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Introduction

The most important peculiarity of turbulent combustion of lean hydrogen-air mixtures consists of an abnormally large (when compared to hydrocarbon-air mixtures burned under similar conditions) ratio of turbulent, , and laminar, flame speeds. This phenomenon is well documented in numerous experiments reviewed elsewhere [START_REF] Kuznetsov | Turbulence and Combustion[END_REF][START_REF] Lipatnikov | Molecular transport effects on turbulent flame propagation and structure[END_REF][START_REF] Lipatnikov | Fundamentals of Premixed Turbulent Combustion[END_REF], see also Refs. [START_REF] Kitagawa | Turbulent burning velocities hydrogenair premixed propagating flames at elevated pressures[END_REF][START_REF] Yang | Extreme role of preferential diffusion in turbulent flame propagation[END_REF] as recent examples. The same phenomenon is also documented for lean turbulent flames of various H 2 /CO/CH 4 /O 2 /N 2 mixtures [START_REF] Nakahara | Study of turbulent burning velocity of hydrogen mixtures including hydrocarbons[END_REF][START_REF] Muppala | Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane[END_REF][START_REF] Daniele | Turbulent flame speed for syngas at gas turbine relevant conditions[END_REF][START_REF] Venkateswaran | Measurements and analysis of turbulent consumption speeds of H 2 /CO mixtures[END_REF][START_REF] Venkateswaran | Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts[END_REF][START_REF] Zhang | Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept[END_REF], but the magnitude of the effect is decreased when the mole fraction of hydrogen in the fuel blend is decreased by retaining the same equivalence ratio.
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In qualitative discussions, the considered phenomenon is commonly attributed to diffusive-thermal and preferential diffusion effects, which can strongly increase the local burning rate by significantly increasing the local temperature and equivalence ratio in highly curved and strained reaction zones, as discussed in details elsewhere [START_REF] Kuznetsov | Turbulence and Combustion[END_REF][START_REF] Lipatnikov | Molecular transport effects on turbulent flame propagation and structure[END_REF][START_REF] Lipatnikov | Fundamentals of Premixed Turbulent Combustion[END_REF]. The theory of such effects has yet been developed solely for the laminar premixed flames [START_REF] Yab | The Mathematical Theory of Combustion and Explosions[END_REF][START_REF] Clavin | Dynamical behavior of premixed flame fronts in laminar and turbulent flows[END_REF][START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF], with the focus of the theory being placed on the difference in the molecular diffusivity of the deficient reactant (e.g., hydrogen in a lean hydrogen-air mixture) and the heat diffusivity of the mixture. This difference is commonly characterized with the Lewis number , which is about 0.3-0.4 for very lean hydrogen-air mixtures and is larger, but is less than unity for lean H 2 /CO/CH 4 /O 2 /N 2 mixtures.

Accordingly, the aforementioned abnormally large ratio of in lean hydrogen-air or H 2 /CO/CH 4 /O 2 /N 2 flames is typically discussed in terms of a strong increase in with decreasing [START_REF] Kuznetsov | Turbulence and Combustion[END_REF][START_REF] Lipatnikov | Molecular transport effects on turbulent flame propagation and structure[END_REF][START_REF] Lipatnikov | Fundamentals of Premixed Turbulent Combustion[END_REF].

Although the aforementioned diffusive-thermal and preferential diffusion effects are widely recognized to be the governing physical mechanisms of the well-documented increase in with decreasing , the phenomenon remains to be one of the major poorly resolved fundamental issues in the combustion science. Indeed, quantitative prediction of a large ratio of at a low still challenges the combustion community and the vast majority of numerical models of premixed turbulent flames, reviewed elsewhere [START_REF] Veynante | Turbulent combustion modeling[END_REF][START_REF] Poinsot | Theoretical and Numerical Combustion[END_REF][START_REF] Bilger | Paradigms in turbulent combustion research[END_REF][START_REF] Swaminathan | Turbulent Premixed Flames[END_REF][START_REF] Echekki | Turbulent Combustion Modeling[END_REF], either disregard the influence of Lewis number on turbulent burning rate or invoke highly empirical fits.

