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Abstract

Meta-analyses have been extensively used to evaluate the e�cacy of neurofeedback (NFB)

treatment for Attention De�cit/Hyperactivity Disorder (ADHD) in children and adolescents.

However, each meta-analysis published in the past decade has contradicted the methods and

results from the previous one, thus making it di�cult to determine a consensus of opinion on

the e�ectiveness of NFB. This works brings continuity to the �eld by extending and discussing

the last and much controversial meta-analysis by Cortese et al. [2016].

The extension comprises an update of that work including the latest control trials, which

have since been published and, most importantly, o�ers a novel methodology. Speci�cally, NFB

literature is characterized by a high technical and methodological heterogeneity, which partly

explains the current lack of consensus on the e�cacy of NFB. This work takes advantage of

this by performing a Systematic Analysis of Biases (SAOB) in studies included in the previous

meta-analysis.

Our extended meta-analysis (k = 16 studies) con�rmed the previously obtained results of

e�ect sizes in favor of NFB e�cacy as being signi�cant when clinical scales of ADHD are rated

by parents (non-blind, p-value = 0.0014), but not when they are rated by teachers (probably

blind, p-value = 0.27). The e�ect size is signi�cant according to both raters for the subset

of studies meeting the de�nition of "standard NFB protocols" (parents' p-value = 0.0054;

teachers' p-value = 0.043, k = 4). Following this, the SAOB performed on k = 33 trials

identi�ed three main factors that have an impact on NFB e�cacy: �rst, a more intensive

treatment, but not treatment duration, is associated with higher e�cacy; second, teachers

report a lower improvement compared to parents; third, using high-quality EEG equipment

improves the e�ectiveness of the NFB treatment.

The identi�cation of biases relating to an appropriate technical implementation of NFB

certainly supports the e�cacy of NFB as an intervention. The data presented also suggest

that the probably blind assessment of teachers may not be considered a good proxy for blind

assessments, therefore stressing the need for studies with placebo-controlled intervention as

well as carefully reported neuromarker changes in relation to clinical response.

Keywords: ADHD, neurofeedback, meta-analysis, analysis of bias

1 Introduction

Attention De�cit/Hyperactivity Disorder (ADHD) is a common childhood psychiatric disorder char-

acterized by impaired attention and/or hyperactivity/impulsivity. Symptoms may persist in adult-

hood with clinical signi�cance, which makes ADHD a life-long problem for many patients [Faraone
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et al., 2006]. The prevalence of ADHD is around 5% in school-aged children, thus a�ecting an

estimated 2.5 million children in Europe [The American Psychiatric Association, 2013]. ADHD neg-

atively impacts children's well-being, with many su�ering from low self-esteem [Shaw-Zirt et al.,

2005] and underachievement in school [Barry et al., 2002]. Parents are equally a�ected, since the

child's behavior is frequently attributed to bad parenting [Harpin, 2005]. From a societal point of

view, ADHD also has a high �nancial impact: a 2013 survey in Europe estimated costs related to

ADHD between 9, 860 and 14, 483 Euros per patient/year [Le et al., 2014].

The diagnosis of ADHD primarily relies on questionnaire-based clinical evaluation [The American

Psychiatric Association, 2013], which can be supported by objective assessment metrics of execu-

tive function such as the Test of Variables of Attention (TOVA) [Forbes, 1998], the Continuous

Performance Test (CPT) [Barkley, 1991], and the Sustained Attention to Response Task (SART)

[Robertson et al., 1997]. Objective markers of brain function using electroencephalogram (EEG),

functional Magnetic Resonance Imaging (fMRI), or Positron Emission Tomography (PET) are not

considered to be useful for improving diagnosis at the individual level, but can help in di�erentiating

groups of patients [Johnstone et al., 2005]. In particular, di�erent phenotypes of ADHD patients

present with an increase in the EEG theta wave power (4-8Hz) and/or a decrease of EEG beta wave

power (12-32Hz) in frontal areas, or a decrease in the EEG Sensorimotor Rhythm (SMR) power

(13-15Hz) in the central area [Monastra, 2005; Matou²ek et al., 1984; Janzen et al., 1995; Loo

et al., 2017]. A device using EEG to help clinicians more accurately diagnosis ADHD was cleared

by the Food and Drug Administration (FDA) [Neba Health, 2015].

Psychostimulants are the most common treatment currently in use, and have proven to be

e�cacious [Taylor, 2014; Storebo et al., 2015]. However, their long-term e�ectiveness and side

e�ects are still debated and form an active area of research [DuPaul, 1998; Swanson et al., 2001;

Jensen, 1999; Su et al., 2016; Becker et al., 2016]. Moreover, ADHD children under medication

commonly su�er from mild side e�ects such as loss of appetite and sleep disturbance, although serious

adverse events are rare [Storebo et al., 2015; Cooper et al., 2011]. These drawbacks make some

parents and clinicians reluctant to opt for such treatment, instead turning to non-pharmaceutical

alternatives such as dietary changes [Bélanger et al., 2009] and behavioral therapy, which have been

proven to be less e�cacious [Sonuga-Barke et al., 2013].

Neurofeedback (NFB) is another non-pharmaceutical and non-invasive approach aiming at the

reduction of ADHD symptoms [Arns et al., 2015; Ste�ert and Ste�ert, 2010; Marzbani et al.,

2016]. Shortly after the discovery of the brain's electric activity by Berger [1929], Durup and

Fessard [1935] demonstrated it could be voluntarily modulated, leading to a series of �ndings on

the self-regulation of brain activity. The �rst indication of the therapeutic potential of brain activity
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operant-conditioning came forty years later when Sterman et al. [1974] found that training the SMR

activity reduces the incidence of epileptic crisis in kerosene-exposed cats. The technique, then known

as NFB, rapidly became the subject of investigation in various �elds of neuropsychiatry including,

most notably, ADHD [Lubar and Shouse, 1976; Rossiter and La Vaque, 1995; Linden et al., 1996;

Maurizio et al., 2014].

