fit
• Normal distribution of residuals with mean zero, and homogenous variance
• Absence of residual autocorrelation, evaluated by autocorrelation function (ACF) plots
• Absence of residual non-linearities in Hinich Test

Step 6. Confidence intervals for thresholds
• Conditional conservative inverted Likelihood Ratio (CCILR) confidence intervals for each 

threshold generated using partial residuals after adjustment for other covariates and thresholds.

Step 7. Interpretation
• Suggested maximum total treatment courses per month calculated as:

Threshold values (DDDs per 1000 OBDs or IDs) x population size (OBDs or IDs per month)
Average treatment course in DDDs (e.g. 7).

• Comparison to current total treatment courses per month in population

Potential pitfalls Solution
Concurvity in associations Restricting candidate covariates (and lags) through steps 1 and 3. 
Spurious thresholds at extremes 
of explanatory variable range 

Constrain thresholds to 10-90th centiles of explanatory variable 
range

Uncertainty in direction of 
temporal associations

Prior Grainger causality tests and Vector Autoregression (VAR) 
analysis to clarify temporality

 562 
 563 
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To provide an example of how model findings can inform policy, for the Orihuela population, 564 
we predicted the effects of restricting antibiotic use to threshold levels compared to a 565 
‘business as usual’ scenario of prescribing based on the last months of study. We quantify 566 
impacts of immediate restriction sustained over two years. 567 
 568 
A technical explanation follows: 569 
 570 
a) Comparing linear and non-linear time-series model performance 571 
We used a Monte-Carlo experiment to compare the ability of linear (Ordinary Least Squares, 572 
OLS) and non-linear (Multivariate Adaptive Regression Splines, MARS) time-series models 573 
in identifying various pre-defined functional relationships between simulated explanatory and 574 
outcome time-series. We hypothesised that for time-series related by simple linear processes 575 
MARS and OLS regression methods would perform equally well, but that only MARS would 576 
accurately identify non-linear associations. We generated 10,000 simulated datasets using 577 
simple stochastic processes incorporating the following pre-defined functional relationships: 578 
 579 

(i) Non-autoregressive without threshold 580 

   581 
 582 
(ii) Non-autoregressive with threshold 583 

 584 

 585 
 586 

(iii) Autoregressive with threshold  587 
                       588 

 589 

 Where: 590 
is the explanatory (independent) time-series variable at time t 591 

             is the outcome (dependent) time-series variable at time t 592 
             is the error term at time t , with Normal distribution, zero mean and variance  593 

       is an autoregressive term or order 1 (i.e. dated at t-1) with   594 
 595 

For each dataset we fitted both linear and non-linear time-series analyses, and recorded 596 
sample parameter estimates (a constant, b slope, and s2 as the estimate of population 597 
variance) and a measure of goodness of fit (R2). Histograms were created illustrating the 598 
distributions of R2 values and parameter estimates from both linear and non-linear models. 599 
Visual comparison was made to pre-defined parameter values to identify bias in parameter 600 
estimates. We used a t-test of mean difference for independent samples to compare model 601 
performance based on R2 values. 602 
 603 
b) Applications of non-linear time-series analysis to real-world datasets 604 
We applied a seven-step approach to generate non-linear time-series models describing how 605 
contemporaneous and prior population antibiotic use, and other ecological variables, explain 606 
monthly variation in clinical burdens from antibiotic-resistant infections in five European 607 
centres.   608 
 609 
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 610 
 611 
 612 
Step 1: Theoretical foundation 613 
Participating centres identified a priori a minimum dataset of antibiotic sub-groups or agents 614 
they considered most likely to affect the epidemiology of the resistant organism under 615 
investigation (target organism). Decisions were based upon: previous empirical evidence of 616 
risk factors and molecular epidemiology in the study region or related contexts. Additionally, 617 
using antibiogram data from the study period and population, we reviewed co-resistances to 618 
other antibiotics among isolates of the target organism with and without the resistance under 619 
investigation. We considered antibiotics with the largest absolute rates of co-resistance in the 620 
resistant isolates to be most likely to exert significant selection pressures.44,45 Consensus on 621 
the list of potential predictive variables was found through discussion among all 622 
THRESHOLDS study group members. 623 