The present work aims at filling this gap by (i) extending a recently introduced approach [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF][START_REF] Lipatnikov | DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow[END_REF] to numerical modeling of premixed turbulent combustion to the case of and (ii) validating the extended approach against Direct Numerical Simulation (DNS) data obtained from premixed turbulent flames characterized by . The approach directly addresses transport equations for reaction rate and its Favre-averaged value , but has yet been restricted to the case of [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF][START_REF] Lipatnikov | DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow[END_REF]. It is worth remembering that averaging reaction rates subject to fluctuations in the local temperature and concentrations is on the most critical issue of the turbulent combustion theory even in the case of and the recently introduced transport equations for and offer new opportunities to make a progress in this area.

The structure of the paper is as follows. In the next section, transport equations for and are derived in the case of . In the third section, the former equation is applied to various stretched laminar premixed flames. In the fourth section, based on analytical and numerical results obtained for the laminar flames, a joint closure relation for all terms on the Right Hand Side (RHS) of the transport equation for is proposed to be used. The joint closure relation is validated by analyzing DNS data in the fifth section, followed by conclusions.

Derivation

Let us assume that the state of the mixture is characterized with (i) the combustion progress variable and

(ii) the normalized temperature , i.e., , , etc. Here, is the mass fraction of the deficient reactant, is the temperature, is the adiabatic combustion temperature (note that may be greater than unity if ), is the mixture density, subscripts u and b designate unburned and burned mixture, respectively. The invoked assumptions are typical, e.g., in theoretical studies of stretched laminar flames [START_REF] Yab | The Mathematical Theory of Combustion and Explosions[END_REF][START_REF] Clavin | Dynamical behavior of premixed flame fronts in laminar and turbulent flows[END_REF][START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF]. The assumptions hold, e.g., in the adiabatic, low-Mach-number, single-step-chemistry1 case.

Applying a chain rule to express temporal and spatial derivatives of as functions of temporal and spatial derivatives of and

(1)

and using the following transport equations

(3

)
to transform the terms in parentheses on the RHS of Eq. ( 1), we arrive at (4)

Here, designates partial derivative with respect to time, is the flow velocity vector, and are the first-order partial derivatives of the rate with respect to and , respectively. Subsequently, application of a chain rule to , and yields

where , , and are the second-order derivatives with respect to and , and , and , respectively. Finally, using the continuity equation [START_REF] Nakahara | Study of turbulent burning velocity of hydrogen mixtures including hydrocarbons[END_REF] we arrive at [START_REF] Muppala | Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane[END_REF] Ensemble averaging of Eq. ( 7) yields

If , then, the rate depends solely on . Consequently, and Eqs. [START_REF] Muppala | Experimental and analytical investigation of the turbulent burning velocity of two-component fuel mixtures of hydrogen, methane and propane[END_REF] and ( 8) reduce to transport equations derived and studied earlier [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF][START_REF] Lipatnikov | DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow[END_REF]. In this case, terms and dominate in Eq. ( 8), i.e., their signs are opposite and their magnitudes are much larger than the magnitudes of other terms or .

Accordingly, development of separate closure relations for and does not seem to be promising, because even small errors in evaluating any of the two terms may be large when compared to or To resolve the problem, a joint closure relation for was developed [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF] based on studies of stretched laminar premixed flames. In the present paper, the same approach is extended to flames characterized by . For this purpose, behavior of in stretched laminar premixed flames is analytically and numerically explored in Sect. 3. Then, results obtained from the laminar flames are utilized to develop a joint closure relation for the sum of all terms on the RHS of Eq. ( 8) in turbulent flames.

Stretched laminar premixed flames

Statement of the problem

Following [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF], let us consider four simple problems widely used in studies of stretched laminar premixed flames.

These are (1) an expanding spherical flame, (2) an expanding cylindrical flame, (3) a steady strained flame with a cylindrical surface, and (4) a steady strained planar flame. If, in cases ( 3) and ( 4), all flame and flow characteristics with exception of the transverse (parallel to the flame surface) velocity are assumed to be constant in the transverse direction in the vicinity of the flow symmetry axis (normal to the flame surface), then, transport equations that model all four flame types can be written in the same form

e.g., see Ref. [START_REF] Lipatnikov | Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames[END_REF]. Here, , , , is the normalized density, is rate of strain, for planar, cylindrical, and spherical flames, respectively ( if ), and is a power exponent of the temperature dependence of the diffusivity .

The boundary conditions read (10)

Theoretical study

Application of a method used in Sect. 2 to Eq. ( 9) written for yields [START_REF] Zhang | Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept[END_REF] where the term is re-written in the spherical or cylindrical coordinate framework in cases (1) or ( 2) and (3), respectively.