NFB is a self-paced brain neuromodulation technique that represents brain activity in real-time

using auditory or visual modulations, on which learning paradigms, such as operant conditioning

[Reynolds, 1975] or voluntary control, can be applied. To deliver this intervention, neurophysiological

time series are analyzed online in order to drive feedback applications such as serious games [Wang

et al., 2010]. The signal of interest should represent the activity of a population of neurons involved

in attentional networks, which is translated into visual or auditory cues. The sensory feedback

constitutes the rewards mechanism, promoting learning using, for instance, operant conditioning

protocols [Sherlin et al., 2011]. Operant conditioning enables neural plasticity, thus supporting

the child in the task repetition [Skinner, 1984], which is believed to result in long-lasting neuronal

reorganization [Van Doren et al., 2017].

Several NFB protocols have been proposed and investigated for decreasing the symptoms of

ADHD:

• protocols based on neural oscillations, using frequency-band power training: enhancing SMR

[Beauregard and Levesque, 2006], reducing theta [Marzbani et al., 2016] or enhancing beta

[Kropotov et al., 2005], or a composite protocol such as enhancing beta while suppressing

theta, also known as the Theta Beta Ratio (TBR) protocol [Lubar and Shouse, 1976; Arns

et al., 2013];

• protocols based on Slow Cortical Potentials (SCPs) training consisting of the regulation of

cortical excitation thresholds by focusing on activity generated by external cues [Heinrich et al.,

2004; Banaschewski and Brandeis, 2007];

• protocols to enhance Event-Related Potentials (ERPs): in particular, the amplitude of the

P300 ERP can be considered as a speci�c neurophysiological marker of selective attention

[Fouillen et al., 2017].

Moreover, NFB protocols can be personalized: some studies did not use the usual de�nitions of

EEG band ranges but determined them thanks to the individual Alpha Peak Frequency (iAPF)

[Klimesch, 1999], giving individualized NFB protocols [Liu et al., 2016; Escolano et al., 2014;

Bazanova et al., 2018].
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NFB e�cacy on the core symptoms of ADHD (inattention, hyperactivity, and impulsivity) has

been the subject of several meta-analytic studies [Loo and Barkley, 2005; Lofthouse et al., 2012;

Arns et al., 2009; Micoulaud-Franchi et al., 2014; Sonuga-Barke et al., 2013]. To date, studies have

not reached a consensus on the e�cacy of NFB; while Arns et al. [2009] and Micoulaud-Franchi

et al. [2014] claim results in favor of its e�cacy, especially on the inattention component highlighted

by Micoulaud-Franchi et al., other authors, such as Loo and Barkley [2005]; Lofthouse et al. [2012],

and Sonuga-Barke et al. [2013] express their reservations, asking for further evidence from blind

assessment.

The most recent meta-analysis addressing the e�cacy of NFB was published by Cortese et al.

[2016], including a total of 13 Randomized Controlled Trials (RCTs). The results of this analysis are

mixed: when based on parent assessments, which are not blind to treatment, they are signi�cantly in

favor of NFB, whereas when the evolution of symptoms is rated by teachers (considered as probably

blind), the results are no longer signi�cant. The authors concluded that further evidence from blind

assessments is needed in order to support NFB as a treatment for ADHD symptoms. However, some

of the choices made in this meta-analysis, which may have had an impact on the results, have since

been debated by the community. Speci�cally, Micoulaud-Franchi et al. [2016] criticized the use of

an uncommon behavioral scale provided by Steiner et al. [2014] for the teachers' assessments and

the inclusion of a pilot study carried out by Arnold et al. [2014].

As a result of these criticisms and the concurrent publication of new RCTs meeting Cortese

et al.'s inclusion criteria, we decided to update this meta-analysis and take the opportunity to inves-

tigate the impact of its controversial choices. While performing our investigation, we observed two

shortcomings: the assumption that the di�erence between teacher and parent assessments can solely

be explained by the placebo e�ect, and pooling together heterogeneous studies in terms of method-

ology and technical implementation. An interesting approach, albeit not commonly performed, to

assess the NFB e�cacy would be to analyze the speci�city of the EEG changes with respect to

trained neuromarkers [Maurizio et al., 2014]. In our case, based on the data at our disposal, we

used the technical and methodological heterogeneity of the NFB trials to our advantage rather than

disadvantage by extending the previous work with a novel method, the Systematic Analysis of Biases

(SAOB). Indeed, the NFB domain is characterized by clinical literature that is extremely heteroge-

neous: studies di�er methodologically (for instance, random assignment and presence of a blind

assessment), in the NFB implementation (for instance, number of sessions, session and treatment

length, and type of protocol) as well as on the acquisition and processing of the EEG signal. De-

scription and analysis of di�erent types of NFB implementation was subject to several studies [Arns

et al., 2014; Enriquez-Geppert et al., 2017; Vernon et al., 2004; Jeunet et al., 2018]. However to
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the best of our knowledge, none of these studies has used statistical tools to quantify their in�uence

on clinical endpoints.

Since methodological and technical implementations of studies are highly likely to in�uence their

outcomes [Congedo et al., 2004], we suggest identifying which of the factors independently in�uence

the clinical e�cacy with the use of appropriate statistical tools. In addition, we have made available

all the raw RCT data we have used and a complete Python library for performing meta-analysis

[Bussalb, 2019a]. Through doing so, we hope to foster the replication of our and previous studies

and to facilitate similar future projects.

2 Materials and Methods

2.1 Inclusion criteria

Search terms were directly taken from Cortese et al. [2016] with the exception of the need for

a control arm, which is detailed in Supplemental Materials [Bussalb, 2019b]. The requirements

included:

• studies have to assess NFB e�cacy;

• subjects must have received a diagnosis of ADHD based on DSM-IV [The American Psychiatric

Association, 2000], DSM-5 [The American Psychiatric Association, 2013], ICD-10 [World

Health Organization, 1993] criteria, or by a quali�ed psychiatrist;

• studies have to be written in English, German, Spanish, or French;

• studies have to include at least eight subjects in each group;

• patients must be younger than 25 years old;

• the publication has to disclose su�cient details about the data to compute required metrics

for the ensuing analysis.