Where data was available we integrated additional explanatory variables on hospital activity 624 
or infection control activities, associated with the outcome variable in previous studies. 625 

 626 
Step 2: Data validation 627 
To ensure consistent time-series we first accounted for known changes in exogenous 628 
conditions, such as changes in laboratory method. We captured immediate and gradual effects 629 
by entering a dummy variable (0 in months before the change, 1 in months after change) and 630 
its interaction with an autoregressive term, as explanatory variables. We then reviewed time-631 
series to detect possible unknown measurement errors as follows. Visual inspection identified 632 
potential structural changes (seen as large step-wise change in mean for instance) or outliers 633 
(seen as values deviating substantially from surrounding values). Successive Chow tests were 634 
applied to automatically detect the most probable dates of structural changes in the time-635 
series and, where necessary, to disaggregate the sample into two or more segments, each with 636 
a stable mean. For each segment we applied an outlier detection technique using the 637 
following criterion: an observation was considered as an outlier if Cook’s distance at this 638 
point was greater than five times the mean of Cook’s distances of all the observations of the 639 
segment. Finally, we replaced outlier values with the mean of the three preceding and three 640 
following observations. 641 
 642 
Step 3 Identifying the most likely predictors and their lags 643 
Given the potentially complex relationships between ecological variables under investigation 644 
we sought to refine our understanding of potential associations before applying final 645 
multivariable non-linear models. 646 
 647 
Firstly, situations of reverse causality could exist when ecological exposures - such as rates of 648 
infections with resistant pathogens connected populations, or use of some antibiotic groups in 649 
a given population - respond to, rather than predict, rates of resistance. In order to minimise 650 
this risk, we tested direction of temporal relationships between explanatory and outcome 651 
time-series by applying Granger-causality analysis and Vector Autoregression (VAR) 652 
models.  Secondly, non-linear models of the type used in this study are potentially complex 653 
and difficult to extract form the data if too many predictors are used at the same time. 654 
Therefore, we carried out an additional a priori data-based selection of candidate explanatory 655 
variables and lags (the lag refers to the delay in months between change in exposure and 656 
associated change in outcome). This was done through inspection of outputs from fitting a 657 
General Additive Model (GAM) to the data. GAM is a very general procedure that can be 658 
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used for the identification of the most likely predictors, since it runs a non-parametric 659 
estimation of the functional relationships between explanatory (x) and outcome (y) time-660 
series, based upon iterative data fitting, rather than prior assumptions. It also allows for 661 
variability in the functional relationships across different values of the explanatory variables 662 
and can therefore capture non-linear associations between ecological variables and resistance 663 
outcomes.49 In particular, we used the GAM procedure in the SCAB34S Splines module 664 
(available in SCA Workbench, Scientific Computing Associates Corp, Illinois, USA) to 665 
define the relationship between p explanatory (x) and the outcome (y) time-series as a sum of 666 
smooth, or spline, functions: 667 