Multiplication of Eq. ( 11) with , followed by integration from =0 to and multiplication with results in [START_REF] Yab | The Mathematical Theory of Combustion and Explosions[END_REF] where [START_REF] Clavin | Dynamical behavior of premixed flame fronts in laminar and turbulent flows[END_REF] is the consumption velocity and is a flame coordinate associated, e.g., with the peak reaction rate [START_REF] Giannakopoulos | Consistent definitions of "Flame Displacement Speed" and "Markstein Length" for premixed flame propagation[END_REF].

Because the reaction zone is thin in a typical laminar flame, variations of the strain rate within the zone may be neglected to the leading order and, consequently, may be moved outside the integral on the Left Hand Side (LHS) of Eq. ( 12). Accordingly, [START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF] where is the local stretch rate at the reaction zone. In weakly stretched flames commonly addressed by the theory [START_REF] Yab | The Mathematical Theory of Combustion and Explosions[END_REF][START_REF] Clavin | Dynamical behavior of premixed flame fronts in laminar and turbulent flows[END_REF][START_REF] Matalon | Intrinsic flame instabilities in premixed and nonpremixed combustion[END_REF],

and, therefore, the time derivative on the RHS of Eq. ( 14) may be skipped. Consequently,

Equation ( 15) was earlier derived and used to close the term on the RHS of Eq. ( 8) in the case of [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF]. In Sect. 4, Eq. ( 15) will be adapted to close the sum of all terms on the RHS of Eq. ( 8) in a turbulent flow.

Numerical results

To test the theoretical Eqs. ( 14) and ( 15), Eqs. ( 9) and (10) were numerically solved using an in-house code [START_REF] Lipatnikov | Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames[END_REF] applied earlier to various problems, e.g., see Refs. [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF][START_REF] Lipatnikov | Lewis number effects in premixed turbulent combustion and highly perturbed laminar flames[END_REF]. The initial conditions described a small pocket of adiabatic combustion products. The flame coordinate was obtained from a constraint of at each instant [START_REF] Giannakopoulos | Consistent definitions of "Flame Displacement Speed" and "Markstein Length" for premixed flame propagation[END_REF].

Because the laminar flame thickness was small and almost constant in the studied flames, computed results were weakly sensitive to the choice of .

In the laminar flame simulations, all thermo-chemical characteristics were set equal to values used in the DNS discussed in Sect. 5.1. In particular, the Lewis number was set equal to 0.34, 0.6, or 0.8, a ratio of was set equal to 1.75, and

Here, is the density ratio, and the rate constant depends on in order to obtain desired laminar flame speed and thermal flame thickness . The numerical results were normalized using , , and , which were independent of , because was tuned accordingly. The value of is associated with very lean hydrogen-air flames, whereas the two other values of are associated with lean H 2 /CO/CH 4 /O 2 /N 2 mixtures. The coefficient of proportionality is very close to unity for the stationary flames, see dotted-dashed and dotted lines, but is slightly less than unity for expanding flames at high stretch rates, see solid and dashed lines, due to the unsteady term, see open circles and triangles, on the RHS of Eq. ( 14).

A joint closure relation

In a recent paper [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF], Eq. ( 15) was theoretically and numerically obtained for stretched laminar premixed flames characterized by and a simple joint closure relation [START_REF] Bilger | Paradigms in turbulent combustion research[END_REF] was proposed to be used. Here, is the stretch rate conditioned to reaction zones, is the displacement speed, is the unit normal vector, and in in Eq. ( 8) in the earlier case of . Subsequently, Eq. ( 15) was validated [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF] against three sets of DNS data obtained earlier by two independent research groups under substantially different conditions associated either with the flamelet regime or with the thin reaction zone regime of premixed turbulent combustion [START_REF] Peters | Turbulent Combustion[END_REF]. All these data were computed at .

The physical reasoning for hypothesizing Eq. ( 15) at were as follows [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF]. As the analysis of stretched laminar flames shows that in Eq. ( 7) yields after integration along the normal to a laminar flame, one may assume that , where is the probability of finding reaction zones and the reaction zone thickness is obtained from transformation of integration over using a probability density function to integration along local normal direction to the reaction zone [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF]. Similarly, , and, consequently, .