The studies satisfying all these criteria were included in the SAOB. In order to replicate and update

Cortese et al.'s meta-analysis, we applied the original inclusion criteria of their meta-analysis to our

search (the main di�erence being the presence of a control group).
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2.2 Outcome de�nition

In the included studies, the severity of ADHD symptoms have been assessed by parents and, whenever

available, by teachers. Cortese et al. [2016] and Micoulaud-Franchi et al. [2014] de�ned parents

as Most Proximal (MPROX) raters who were not blind to the treatment, as opposed to teachers,

who were considered as Probably Blind (PBLIND) raters. This distinction is intended to assess the

amplitude of the placebo e�ect, where it is hypothesized that teachers, who are presumed to be

more blind to the intervention, are less in�uenced in their assessment. E�cacy of NFB was measured

using clinical scales, such as the ADHD-RS [Pappas, 2006], on the following outcomes: inattention,

hyperactivity/impulsivity, and total scores. The factor analysis was performed using the total score.

2.3 Meta-analysis

The goal of a meta-analysis is to aggregate results from di�erent clinical investigations and o�er a

consolidated body of evidence. To achieve this, it is necessary to assume some level of homogeneity

in the design of the studies: inclusion criteria, and the presence and type of control (active, semi-

active, or non-active). Because studies occasionally use slight variations of a clinical scale and

because of the clinical heterogeneity of patients and control, the scores are standardized before

being pooled into a Summary E�ect (SE). The between-E�ect Size (ES) is one such standardized

metric, which we have implemented in this paper (see Supplemental Materials [Bussalb, 2019b]).

The meta-analysis was performed with a Python package developed for this work. The package

o�ers a transparent approach for the choice of parameters in an e�ort to ease replicability. We

have benchmarked it against RevMan version 5.1 [Cochrane Collaboration, 2011, UK, London] by

replicating Cortese et al. [2016]'s work. The code is made fully available on a GitHub repository

[Bussalb, 2019a], together with all the RCTs raw data we have used in the present study.

Before updating the Cortese et al. [2016] work with recently published studies [Strehl et al.,

2017; Baumeister et al., 2016], we decided to run a sensitivity analysis investigating the choices that

later proved controversial [Micoulaud-Franchi et al., 2016]. The investigated changes included:

• the between-ES of Arnold et al.'s study was computed from the post-test clinical values taken

after the completion of the 40 sessions, in contrast to Cortese et al. [2016]'s report which

used the results after only 12 sessions because the endpoint values were not available at the

time of his study;

• the between-ES computed from the teachers' assessment reported by Steiner et al. [2014] relied

on the BOSS Classroom Observation [Shapiro, 2010]. This is an atypical scale to quantify
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ADHD symptoms since the Conners Rating Scale Revised [Conners et al., 1998; Christiansen

et al., 2014; Bluschke et al., 2016], a well-de�ned [Collett et al., 2003; Epstein and Weiss,

2012] and broadly used metric, was available in this study. Thus, we decided to compute

the between-ES based on the Conners-3 already used in this study to compute the parents'

between-ES.

As initially suggested by Cortese et al., the analysis was run on two subgroups of studies with

the two choices described above: one gathering studies following the standard protocol de�ned by

Arns et al. [2014] and a second including only participants not taking medications during the clinical

trial.

2.4 Identify factors in�uencing the neurofeedback

While revisiting the existing meta-analyses, it became apparent that the studies pooled together

were highly heterogeneous in terms of methodological and practical implementation. For instance,

all NFB interventions were pooled together regardless the quality of acquisition, the quality of EEG

data, and the trained neuromarker. Equally, the methodological implementations varied signi�cantly,

requiring the 'subgroup' analysis (for instance, gathering studies following standard protocols) that

are somewhat arbitrary. To circumvent these limitations, we implemented a novel approach: the

SAOB. With this method, the within-ES of each intervention was considered as a dependent variable

to be explained by methodological and technical factors. Such analysis aims at identifying known

methodological biases (e.g. blind assessments negatively associated with within-ES) and possible

technical factors (e.g. a good control on real time data quality positively in�uences the treatment

outcome).

2.4.1 Identify and pre-process factors

We classi�ed the factors in�uencing the e�cacy of NFB into �ve categories: methodological, tech-

nical, demographics, and quality of the signal and acquisition. Factors were chosen based on that

reported in the literature as presumed to in�uence ES, and categorized as follows:

• the methodological biases: the presence of a control group, the blindness of assessors, the

randomization of subjects in controlled trials, and the approval of the study by an Institutional

Review Board (IRB);

• the population: intake of psychostimulants during NFB treatment, the age range of children
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included, the severity of ADHD symptoms at baseline1, and the degree of engagement with

NFB intervention;

• the NFB implementation: the protocol used (SCP, SMR, theta up, beta up in central or frontal

areas, theta down), the presence of a transfer phase during NFB training, the possibility to

train at home or at school with a transfer card, the type of thresholding for discrete reward,

the number of NFB sessions, the length and frequency of the sessions, the length of the

treatment, the individualization of the frequency bands based on the iAPF, and coupling NFB

with Electromyogram (EMG)-Biofeedback;

• the acquisition quality : the presence of one or more active electrodes and the EEG data quality.

The latter was coded as an indicator between 1 and 3, using the following criteria:

the type of electrodes used : Silver Chloride (AgCl)/Gel or Gold (Au)/Gel;

the use of impedance mode: a quality check of electrode contacts ensuring an inter-

electrode impedance smaller than 40kΩ;

the level of hardware certi�cate: compliance with ISO-60601-2-26 [International Elec-

trotechnical Commission, 2012].