 668 
where (sj(xj)) are the spline functions; they were standardised such that, after removal of free 669 
constants (so) their expected contribution to the outcome (y) is zero (i.e. Esj(xj)=0 for each j).  670 
 671 
The splines were derived by a process of splitting the time-series into sections, joined at knot 672 
points, and fitting simple curves described by cubic functions to the data in each section. The 673 
GAM methodology identified the optimal combination of spline functions sj(xj), following 674 
the iterative procedure suggested by Hastie and Tibshirani(1986).46 Combining a local 675 
scoring algorithm and a backfitting procedure, this method converges on a solution balancing 676 
data fit with smoothness. 677 
 678 
To identify the most relevant explanatory time-series, for each centre we started with a 679 
multivariable GAM model including all theoretically relevant variables at lags of 1 to 6 680 
months and autoregressive terms at lags 1 and 2. We limited lags to 6-months based on 681 
widespread evidence of declining relevance of antibiotic exposures by time-since exposure, 682 
and prior experience that considerations of longer lags lead to problems of concurvity.  On 683 
the basis of the GAM outputs, an explanatory variable with a specific lag was retained in the 684 
model only if its contribution was significant at a 5% level of probability (identified on 685 
contribution charts by the zero line of non-association falling outside of 95% confidence 686 
intervals around the estimate). The process was run iteratively by removing first those 687 
variables and lag combinations whose contributions were non-significant before re-running 688 
the GAM model on a reduced subset of variables and lags. The process stopped when the 689 
model contained only significant contributions of variables and lags. These constituted the 690 
restricted set of explanatory variables for entry into MARS analysis. 691 
 692 
A further objective of applying the GAM procedure was to determine whether consideration 693 
of non-linear associations is justified in terms of improvement in predictive performance. For 694 
each explanatory variable (and lag), GAM provides a comparison of the data fit of a non-695 
linear spline function (nl) with an analysis in which this relationship is restricted to a linear 696 
function (l). Significant improvement in goodness of fit over a linear fit is defined by an F-697 
test, as follows: 698 
 699 

 700 
 701 
where; SSR = Sum of squares of residuals, n = number of observations, p = number of 702 
parameters, l = linear function, and nl = non-linear spline function. 703 
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The null hypothesis that estimates from an enhanced (non-linear) model do not provide a 704 
significantly better fit than those from a linear model can be rejected where F exceeds a 705 
critical value (a =0.05) from an F-distribution with (pnl-pl, n-pnl) degrees of freedom.  706 
 707 
Step 4. Multivariable model estimation 708 
After identifying the most likely explanatory variables (and lags), and whether associations 709 
with the outcome series were linear or non-linear, we used the MARS procedure (in the 710 
SCAB34S Splines module) to obtain an easily interpretable characterization of these 711 
associations.47 MARS is a non-parametric regression approach suitable for situations of non-712 
linear associations that can provide more interpretable and interesting empirical results than 713 
GAM. Given our research aims, its particular advantages were: (i) the ability to identify 714 
distinct threshold values (‘knots’) of the explanatory variables delimiting regions (ranges of 715 
values) of individual or interacting explanatory variables within which associations with the 716 
outcome differs substantially from those in other regions; and (ii) a systematic approach for 717 
model identification and estimation, which automatically selects the combination of 718 
explanatory variables and threshold values which most efficiently explain variation in 719 
outcomes. MARS is related to, but more general than, regression tree algorithms, and has 720 
several important, interrelated advantages:  (a) when thresholds may affect several 721 
explanatory variables, the final MARS model is far more synthetic, and therefore more 722 
interpretable, in terms of quantifying how each explanatory variable (e.g. antibiotic use) 723 
affects the response variable (e.g. resistance) and interacts with other explanatory variables; 724 
(b) the MARS algorithm in general deals much better with numerical data and continuous 725 
data; (c) it allows for dynamic relationships and thresholds in the dynamic dependences -  726 
especially important when analysing effects with time series data; and (d) MARS does better 727 
in extrapolating the results outside the sample data ranges of explanatory and outcome 728 
variables. These advantages are important when considering policy implications of findings 729 
for control of AMR. 730 
 731 
MARS approximates the functional relationship between an outcome time-series (yt) and a 732 
vector of p explanatory variables xt = (xt

1….xt
p) as: 733 

     734 
where; 735 

β0 is a constant 736 
βm is the coefficient for the mth basis function, m=1,...,M 737 
bm(xt)  is the mth  basis function, m=1,...,M 738 

 is an independently distributed error term. 739 

The basis functions are products of up to two truncated linear or hinge functions, describing 740 
the relationship between one or more explanatory variables and the outcome in terms of 741 
segments of stable association separated by knots or thresholds values. These interacting 742 
hinge functions allow us to identify possible interactions between variables as in Figure 743 
1C(ii). Namely, the mth basis function takes one of the following two forms: 744 