Equation [START_REF] Veynante | Turbulent combustion modeling[END_REF] and almost straight lines shown in Fig. 1 allow us to extend the previous analysis [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF] invoking basically the same physical reasoning. Accordingly, based on Eq. ( 15) and Fig. 1, the sum of all terms on the RHS of Eq. ( 8) is hypothesized to be equal to a product of the mean mass rate , whose transport is modeled by Eq. ( 8), and the stretch rate conditioned to the reaction zone, which characterizes the local flame turbulence-interaction.

Consequently, the simple joint closure relation given by Eq. ( 17) may be applied to flames characterized by , with and being eventually substituted with and , respectively. It is worth stressing that the developed approach does not involve any tuning coefficient different from unity. Contrary to a usual flamelet approach, which is based on an assumption that the entire flamelets in a turbulent flow retain the structure of (stretched) laminar flames, the present approach invokes a similar hypothesis only for the reaction zone. Accordingly, the domain of validity of the present approach is expected to be wider when compared to a flamelet approach, because the reaction zone is typically thinner and is less perturbed by small-scale turbulent eddies when compared to the flamelet preheat zone. This hypothesis requires further validation in future analyses.

It is also worth noting that Eq. ( 17) does not solve the problem of closing the RHS of Eq. ( 8), because the conditioned stretch rate still requires a closure relation. Nevertheless, Eq. ( 17) appears to be the crucial step to solving the problem, as a sum of seven unclosed terms, which counterbalance one another almost completely, is reduced to a single term. The present approach follows the pioneering ideas by Kolmogorov [START_REF] Kolmogorov | Equations of turbulent motion of an incompressible fluid[END_REF], based on which a widely used closed transport equation for the mean rate of the dissipation of turbulent kinetic energy was developed [START_REF] Spalding | Kolmogorov's two-equation model of turbulence[END_REF]. Indeed, the exact transport equation for involves two unclosed dominating terms, which have opposite signs and whose magnitude is increased by and is unbounded at [START_REF] Monin | Statistical Fluid Mechanics: Mechanics of Turbulence[END_REF]. However, Kolmogorov [START_REF] Kolmogorov | Equations of turbulent motion of an incompressible fluid[END_REF] proposed to explore the two terms jointly and hypothesized that the sum of them was proportional to and, therefore, was bounded at . As stressed by Spalding [START_REF] Spalding | Kolmogorov's two-equation model of turbulence[END_REF], these pioneering ideas laid foundation of a family of two-equation models of turbulence. The joint closure relation given by Eq. ( 17) follows similar ideas by also utilizing results of laminar flame studies in Sect. 3.

Validation

DNS attributes

Because DNS data analyzed in the following were discussed in details in various papers, e.g., see Refs. [START_REF] Chakraborty | Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames[END_REF][START_REF] Chakraborty | Effects of Lewis number on flame surface density transport in turbulent premixed combustion[END_REF][START_REF] Chakraborty | Effects of Lewis number on conditional fluid velocity statistics in low Damköhler number turbulent premixed combustion: A direct numerical simulation analysis[END_REF][START_REF] Chakraborty | Effects of Lewis number on vorticity and enstrophy transport in turbulent premixed flames[END_REF][START_REF] Dopazo | Vorticity budgets in premixed combusting turbulent flows at different Lewis numbers[END_REF] and references quoted therein, we will restrict ourselves to a brief summary of the simulations.

The cases considered here were simulated using a well-known DNS code SENGA [START_REF] Jenkins | Proc. 2nd AFOSR Conf. on DNS and LES[END_REF], which solved the standard governing equations of mass, momentum, energy, and combustion progress variable written in a non-dimensional form.

Combustion chemistry was reduced to a single reaction, with the used thermo-chemical parameters being specified in Sect.

3.3, see Eq. ( 16). A cubic domain of was discretised by a uniform Cartesian grid of points. The spatial discretisation and explicit time advancement were carried out by high-order finite-difference (10 th order for internal points, with the order of differentiation gradually reducing to a one-sided 2 nd order scheme at the nonperiodic boundaries) and Runge-Kutta (3 rd order) schemes. The boundaries in the direction of mean flame propagation (here, -direction) were non-reflecting and were specified according to the Navier-Stokes Characteristic Boundary Condition scheme [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. The transverse boundaries were periodic. The initial turbulent field was generated using a pseudo-spectral method [START_REF] Rogallo | Numerical Experiments in Homogeneous Turbulence[END_REF] which yielded a homogeneous isotropic distribution of velocity fluctuations. At , this turbulence field was superimposed on a steady-state unstrained laminar-flame solution. The flame-turbulence interaction evolved under decaying turbulence. Three ( , and 0. of the initial value.