A quality score equal to 3 was assigned if all the above criteria were satis�ed. If at least one

was satis�ed the quality score was set to 2, otherwise the score was set to 1.

• the signal quality : online rejection (epoch rejected, feedback not computed) or correction

(feedback computed on the denoised epoch) of Electro-Oculogram (EOG) artifacts, and online

rejection of generic artifacts using an amplitude-based detection.

To prevent any bias in the analysis, the names of the factors were hidden during the entire

analysis so that the data scientists (AB, QB, DO, and LM) were fully blind to them. The names

were revealed only when the data analysis and results were accepted as valid: this included choice

of variable normalization and validation of model hypothesis, as detailed below.

The pre-processing of factors for the analysis included the following steps: factors for which there

were too many missing observations arbitrarily set to more than 20% of the total observations, were

removed from the analysis. Furthermore, if a factor had more than 80% similar observations it was

also removed. A study did not systematically correspond to an observation: when several clinical

1Baseline severity is given by the pre-treatment score. But, to have comparable severity scores between the

di�erent clinical scales, pre-treatment score is normalized, i.e. divided by the maximal score which can be obtained

on the clinical scale
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scales and/or raters were available in a study, each couple clinical scale - rater was considered as

an observation. Categorical variables were coded as dummies, i.e., the presence of the factor was

represented with 1 and its absence with 0. All variables were standardized by subtracting the mean

and then dividing by the standard deviation (not applied before the decision tree described below).

2.4.2 Explaining within e�ect sizes with factors

To compute the within-ES, the means of total ADHD scores given by parents and teachers were

used. Moreover, in case studies providing results for more than one behavioral scale the within-ES

scores were computed for each one as:

ES =
Mpost,T −Mpre,T√

σ2
pre,T

+σ2
post,T

2

,

where Mt,T is the mean of clinical scale, for treatment T, taken at time t (pre-test or post-test) and

σt,T represents its standard deviation. With this de�nition, we focus on the e�ect of the treatment

within a group [Cohen, 1988] as commonly reported in the literature [Arns et al., 2009; Maurizio

et al., 2014; Strehl et al., 2017]. This within-ES enables us to quantify the e�cacy of NFB inside

the treatment group. Finally, to avoid to break analysis methods assumptions, an outlier rejection

was applied de�ning thresholds of acceptance as [µ− 3σ, µ+ 3σ], with µ and σ being respectively

the mean and the standard deviation of all within-ES computed [Shewhart, 1931].

The within-ES was then considered as a dependent variable to be explained by the factors (the

independent variables). The following three methods, implemented with the Scikit-Learn Python

[Pedregosa et al., 2011, version 0.18.1] and the Statsmodels Python [Seabold and Perktold, 2010,

version 0.8.0] libraries, were used to perform the regression:

• weighted multiple linear regression with Weighted Least Squares (WLS) [Montgomery et al.,

2012];

• sparsity-regularized linear regression with Least Absolute Shrinkage and Selection Operator

(LASSO) [Tibshirani, 1996];

• decision tree regression [Quinlan, 1986].

The aim of the linear regression is to estimate the regression coe�cients linking the factors to

the within-ES. A signi�cant coe�cient (here and hereafter meaning signi�cantly di�erent from zero)

indicates that the associated factor has an in�uence on NFB e�cacy and its sign the direction of the

e�ect. The WLS di�ers from a traditional linear regression estimated with Ordinary Least Squares

(OLS) in that a weight is assigned to each observation in order to account for the multiplicity of
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reported clinical endpoints in some studies. In addition, the weight was also set as a function of

the sample size to account for variations in sample sizes. Speci�cally, the weight of each study was

taken as the ratio between the experimental group's sample size and the number of behavioral scales

available. We also ran the analysis using the OLS method to assess the impact of the weights on

the results.

The second linear method applied was the LASSO, which naturally incorporates variable selection

into the linear model thanks to `1-norm applied on the coe�cients. A coe�cient not set to zero

means that the associated factor has an in�uence on NFB e�cacy and its sign indicates the direction

of the e�ect.

The last method used to determine factors in�uencing NFB was the decision tree [Quinlan, 1986],

a hierarchical and non-linear method. This breaks down a dataset into smaller and smaller subsets

using, at each iteration, a variable and a threshold chosen to optimize a simple Mean Square Error

(MSE) criterion [James et al., 2013]. A tree is composed of several nodes and leafs, the importance

of which decreases from the top node, called the root node, downward.

Given that these methods are intrinsically di�erent we compared their results. For instance,

the decision tree captures variable interactions and can relate factors to within-ES in a non-linear

fashion. On the other hand, the LASSO o�ers an elegant mathematical framework for variable

selection. Further details are provided in the Supplemental Material [Bussalb, 2019b].

3 Results

3.1 Selected studies

Search terms entered in Pubmed returned 155 results during the last check on February 12, 2018, in-

cluding 22 articles used in previous meta-analyses on NFB. Following the selection process illustrated

in Figure 1, 33 studies were included in the SAOB and 16 in the meta-analysis, as summarized in

Table 1. The 33 studies selected for the SAOB followed Cortese et al.'s criteria, with the exception

of the requirement for a control group. Indeed, since within-ES were considered in this analysis, a

control group was not required.

3.2 Meta-analysis

The replication of Cortese et al.'s results obtained are presented in Table 2:

• when computing the between-ES for Arnold et al. [2014] with the values after 40 sessions of
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NFB, smaller between-ES were found as compared to those found by Cortese et al. [2016],

which was unexpected since the clinical e�cacy is supposed to increase with the number

of NFB sessions. These lower between-ES impacted the SE: they were slightly lower when

computed with this choice although they nonetheless remained signi�cant (see the three �rst

lines of Table 2);

• when relying on the teachers' ratings from the Conners-3 to compute the between-ES of

Steiner et al. [2014], higher SEs were found in attention but not for total and hyperactivity

score. However, this di�erent choice of scale did not a�ect the statistical signi�cance of the

SEs (see the three last lines of Table 2).