No interaction:        745 

With interaction:     746 

where  is the threshold value of  in the mth  basis function  and where    is a 747 
hinge function that takes the following form depending on whether the basis function takes 748 
effect above or below the threshold  749 
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a) above the threshold:    750 

b) below the threshold:     751 
 752 
If no knot (threshold) is detected, then a simple linear (and therefore constant) association 753 
between explanatory and outcome variable can be specified as a single function applied 754 
across the total range of values of the explanatory variable. 755 
 756 
All potentially significant explanatory variables, and associated lags, identified in previous 757 
steps, were incorporated into models. Model identification and estimation proceed by an 758 
automated, iterative, process: 759 
 760 
Forward pass: starting with the simplest model containing only a constant basis function, 761 
MARS generates a matrix of basis functions in a forward stepwise manner. Candidate base 762 
functions are added in order of ability to improve model fit, until the model reaches a 763 
predefined limit of complexity. The candidate basis functions are identified by a nested 764 
exhaustive search looping over the existing set of basis functions, and all other possible 765 
explanatory variables (or interactions) and knot positions.  766 
 767 
Backwards (pruning) pass: During the subsequent pruning pass MARS removes basis 768 
functions contributing least to model fit, until no significant improvement is seen in a 769 
modified form of the generalized cross validation (MGCV) criterion: 770 