These simulations yielded a strong increase in with decreasing the Lewis number ( , 4.6, and 13.7 at 0.6, and 0.34, respectively [START_REF] Chakraborty | Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames[END_REF]), in line with various experimental data reviewed elsewhere [START_REF] Kuznetsov | Turbulence and Combustion[END_REF][START_REF] Lipatnikov | Molecular transport effects on turbulent flame propagation and structure[END_REF][START_REF] Lipatnikov | Fundamentals of Premixed Turbulent Combustion[END_REF]. Accordingly, the DNS data are well appropriate for the major goal of the present study.

Results and discussion

Figure 2 shows that, as expected, terms , , and dominate in Eq. ( 8), i.e., (i) the magnitude of each of these terms is much larger than the magnitude of another term in Eq. ( 8) and (ii) the positive sign of terms and is opposite to the negative sign of terms and so that in the largest part of the mean flame brush. Thus, Fig. 2 implies that the use of a separate closure relation for each term on the RHS of Eq. ( 8) may result in a large error in due to small errors inherent to any model closure relation. Fig. 2. Various terms on the RHS of Eq. ( 8), normalized using , , and .

Figure 3 shows that the joint closure relation given by Eq. ( 17) yields encouraging results for all three Lewis numbers.

In particular, at low values of , the approach predicts a significant increase in with decreasing . Moreover, the approach predicts at and 0.6, as well as at and . At larger values of and , the joint closure relation overestimates , probably, due to the neglect of the unsteady term on the RHS of Eq. ( 14) or an increase in the probability of finding negatively curved (and negatively stretched) reaction zones with increasing . Since the present analysis of stretched laminar flames has yet been restricted to planar or positively curved flames, the linear relation given by Eq. ( 15) may not hold if the flame is negatively curved. This issue will be addressed in future work. Nevertheless, results reported in Fig. 3 appear to be promising bearing in mind the lack of any tuning parameter in Eq. [START_REF] Bilger | Paradigms in turbulent combustion research[END_REF]. It is also worth remembering that Eq. ( 17) was earlier validated [START_REF] Sabelnikov | A transport equation for reaction rate in turbulent flows[END_REF][START_REF] Sabelnikov | A balance equation for the mean rate of product creation in premixed turbulent flames[END_REF] against three other DNS databases computed by two independent research groups under substantially different conditions, but at .

Figure 4 shows normalized profiles of , obtained for various using . This figure implies that the increase in at low with decreasing , shown in Fig. 3, stems from an increase in the conditioned stretch rate. The increase in stems from the fact that a flame characterized by a lower can survive under the influence of a higher stretch rate, with all other things being equal, e.g., cf. numbers on the abscissa axes in Figs. 1a, 1b, and 1c. For purely geometrical reasoning, positively curved reaction zones dominate at low , with the highest possible value of the local curvature being increased with decreasing , thus, making larger.

Fig. 3. Validation of Eq. ( 17). Dashed and dotted-dashed lines show results obtained using and when evaluating the stretch rate. Fig. 4. Profiles of the conditioned stretch rates, obtained for various and normalized using and .

Moreover, Eq. ( 17) and Fig. 4 provide a clue to understanding why the leading edge of a premixed turbulent flame brush can control the flame speed , as hypothesized within the framework of the leading point concept put forward by Zeldovich [START_REF] Yab | The Mathematical Theory of Combustion and Explosions[END_REF]. The concept is discussed in details elsewhere [START_REF] Kuznetsov | Turbulence and Combustion[END_REF][START_REF] Lipatnikov | Molecular transport effects on turbulent flame propagation and structure[END_REF][START_REF] Lipatnikov | Fundamentals of Premixed Turbulent Combustion[END_REF], with the body of evidences in favor of it has been growing over the past years [START_REF] Venkateswaran | Measurements and analysis of turbulent consumption speeds of H 2 /CO mixtures[END_REF][START_REF] Venkateswaran | Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts[END_REF][START_REF] Zhang | Investigation of the fuel effects on burning velocity and flame structure of turbulent premixed flames based on leading points concept[END_REF][START_REF] Sabelnikov | Transition from pulled to pushed premixed turbulent flames due to countergradient transport[END_REF][START_REF] Sabelnikov | Transition from pulled to pushed fronts in premixed turbulent combustion: theoretical and numerical study[END_REF][START_REF] Kim | Leading points and heat release effects in turbulent premixed flames[END_REF][START_REF] Dave | Genesis and evolution of premixed flames in turbulence[END_REF]. Indeed, if the turbulent flux is weak when compared to the mean flux , as shown recently [START_REF] Lipatnikov | DNS study of closure relations for convection flux term in transport equation for mean reaction rate in turbulent flow[END_REF], then, for qualitative discussion, Eq. ( 17) may be simplified as follows [START_REF] Swaminathan | Turbulent Premixed Flames[END_REF] for a flame that moves from right to left in a statistically 1D planar fully-developed case. The form of this equation and Fig. 4 implies that the mean rate is increased with at low , where , but is decreased with at large , where . Accordingly, , i.e., the area under a curve of , is strongly affected by the slope at low .