The meta-analysis was then extended by adding three new articles [Strehl et al., 2017; Baumeister

et al., 2016; Bazanova et al., 2018]. Bazanova et al. [2018] gave parents' assessments for all

outcomes, Baumeister et al. [2016] provided results solely for parents' total outcome, whereas Strehl

et al. [2017] gave both teachers' and parents' assessments for all outcomes. To be consistent with the

SAOB, only the standard NFB group of Bazanova et al. [2018] was included in this update. Despite

favorable results for NFB, particularly on parents' assessments, adding these three new studies did

not change either the magnitude or the signi�cance of the SE, for any outcome regardless of the

raters, as illustrated in Figure 2.

Regarding the "standard protocol" subgroup, Cortese et al. [2016] found all the outcomes sig-

ni�cant except for the hyperactivity symptoms rated by teachers, which showed only a statistical

trend (p-value = 0.11). Similar results were obtained when adding the most recent studies meeting

this de�nition [Strehl et al., 2017; Baumeister et al., 2016] (p-value = 0.11). The SE for the total

outcome assessed by teachers remained signi�cant with the addition of the new RCT (p-value =

0.043), thus giving more strength to this result since it is now based on four studies including 283

patients in total.

As for the no-drug subgroup, SEs were found signi�cant for the inattention symptoms assessed

by parents (p-value = 0.017). In addition, the di�erences in Arnold et al. [2014] values and the

inclusion of Bazanova et al. [2018] caused a loss of signi�cance in hyperactivity outcome for parents

(p-value = 0.062) compared to Cortese et al. [2016] (p-value = 0.016). Only Bazanova et al. [2018]

was included in this subgroup: in the two other studies the subjects were taking psychostimulants

during the trial.

All the clinical scales used to compute the between-ES following our choices are summarized in

the Supplemental Materials.
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3.3 Factors in�uencing Neurofeedback

This analysis was performed on 33 trials (corresponding to 67 observations) assessing the e�cacy of

NFB, as presented in Table 1. The outlier rejection removed two training groups of Bazanova et al.

[2018] from the analysis because their within-ES were out of the bounds. Among the 28 factors

selected, nine were removed because there were too many missing observations or because they were

too homogeneous: beta up in frontal areas, the use of a transfer card, the type of threshold for

the discrete rewards (incremental or �xed), the EEG quality equal of 3, the presence of a control

group, the individualization of the frequency bands based on the iAPF, coupling NFB with EMG-

Biofeedback, the severity of ADHD symptoms at baseline, and the degree of engagement with NF

intervention.

All results are presented in Table 3. These results, require careful interpretation since each tech-

nique provided slightly di�erent results. These di�erences may depend on the di�erent assumptions

of the model and several other factors. Nonetheless, we are inclined to trust the �ndings that are

consistent across methods.

The WLS technique identi�ed nine signi�cant factors for an adjusted R-squared of 0.62 (see

second column of Table 3). When applying the OLS, the same factors were signi�cant except the

EEG quality equal of 2 and the presence of more than one active electrode) with a lower adjusted R-

squared (0.35). The LASSO regression selected six signi�cant factors (see third column of Table 3).

With these methods, a negative coe�cient means that the factor is in favor of the e�cacy of NFB.

The decision tree is presented in Figure 3: the best predictor in our case was the PBLIND (see last

column of Table 3). Four other factors also split the subsets; however, increasingly fewer samples

are available the lower we get into the tree, making the interpretation increasingly doubtful.

Several factors were common to the three methods used. These included, in particular: the

assessment by a blind rater, the treatment length, and an EEG quality score equal to 2 (see lines 1,

9, and 19 of Table 3). The methods also agreed on the direction of the e�ect for these factors: a

shorter treatment and recording of the EEG with a good-quality system appears preferable, whereas

teachers' assessment appears less favorable compared to parents' assessment.

It is more doubtful the in�uence of the factors returned by only one or two methods (see lines

2, 3, 7, 8, 11, 16, 17, and 20 of Table 3). In particular:

• both WLS and LASSO found that using more than one active electrode during NFB appears

to lead to an higher e�cacy;

• both WLS and the decision tree found that performing a higher number of sessions seems to

be preferable;
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• both LASSO and the decision tree found that a higher number of sessions per week appears

to positively in�uence the e�cacy of the NFB treatment.

Five factors were returned by only one of the methods: randomizing the groups, the IRB approval,

the session length, the presence of a transfer phase, and the correction or rejection of ocular artifacts.

Eight factors were never selected by the three methods (see lines 4, 5, 6, 12, 13, 14, 15 and 22

of Table 3): the children's minimum and maximum age, being on drugs during NFB treatment, the

protocols SMR, beta up in central areas, theta down, and SCP, and the artifact correction based on

amplitude. Thus, these factors overwhelmingly appear not to have an in�uence on NFB e�cacy.

In the next section we discuss only the factors that were selected by at least two of the three

methods.

4 Discussion

4.1 Meta-analysis

This replication and update of a meta-analysis did not meet all PRISMA recommendations [Moher

et al., 2009]. In particular, the risk of bias in individual and across studies was not assessed.

In the meta-analysis performed here, we challenged some choices made by Cortese et al., which

proved controversial: the computation of between-ES based on an unusual scale [Steiner et al., 2014]

and the inclusion of a pilot study [Arnold et al., 2014] whose endpoint values were not available at

the time Cortese et al. conducted their meta-analysis. We here review the list of changes, their

justi�cation, and their impact on the analysis.

First, relying on the Conners-3 [Conners et al., 2011] instead of the BOSS Classroom Observation

[Shapiro, 2010] for teachers' ratings seems preferable because this scale is more commonly used

[Christiansen et al., 2014; Bluschke et al., 2016] and is a revision of the Conners Rating Scale

Revised [Conners et al., 1998] whose reliability has been studied [Collett et al., 2003]. However,

relying on one or the other scale did not change the signi�cance of the between-ES, regardless of

outcome.