 771 
 772 
Where;  is the number of observations, 773 
    is the sum of square of residuals (observed - estimated ). 774 
 C(M) is the number of parameters being fitted, M the number of non-constant basis775 
 functions and d=3 (conventional value). 776 
 777 
The MGCV incorporates a complexity penalty accounting for the inherent improvement in 778 
explained variance associated with increasing numbers of basis-functions, and its calculation 779 
allows estimates of the relative importance of each basis function. Model selection therefore 780 
converges on a set of basis functions that most efficiently explain variation in antibiotic 781 
resistance before a final model fit by OLS estimation. 782 
 783 
From the output of each MARS model we generated contribution charts illustrating the 784 
change in the outcome time-series across the observed ranges of explanatory variables. 785 
 786 
Step 5. Diagnostic checks 787 
Adequacy of model fit was defined by three criteria: (i) Normally distributed residuals – with 788 
homogenous variance and mean equal to zero, as evaluated by a Normality test; (ii) absence 789 
of significant residual autoregression – identified in lags 0 to 6 on an autocorrelation function 790 
(ACF) plot; and (iii) absence of residual non-linearities – as evaluated by a Hinich test. In 791 
addition to the MGCV we reported more familiar measures of model performance such as R2 792 
and the mean absolute percentage error (MAPE). 793 
 794 
Step 6: Confidence intervals (CIs) for thresholds values 795 
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In the absence of an existing method for deriving measures of uncertainty around thresholds 796 
derived from non-parametric MARS models, we develop a procedure inspired by Hansen 797 
(2000).48 His procedure considers a simple threshold model with only one variable affected 798 
by a threshold effect, and obtains a distribution theory for the threshold parameter (τ) from 799 
which asymptotic confidence intervals can be built. He first derives the limiting distribution 800 
of a Likelihood Ratio test (LR) for the null hypothesis that the threshold parameter τ= τ0 . He 801 
then builds confidence intervals through the inversion of LR: the (1-α) Inverted Likelihood 802 
Ratio (ILR) confidence interval consisting of all the possible values of τ for which the null 803 
hypothesis would not be rejected at the α level. Donayre et al. (2018) examine improvements 804 
of Hansen’s ILR confidence interval, increasing its quality in finite samples with large 805 
threshold effects (i.e. when the change in slope from one side of the threshold to the other is 806 
large).49 They show that a ‘conservative modification’ enlarging Hansen’s ILR confidence 807 
interval is optimal. In this “conservative ILR confidence interval” the lower end of the 808 
interval is enlarged from the first value lower than   for which the null hypothesis is 809 
rejected, up to at the upper end, it is enlarged from   up to the first value greater than   810 
for which the null hypothesis is rejected. This modification provides intervals at a confidence 811 
level at least as high as the nominal one that are still informative.  812 
 813 
We adapted this procedure for MARS estimations with more than one explanatory variable 814 
containing thresholds, and one or more thresholds per variable, by using the partial residuals 815 
–i.e. the variation in the outcome not explained by other explanatory variables and their 816 
thresholds. This allowed us to identify conservative ILR confidence intervals for each 817 
explanatory variable, conditional on all the estimated coefficients and thresholds other than 818 
the one for which the confidence interval is computed. Since in MARS all thresholds and 819 
slope coefficients are anyway selected and estimated to optimise overall model fit using 820 
conditional inference, identifying these ‘conditional conservative ILR (CCILR) confidence 821 
intervals’ does not impose costs to reliability. Computing confidence intervals conditional 822 
only on other thresholds, but with re-estimation of coefficients describing piece-wise 823 
associations (slopes), offers a valid alternative. In Monte Carlo simulations (results available 824 
on request) we found both approaches resulted in adequate coverage (>95% of intervals 825 
including the actual value of the threshold) but CIs were wider with a procedure with slope 826 
re-estimation and less informative for a given coverage rate. Our simulations show that the 827 
superiority of the partial residual approach is independent of the degree of correlation 828 
between antibiotic segments (values of antibiotic use over which association with the 829 
outcome is constant) where correlation is between 0% and 75%. There is some risk of very 830 
slight under coverage with the partial residual approach where correlations are ≥85%, but 831 
such high levels of correlation are unlikely unless several the functional relationship involves 832 
multiple, closely occurring, thresholds. In such situations, re-estimation of slope co-efficients 833 
is anyway not feasible. As a result, we recommend the partial residual approach, with a 834 
caution that the CI could be somewhat wider in specific and infrequent situations where 835 
multiple close thresholds for the same independent variable are detected (e.g. fluoroquinolone 836 
association with %Ec-ESBL in Orihuela hospital population). 837 
Step 7. Interpretation 838 
The minimum thresholds identified for each significantly associated antibiotic group were 839 
translated into suggested maximum numbers of patient treatment courses per month not 840 
expected to adversely affect resistance at population levels. We multiplied the threshold, 841 
expressed in DDDs per 1000 OBDs (or IDs), by the size of the monthly patient population (in 842 
thousands of OBDs or IDs), and then divided by an average patient treatment course of 7 843 
DDDs (except for aminoglycosides which were considered as 3 DDDs). These maximums 844 
were further compared to contemporary levels of antibiotic use in the last year of study, to 845 
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provide indications of how current use of antibiotics should be modified to avoid resistance 846 