The larger the slope, the larger the area and, hence, the larger . Consequently, is increased by the conditioned stretch rate evaluated near the leading edge.

For instance, if (i) the dependence of on has a dome-like shape, e.g., [START_REF] Bray | Studies of the turbulent burning velocity[END_REF], and (ii) is approximated as [START_REF] Lipatnikov | Fundamentals of Premixed Turbulent Combustion[END_REF][START_REF] Lipatnikov | Turbulent flame speed and thickness: phenomenology, evaluation, and application in multidimensional simulations[END_REF][START_REF] Driscoll | Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities[END_REF], where is the mean flame brush thickness, then, and Eq. ( 18) implies that , i.e., the turbulent flame speed is controlled by the conditioned stretch rate at the flame leading edge. Thus, Fig. 4 and Eq. ( 18)

explain the aforementioned strong increase in the computed values of with decreasing ( , 4.6, and 13.7 at 0.6, and 0.34, respectively [START_REF] Chakraborty | Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames[END_REF]). Moreover, Eq. ( 18) implies that modeling of the behavior of the product at low is of paramount fundamental importance and this will be a subject for future study.

Conclusions

Transport equations for the rate of product creation and its Favre-averaged value were derived by considering a premixed turbulent flame characterized by the Lewis number different from unity. Subsequently, based on theoretical and numerical investigations of variously stretched laminar flames characterized by , a simple joint closure relation for the sum of all seven unclosed terms on the RHS of the equation for was developed, see Eq. ( 17). While Eq. ( 17) does not solve the problem of closing the RHS of the transport equation for , as the conditioned stretch rate still requires modeling, the proposed joint closure relation appears to be the key step to solve the problem, as a sum of seven unclosed terms, which counterbalance one another almost completely, is reduced to a single term.

The joint closure relation was assessed by analysing 3D DNS data obtained from three statistically 1D, planar, adiabatic, premixed turbulent flames in the case of a single-step chemistry and , 0.6, or 0.8. The obtained agreement between the model and DNS results is promising, thus, indicating that the sum of seven unclosed terms on the RHS of Eq. ( 8), some of them counterbalance one another almost completely, may be modelled with a single term . Assessment of this hypothesis at various or and for different flame configurations is necessary for further validation.

Fig. 1 .

 1 Fig. 1. The LHS of Eq. (14), see lines, and the term , open circles and triangles, vs. in cases of (a) , (b) , and (c) . All quantities are normalized using , , and . 1 -expanding spherical flame ( ), 2 -expanding cylindrical flame ( ), 3 -steady strained cylindrical flame ( various ), 4 -steady strained planar flame (k = 0, various ).Computed dependencies of the LHS of Eq. (14), see lines in Fig.1, and the unsteady term, see open circles and triangles, on (i) validate the linear Eq. (15) for variously strained steady flames, see dotted-dashed and dotted lines, and for weakly stretched ( ) expanding flames, see solid and dashed lines, but (ii) show that the unsteady term plays a role in highly stretched expanding flames, with the effect magnitude being increased with decreasing . For the goals of the present work, the most important message from Fig.1consists of the linear relation between the integrated term , i.e., the LHS of Eq. (14), and in a wide range of stretch rates for different flame configurations.

A set of transport equations for reaction rates can also be derived in the context of complex chemistry. Such a detailed and complex study will be undertaken after thorough investigation of relatively simple cases.
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