Second, to compute the between-ES of Arnold et al. [2014] the clinical scores taken when all

sessions were completed were used instead of looking at interim results as with Cortese et al.. Some

studies suggested that the number of sessions correlates positively with the changes observed in

the EEG [Vernon et al., 2004] so that a lower number of sessions would lead to arti�cially smaller

between-ES. Here, the between-ES computed with the values at post test of Arnold et al. [2014]
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were smaller than those obtained after 12 sessions; however, these di�erences did not lead to a

change of signi�cance of the SE.

To conclude on this meta-analysis, although some points were controversial, the impact on the

meta-analysis was minimal and did not change the statistical signi�cance of any outcome. The

addition of the three new studies [Strehl et al., 2017; Baumeister et al., 2016; Bazanova et al.,

2018] further con�rmed the original results. Indeed, the signi�cance did not change for any outcome:

the SE remained signi�cant for MPROX raters and non-signi�cant for PBLIND. Adding three more

studies increased the signi�cance of the sensitivity analysis run by Cortese et al., most notably the SE

of studies corresponding to NFB "standard protocols" [Arns et al., 2014]. While Cortese et al. found

that this subset tends to perform better, particularly on the PBLIND outcome, adding two studies

con�rmed this result on the total clinical score (p-value < 0.05). Despite the obvious heterogeneity

of the studies included in this subset (particularly in terms of protocol used), these results suggest a

positive relation between the features of this standard design and NFB performance. This result is

a breakthrough in the demonstration of standard NFB protocol e�cacy for the treatment of ADHD.

Nonetheless, the studies included in this subset are still highly heterogeneous (particularly in terms

of protocol used), a factor which should be accounted for.

4.2 Factors in�uencing neurofeedback

Description and analysis of di�erent types of NFB implementation were subject to several studies

[Arns et al., 2014; Enriquez-Geppert et al., 2017; Vernon et al., 2004; Jeunet et al., 2018; Arns

et al., 2009; Cortese et al., 2016]. However, to the best of our knowledge, none of these studies has

implemented a systematic multivariate approach to associate factors to clinical endpoints therefore

exposing their univariate analysis to a greater extend to the presence of a confounding factor.

Two observations were detected as outliers and so removed from the dataset before perform-

ing the SAOB: Bazanova et al.'s individualized NFB and individualized NFB coupled with EMG-

Biofeedback groups. Indeed, these two groups presented very large within-ES (-3.41 and -3.95),

even bigger than those reported in the literature on medication treating ADHD [Luan et al., 2017].

These large values broke our working hypothesis, so in order to be able to conclude on the results

obtained by the SAOB, an outlier rejection was implemented.

As expected, the number of sessions was found to be signi�cant, even if it was by only two

methods, which was in compliance with existing literature. For instance, using several univariate

regressions without correction for multiple testing Arns et al. [2009], Arns et al. [2014] stated

that performing less than 20 NFB sessions leads to smaller e�ects. Similarly, Vernon et al. [2004]
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observed that positive changes in the EEG and behavioral performance occurred after a minimum

of 20 sessions. However, Enriquez-Geppert et al. [2017] insisted that the number of sessions should

be carefully chosen in order to avoid "overtraining". The fact that the number of sessions was not

identi�ed by the LASSO as a positively contributing factor might be explained by the presence of

only two data points with 20 sessions or less. Conceivably, the temporal threshold of e�cacy was

passed for all included studies, making the identi�cation of this factor by the three methods unlikely

on this dataset. However, the two methods that identi�ed this factor both agreed that as expected,

the more sessions performed, the more e�cient the NFB tends to be.

Interestingly, [Minder et al., 2018] suggests that the subject location of the NFB training may

also be an important contributory factor to clinical e�ectiveness. However, this has been challenged

by a recent study [Minder et al., 2018] showing that performing NFB at school or at the clinic has

no signi�cant impact on treatment response.

The type of NFB protocol was not identi�ed by any method, and did not appear to in�uence the

NFB results. This minimal importance granted by the methods to the NFB protocols is counter-

intuitive given the centrality of the protocols in the neurophysiological mode of action and subsequent

expected impact on therapeutic e�ectiveness [Vernon et al., 2004]. A possible explanation for this

result is that these protocols were equally e�cacious for the populations to whom they were o�ered

and thereby did not constitute a signi�cant explanatory factor. This result, however, does not

preclude a combined and personalized strategy (o�ering personalized protocols based on phenotypes)

to further improve performance, as previously suggested by Alkoby et al. [2017].

Several factors were selected by all three methods with the same direction of in�uence: the EEG

quality, the treatment length, and the rater's probably blindness to the treatment. First, our analysis

highlighted that recording EEG in good conditions leads to better results. This can be explained

by the fact that better signal quality enables more accurate extraction of EEG patterns linked to

ADHD and hence leads to better learning and therapeutic e�cacy [Congedo et al., 2004]. However,

it remains di�cult to assess the quality of EEG hardware (such as the ampli�er used) because little

information is provided in these studies. This calls for greater care in future studies, which should

strive to assess and report the quality of the data.

Next, it appears that the longer the course of treatment, the less e�cient it becomes. This may

be explained by the degree of engagement with NFB intervention: it may be harder to be engaged

with a long course of treatment. However, it is di�cult to quantify because either no questionnaires

assessing engagement were submitted to children or this information was not provided. It is an

interesting point to investigate, so we invite future studies to share it if possible.

Arguably, the treatment length is a proxy for treatment intensity, suggesting that a shorter
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period of treatment is more likely to succeed because the frequency of the sessions is higher. This

hypothesis is supported by the fact that the variable session pace (number of sessions per week) is

also associated with larger within-ES according to the LASSO and the decision tree. The impact

of the intensity of treatment has been investigated by [Rogala et al., 2016] on healthy adults: it

was observed that studies with at least four training sessions completed on consecutive days were

all bene�cial. Overall, these results suggest adopting a high session pace, which is not common

knowledge in the �eld.