spread. 847 
 848 
 849 
Projections for alternative antibiotic stewardship policy options 850 
To illustrate the potential effects of restricting antibiotics associated with %Ec-ESBL+ to 851 
threshold levels in populations of Orihuela, we compared the expected evolution of %Ec-852 
ESBL+ under a ‘business as usual’ scenario in which antibiotic use continued as in last year 853 
of study, to projected time-series with antibiotics restricted to threshold levels. We used a 854 
breakpoint analysis to identify the last stationary segment in %Ec-ESBL+ time-series from 855 
the study period. We recursively estimated MARS models using means from these stationary 856 
segments as starting points to derive steady states for %Ec-ESBL+ in community and 857 
hospital populations. Based on steady state values and MARS models for the study period 858 
(baseline) we simulated 1000 samples of 24-month projections, incorporating random error 859 
term with variance as derived in the baseline MARS model. For each sample projection we 860 
entered mean antibiotic levels in the last year of the study period (‘business as usual’) and 861 
alternative levels set at identified thresholds. We calculated the mean difference between 862 
business as usual and each policy option for every month along with 95% confidence 863 
intervals. Finally, we illustrated alternative projections and differences using medians of 864 
distributions from the 1,000 sample projections. 865 
 866 
 867 
Data availability 868 
The data that support the findings of this study are available from the corresponding 869 
author upon reasonable request. 870 
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Figure legends 1140 
 1141 
Figure 1 | Carbapenem-resistant A. baumannii and antibiotic use 1142 
(a) Time series for observed and predicted incidence density of CRAb, with observed 1143 
incidence density of CSAb. (b) Time series for use of potential explanatory antibiotic groups 1144 
(5-month moving averages). (c) Contribution charts illustrating the relationship between 1145 
explanatory variables and CRAb incidence density (sample size, n=143 months of 1146 
observation). 1147 
a Change relative to median monthly CRAb incidence density for study period.  1148 
CRAb, carbapenem-resistant A. baumannii. CSAb, carbapenem-susceptible A. baumannii. 1149 
DDDs, defined daily doses. IQR, Interquartile range. MARS, Multivariate Adaptive 1150 
Regression Splines. NL-TSA, non-linear time series analysis. OBDs, occupied bed days.  1151 
 1152 
Figure 2 | Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and 1153 
antibiotic use in hospital and community.  1154 
(a) Time series for observed and predicted %Ec-ESBL+ in hospital population. (b) Time 1155 
series of potential explanatory antibiotic groups in hospital population (5-month moving 1156 
averages). (c) Time series for observed and predicted %Ec-ESBL+ in community population. 1157 
(d) Time series of potential explanatory antibiotic groups in community population (5-month 1158 
moving averages). (e) Contribution charts illustrating the relationship between explanatory 1159 
variables and hospital or community %Ec-ESBL+. (sample size, n=304 months of 1160 
observation). 1161 
a compared to median monthly %Ec-ESBL+ for study period.  1162 
* confidence interval around lower threshold in association between fluoroquinolones and 1163 
%Ec-ESBL+ in hospital may be wider due to risk of slight under-coverage of confidence 1164 
interval estimation arising from a problem of multiple closely occurring thresholds. 1165 
%Ec-ESBL+, percentage of E. coli isolates producing extended-spectrum beta-lactamases. 1166 
DDDs, defined daily doses. IQR, Interquartile range. MARS, Multivariate Adaptive 1167 
Regression Splines. NL-TSA, non-linear time series analysis. OBDs, occupied bed days.  1168 
 1169 
Figure 3 | Cefepime-resistant Escherichia coli and antibiotic use  1170 
(a) Time series for observed and predicted incidence density of %Ec-FepR. (b) Time series 1171 
of potential explanatory antibiotic groups (5-month moving averages). (c) Contribution charts 1172 
illustrating the relationship between explanatory variables and %Ec-FepR (sample size, 1173 
n=105 months of observation). 1174 
a compared to median monthly %Ec-FepR for study period. 1175 
DDDs, Defined Daily Doses. IQR, interquartile range. %Ec-FepR, percentage of E. coli 1176 
isolates resistant to cefepime. OBDs, Occupied Bed Days. 1177 
 1178 
Figure 4: Gentamicin-resistant Pseudomonas aeruginosa and antibiotic use 1179 
(a) Time series for observed and model predicted incidence density of GRPa. (b) Time series 1180 
of potential explanatory antibiotic groups (5-month moving averages) (c) Contribution charts 1181 
illustrating the relationship between explanatory variables and GRPa incidence density 1182 
a compared to median monthly GRPa incidence density for study period (sample size, n=192 1183 
months of observation). 1184 
DDDs, Defined Daily Doses. GRPa, gentamicin-resistant P. aeruginosa; GSPa, gentamicin-1185 
susceptible P. aeruginosa isolates. IQR, Interquartile range. MARS, multivariate adaptive 1186 
regression splines OBDs, Occupied Bed Days. 1187 
 1188 
 1189 
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Figure 5: Methicillin-resistant Staphylococcus aureus, hand hygiene, and antibiotic use   1190 
(a) Time series for observed and predicted incidence density of MRSA. (b) Time series of 1191 
potential explanatory antibiotic groups (5-month moving averages). (c) Time series for 1192 
alcohol-based hand rub (ABHR) use. (d) Contribution charts illustrating the relationship 1193 
between explanatory variables and MRSA incidence density (sample size, n=105 months of 1194 
observation). 1195 
a compared to median monthly MRSA incidence density for study period.  1196 
ABHR, alcohol-based hand rub. DDDs, Defined Daily Doses. ECDC, European Centre for 1197 
Disease Prevention and Control. MRSA, Methicillin-resistant Staphylococcus aureus. OBDs, 1198 
Occupied Bed Days. 1199 
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Tables 1240 
 1241 
Table 1: Translation of thresholds identified in non-linear models into population-1242 
specific antibiotic stewardship policy recommendations 1243 

Antibiotic 

Patient treatments per montha 

Maximum suggested 
by threshold         

(95% CI) 

Average use 
in last 12 
months of 

study 

Suggested reduction in use (%) 

Standard                  
(using point estimate for 

threshold) 

Conservative               
(using lower limit of 95% 

CI for threshold) 

1. Carbapenem-resistant Acinetobacter baumannii (CRAb)‡ Debrecen, Hungary 
Carbapenems 86 (45 to 134) 226 140 (62%) 181 (80%) 
3rd generation cephalosporins 203 (169-229) 299 96 (32%) 130 (57%) 
Fluoroquinolones 478 (367-576) 375 Maintain below threshold 9 (2%) 
Piperacillin-tazobactam 39 (28-78) 41 2 (5%) 13 (32%) 

2. Extended-spectrum β-lactamase producing Escherichia coli (%Ec-ESBL+) Orihuela, Spain 
a) Hospital population 

Fluoroquinolones 78 (67 to 96)b 165 68 (41%) 87 (53%)b 

Third-generation cephalosporins 62 (35 to 91) 78 16 (21%) 43 (55%) 
b) Community population 

Fluoroquinolones 80 (40 to 148) 66 Maintain below threshold 26 (39%) 
Co-amoxiclav 191 (142 to 284) 277 86 (31%) 135 (49%) 

3. Cefepime-resistant Escherichia coli (%EcFepR) Seville, Spain 
Fluoroquinolones 392 (225 to 426) 351 Maintain below threshold 126 (36%) 
3rd/4th generation cephalosporins 130 (83 to 158) 211 87 (41%) 128 (61%) 

4. Gentamicin-resistant Pseudomonas aeruginosa (GRPa) , France 
Gentamicin and tobramycin 75 (36-99)b 68c Maintain below threshold 32 (47%) 
Fluoroquinolones 324 (316 to 330) 223 Maintain below threshold Maintain below threshold 

5. Methicillin-resistant Staphylococcus aureus (MRSA) Antrim, Northern Ireland 
Fluoroquinolones 24 (20 to 29) 39 15 (39%) 19 (49%) 
3rd generation cephalosporins 7 (6 to 8) 6 Maintain below threshold Maintain below threshold 
Co-amoxiclav 320 (189 to 422) 320 Maintain below threshold 131 (41%) 

a Derived by multiplying the threshold in table 1, expressed in DDDs per 1000 OBDs, by the size of the population (in 1000 OBDs or IDs), 1244 
and then dividing by an average patient treatment (considered as 7 DDDs unless otherwise specified) 1245 
b Confidence intervals may be wider, and the recommended restriction greater in the conservative approach, due to risk of slight 1246 
undercoverage of estimated confidence intervals due to multiple closely occurring thresholds in association between fluoroquinolone and 1247 
%Ec-ESBL+ in hospital.  1248 
c Average treatment course considered as 3 DDDs. 1249 
 1250 
 1251 
 1252 
 1253 
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