Some other factors' in�uence would have been interesting to investigate, such as using person-

alized NFB protocols based on the iAPF [Liu et al., 2016], which seems promising according to

Bazanova et al. [2018]; Escolano et al. [2014]. However, it could not be included in the SAOB

because only two studies used personalized NFB protocols. This lack of studies is also the reason

why the impact of coupling EMG-Biofeedback with NFB could not be included in the SAOB. An-

other interesting factor, which could have helped explain the result on the treatment duration, was

excluded from the analysis: the severity at baseline. Although pre-test scores were available for each

study, they could not be compared because they were measured on di�erent scales. To address this

problem, the scores were normalized using the maximum score to be obtained on each scale. How-

ever, this value was not found for several clinical scales, which led to missing observations. When

more studies including these features will be available, it would be interesting to run the SAOB to

determine the in�uence of these excluded factors.

In general our results strongly support the e�ectiveness of NFB for the treatment of ADHD.

However, as expected, the assessment of symptoms by non-blind raters leads to far more favorable

results than by PBLIND raters, a result widely expected and in close compliance with the existing

meta-analysis [Cortese et al., 2016; Micoulaud-Franchi et al., 2014]. This observation would cer-

tainly be contradictory should teachers' assessments re�ect a placebo e�ect, which has long been

documented in the literature [Sollie et al., 2013; Narad et al., 2015; Minder et al., 2018]. This point

is investigated in greater detail in the following section.

4.3 Analysis on the probably blind raters

Teachers were considered as PBLIND raters by Cortese et al. and Micoulaud-Franchi et al.. Unex-

pectedly, the data provided did not exactly match the widely accepted hypothesis stating that the

di�erence between MPROX and PBLIND can solely be explained by the placebo e�ect. Nonethe-

less, the emphasis put on 'probably' indicates that teachers may be aware of the treatment followed.

An element that corroborates this hypothesis is the fact that, for all the studies included in this
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work, the amplitude of the clinical scale at baseline suggests that teachers did not capture the full

extent of the symptoms or, put di�erently, that they were blind more to the symptoms than to the

intervention, as illustrated in Figure 4. Indeed, before the intervention, teachers rated the symp-

toms less severely compared to parents and observed less improvement at post-test: this tends to

correspond more to case A with no placebo e�ect than case B. The expected di�erences of ratings

between teachers and parents have been extensively studied [Sollie et al., 2013; Narad et al., 2015;

Minder et al., 2018], observing that teachers are more likely to underrate a child's symptom severity,

especially for younger children. As a consequence, teachers might simply be less likely to observe

a clinical change over the course of the treatment [Sollie et al., 2013; Narad et al., 2015; Minder

et al., 2018]. Moreover, it is also clear that there is more variability in teachers' scores compared to

parents', which could partly explain the lower ES obtained for PBLIND raters, since the variability

de�ates the ES. In conclusion, using PBLIND as an estimate for correcting the placebo e�ect does

not appear an appropriate choice.

Another way to highlight a possible placebo e�ect is to focus on the decision tree illustrated in

Figure 3. The top node splits: on the one hand 46 observations corresponding to MPROX raters

and, on the other, 21 observations corresponding to PBLIND. If the di�erences observed between

PBLIND and MPROX raters were due to the placebo e�ect, one would expect to �nd in the MPROX

sub-tree some factors linked to the perception of the implication in the treatment. This was indeed

the case: treatment length was found to be signi�cant but not in the direction corroborating the

hypothesis that they are a part of a placebo e�ect. Indeed, one would expect that the longer the

treatment, the higher the placebo e�ect and the greater the within-ES. Instead, the opposite was

found, somewhat invalidating the hypothesis.

Overall, these results suggest that PBLIND assessments could hardly be used to assess placebo

e�ect as they seem to be blinder to symptoms than to intervention. In the absence of an ethically

[Holtmann et al., 2014] and technically [Birbaumer, 1991] feasible sham for NFB protocols [World

Medical Association, 2000], it is necessary to fall back on an acceptable methodological alternative for

the demonstration of clinical e�ectiveness. Among those are the analysis of neuromarkers collected

during NFB treatment demonstrating that patients do control the trained neuromarkers; that they

learn (reinforce control over time), and that these possibly lead to lasting brain reorganization (e.g.,

changes in their baseline resting state activity). The speci�city of these changes, in relation to which

neuromarkers were trained and to the clinical improvement, will be an essential component of this

demonstration.
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5 Conclusion

In this work we provide additional elements in favor of the e�ectiveness of NFB for the treatment of

ADHD. First, we con�rm that a subgroup of standard NFB studies shows a statistically signi�cant

improvement on PBLIND assessments (k = 4 studies instead of 3, n = 283 patients instead of 158

Cortese et al. [2016]).

Second, we identify technical factors as positive contributors to clinical e�ectiveness, which

strongly suggests that it is mediated by a real mechanism of action based on EEG conditioning.

Equally, treatment intensity was also found to contribute, corroborating what is known from learning

theory (memory consolidation) [Mowrer, 1960]; that is to say, a more intense treatment leads to an

increased clinical e�cacy.

While these �ndings certainly contribute to the debate, this work also suggests that the ultimate

demonstration of evidence remains out of reach, as teachers' assessments were partly invalidated as

a proxy for the quanti�cation of the placebo e�ect. As a consequence, using PBLIND endpoints to

address the speci�city of the clinical e�cacy is not recommended and we instead advise a reliance

on other available methodological tools. These tools include sham NFB and neuromarker analysis

investigating the speci�city of the EEG changes with respect to trained neuromarkers as well as

changes in clinical endpoints.

This work also o�ers an open-source toolbox for running meta-analysis and SAOB: the code and

data used are available, thus ensuring the transparency and replicability of these analysis, as well

as fostering future ones. Regarding perspectives, this two-fold methodological framework applied to

NFB for ADHD could be suitable for other NFB applications [Marzbani et al., 2016].
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Figure captions

Figure 1: Flow diagram of selection of studies (last searched on February 12, 2018). The subset (a)

corresponds to the Cortese et al.'s inclusion criteria without the requirement of the presence of a

control group. The subset (b) precisely corresponds to the studies included in Cortese et al. [2016]

and more recent works meeting the same criteria.
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Figure 2: Forest plots showing the between-ES. A negative ES is in favor of NFB. The blue squares

correspond to the ES, the blue diamond to the SE and the green line to the 95% con�dence interval.
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Figure 3: Decision Tree obtained: ES corresponds to the within subject e�ect size and k to the

number of studies, the importance of variables decreases from the root node. Session length is

measured in minutes, treatment length in weeks, and age in years.
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Figure 4: Pre-test and post-test scores (± standard error) given by parents (MPROX) in blue and

teachers (PBLIND) in green, dashed line. Data hypothesized under two di�erent hypotheses: (A)

no placebo e�ect, teachers see fewer symptoms altogether so that di�erence pre-post is low and

(B) placebo e�ect, teachers see as many baseline symptoms as parents but do not see as much

improvement. (C) Real data: evolution of parents' and teachers' scores between pre- and post-test

on studies that satisfy Cortese et al.'s inclusion criteria and that provide teachers and parents' scores

on the same scale.
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Table captions
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Table 1: List of all studies included in the three di�erent analyses: a) studies originally included in

Cortese et al. [2016] (last searched on August 30, 2015); b) studies satisfying Cortese et al. [2016]'s

criteria (last searched on February 12, 2018); c) studies satisfying Cortese et al. [2016] criteria to

the exception of the part relative to the control group (last searched on February 12, 2018).

Analysis Study Year Size of the NFB group

Arnold et al. 2014 26

Bakhshayesh et al. 2011 18

Beauregard and Levesque 2006 15

Bink et al. 2014 45

Christiansen et al. 2014 14

Gevensleben et al. 2009 59

Heinrich et al. 2004 13

Holtmann et al. 2009 20

Linden et al. 1996 9

Maurizio et al. 2014 13

Steiner et al. 2011 9

Steiner et al. 2014 34

van Dongen-Boomsma et al. 2013 22

a = Replicate

Cortese et al. 13 studies 297

Baumeister et al. 2016 8

Bazanova et al. 2018 17

Strehl et al. 2017 72

b = Update

Cortese et al. 16 studies 394

Bluschke et al. 2016 19

Deilami et al. 2016 12

Drechsler et al. 2007 17

Duric et al. 2012 23

Escolano et al. 2014 20

Fuchs et al. 2003 22

Geladé et al. 2016 39

Kropotov et al. 2005 86

Lee and Jung 2017 18

Leins et al. 2007 19

Li et al. 2013 32

Meisel et al. 2014 12

Mohagheghi et al. 2017 30

Mohammadi et al. 2015 16

Monastra et al. 2002 51

Ogrim and Hestad 2013 13

Strehl et al. 2006 23

c = SAOB 33 studies 846
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Table 2: Comparison between Cortese et al. [2016] results obtained with RevMan [Cochrane Collab-

oration, 2011] and those obtained with the meta-analysis package with our choicesa applied. SEs

and their corresponding p-value (in parenthesis) are presented. With the meta-analysis package, a

negative SE is in favor of NFB unlike Cortese et al..

Working hypothesis
Same as

Cortese et al. [2016] Our choicesa

Parents

Total 0.35 (0.004) −0.32 (0.013)

Inattention 0.36 (0.009) −0.31 (0.036)

Hyperactivity 0.26 (0.004) −0.24 (0.02)

Teachers

Total 0.15 (0.20) −0.11 (0.37)

Inattention 0.06 (0.70) −0.17 (0.16)

Hyperactivity 0.17 (0.13) −0.022 (0.85)

a Post-test values for Arnold et al. are obtained after 40 sessions of NFB and Conners scale is

used for Steiner et al. teachers' outcomes.
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Table 3: Results of the WLS, LASSO and decision tree. For the WLS, a p-value < 0.05 (in bold)

means that the coe�cient of the corresponding factor is signi�cantly di�erent from 0. For the

LASSO, factors not set to 0 (in bold) are selected. For the decision tree, the place of the factor in

the tree is indicated. For the �rst two columns, when the value of the coe�cient is negative, the

corresponding factor may lead to better NFB results.

Independent
variables (factors)

Coe�cients
found by WLS

(p-value)

Coe�cients
found by
LASSO

Place
on the
Decision
Tree

Methodological

PBLIND 0.12 (0.044) 0.12 root node

randomization 0.15 (0.062) 0.044 /

IRB -0.25 (0.01) 0.00 /

Population

age max -0.13 (0.075) 0.00 /

age min 0.025 (0.76) 0.00 /

on drugs -0.091 (0.29) 0.00 /

NFB
implementation

number of sessions -0.36 (0.00) 0.00 2nd node

session length -0.34 (0.001) 0.00 /

treatment length 0.35 (0.00) 0.065 2nd and 3rd

nodes

session pace -0.058 (0.33) -0.0043 4th node

SMR -0.10 (0.13) 0.00 /

beta up central -0.093 (0.44) 0.00 /

theta down 0.043 (0.72) 0.00 /

SCP -0.026 (0.85) 0.00 /

transfer phase 0.44 (0.00) 0.00 /

Quality of
acquisition

more than one ac-

tive electrode

-0.17 (0.010) -0.033 /

EEG quality 2 -0.18 (0.033) -0.032 3rd node

Signal quality
EOG rejection or

correction

-0.35 (0.001) 0.00 /

amplitude-based

artifact rejection

0.052 (0.52) 0.00 /
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